letnik/volume 53 - at ./no. S/D7 - str./pp. 65-156 Ljubljana, feb./Feb. 2007, zvezek/issue STROJNIŠKI VESTNIK JOURNAL OF MECHANICAL ENGINEERING 19300 13800 *JJU j *L>:Zd6(200m/sj 4^Q.40(50m'/sl 20000 cena 3,34 EUR 9 770039"248001 ISSN G039-24BD Strojniški vestnik - Journal of Mechanical Engineering 53(2007)2, 65 Vsebina - Contents Vsebina - Contents Strojniški vestnik - Journal of Mechanical Engineering letnik - volume 53, (2007), številka - number 2 Ljubljana, februar - February 2007 ISSN 0039-2480 Izhaja mesečno - Published monthly Razprave Papers Floody S. E., Arenas, J. P., de Espindola J. J.: Floody S. E., Arenas, J. P., de Espindola J. J.: Modelling Modeliranje sestavov kovine in elastomerov Metal-Elastomer Composite Structures Using z uporabo postopka končnih elementov 66 a Finite-Element-Method Approach Kušar J., Duhovnik J., Tomaževič R., Starbek M.: Kušar J., Duhovnik J., Tomaževič R., Starbek M.: Ugotavljanje in vrednotenje potreb kupcev Finding and Evaluating Customers' Needs in v postopku razvoja izdelka 78 the Product-Development Process Džijan L, Virag Z., Kozmar H.: Vpliv pravokotnosti Džijan L, Virag Z, Kozmar H.: The Influence of Grid mreže na konvergenco programa SIMPLE za Orthogonality on the Convergence of the SEVIPLE reševanje Navier-Stokes-ovih enačb 105 Algorithm for Solving Navier-Stokes Equations Cvetkovič D., Radakovič D.: Matematični modeli Cvetkovič D., Radakovič D.: Mathematical Models dinamike helikopterskega letenja 114 of Helicopter Flight Dynamics Cvrk S., Dukič Z., Rodič M.: Določanje vijačnih Cvrk S., Dukič Z, Rodič M.: Determining the Propulsion lastnosti motorja z merilnimi lističi in osebnim Characteristics of an Engine Under the računalnikom v ustaljenih razmerah plovbe Conditions of a Standard Sailing Regime by ladje 127 Means of Strain Gauges and a Personal Computer Petrovič P.: Uporaba zvočne jakosti in preizkusne Petrovič P.: The Application of a Sound-Intensity načinovne analize za določitev hrupa Analysis and an Experimental Modal dizelskega motorja Analysis for Determining the Noise Emissions 140 of a Diesel Engine Poročila Reports Gotlih K., Janežič L: IFToMM - Mednarodna Gotlih K., Janežič L: IFToMM - The International federacija za promocijo znanosti o mehanizmih Federation for the Promotion of Mechanism in strojih 149 and Machine Science Strokovna literatura Professional Literature Iz revij 151 From Journals Osebne vesti Personal Events Doktorat in diplome 154 Doctor’s and Diploma Degrees Navodila avtorjem 155 Instructions for Authors Strojniški vestnik - Journal of Mechanical Engineering 53(2007)2, 66-77 UDK - UDC 678.033:519.61/.64 Izvirni znanstveni članek - Original scientific paper (1.01) Modeliranje sestavov kovine in elastomerov z uporabo postopka končnih elementov Modelling Metal-Elastomer Composite Structures Using a Finite-Element-Method Approach Sergio E. Floody1 - Jorge P. Arenas2 - José J. de Espuntola3 ('Technical University of Chile; 2Austral University of Chile; Tederai University of Santa Caterina, Brasil) Sestavi kovine in elastomerov so pomembno orodje za zmanjšanje mehanskih nihanj. Pri upogibu nihajoči sestav lahko dušimo z dodatkom primerne plasti dušilnega materiala, na primer elastomera, kjer je plast izpostavljena ciklični deformaciji in na ta način tudi izgubi energije. Vendar pa prisotnost elastomera pomeni, da je sestav odvisen od frekvence, zaradi tega težko natančno napovedujemo, saj je težko izračunati rešitev ustreznega problema lastnih vrednosti. V prispevku je predstavljena metodologija za modeliranje sestavov kovine in elastomerov z uporabo metode končnih elementov. V nadaljevanju je obravnavana računska metoda določitve približne rešitve frekvenčno odvisnega problema lastnih vrednosti. Številčne rezultate vztrajnosti smo primerjali z rezultati preizkusa običajnega “sendvič" sestava grede. Metodo smo razširili na model in tako optimirali Stockbridgove dušilnike, ki so uporabljeni za dušenje zračnih nihanj dejanskega električnega daljnovoda. Namesto uglasitve dušilnika na neko določeno frekvenco, smo z uporabo genetskih algoritmov določili ciljno fukcijo in optimirali fizikalne izmere dušilnika. S takim postopkom smo analizirali celoten problem brez uporabe modalnega pristopa napetost-energija, kar pomeni, da ta tako modeliranje zadosti načelu vzorčnosti. Metoda je uporabna kot orodje za načrtovanje in modeliranje sestavov kovine in elastomerov. © 2007 Strojniški vestnik. Vse pravice pridržane. (Ključne besede: kompoziti kovine - elastomeri, modeliranje strukture, metode končnih elementov, dušilniki vibracij) Metal-elastomer composite structures are an important tool for the reduction of mechanical vibrations. A structure that vibrates in flexure can be damped by the appropriate addition of a layer of damping material, for example, an elastomer, where the layer undergoes cyclic strain and thereby dissipates energy. However, the presence of the elastomer means that the structure is frequency dependent, which is a difficult case for obtaining accurate predictions since the solution of the corresponding eigenvalue problem is hard to compute. In this paper a methodology for modelling metal-elastomer composite structures using a finite-element approach is presented. In addition, a calculation scheme to approximate the solution of the frequency-dependent eigenvalue problem is discussed. The numerical results for the inertness were compared with the experimental results for a classic composite sandwich beam. The method is extended to model and optimise Stockbridge absorbers used to suppress the aeolian vibrations of an actual electrical transmission line. Instead of tuning the absorber to some particular frequency, an objective function is defined and the physical dimensions of the absorber are optimised by means of a genetic algorithm. In this approach, the complete problem is analysed without using the modal strain-energy approach, implying that this modelling satisfies the causality principle. The method appears to be useful as a tool for designing and modelling metal-elastomer composite structures. © 2007 Journal of Mechanical Engineering. All rights reserved. (Keywords: metal elastomer composite, structure modelling, finite element methods, Stockbridge dumpers) 0 INTRODUCTION Metal-elastomer composite structures are an important tool for the reduction of mechanical vibra- tions. A structure that vibrates in flexure can be damped by the appropriate addition of a layer of damping material. As the whole system vibrates, the layer undergoes cyclic strain and thereby dissipates 66 Strojniški vestnik - Journal of Mechanical Engineering 53(2007)2, 66-77 energy. Since the first successful modelling of a metal-elastomer composite presented by Ross et al. [1], considerable attention has been paid to the prediction of the dynamic behaviour of such structures. For many years, the finite element method has been used for modelling structures, and several of its applications have been shown to be quite accurate. Soni [2] has presented a finite element analysis of viscoelastically damped sandwich beams, which uses a combination of shell elements and three dimensional solids for the viscoelastic part. Another approach is to use shell elements with spring elements to model the elastomer [3]. This methodology has been shown to increase the speed of the calculations of the stiffness and mass matrices. Lumsdaine et al. [4] have reported a method using multi-layer elements, which has been proven to be very accurate. Although the modelling using three dimensional solid elements is the most complete alternative to solve this kind of problem, sometimes the computational cost of formulating and solving the equations can become prohibitive. The viscoelastic materials of greatest practical interest for damping applications are plastics and elastomers. An elastomer is a soft substance that exhibits thermo-viscoelastic behaviour. Viscoelastic materials possess both elastic and viscous properties. For a purely elastic material, all the energy stored in a sample during loading is returned when the load is removed. Furthermore, the displacement of the sample responds immediately, and in-phase, to the cyclic load. Conversely, for a purely viscous material, no energy is returned after the load is removed. The input stress is lost to pure damping as the vibration energy is transferred to internal heat energy. All the materials that do not fall into one of the above extreme classifications are called viscoelastic materials. Some of the energy stored in a viscoelastic system is recovered upon removal of the load, and the remaining energy is dissipated by the material in the form of heat. In a metal-viscoelastic-metal structure, the bending of the composite produces not only bending and extensional strains in all three layers, but also shears, primarily of the middle (viscoelastic) layer. The shear-strain energy storage tends to dominate the damping action of the constrained viscoelastic layers. Many practical applications operate on the principle of constrained layer damping. The shear forces in the constrained viscoelastic layer cause the energy of the vibration to be converted into heat. Undamped metal structures normally have a very low loss factor, typically in the range 0.001 to 0.01. Using a viscoelastic layer can increase this loss factor. This means that the amplitude of the resonant vibration when the structure is subjected to structure-borne sound or vibration will be much lower than for an undamped structure. A reduced amplitude of vibration means less radiation of sound, and also a reduced risk of fatigue failure [5]. A characteristic of viscoelastic materials is that their Young’s modulus is a complex quantity, having both a real and imaginary component. Furthermore, this complex modulus varies as a function of many parameters, the most important of which are the frequency and temperature of a given application. Consequently, this results in a corresponding eigenvalue problem in which the stiffness matrix depends on both the frequency and the temperature. The moduli typically take on relatively high values at low temperatures and/or high frequencies but take on comparatively small values at high temperatures and/or low frequencies. It is therefore necessary to establish an accurate understanding of the influence of these parameters in order to design effective damping treatments. In general, the vibration analysis of a system that is frequency independent can be accurately achieved by classical techniques. It is much more difficult to obtain accurate predictions when the equations of motion are frequency dependent. This is because the solution of the corresponding eigenvalue problem is difficult to compute. Methods based on the modal strain energy have been used to approximate the solution of the problem [2]. However, they are not accurate when the frequency and temperature ranges are increased, and when they include the transition region, where the variations of the dissipation and the stiffness of the viscoelastic material are quite pronounced. The greatest loss factors occur in the transition region at intermediate frequencies and temperatures. On the other hand, some of the assumptions used by these methods do not fit the principle of causality for physical systems [6]. The final aim of this paper is to present a methodology to model metal-elastomer composite structures by using a finite-element approach. The method was experimentally tested for a classic composite sandwich beam. Then, an application to model and optimise a Stockbridge absorber used to suppress the aeolian vibrations of an electrical transmission line is presented. Modeliranje sestavov kovine in elastomerov - Modelling Metal-Elastomer Composite Structures 67 Strojniški vestnik - Journal of Mechanical Engineering 53(2007)2, 66-77 1 THEORY The theory of finite element methods has been clearly presented by several authors ([7] to [9]), so it will not be repeated here. However, a method to avoid inverting matrices of a large size will be discussed in this section, since it is quite useful to speed up the numerical solution. As a result of the modelling using finite elements of a metal-elastomer structure, a frequency-dependent equation of motion is obtained. The equations of motion as a function of frequency for a forced multi-degree-of-freedom system and its associated eigenvalue problem can be written as: and [-n2M+K (n,r)]q (n,r) = f(ß) (i), K(n,r)0 has the following properties: and ®oM®0=I„ =L(n,r) (6), where the matrix Z(Q,7) is not necessarily diagonal, but it is an n x n matrix. Then, the new eigenvalue problem can be stated as: s(n,r)»|/(n,r) = /i(n,r)\|/(n,r) (7), xPT (Q,T )'Y(Q, T ) = lii (8), and xPT(Ci,T)l,(Ci,T)xe(Ci,T) = A(Ci,T) (9), where Mß,T) and v|/(Q,7) are the eigenvalue and eigenvector, respectively, lh is the hx» identity matrix, W(Çl,T) is a modal matrix, and A(Q,7)=tr(/l(Q,7)) is a trace matrix of eigenvalues. The new eigenvalue problem is still frequency dependent, but it is a problem of smaller size and consequently requires less computation time. 3) Consider the following transformation of coordinates: q(n,r) = *0r(n,r) (10), and "' "' (U)" Substituting Eq. (10) and (11) into Eq. (1), and pre-multiplying by rô0T(n,r)l gives [-n%+A(n,r)]p (n,r) = [e0i,(n,r)]rf (n) (12). Thus, the nodal displacement vector is given by: q (n,r) = e0w(n,T )[-n2ii + a(q,t ) ]"' [ô0T(Q,r)]r f (fi) (13). Therefore, the receptance matrix is obtained from Eq. (13) as: a(n,r) = e0,p(n,r)[-n2i.+A(n,r) J1 [o"P(n,r)T (14). Defining the matrix product S (n, r) = ®0T (n, r), Eq. (14) can be re-written as: (5), a(n,r) = s(n,r)[-n%+A(n,r)]~Isr(n,:r) (i5); where Z(Q,7) = A(Q,7) for all Q and J. Consequently, the inertness matrix is: -ci2a(ci,T ) = -f22s(fî,r)[-f22i. + A(n,r)]_1 ST (Cl,T ) (16). Then, the corresponding elements of the receptance matrix a(Q,7) are: (17), 68 F/ootfy L E. - Arenas J. P. - de Espindola J. J. Strojniški vestnik - Journal of Mechanical Engineering 53(2007)2, 66-77 where s is an element of the matrix S(Q,7), and \(Sl,T) = crt(Q,7). Therefore, the nxn matrix T,(Q.,T) can be assumed to be a projection of the stiffness matrix into an approximated subspace of the space formed by the real eigenvectors. So the quality of the approximation depends on the subspace, or span {y ] T = [o,-,o>/(0]2'= [o>/(0]r (22), K4(Q) is an lxl stiffness submatrix, u is the total displacement vector, q is the displacement vector without considering the control node, y is the displacement of the control node, and/(0 is the force applied to the absorber by the primary system. Now, in the frequency domain, Eq. (23) can be expressed as the system of equations: [-n2M! + Kt(n)]Q(n)+[-n2M2 + K2(n)] Y(n) = o [-n2M3 + k3 (n)]Q(n) + [-n2M4 + k4 (n)] Y(n) = F(n) (24). After solving Eq. (24), we obtain the dynamic stiffness of the system as: K(ci)=^^ = x4 (Ci) - x3 (n)x-1 (n)x2 (ci) (25), Y(C1) where: X!. (CI) = -Q2M,. + K, (CI), for i=1, ... , 4 (26). M, M2 q + Ki(n) K2(n) q 0 M3 M4 y K3(n) K4(n) y fit) and then Eq. (20) can be written in partitioned matrix form as: (23), where M, is an «-lx«-l mass submatrix, JVL is an n-lxl mass submatrix, ^ is an lxw-l mass submatrix, MA is an lxl mass submatrix, K,(Q) is an «-lx«-l stiffness submatrix, K(Q) is an „-lxl stiffness submatrix, K^Q) is an lxw-l stiffness submatrix, t Now, the inverse of Xl can be computed approximately by using Eq. (15), as: Xj-1 (n) = [-n2Mj + Kj(n) ]"' s s(n)[-n2L + A(n)]-1 sT (n) (27). From the dynamic stiffness we can obtain the dynamic impedance K (Q) Z(C1) jQ. where 7= 4^1, and the apparent mass f(D yd) * (28), Detail of restrictions Detail of control node > Tuning mass Jfc/' \* \ Central mass r v V 1 ¦ 1 : ? 1 1 Viscoelastic Mets I Fig. 5. Finite element model for the Stockbridge dynamic vibration absorber 72 Floody S. E. - Arenas J. P. - de Espindola J. J. Strojniški vestnik - Journal of Mechanical Engineering 53(2007)2, 66-77 M(SI) K(SI) (29). Consequently, the equivalent damping and equivalent mass are Cc,(n) = «{z(n)} and meq (n) = M{ M (n) } (30) (31), respectively. Then, the model of the absorber is replaced by an equivalent mechanical system composed of an equivalent mass connected to the primary system and an equivalent damper connected to the ground, where both are frequency dependent. In this way there are new physical degrees of freedom in the mechanical system, but there are no new degrees of freedom in the model. This formulation is equivalent to the simple model of a Stockbridge absorber, which makes use of the Euler-Lagrange equations. 2.4 Optimisation of the Stockbridge Absorber Now, the secondary system (Stockbridge absorber) is attached to a primary system (electrical transmission line) resulting in a compound system. In order to optimise the physical dimensions of the absorber, an objective function has to be proposed. Here, the objective function will be defined from the maximum absolute values of the principal coordinate functions of the compound system. Assuming that the primary system has a very low and almost constant hysteretic damping, the equations of motion for the primary system in the frequency domain are: [-Si2Mpr+Kpr]qpr(Si) = f(Si) (32), where M is the mass matrix of the primary system, K is the complex stiffness matrix of the primary system, q (Q) is the displacement vector of generalized coordinates, and f(Q) is the force vector. Using the theory of the equivalent generalized quantities [20], the compound system can be modelled as: [-a2 [Mpr + M„(n)] + jSiCeq(Si) + Kpr]qpr(a) = f (fi) (33), where M (Q) is the equivalent mass matrix and C (Q) is the equivalent damping matrix. If p absorbers are attached to the primary system, at the generalized physical coordinates qk1, qk2, ... , qkp, the equivalent generalized mass and damping matrices are: M„(n) "0 0 0 ^(^)1 ••• 0 0 0 0 0 0 0 0 0 0 0 0 m( ) eq kp 0 0 0 (34), and c„(n) "0 0 0 0 0 C.Ä1 - 0 0 0 0 0 0 0 0 c^(Q.)kp 0 0 0 0 0 (35), respectively. Using the transformation: qpr(fi) = is the matrix of the eigenvectors associated with the'eigenvalues of the primary system in the frequency band of interest, and ppr is the vector of the principal coordinates of the primary system, Eq. (33) can be written as: [-n2[i+M,(n)]+ync,(fi)+spr]Ppr(fi) = n(n) (37), where M(Q)= TM (Q) IZHOD - pomembni in kritični KAKO-ji OUTPUT - important and critical HOWs SI. 1. Hiša razvoja funkcij kakovosti izdelka Fig. 1. Products quality-functions-deployment house Ugotavljanje in vrednotenje potreb kupcev - Finding and Evaluating Customers' Needs 79 Strojniški vestnik - Journal of Mechanical Engineering 53(2007)2, 78-104 KAKO / HOW Značilke izdelka / Product characteristics KAJ WHAT 1. HIŠA NAČRTOVANJE IZDELKA 1st HOUSE PRODUCT PLANNING KAKO / HOW Značilke sklopov, sest. delov / Component characteristics KAJ WHAT 2. HIŠA NAČRTOVANJE SKLOPOV SESTAVNIH DELOV 2nd HOUSE COMPONENT PLANNING KAKO / HOW Značilke postopkov Process characteristics KAJ WHAT 3. HIŠA NAČRTOVANJE POSTOPKOV 3rd HOUSE PROCESS PLANNING KAKO / HOW Značilke proizvodnje Production characteristics KAJ WHAT 4. HIŠA NAČRTOVANJE PROIZVODNJE 4th HOUSE PRODUCTION PLANNING Sl. 2. Postopek sprejemanja izdelka na osnovi RFK Fig. 2. QFD process of new-product development Postopek razvoja izdelka na osnovi RFK poteka kaskadno in se opiše s štirimi hišami razvoja funkcij kakovosti (si. 2) in to [4]: • hišo razvoja funkcij kakovosti izdelka • hišo razvoja funkcij kakovosti sklopov oziroma sestavnih delov izdelka, • hišo razvoja funkcij kakovosti postopka in • hišo razvoja funkcij kakovosti proizvodnje. Kakor prikazuje slika 2 se postopek razvoja izdelka na osnovi RFK prične s pridobivanjem, sestavljanjem in vrednotenjem potreb kupcev izdelka - rezultat je vektor ugotovljenih potreb kupcev izdelka, ki pomeni vhodni podatek hiše načrtovanja izdelka. Da bi lahko pri sprejemanju izdelka upoštevali glas oz. potrebe kupcev, je le-te treba pridobiti in raziskati z namenom, da bi razumeli ter vedeli, kako bodo upoštevane. Slika 3 prikazuje osnutek pridobivanja, sestavljanja in vrednotenja potreb kupcev izdelka. V nadaljevanju bodo prikazani postopek in metode pridobivanja, sestavljanja in vrednotenja podatkov o potrebah kupcev, kar je temelj za uspešno izvedbo postopka razvoja izdelka oziroma za uspeh izdelka na trgu. The QFD process of new-product development is carried out in cascades and can be described with four QFD houses (Fig. 2) [4]: • the product’s quality-functions-deployment house • the product’s component quality-functions-deployment house • the process quality-functions-deployment house • the manufacturing quality-functions-deployment house. As presented in Figure 2, the QFD process of new-product development starts by obtaining, structuring and evaluating the customer needs, which represent the input data for the product planning house. In order to take into account the customer needs during new-product development, they must be identified and analyzed beforehand, so that they can be properly understood and fulfilled. Figure 3 presents the concept of obtaining, structuring and evaluating the data on customer needs. In the text that follows, the procedure and methods for obtaining, structuring and evaluating customer needs are presented. These are the basis for the successful execution of the product-development process or for the success of the product on the market. 80 Kušar J. - Duhovnik J. - Tomaževič R. - Starbek M. Strojniški vestnik - Journal of Mechanical Engineering 53(2007)2, 78-104 ANALIZA TRGA »GLAS KUPCEV« MARKET ANALYSIS ^VOICE OF THE CUSTOMERS^ -& DDD DDD DDD Metode vrednotenja podatkov Methods for data evaluation O I VEKTOR POTREB KUPCEV IZDELKA I CUSTOMERS' NEEDS VECTOR ^1 viri glasu kupcev voice of customers sources pridobivanje podatkov o potrebah kupcev obtaining of customers' needs data urejanje podatkov o potrebah kupcev structuring of customers' needs data vrednotenje podatkov o potrebah kupcev evaluation of customers' needs data vhodni podatek hiše načrtovanja izdelka input data for the product plannig house Sl. 3. Osnutek zbiranja, urejanja in vrednotenja potreb kupcev izdelka Fig. 3. The concept of obtaining, structuring and evaluating customer needs 1 VIRI GLASU KUPCEV 1 SOURCES OF THE CUSTOMERS’ VOICE Glas kupcev je pojem, s katerim se opišejo izrečene in neizrečene potrebe ter zahteve kupcev in je kot tak potreben za zagon postopka razvoja izdelka ([5] in [6]). Potreba kupca pomeni izjavo kupca o koristi, ki bi mu jo lahko prinesel izdelek ali storitev ([1] in [7]). Kupci želijo svoje potrebe in želje zadovoljiti z izbiro izdelkov ali storitev, ki to najbolje izpolnjujejo. Kupci pa pogosto izražajo svoje potrebe z izjavami, ki govorijo o tem, kako bi lahko te potrebe zadovoljili, te izjave pa se imenujejo kupčeve zahteve [8], ki se prepoznajo kot nekaj zahtevanega, nekaj, o čemer se ne da pogajati. Poznani so trije glavni viri pridobivanja informacij o glasu kupca, in to so ([3] in [9]): • zunanji kupci, • notranji kupci in • podatki o izdelkih in postopkih. The voice of the customers is a concept that describes the uttered and unuttered customers’ wants and needs; as such it must exist in order to start the new-product development process ([5] and [6]). A customer need is a description, in the customer’s own words, of the benefit to be fulfilled by the product or service ([1] and [7]). Customers would like to satisfy their needs and wishes by selecting products or services that best fulfill them. Customers often express their needs using statements that describe how these needs could be fulfilled and these statements are called “customer requirements” [8], which are considered as something required, something that is non-negotiable. There are three major sources for obtaining information on the voice of the customer ([3] and [9]): • external customers, • internal customers, • information on products and processes. 1.1 Zunanji kupci Zunanji kupci so kupci, ki so zunaj podjetja in govorijo drugačen jezik kakor proizvajalec izdelka. Po pregledu literature ([1], [3], [6] in [7]) lahko ugotovimo, da se zunanji kupci delijo v več kategorij in podkategorij, glede na to, od koga 1.1 External customers External customers are the customers outside the company. They speak a different language than the company that manufactures the product. A survey of the reference works ([1], [3], [6] and [7]) reveals that external customers fall into several categories and Ugotavljanje in vrednotenje potreb kupcev - Finding and Evaluating Customers' Needs 81 Strojniški vestnik - Journal of Mechanical Engineering 53(2007)2, 78-104 ZUNANJI KUPCI EXTERNAL CUSTOMERS J KUPUJEJO ARE BUYING SO THEY ARE Uporabniki izdelkov Product users Ljudje z vplivom na nakupe drugih ljudi People influencing other people in the process of purchasing Ljudje, ki sprejemajo končne denarne odločitve People making the final financial decisions Kupujejo naše ^ Zadovoljni Satisfied izdelke Nezadovoljni Dissatisfied Kupujejo izdelke konkurence ^ Bivši naši kupci Our former customers