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Abstract. This contribution uses the technique [1] for representing spinors and the defini-
tion of the discrete symmetries [3] to illustrate on a toy model [2] properties of massless
and massive solutions of spinors. It might help to solve the problem about representations
of Dirac, Weyl and Majorana, presented in the ref. [4] in this proceedings.

Povzetek. Prispevek uporablja tehniko [1] predstavitve spinorjev in definicijo diskretnih
simetrij [3] za ilustracijo lastnosti brezmasnih in masivnih rešitev spinorjev v preprostem
modelu. Prispeva lahko k rešitvi problema upodobitev Diracovih, Weylovih in Majoraninih
spinorjev predstavljenega v prispevku [4] v tem zborniku.

15.1 Introduction

We study in a toy model defined in d = (5+ 1), presented in the refs. [2], massless
and massive positive and negative energy solutions of the equations of motion, and
look for, by taking into account the definition of the discrete symmetry operators
in the second quantized picture (CN , PN and TN , presented in the paper [3]) the
antiparticle states to the particle ones. We present the representations in the spinor
technique [1].

In this toy model theM5+1 manifold is assumed to break intoM3+1 × an
almost S2 sphere due to the zweibein in d = (5, 6).

We first study massless solutions in d = (3 + 1) assuming that the extra
dimensions bring no contribution to the masses in d = (3+1). We correspondingly
solve the Weyl equation in d = (5 + 1) and present the representations and
comment on particle and antiparticle states.

Requiring that there is only one massless of a particular handedness and mass
protected solution in d = (3 + 1), what is achieved by a particular choice of the
spin connection fields on this (almost) S2 sphere, what consequently forces the
rest of solutions to be massive, we comment on the corresponding particle and
antiparticle states. In these two cases the spin in d = (5, 6) is a conserved quantity.

Assuming nonzero vacuum expectation values of the spin connection fields [1–
3], the gauge fields of S56 with indices d = (5, 6), which manifest as scalars in d =

(3+1) and carry theU(1) charge S56, all the spinors become massive and no charge
is the conserved quantity any longer. The Weyl equation in d = (5+ 1) manifests
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d = (3+ 1) as the Dirac equation for massive states. We present representations
and comment on particle and antiparticle states also in this case.

15.2 Massless solutions

Let us look for the solutions of the Weyl equations γapaψ = 0 in d = (5+ 1) for a
particular choice of the coordinate system: pa = (p0, 0, 0, |p3|, 0, 0). Then the Weyl
equations read

(−2iS03p0 = p3)ψ . (15.1)

In Table I, taken from the paper [3], the solutions of Eq. 15.1 are presented, using
the technique of the refs. [1]. We found for the basic states

Ψ1 =
03

(+i)
12

(+)
56

(+) |vac >fam,

Ψ2 =
03

(+i)
12

[−]
56

[−] |vac >fam,

Ψ3 =
03

[−i]
12

[−]
56

(+) |vac >fam,

Ψ4 =
03

[−i]
12

(+)
56

[−] |vac >fam , (15.2)

where |vac >fam is defined so that there are 2
d
2
−1 family members (this is, how-

ever, not a second quantized vacuum). All the basic states are eigenstates of the
Cartan subalgebra (of the Lorentz transformation Lie algebra), for which we take:
S03, S12, S56, with the eigenvalues, which can be read from Eq. (15.2) if taking 1

2

times the numbers ±i or ±1 in the parentheses of nilpotents
ab

(k) and projectors
ab

[k]:

Sab
56

(k)= k
2

ab

(k), Sab
56

[k]= k
2

ab

[k].
The first two positive energy solutions ( ψpos

i , i = (1, 2)) and the last two
negative energy solutions ( ψneg

i , i = (3, 4)) correspond to p3 = |p3|. These all are
the solutions of the Weyl equations

(Γ (3+1)
p0

|p0|
=
2~p · ~S
|p0|

)ψ . (15.3)

for the choice ~p = (p1, p2, p3) (in our case is (0, 0, p3)), presented in all text books.
Here ~S = (S23, S31, S12), Sab = i

2
(γaγb−γbγa), and Γ ((d−1)+1) (in usual notation

is for d = (3 + 1) named γ5) determines handedness for fermions in any d. For
d = (5 + 1) Γ (5+1) = Πaγ

a in ascending order, equal also to Γ (3+1)(−2S56). For
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ψposi positive energy state p0

|p0|

p3

|p3|
(−2iS03) Γ (3+1) S56 2p3S12

|p0|

ψ
pos
1

03
(+i)

12
(+) |

56
(+) e−i|p0|x0+i|p3|x3

+1 +1 +1 +1 1
2

1

ψ
pos
2

03
(+i)

12
[−] |

56
[−] e−i|p0|x0+i|p3|x3

+1 +1 +1 −1 − 1
2

−1

ψpos3

03

[−i]
12

[−] |
56

(+) e−i|p
0|x0−i|p3|x3 +1 −1 −1 +1 1

2
1

ψpos4

03

[−i]
12

(+) |
56

[−] e−i|p
0|x0−i|p3|x3 +1 −1 −1 −1 − 1

2
−1

ψnegi negative energy state p0

|p0|

p3

|p3|
(−2iS03) Γ (3+1) S56 2p3S12

|p0|

ψneg1

03

(+i)
12

(+) |
56

(+) ei|p
0|x0−i|p3|x3 −1 −1 +1 +1 1

2
−1

ψneg2

03

(+i)
12

[−] |
56

[−] ei|p
0|x0−i|p3|x3 −1 −1 +1 −1 − 1

2
1

ψ
neg
3

03
[−i]

12
[−] |

56
(+) ei|p0|x0+i|p3|x3

−1 +1 −1 +1 1
2

−1

ψ
neg
4

03
[−i]

12
(+) |

56
[−] ei|p0|x0+i|p3|x3

−1 +1 −1 −1 − 1
2

1

Table 15.1. Four positive energy states and four negative energy states, the solutions of
Eq. (15.1), half have p3

|p3|
positive and half negative. pa = (p0, 0, 0, p3, 0, 0), Γ (5+1) = −1,

Γ ((d−1)+1) defines the handedness in d-dimensional space-time, S56 defines the charge in

d = (3 + 1), 2p
3S12

|p0|
defines the helicity. Nilpotents

ab

(k) and projectors
ab

[k] operate on the
vacuum state |vac >fam not written in the table. Table is taken from [3].

the choice pa = (p1, p2, p3, 0, 0) the solutions read

p0 = |p0| ,

ψpos1 (~p) = N1
(
03

(+i)
12

(+) |
56

(+) +
p1 + ip2

|p0|+ p3

03

[−i]
12

[−] |
56

(+)

)
e−i(|p

0|x0−~p·~x) ,

ψpos2 (~p) = N2
(
03

[−i]
12

(+) |
56

[−] −
p1 + ip2

|p0|− p3

03

(+i)
12

[−] |
56

[−]

)
e−i(|p

0|x0−~p·~x) ,

p0 = −|p0| ,

ψneg1 (~p) = N2
(
03

(+i)
12

(+) |
56

(+) −
p1 + ip2

|p0|− p3

03

[−i]
12

[−] |
56

(+)

)
ei(|p

0|x0+~p·~x) ,

ψneg2 (~p) = N1
(
03

[−i]
12

(+) |
56

[−] +
p1 + ip2

|p0|+ p3

03

(+i)
12

[−] |
56

[−]

)
ei(|p

0|x0+~p·~x) ,

(15.4)

These solutions are obviously possible only if both kinds of ”charges” in d = (3+1)

are allowed for particles and antiparticles and are not mass protected [2]. We shall
see in sect. 15.4 that the first two states in Table 15.1 (ψpos1 and ψpos2 ), put on the
top of the Dirac sea, describe a particle state, while the second two (ψpos4 andψpos3 ,
respectively) are the corresponding antiparticle states put on the top of the Dirac
sea. The antiparticle states are obtained by emptying the negative energy states
(ψneg3 and ψneg4 , respectively).

For a particular choice of the spin connection one gets (normalizable) massless
solutions of only one handedness and one charge and mass protected [2], say: the
right handed ones of the ”charge” S56 = 1

2
. In Table 15.1 is this state presented by
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a particle state ψpos1 put on the top of the Dirac sea. Its antiparticle state is ψpos4

put on the top of the Dirac sea. It is obtained by emptying the negative energy
solution ψneg3 .

15.3 Massive solutions

To find the massive states we must solve the Weyl equation in which we allow
the scalar fields, the gauge fields of S56, that is fσsω56σ, with s = (5, 6) and
σ = ((5), (6)), to have non zero vacuum expectation values. These scalar fields are
then, analogously as there is the Higgs scalar in the standard model but carrying
in our case only the ”hyper” charge S56, responsible for the spinors masses. The
charge, which is the spin in d = (5, 6), is now not a conserved quantity any longer.

The Weyl equation in (5 + 1), leading to the massive Dirac equation in d =

(3+ 1), reads [2]

(γmpm+
56

(+) p0++
56

(−) p0−)ψ = 0 ,

p0± = p50 ∓ p60 , p0s = f
σ
s (pσ −

1

2
Sabωabσ) = ps − S

56iω56s . (15.5)

Looking for the solution of Eq. (15.5) by making superposition of states of a
particular spin one observes that the term < p0± >= −S56i < (fσ5 ∓ ifσ6 )ω56σ >
causes on the tree level the massm of spinors: < p0± >= −iS562m. Solutions of
the Weyl equation in d = (5+ 1) manifest in d = (3+ 1) as massive states with the
mass 2m =< ω56+ >=< ω56− >. Let us make a choice of the coordinate system
so that pa = (p0, 0, 0, 0, 0, 0). One obtains two positive and two negative energy
solutions

ψpos1m = N (
03

(+i)
12

(+)
56

(+) −i
03

[−i]
12

(+)
56

[−]) e−imx
0

,

ψpos2m = N (
03

[−i]
12

[−]
56

(+) −i
03

(+i)
12

[−]
56

[−]) e−imx
0

,

ψneg1m = N (
03

(+i)
12

(+)
56

(+) +i
03

[−i]
12

(+)
56

[−]) eimx
0

,

ψneg2m = N (
03

[−i]
12

[−]
56

(+) +i
03

(+i)
12

[−]
56

[−]) eimx
0

, (15.6)

with m2 = (p0)2, m = 2 < (fσ5 ∓ ifσ6 )ω56σ > 1. (To obtain true masses of spinors
one must take into account loop corrections in all orders, to which also the dynam-
ical scalar and vector gauge fields contribute.) In this discussion only one family is
assumed.

Let us present massive positive and negative energy solutions, the ones
which coincide with vectors (

ϕ
~σ·~p

|p0|+m
ϕ ) , ϕ = (αβ ) , and (

~σ·~p
|p0|+m

χ

χ
) , χ = (αβ ) , with

1 One sees that the other two superposition, ψpos3 = N (
03

(+i)
12

(+)
56

(+) +i
03

[−i]
12

(+)
56

[−]) e−imx
0

and ψpos4 = N (
03

[−i]
12

[−]
56

(+) +i
03

(+i)
12

[−]
56

[−]) e−imx
0

are not the solutions of the Weyl

equation and so are not also ψneg3 = N (
03

(+i)
12

(+)
56

(+) −i
03

[−i]
12

(+)
56

[−]) eimx
0

and ψneg4 =

N (
03

[−i]
12

[−]
56

(+) −i
03

(+i)
12

[−]
56

[−]) eimx
0

.
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~σ = (S23, S31, S12), in the usual notation for any pm = (p0, p1, p2, p3)

ψpos1m(~p) = N (~p,m) {
03

(+i)
12

(+)
56

(+) −i
|p0|− p3 +m

|p0|+ p3 +m

03

[−i]
12

(+)
56

[−]

+
p1 + ip2

|p0|+ p3 +m
(
03

[−i]
12

[−]
56

(+) +i
03

(+i)
12

[−]
56

[−])} · e−i(|p
0|−i~p·~x)

ψpos2m(~p) = N (~p,m) {
p1 − ip2

|p0|+ p3 +m
(
03

(+i)
12

(+)
56

(+) +i
03

[−i]
12

(+)
56

[−])

+
p0 − p3 +m

|p0|+ p3 +m
·
03

[−i]
12

[−]
56

(+) −i
03

(+i)
12

[−]
56

[−]} · e−i(|p
0|−i~p·~x) ,

ψneg1m (~p) = N (~p,m) {
p1 + ip2

|p0|+ p3 +m
(
03

[−i]
12

[−]
56

(+) −i
03

(+i)
12

[−]
56

[−])

+
−p0 + p3 −m

|p0|+ p3 +m

03

(+i)
12

(+)
56

(+) −i
03

[−i]
12

(+)
56

[−]} · ei(|p
0|+~p·~x) ,

ψneg2m (~p) = N (~p,m) {
03

[−i]
12

[−]
56

(+) +i
|p0|− p3 +m

|p0|+ p3 +m

03

(+i)
12

[−]
56

[−]

+
p1 − ip2

|p0|+ p3 +m
(
03

(+i)
12

(+)
56

(+) −i
03

[−i]
12

(+)
56

[−])} · ei(|p
0|+~p·~x) . (15.7)

The antiparticle states to the particle state ψposim (~p) , i = (1, 2), put on the top
of the Dirac sea are the two states ψposim (−~p) , i = (1, 2), respectively, put on the
top of the Dirac sea.

15.4 Second quantized solutions

Let us now pay attention on the second quantized picture, discussions of which
we already started in the above two sections. Following the proposal from the
ref. [3] the discrete symmetries are in cases of the Kaluza-Klein kind for d even, as
it is in our toy model, defined as follows

CN ψ(x0,~x) = Γ (3+1) γ2 Kψ(x0, x1, x2, x3, x5,−x6, x7,−x8, . . . , xd−1,−xd)
= Γ (3+1) γ2 K I6,8,··· ,dψ(x

0,~x) ,

TN ψ(x0,~x) = Γ (3+1) γ1 γ3 Kψ(−x0, x1, x2, x3,−x5, x6,−x7, . . . ,−xd−1, xd)
= Γ (3+1) γ1 γ3 K Ix0 I5,7,··· ,d−1ψ(x

0,~x) ,

Pd−1N ψ(x0,~x) = γ0 Γ (3+1) Γ (d)ψ(x0,−x1,−x2,−x3, x5, x6, . . . , xd−1, xd)

= γ0 Γ (3+1) Γ (d) I~x3 ψ(x
0,~x) . (15.8)

I~x3 reflects (x1, x2, x3), I6,8,··· ,d reflects (x6, x8, · · · , xd), Ix0 reflects the time com-
ponent x0 and I5,7,··· ,d−1 reflects (x5, x7, · · · , xd−1). It is CN · Pd−1N , which trans-
forms in our case positive energy states into the corresponding negative energy
states, staying within the same Weyl.



i
i

“proc13” — 2013/12/11 — 20:10 — page 217 — #229 i
i

i
i

i
i

15 Massless and Massive Representations in the Spinor Technique 217

One finds

{CN , γapa}+ = 0 ,

{PN , γapa}− = 0 ,

{TN , γapa}+ = 0 ,

{CN PN , γapa}+ = 0 ,

{CN PN TN , γapa}− = 0 . (15.9)

In even dimensional spaces namely neither CN nor Pd−1N transforms states
within the same Weyl representation, it is only CN Pd−1N , which does this and it is
correspondingly a good symmetry, keeping the states within one Weyl representa-
tion.

To obtain an antiparticle state to a chosen particle state above the Dirac sea we
must accordingly apply on a particle state the operator CN Pd−1N and then empty
the obtained negative energy state. Emptying the corresponding negative energy
state and putting it on the top of the Dirac sea determines the antiparticle state to
the starting particle state.

In the ref. [3] the second quantized charge conjugation operator CN is defined
as follows: First one applies on the particle state with positive energy put on the
top of the Dirac sea, the operator CN , which makes a choice of the corresponding
negative energy state. Then by emptying this negative energy state in the Dirac sea one
creates an antiparticle with the positive energy and all the properties of the starting single
particle state above the Dirac sea, that is with the same d-momentum and all the spin
degrees of freedom the same, except the S03 value, as the starting single particle state 2.

We make now a statement. It is the operator

emptying : =
∏
γa∈=

γa K Γ (3+1) , (15.10)

operating on the negative energy state, which empties the negative energy state
creating the antiparticle state above the Dirac sea.

Let us check on the massless states of Eq. (15.4) what we claimed:
First CN PN applied onψpos1 (~p) (this state is put on the top of the Dirac sea) trans-
forms this state into the negative energy state ψneg1 (~p), then

∏
γa∈= γ

a K Γ (3+1)

applied on ψneg
1(~p) transforms this state into the positive energy antiparticle

state ψpos2 (−~p) = N2
(
03

[−i]
12

(+) |
56

[−] + p
1+ip2

|p0|+p3

03

(+i)
12

[−] |
56

[−]

)
e−i(|p

0|x0+~p·~x) , (put

on the top of the Dirac sea), up to phase factors, what can easily be checked. All
these states, particle and antiparticle ones, are the solutions of the massless Weyl
equation in d = (3+ 1) (with pa = (p0, p1, p2, p3, 0, 0).

The two massless particle/antiparticle pairs are therefore (ψpos1 (~p),ψpos2 (−~p))
and (ψpos2 (~p), ψpos1 (−~p)).

For pa = (p0, 0, 0, p3, 0, 0) we find that the two particle/antiparticle pairs are
correspondingly (ψpos

1 and ψpos4 ) and (ψpos
2 and ψpos3 ), presented in (Table 15.1).

2 S03 is involved in the boost (contributing in d = (3 + 1), together with the spin, to
handedness) and does not determine the (ordinary) spin.
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One checks this by applying the operator CN Pd−1N on the state ψpos
1 , transforming

this state into the state ψneg
3 , while emptying this negative state generates ψpos

4 .
Similarly CN Pd−1N ψ

pos
2 into ψneg

4 , while emptying this negative state generates
ψ

pos
3 .

If only one massless solution, let say the right handed one with respect to
d = (3+1), is allowed, as in the case presented in the ref. [2], then the only allowed
particle/antiparticle pair is (ψpos

1 , ψpos4 ).
Before discussing the discrete symmetries of the massive states presented in

Eq. (15.5) let us pay attention that K
(56)

(+)= −
(56)

(+), since
(56)

(+) = 1
2
(γ5 + iγ6) and

we make a choice of γ0, γ1 real, γ2 imaginary, γ3 real, γ5 imaginary, γ6 real, and
alternating real and imaginary ones we end up in even dimensional spaces with
real γd. Kmakes complex conjugation, transforming i into −i.

Let us look at discrete symmetries of the massive solutions ψposim (~p = 0) , i =

1, 2. We see that CN PN applied on ψpos1m (Eq. (15.6)), put on the top of the Dirac
sea, transforms this state into the negative energy state ψneg4m . Emptying this
negative energy state, that is applying

∏
γa∈= γ

a K Γ (3+1) on ψneg4m , makes the
antiparticle state ψpos1m on the top of the Dirac sea. This state does not distinguish
from the starting particle state. Massive states have no conserved charge and
correspondingly are the particle and antiparticle solutions of the massive Weyl
equation for pm = (m, 0, 0, 0) indistinguishable.

For the general momentum pm = (p0, p1, p2, p3) the stateψneg2m (~p) in Eq. (15.7)
follows if we apply the discrete operator CN PN on the state ψpos1m(~p). Empty-
ing the state ψneg2m (~p) leads to the antiparticle state above the Dirac sea, which
is ψpos1m(−~p). Let us remind the reader again that in this model no charge is the
conserved one.

Let us say that the product of the operations emptying × CN PN leads to
γ0γ5Γ (3+1) I~x3I6Γ

(6) in our d = (5+ 1) model. In general even d case we have

emptying× CN PN = γ0
∏

γa∈=,a 6=2

γa Γ (3+1) I~x3I6,8,...,dΓ
(d) . (15.11)

15.5 Conclusions

We discussed in this contribution representations of the Weyl equation in d =

(5 + 1), manifesting as: i. massless, ii. massive Dirac equation in d = (3 + 1) in
dependence on whether the fields, which manifest in d = (3 + 1) as the scalar
fields, not gain or gain, respectively, nonzero vacuum expectation values which
causes the appearance of fermion masses. Using the technique from the ref. [1]
for representing spinors, we present the basis and solutions of the equations of
motion for the massless and massive states.

We also present the particle/antiparticle pairs in the second quantized pic-
ture, using the definition of the discrete symmetries from the ref. [3]. For general
pa = (p0,~p, 0, 0) the particle and antiparticle solutions are distinguished by their
conserved charges. If no charge is conserved, then particle and the corresponding
antiparticle state differ only by having opposite three momentum in d+ (3+ 1)

space.
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We conclude that there are in all the cases two particle and two antiparticle states
with the positive energy and the corresponding four states in the Dirac sea. All these
states solve the equations of motion, the Weyl or the Dirac ones, in d = (3+1). Not
necessarily are all of them either massless or massive. It can happen that under
special conditions the number of massless solutions reduces, while the rest of
representations belong to massive sector. The number of states enlarges, if spinors
carry additional quantum numbers, which are or are not the conserved quantities.

Presenting the spinor basis in all these cases helps to understand what is
happening with the degrees of freedom in massless case and after the scalar fields
bring masses to the spinors (like the Higgs of the standard model.

We shall study in another paper what one of us calls the realistic case, that is
the representations of massless and massive states of the spin-charge-family theory
of N.S.M.B., before and after particular scalar fields cause that spinors manifest
masses in d = (3+ 1).

This might help to clarify the open problems which V. Dvoeglazov put in his
contribution in this proceedings.
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(2012) 465401, arxiv.org/abs/1205.1714, hep-ph/0412208 p.64-84.
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