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Abstract

Let Γn and Λn be the n-dimensional Fibonacci cube and Lucas cube, respectively.
The domination number γ of Fibonacci cubes and Lucas cubes is studied. In particular
it is proved that γ(Λn) is bounded below by

⌈
Ln−2n

n−3

⌉
, where Ln is the n-th Lucas

number. The 2-packing number ρ of these cubes is also studied. It is proved that

ρ(Γn) is bounded below by 22
blg nc

2 −1
and the exact values of ρ(Γn) and ρ(Λn) are

obtained for n ≤ 10. It is also shown that Aut(Γn) ' Z2.

Key words: Fibonacci cubes; Lucas cubes; domination number; 2-packing number; au-
tomorphism group; computer search
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1 Introduction

Fibonacci cubes form a class of graphs introduced because of their properties applicable
for interconnection networks [5]. Lucas cubes [10] are subgraphs of Fibonacci cubes in
which certain “non-symmetric” vertices are removed. In this way we get graphs with
more symmetries, a fact that will be further justified in this paper. Both classes of cubes
have been considered from various points of view, see [1, 2, 3, 8, 11, 13].

In this paper we study Fibonacci cubes and Lucas cubes from the viewpoint of domi-
nation and packing. While searching for (vertex) subsets of a graph (like dominating sets)
it is useful to know symmetries of the graph, hence we first describe automorphism groups
of these graphs in Section 2.

In Section 3 we study the domination number of Fibonacci cubes as initiated in [12],
and also investigate that of Lucas cubes. We first give some connections between the
domination number of Fibonacci cubes and Lucas cubes and construct dominating sets
for 9-dimensional cubes. Then we obtain a lower bound on the domination number of
Lucas cubes.

A graph invariant closely related to the domination number is the 2-packing number,
which is the topic of Section 4. We first obtain an exponential (in terms of the dimension)
lower bound on the 2-packing number of the Lucas cubes which is a natural lower bound
for the Fibonacci cubes. Combining computer search with some arguments the exact
values for the 2-packing number of both classes of cubes up to and including dimension
10 are obtained.

In the rest of this section we define the concepts needed in this paper. For a connected
graph G, the distance dG(u, v) (or d(u, v) for short) between vertices u and v is the usual
shortest path distance.

Let n ≥ 1. A Fibonacci string of length n is a binary string b1b2 . . . bn with bi · bi+1 = 0
for 1 ≤ i < n. In other words, Fibonacci strings are binary strings that contain no
consecutive 1’s. The Fibonacci cube Γn is the subgraph of Qn induced by the Fibonacci
strings of length n. For convenience we also set Γ0 = K1. A Fibonacci string b1b2 . . . bn

is a Lucas string if b1 · bn = 0. The Lucas cube Λn is the subgraph of Qn induced by the
Lucas strings of length n. We also set Λ0 = K1.

It is well-known (cf. [5]) that |V (Γn)| = Fn+2, where Fn are the Fibonacci numbers:
F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2. Similarly, |V (Λn)| = Ln, see [10], where Ln

are the Lucas numbers: L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2.
For 0 ≤ k ≤ n, let Γn,k be the set of vertices of Γn that contain k 1’s. Hence Γn,k is

the set of vertices of Γn at distance k from 0n. Λn,k is defined analogously. In particular,
Γn,0 = Λn,0 = {0n} and Γn,1 = Λn,1 = {10n−1, 010n−2, . . . , 0n−11}. If uv ∈ E(Γn), where
u ∈ Γn,k and v ∈ Γn,k−1 (k ≥ 1), then we say that v is a down-neighbor of u and that u is
an up-neighbor of v. The same terminology again applies to Lucas cubes.

For a binary string b = b1b2 . . . bn, let b be the binary complement of b and let bR =
bnbn−1 . . . b1 be the reverse of b. For binary strings b and c of equal length, let b + c
denote their sum computed bitwise modulo 2. For 1 ≤ i ≤ n, let ei be the binary string
of length n with 1 in the i-th position and 0 elsewhere. According to this notation,
Γn,1 = Λn,1 = {e1, e2, . . . , en}.

Let G be a graph. Then D ⊆ V (G) is a dominating set if every vertex from V (G)\D is
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adjacent to some vertex from D. The domination number γ(G) is the minimum cardinality
of a dominating set of G. A set X ⊆ V (G) is called a 2-packing if d(u, v) > 2 for any
different vertices u and v of X. The 2-packing number ρ(G) is the maximum cardinality
of a 2-packing of G. It is well known that for any graph G, γ(G) ≥ ρ(G), cf. [6].

Finally, the automorphism group of a graph G is denoted by Aut(G). For instance,
Aut(Cn) = D2n, where Cn is the n-cycle and D2n is the dihedral group on n elements.
Recall that D2n can be represented as 〈x, y | x2 = 1, yn = 1, (xy)2 = 1〉.

2 Automorphism groups

In this section we determine the automorphism groups of Fibonacci cubes and Lucas cubes.

Let n ≥ 1 and define the reverse map r : Γn → Γn with:

r(b1b2 . . . bn) = bR = bnbn−1 . . . b1 . (1)

It is easy to observe that r is an automorphism of Γn. We are going to prove that r is the
only nontrivial automorphism of Γn. For this sake, the following lemma is useful.

Lemma 2.1 Let n ≥ 3 and k ≥ 2. Then u, v ∈ Γn,k have different sets of down-neighbors.

Proof. Since u, v ∈ Γn,k, d(u, v) ≥ 2. We distinguish two cases.
Suppose first d(u, v) = 2 and let u and v differ in positions i and j. Since u, v ∈ Γn,k,

we may assume without loss of generality that ui = vj = 1 and uj = vi = 0. Moreover, u
and v agree in all the other positions. Since k ≥ 2, there exists an index ` 6= i, j such that
u` = v` = 1. Then u + e` is a down-neighbor of u but not a down-neighbor of v.

Assume now d(u, v) ≥ 3. Let i be an arbitrary index such that ui 6= vi. We may
assume that ui = 1. Then u + ei is a down-neighbor of u but not of v. ¤

Theorem 2.2 For any n ≥ 1, Aut(Γn) ' Z2.

Proof. The assertion is clear for n ≤ 2, hence assume in the rest that n ≥ 3. Let
α ∈ Aut(Γn). Since 0n is the only vertex of degree n, α(0n) = 0n. Therefore, α maps Γn,1

onto Γn,1. Let Γ′n,1 = {10n−1, 0n−11} and Γ
′′
n,1 = Γn,1 \ Γ′n,1. Since 10n−1 and 0n−11 are

the only vertices of degree n − 1, α maps Γ′n,1 and Γ
′′
n,1 onto themselves. We distinguish

two cases.

Case 1: α(10n−1) = 10n−1.
Then, because α maps Γ′n,1 onto Γ′n,1, we have α(0n−11) = 0n−11. Among the vertices
of Γ

′′
n,1, only 010n−2 has no common up-neighbor with 10n−1. Therefore, α(010n−2) =

010n−2. In turn, among the remaining vertices of Γ
′′
n,1, only 0010n−3 has no common

up-neighbor with 010n−2. Therefore α(0010n−3) = 0010n−3. By proceeding with the same
argument, α fixes Γ

′′
n,1 pointwise and hence fixes Γn,1 pointwise. Now apply Lemma 2.1

and induction on k to conclude that α fixes Γn,k pointwise for all k. Therefore α = id in
this case.
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Case 2: α(10n−1) = 0n−11.
Now α(0n−11) = 10n−1. Among the vertices of Γ

′′
n,1, only 010n−2 has no common up-

neighbor with 10n−1. Thus α(010n−2) = 0n−210, which is the only element of Γ
′′
n,1 with

no common up-neighbor together with α(10n−1) = 0n−11. By proceeding with the same
argument, α reverses all the elements of Γ

′′
n,1, that is, α

Γ
′′
n,1

= r
Γ
′′
n,1

and consecutively
αΓn,1 = rΓn,1 . By Lemma 2.1 and induction on k, the same holds for any Γn,k, k ≥ 2.
Therefore α = r in this case. ¤

Let n ≥ 1. An equivalent way to define Λn is that it is the subgraph of Qn induced
on all the binary strings of length n that have no two consecutive 1’s in circular manner.
This definition is more symmetric than the definition of the Fibonacci strings, so it is
reasonable to expect that Aut(Λn) is richer than Aut(Γn). This is indeed the case. Define
ϕ : Λn → Λn by

ϕ(b1b2 . . . bn) = bnb1 . . . bn−1 . (2)

By the above remark it is clear that ϕ ∈ Aut(Λn). Zagaglia Salvi [14] proved that the
automorphism groups of the Lucas semilattices are the dihedral groups. The arguments
that determine the automorphism group of the Lucas cubes are in a way parallel to the
arguments from [14], hence we next give just a sketch of them.

Note first that Lemma 2.1 with the same proof applies to Lucas cubes as well. Let
α ∈ Aut(Λn). Suppose that for some a, b ∈ {0, 1, . . . , n − 1}, α(10n−1) = 0a10n−a−1 and
α(0n−11) = 0b10n−b−1, where computations are mod n. Then either b = a− 1 or b = a+1
because α(10n−1) and α(0n−11) cannot have a common up-neighbor. When b = a− 1 we
get α = ϕa and in the other case α = ϕa+1 ◦ r. We conclude that Aut(Λn) is generated
by r and ϕa for 0 ≤ a ≤ n− 1, and hence:

Theorem 2.3 For any n ≥ 3, Aut(Λn) ' D2n.

3 The domination number

In this section we consider the domination number of Fibonaci and Lucas cubes. We first
interrelate their domination numbers. Then we discuss exact domination numbers for
small dimensions. The section is conluded by establishing a general lower bound on the
domination number of Lucas cubes.

Proposition 3.1 Let n ≥ 4, then

(i) γ(Λn) ≤ γ(Γn−1) + γ(Γn−3) ,
(ii) γ(Λn) ≤ γ(Γn) ≤ γ(Λn) + γ(Γn−4) .

Proof. (i) V (Λn) can be partitioned into vertices that start with 0 and vertices that start
with 1. The latter vertices are of the form 10 . . . 0 and hance can be dominated by γ(Γn−3)
vertices while the former vertices can be dominated by γ(Γn−1) vertices.

(ii) Let D be a minimum dominating set of Γn and set

D′ = {u | u is a Lucas string from D} ∪ {0b2 . . . bn−10 | 1b2 . . . bn−11 ∈ D} .
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A vertex 1b2 . . . bn−11 dominates two Lucas vertices, namely 0b2 . . . bn−11 and 1b2 . . . bn−10.
Since these two vertices are dominated by 0b2 . . . bn−10, we infer that D′ is a dominating
set of Λn. It follows that γ(Λn) ≤ γ(Γn).

A dominating set of Λn dominates all vertices of Γn but the vertices of the form
10b3 . . . bn−201. These vertices can be dominated by γ(Γn−4) vertices. ¤

It can be easily checked that Proposition 3.1 (i) holds for any n ≥ 2, and that the first
inequality of Proposition 3.1 (ii) holds for any n ≥ 0.

Pike and Zou [12] obtained exact values of γ(Γn) for n ≤ 8, see Table 2. By computer
search they found 509 minimum dominating sets of Γ8. Following their approach we have
computed the domination numbers of Λn, n ≤ 8, see Table 2 again.

Hence the smallest Fibonacci cube and Lucas cube for which the domination numbers
are not known are Γ9 and Λ9. Since γ(Γn) ≤ γ(Γn−1)+γ(Γn−2), it follows that γ(Γ9) ≤ 20,
cf. [12, Lemma 3.1]. Since for an exhaustive search too much computer time would be
needed, we have used a local search procedure in order to find a smaller dominating set:
to get a new dominating set we have replaced one or more vertices with another vertex. In
this way we were able to construct a dominating set of Γ9 of size 17 given on the left-hand
side of Table 1. Similarly we have found a dominating set of Λ9 of order 16 given on the
right-hand side of Table 1. Hence:

Proposition 3.2 γ(Γ9) ≤ 17 and γ(Λ9) ≤ 16.

We conjecture that γ(Γ9) = 17 and γ(Λ9) = 16 hold.

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0
1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0
1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1
1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0
1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1 0 0
0 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 1 0
0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1
0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1
1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1
0 1 0 0 1 0 1 0 1

Table 1: A dominating set of Γ9 and a dominating set of Λ9
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Pike and Zou [12] also proved that for any n ≥ 4,

γ(Γn) ≥
⌈

Fn+2 − 3
n− 2

⌉
.

We next prove a parallel lower bound for the domination number of Lucas cubes. For this
sake we first consider degrees of some specific vertices in Lucas cubes.

Recall that Λn,1 is the set of all the vertices with exactly one 1. In addition, set

Λ′n,2 = {0a1010n−a−3 | 0 ≤ a ≤ n− 1} ,

where we again compute by modulo n. Hence Λ′n,2 is the subset of Λn,2 consisting of the
Lucas strings containing (in circular manner) 101 as a substring.

Lemma 3.3 Let n ≥ 7. Then for the Lucas cube Λn, the followings hold.

(i) The vertex 0n is the only vertex of the maximum degree n.
(ii) The vertices of Λn,1 have degree n− 2.
(iii) Among the vertices with at least two 1’s, only the vertices of Λ′n,2 have degree

n− 3 and all the other vertices have degree at most n− 4.

Proof. (i) and (ii) are clear.
(iii) Let u ∈ Λn,k for some k ≥ 2. Then u has k down-neighbors. The up-neighbors of u

are obtained by switching a bit 0 into 1. Let i1 < i2 < · · · < ik be the positions in which u
contains 1. Throughout the proof, the indices of i’s will be considered by modulo k and ij
will be considered by modulo n. As no consecutive bits of 1’s are allowed, ij+1− ij ≥ 2 for
all 1 ≤ j ≤ k. Let Ij = {ij − 1, ij + 1} be the set of the positions which are adjacent to ij
for each 1 ≤ j ≤ k and let I =

⋃
1≤j≤k Ij . Then any bit which is not in I can be switched

to 1 and hence the number of up-neighbors of u is n−k−|I|. Therefore, deg(u) = n−|I|.
Note that Ij ∩ Ij′ = ∅ if |j − j′| ≥ 2, therefore by pigeon-hole principle, |I| ≥ k. The
equality holds if and only if Ij

⋂
Ij+1 6= ∅ for all 1 ≤ j ≤ k, which occurs if and only if

ij+1 = ij + 2 for all 1 ≤ j ≤ k, which is in turn true if and only if n is even and k = n
2 .

But in this case, deg(u) = n
2 ≤ n− 4 as n ≥ 8. In the other cases, |I| ≥ k + 1 and hence

deg(u) ≤ n− k − 1. If k ≥ 3, then deg(u) ≤ n− 4. Assume k = 2. Then deg(u) ≤ n− 3,
where the equality holds exactly when |I| = 3 and I1

⋂
I2 6= ∅ which means that u ∈ Λ′n,2.

¤

Lemma 3.4 Any l vertices from Λ′n,2 have at least l down-neighbors, that is, at least l
neighbors in Λn,1.

Proof. For 1 ≤ i ≤ l, let Ai be the set of down-neighbors of vi ∈ Λ′n,2. Then |Ai| = 2
for each i. Considering bits by modulo n, each vertex 0a10n−a−1 in Λn,1 can be a down-
neighbor of at most two vertices 0a1010n−a−3 and 0a−21010n−a−1, and hence at most two
of v1, . . . , vl. By pigeon-hole principle, the assertion is true. ¤
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To establish the announced lower bound, we will apply the natural concept of over-
domination, just as it is done in [12]. It is defined as follows. Let D be a dominating set
of a graph G. Then the over-domination of G with respect to D is:

ODG(D) =
∑

v∈D

(degG(v) + 1)− |V (G)| . (3)

Note that ODG(D) = 0 if and only if D is a perfect dominating set [9, 4], that is, a
dominating set such that each vertex is dominated exactly once.

Theorem 3.5 For any n ≥ 7, γ(Λn) ≥
⌈

Ln − 2n

n− 3

⌉
.

Proof. Let D be a minimum dominating set of Λn. Set D1 = D∩Λn,1 and D2 = D∩Λ′n,2,
and let k = |D ∩ Λn,1| and l = |D ∩ Λ′n,2|. Then clearly 0 ≤ k, l ≤ n. Note that the
over-domination of G with respect to D can be rewritten as

OD(G) =
∑

u∈V (Λn)

(|{v ∈ D | d(u, v) ≤ 1}| − 1) . (4)

For a vertex u of Λn, set t(u) = |{v ∈ D | d(u, v) ≤ 1}| − 1. As D is a dominating set,
t(u) ≥ 0 for all u ∈ V (Λn). We now distinguish two cases.

Case 1: 0n ∈ D.
Combining Lemma 3.3 with Equation (3) we get

OD(D) ≤ (n + 1) + k(n− 1) + l(n− 2) + (γ(Λn)− k − l − 1)(n− 3)− Ln

= γ(Λn)(n− 3) + 2k + l + 4− Ln .

Also as t(u) ≥ 0 for all u ∈ V , Equation (4) implies

OD(D) ≥ t(0n) +
∑

v∈D1

t(v) ≥ 2k .

Therefore γ(Λn) ≥
⌈

Ln−l−4
n−3

⌉
≥

⌈
Ln−n−4

n−3

⌉
.

Case 2: 0n /∈ D.
Again, combining Lemma 3.3 with Equation (3) we infer

OD(D) ≤ k(n− 1) + l(n− 2) + (γ(Λn)− k − l)(n− 3)− Ln

= γ(Λn)(n− 3) + 2k + l − Ln .

Let A be the set of down-neighbors of D2. Then for u ∈ D1 ∩A, t(u) ≥ 1. By Lemma 3.4,
|A| ≥ l and hence |D1

⋂
A| ≥ k + l − n. Therefore by Equation (4),

OD(D) ≥
∑

v∈D1
⋂

A

t(v) ≥ k + l − n .

Thus γ(Λn) ≥
⌈

Ln−k−n
n−3

⌉
≥

⌈
Ln−2n

n−3

⌉
.

By Case 1 and Case 2, γ(Λn) ≥
⌈

Ln−2n
n−3

⌉
. ¤
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4 The 2-packing number

We now turn to the 2-packing number and first prove the following asymptotical lower
bound.

Theorem 4.1 For any n ≥ 8, ρ(Γn) ≥ ρ(Λn) ≥ 22
blg nc

2 −1

.

Proof. Since for any n ≥ 1, Λn is an isometric subgraph of Γn, cf. [7], a 2-packing of Λn

is also a 2-packing of Γn. Therefore ρ(Γn) ≥ ρ(Λn).
Let r, s ≥ 1 and let X and Y be maximum 2-packings of Λr and Λs, respectively. Then

{x0y | x ∈ X, y ∈ Y } is a 2-packings of Λr+s+1 of size ρ(Λs)ρ(Λs). It follows that

ρ(Λr+s+1) ≥ ρ(Λr)ρ(Λs) .

Set now k = blg nc. Then ρ(Λ2k) ≥ ρ(Λ2k−1+1) ≥ ρ(Λ2k−2)2. By repeatedly applying this
argument we get

ρ(Λn) ≥ ρ(Λ2k) ≥ ρ(Λ2k−2l)2
l

.

When k is even, take l = k−2
2 to get ρ(Λn) ≥ ρ(Λ4)

2
k−2
2 = 22

k−2
2 . When k is odd, take

l = k−3
2 to get ρ(Λn) ≥ ρ(Λ8)

2
k−3
2 ≥ 82

k−3
2 = 23×2

k−3
2 ≥ 22

k−2
2 . ¤

Using computer we obtained the 2-packing numbers of Γn and Λn for n ≤ 10 given in
Table 2.

n 0 1 2 3 4 5 6 7 8 9 10
γ(Γn) 1 1 1 2 3 4 5 8 12 ≤17 -
ρ(Γn) 1 1 1 2 2 3 5 6 9 14 20
γ(Λn) 1 1 1 1 3 4 5 7 11 ≤16 -
ρ(Λn) 1 1 1 1 2 3 5 6 8 13 18

Table 2: Domination numbers and 2-packing numbers of small cubes

Table 2 needs several comments.

• The computer search found exactly ten 2-packings of size 20 in Γ10. This already
implies that ρ(Γ10) = 20. Indeed, if Γ10 would contain a 2-packing of size 21, then
it would contain twenty-one 2-packings of size 20.

• By exhaustive search with computer no 2-packing of size 19 in Λ10 was found, hence
ρ(Λ10) = 18.

• There is only one (up to isomorphisms of the graphs considered) maximum 2-packing
of Λ5, Λ6, Λ7, Λ9, as well as Γ6. There are two non-isomorphic 2-packings of maxi-
mum cardinality of Γ9, they are presented in the first two columns of Table 3.
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Since the reverse map given in (1) is an automorphism of Fibonacci cubes, the reverse
of a 2-packing is also a 2-packing. Interestingly, the maximum 2-packing of Γ9 shown on
the left-hand side of Table 3, denoted X, is also invariant under the reverse map. That is,
r(X) = X.

Similarly, the shifts ϕi, where ϕ is given in (2) and i ∈ {1, . . . , n−1}, are automorphisms
of Lucas cubes, hence they map 2-packings into 2-packings. Now consider the 2-packing
of Λ9 shown on the right-hand side of Table 3, denote it Y . Then it can be checked that
ϕ3(Y ) = Y . As a consequence, ϕ6(Y ) = Y .

0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0
0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1
0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1
1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1
1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0
1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0
0 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1
1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 0 1 0
0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0
0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0
1 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0
1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1

Table 3: Maximum 2-packings of Γ9 and of Λ9

5 Concluding remarks

Based on the data from Table 2 we ask whether some of the followings are true.

Problem 5.1 Is it true that

(i) γ(Γn)− ρ(Γn) ≥ γ(Λn)− ρ(Λn) for n ≥ 0?
(ii) γ(Λn) ≥ ρ(Γn) for n ≥ 4?
(iii) γ(Λn) ≤ γ(Γn−1) + γ(Γn−3)− 1 for n ≥ 6?

Note that the last question, if it has an affirmative answer, reduces the bound of
γ(Λn) in Proposition 3.1 (i) by 1. Moreover, in that case one can also ask whether
γ(Λn) ≤ γ(Γn−1) + γ(Γn−4) holds for n ≥ 6.
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