1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 Scientific paper Geometry Predictions, Vibrational Analysis and IR Intensities of XH3Y (X=C, Si, Ge, Y=F, Cl, Br) Calculated by Hybrid Density Functional Theory, MP2 and MP4 Methods Abraham F. Jalbouta*, Bartosz Trzaskowskib*, Yuanzhi Xiac, Yahong Licd a Institute de Quimica, Universidad Nacional Autonomaa de Mexico, Mexico City, Mexico b Department of Chemistry, The University of Arizona, Tucson, AZ 85721, USA c Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China d Department of Chemistry, Suzhou University, Suzhou 215006, China * Corresponding author: E-mail: trzask@email.arizona.edu Received: 11-12-2006 Abstract Hybrid density functional theory B3LYP, B1LYP, B3P86, MPW1PW91 and B3PW91 methods as well as MP2 and MP4 methods at the 6-311++G (3df,3pd) level of theory are used for the calculations of geometrical parameters, infrared vibrational frequencies and absorption intensities of XH3Y (X=C, Si, Ge and Y=F, Cl, Br) set of molecules. All of the calculated results are compared with the most recent experimental data. The advantages of DFT methods are exhibited from the comparison and discussion. The basis set effect is also considered and the optimal theoretical methods for the discussed systems are recommended. Keywords: Halogenated methane, halogenated silane, halogenated germane, vibrational analysis, density functional theory 1. Introduction Great efforts have been put in recent years into studying of the basic molecular properties of halogenated carbon family systems. Many different experimental methods have been developed to obtain thermodynamic, magnetic, spectroscopic and other properties of these com-pounds.1-7 In recent few decades, with the development of quantum mechanics theory and computational technology, theoretical and computational studies on the haloge-nated carbon family species became more and more popu-lar.8-11 Computational methods are used not only due to the convenience and high efficiency, but also since satisfactory accuracy can be obtained from these methods. Due to this fact many properties of halogenated methane, silanes and germanes, such as geometry structure, vibration spectra and thermochemical properties, are available nowadays as a result of theoretical calculations.12-20 The calculations has provides us with information about molecular physical properties as well as reactive behaviors which do not only widen our knowledge, but also may boost more creative insights and predictions. Although the study of this topic is very popular, there are still many unsolved problems in the area of theoretical study on the properties of halogenated carbon family systems. First of all, previous computational studies have been focused mostly on one molecular system or one property of the halogenated carbon family species. Therefore comparisons of properties between different halogen-containing methanes, silanes, and germanes are scarce. On the other hand a comprehensive and systematic investigation of the similarities and differences of halogenated carbon family is indispensable for a better understanding of the chemistry of this class of compounds. Secondly, it is usually supposed that the higher level of theory used in computational studied corresponds to the higher accuracy of results. It is known, however, that for small organic systems DFT methods, and B3LYP method in particular, can give more reliable results than higher level ab-initio met-hods.21-24 Moreover, there are many density functional methods available nowadays, and the most commonly 1 used B3LYP functional is not always the best choice to The calculated angle values are different from experimen- 1 2 study a certain class of molecules. Furthermore, to the tal values by approximately 2 degrees. Surprisingly, previ- 2 3 best of our knowledge, previous studies in this area main- ous investigations on this problem suggest tat the best 3 4 ly focus on the effect of using different methods and no method to predict H-C-Cl and H-C-H angle values is to 4 5 data from the calculation with a basis set as large as 6- use the semi empirical method (PM3) which gives values 5 6 311++G (3df, 3pd) are available. A comparison between only 0.6 degree higher than experimental results.26 6 7 the results obtained for the 6-311++G (3df, 3pd) basis set For the SiH3F system the calculated X-Y distances 7 8 and smaller basis sets should provide more insight into the are between 1.600 and 1.611 A, H-X-Y angles are bet- 8 9 importance of the basis set effect. ween 108.5 and 118.6 degree, and the H-X-H angle ranges 9 10 To solve all above-mentioned problems, we have from 110.3 to 110.5 degree, depending on the computatio- 10 11 carried out computational studies on the geometry optimi- nal method used. In case of the SiH3Cl system, the X-Y di- 11 12 zation and frequency analysis of XH3Y, where X=C, Si, stances are longer, and the calculated values are between 12 13 Ge and Y=F, Cl, Br. Five different DFT methods (B3LYP, 2.220 and 2.238A. On the other hand the calculated 13 14 B1LYP, B3P86, MPW1PW91, B3PW91) and two high le- H-X-Y angle of SiH3Cl is smaller than in the previous ca- 14 15 vel ab-initio methods (MP2, MP4) have been used at the se (ranging from 108.5 to 108.6 degrees), while the H-X-H 15 16 6-311++G (3df, 3pd) level of theory. From our theoretical angles are larger (110.5 to 110.6 degrees). A similar trend 16 17 study and the available experimental data, as well as from in variations of geometrical parameters may be observed in 17 18 results of previous theoretical investigations, we collect the case of the SiH3Br system. The Si-H distances of the 18 19 more examples to discuss the applicability of different SiH3Y systems are only slight different, with the shortest 19 20 calculation methods (DFT and high level ab-initio met- bond being present in the SiH3Br system. The trend in Ge- 20 21 hods). We also provide data obtained using the large 6- H3Y (Y=F, Cl, Br) class of molecules is the same as in Si- 21 22 311++G (3df,3pd) basis set and discuss the basis set ef- H3Y. These results can be easily explained, since when the 22 23 fect. Using all these approaches we have performed a radius of the halogen atoms increases, the X-Y distance in- 23 24 systematic calculation on the geometry structure and fre- creases as well. This in turn leads to a smaller repulsion bet- 24 25 quency values of nine halogenated carbon family substan- ween the X-Y bond and the lone pair of the halogen atom, 25 26 ces. It allows us to obtain important data to discuss the resulting in the smaller value of the H-X-Y angle. Once the 26 27 difference in the properties of these analogies as well as H-X-Y angle gets smaller, it's reasonable to assume that 27 28 provide the reliable reference for possible future studies. the H-X-H angle would get larger. The slight change of the 28 29 X-H distance may be caused by the different electronegati- 29 30 vity value of the halogen atom. If the electronegativity va- 30 31 2. Computational Details lue of Y is decreased, the X-Y bond is weakened, while the 31 32 X-H bond becomes stronger. On the other hand, for a given 32 33 All calculations in this study have been performed Y, the values of the X-Y and X-H distances as well as 33 34 with the Gaussian 03 program package.25 Each stationary H-X-H angles are all increased in the C, Si and Ge order, 34 35 point of the nine halogenated species, CH3F, CH3Cl, while the H-X-Y gets shorter. 35 36 CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl and Ge- The calculated frequencies and IR intensities of all 36 37 H3Br, has been fully optimized with five different DFT monohalogenated species as well as available experimen- 37 38 methods (B3LYP, B1LYP, B3P86, MPW1PW91, tal data are given in Table 2. Table 2a shows the absolute 38 39 B3PW91) and two high level ab-initio methods (MP2, vibrational frequencies, whereas Table 2b shows scaled 39 40 MP4) with 6-311++G (3df,3pd) basis set. Frequencies ha- vibrational frequencies based on an important study by 40 41 ve been calculated at the same level of theory as geometry Scott and Radom30 by which a comprehensive evaluation 41 42 optimizations, and each stationary point has been confir- of scale factors for harmonic vibrational frequencies was 42 43 med to be at a local minimum by frequency analysis. Thus performed. In that work a series of 122 molecules were 43 44 for each system, a total of seven geometries and seven vi- computed with the Hartree-Fock, Moller-Plesset, quadra- 44 45 brational frequencies has been reported. All the reported tic configuration interaction (QCI), and density functional 45 46 data are unscaled. theory (DFT) methods. A scale factor of 0.9496 was re- 46 47 ported, that can be helpful in the present computations. 47 48 The present basis set used is larger but the scale factors 48 49 3. Results and Discussion will suffice. Therefore, we have used a scale factor of 49 50 0.9496 as recommended by Scott and Radom. However, 50 51 Geometrical parameters of all molecules are given as Table 2b shows the experimental correlations without 51 52 in Table 1, and two bond lengths (X-Y and X-H) and two scaling is better, this might be due to the unusual behavior 52 53 angles (H-X-Y and H-X-H) are described for each mole- of the Si, Ge atoms in the calculations. By adding this sca- 53 54 cule. Compared with the experimental data all the calcula- le factor into our harmonic frequencies, we are able to inc- 54 55 tions are consistent with the experiments, except for the lude some effects of anharmonicity and should suffice the 55 56 obvious errors in the prediction of the CH3Cl angle value. present calculations presented in this work. 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 Table 1. Optimized Structures of XH3Y (X=C, Si and Ge; Y=F, Cl and Br) at the 1B3LYP, 2B1LYP, 3B3P86, 4MPW1PW91, 5B3PW91, 6MP2, 7MP4/6-311++G (3df, 3pd) level. Distances are in Â, angles are in degree. XH3Y parameter 1 2 3 4 5 6 7 Expt. ch3f C-F 1.389 1.388 1.379 1.376 1.380 1.383 1.388 1.3830a C-H 1.089 1.089 1.090 1.090 1.091 1.086 1.090 1.0870a H-C-F 108.7 108.7 110.0 109.0 109.0 108.7 108.6 110.20a H-C-H 110.2 110.2 110.0 109.9 110.0 110.2 110.3 108.73a CH3Cl C-Cl 1.793 1.793 1.776 1.774 1.778 1.771 1.783 1.785a C-H 1.084 1.083 1.085 1.085 1.086 1.083 1.087 1.090a H-C-Cl 108.3 108.3 108.6 108.6 108.6 108.6 108.4 110.75 H-C-H 110.6 110.6 110.4 110.4 110.4 110.3 110.5 108.16 CH3Br C-Br 1.958 1.958 1.938 1.935 1.940 1.929 1.943 1.9340a C-H 1.083 1.081 1.084 1.083 1.085 1.083 1.083 1.0823a H-C-Br 107.6 107.6 107.9 107.9 107.9 108.1 108.0 107.72a H-C-H 111.2 111.3 111.0 111.0 111.0 110.8 110.0 111.157a SiH3F Si-F 1.611 1.610 1.606 1.605 1.608 1.60 1.613 1.595a Si-H 1.476 1.474 1.477 1.478 1.479 1.470 1.471 1.476a H-Si-F 108.2 108.2 108.2 108.2 108.2 108.3 108.3 108.269a H-Si-H 110.7 110.7 110.7 110.7 110.7 110.6 110.6 110.64a SiH3Cl Si-Cl 2.068 2.068 2.088 2.054 2.058 2.053 2.058 2.051a Si-H 1.475 1.474 1.476 1.477 1.478 1.469 1.472 1.475a H-Si-Cl 108.5 108.5 108.5 108.5 108.6 108.6 108.6 108.295a H-Si-H 110.4 110.5 110.4 110.4 110.4 110.4 110.3 110.62a SiH3Br Si-Br 2.238 2.238 2.220 2.220 2.223 2.222 2.228 2.2123b Si-H 1.476 1.474 1.477 1.477 1.479 1.469 1.472 1.4743b H-Si-Br 108.4 108.4 108.4 108.4 108.5 108.4 108.4 108.161b H-Si-H 110.6 110.6 110.5 110.5 110.5 110.5 110.5 GeH3F Ge-F 1.760 1.757 1.748 1.747 1.752 1.791 1.798 1.7350b Ge-H 1.532 1.531 1.528 1.529 1.531 1.530 1.535 1.5220b H-Ge-F 105.9 106.0 105.9 106.0 106.0 105.6 105.5 105.92b H-Ge-H 112.8 112.7 112.7 112.7 112.7 113.1 113.1 GeH3Cl Ge-Cl 2.176 2.176 2.157 2.154 2.159 2.160 2.166 2.1447b Ge-H 1.531 1.530 1.527 1.528 1.530 1.530 1.534 1.5155b H-Ge-Cl 106.9 106.9 106.9 106.9 107.0 107.1 107.2 107.10b H-Ge-H 111.9 111.9 111.9 111.8 111.8 111.7 111.6 111.0b GeH3Br Ge-Br 2.334 2.334 2.311 2.311 2.316 2.314 2.322 2.297b Ge-H 1.531 1.530 1.527 1.528 1.530 1.530 1.536 1.527b H-Ge-Br 107.0 107.1 107.1 107.1 107.1 107.2 107.4 106.3b H-Ge-H 111.8 111.8 112.8 111.8 111.7 111.6 111.6 a Taken from ref. 26. b Taken from ref. 27 and references therein. There are six different vibtrational frequencies according to the six normal vibrations for species of the C3v point group as depicted in Fig. 1. The first is the symmetric X-H stretch vp and the second is the Y-X-H umbrella motion v2. They are followed by the X-Y stretch is v3, and the degenerate modes are the asymmetric X-H stretch v4, the H-X-H scissor motion v5 and finally the Y-X-H rock v6. All computational normal modes obtained in this investigation were successfully assigned to one of the six types of vibrations. As a general rule, the calculated frequency values are consistent with the experimental results, although there are small variations with different methods used. It is difficult, however, to choose one computational method as the most suitable for calculating the vibrational spectra of all compounds. The advantages of using certain methods in calculations of selected vibrational frequencies will be discussed later. A very interesting property embedded in the molecular wavefunction is the vibrational assignment which has been developed in the valence coordinates most closely resembling normal coordinates.31 In this technique, Bowman and co-workers use successive contractions of the expansion set that keeps the hamiltonian matrices diagonally dominant. This allows the largest component of the eigenvector to be sufficient to assign rovibrational states for many species. Such calculations can be applied to assignment of lower energy vibrational transitions, photo-ionization spectra and improved description of Franck-Condon factors for simple molecules. However, it is difficult to apply such a scheme to our systems due to the in- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 Table 2a. Vibrational frequencies (cm ') of various species shown in Table 1 (X, Y are ligands from the table and modes shown in Figure 1) ,whe-re I is the intensities (in parentheses, KM/mol) and the values in EXP are the experimental values (where VS=Very Strong, S=Strong, M=Medium, W=Weak, VW=Very Weak), computed at the1B3LYP, 2B1LYP, 3B3P86, 4MPW1PW91, 5B3PW91, 6MP2, 7MP4/6-311++G (3df, 3pd) level XH3Y V1 I1 V2 I2 V3 I3 V4 I4 V5 I5 V6I6 CH3F 1I 3032.706 33.639 1493.811 5.088 1047.734 110.244 3111.68 28.576 1485.097 0.911 1192.920 1.026 2I 3044.911 33.474 1503.724 5.016 1053.839 111.754 3124.841 29.307 1494.857 1.032 1200.444 1.192 3I 3040.286 35.129 1488.878 5.737 1078.917 109.806 3127.575 27.397 1480.935 0.665 1194.225 0.838 4I 3051.952 34.021 1495.452 5.632 1088.562 110.936 3139.167 28.228 1488.823 0.725 1200.858 0.895 5I 3034.949 35.323 1487.639 5.534 1073.793 110.253 3121.566 28.536 1480.214 0.748 1193.286 0.835 6I 3087.626 32.204 1526.495 4.844 1084.246 105.480 3193.168 22.311 1510.283 1.357 1213.531 1.324 7I 3140.294 0.000 1495.132 0.000 1060.481 0.0000 3042.339 0.000 1510.556 0.000 1200.321 0.000 EXPia 2964 VS 1464 S 1048.6 S 3005.8 S 1466.5 M 1182.4 CH3Cl 1I 3070.33 22.780 1384.861 11.195 717.452 25.909 3073.504 22.873 1483.535 6.134 1030.959 2.413 2I 3082 23.260 1394.292 11.913 720.097 26.962 3085.068 23.307 1493.063 6.061 1037.636 2.307 3I 3080.45 22.438 1381.586 8.807 746.176 24.118 3081.847 22.184 1476.528 6.861 1032.360 2.736 4I 3092.04 23.196 1388.759 8.860 754.434 24.518 3093.002 23.282 1483.276 6.679 1038.550 2.681 5I 3075.28 23.134 1380.888 9.035 744.185 24.138 3076.592 23.032 1475.680 6.620 1031.851 2.743 6I 3108.1 22.010 1416.413 11.258 778.977 22.586 3108.840 22.004 1510.858 5.571 1059.318 2.358 7I 3071.089 0.000 1405.264 0.000 756.982 0.000 3174.764 0.000 1499.922 0.00 1048.810 0.000 EXPIa 2879.28 M 1354.9 S 732.1 S 3039.31 S 1452.1 M 1017.3 M CH3Br 1I 3192.553 1.264 1331.354 18.483 591.795 12.174 3087.012 15.618 1476.512 5.940 963.025 3.704 2I 3205.113 1.315 1340.431 19.646 594.552 12.837 3099.315 16.149 1486.243 5.852 968.851 3.620 3I 3203.389 0.859 1329.709 14.710 619.852 10.791 3092.580 14.847 1469.810 6.631 966.334 4.145 4I 3214.590 1.054 1337.538 15.076 627.434 10.965 3104.095 16.120 1476.296 6.520 971.902 4.143 5I 3197.989 6.684 1329.283 15.183 617.251 10.826 3087.830 15.824 1469.212 6.369 965.883 4.109 6I 3235.335 0.701 1367.053 16.750 651.982 8.3 3116.225 15.749 1503.635 5.289 991.62 3.907 7I 3077.104 0.000 1354.874 0.000 628.485 0.000 3189.677 0.000 1492.876 0.000 978.613 0.000 EXPIa 2972 M 1305.9 S 611.1 S 3056.35 S 1442.7 M 954.7 SiH3F 1I 2267.097 136.638 998.272 184.725 852.817 78.5363 2262.430 32.232 973.759 85.760 728.057 52.785 2I 2258.106 133.890 991.367 181.401 848.105 76.752 2251.946 31.558 967.474 83.385 723.057 51.402 3I 2263.168 126.275 983.627 178.356 858.770 69.776 2255.505 30.374 959.401 78.084 719.543 50.811 4I 2265.130 126.764 985.406 178.596 861.734 70.466 2258.402 30.457 961.022 78.321 721.196 51.567 5I 2252.988 127.602 981.240 175.730 853.381 71.041 2245.660 31.074 957.176 77.559 718.038 50.466 6I 2335.498 140.791 996.323 95.223 860.767 80.121 2332.776 34.513 996.496 95.214 739.474 57.270 7I 2303.199 0.000 979.119 0.000 850.669 0.0000 2308.866 0.000 1002.660 0.000 729.681 0.000 EXPIa 2206 - 990 S 872 M 2196 M 956 M 728.1 - SiH3Cl 1I 2248.240 53.682 959.559 56.738 533.361 69.655 2259.531 96.168 952.550 251.673 657.685 22.826 2I 2259.045 54.838 966.278 58.513 534.863 71.207 2269.248 97.889 959.379 257.626 662.338 23.520 3I 2251.632 52.078 950.754 52.306 546.902 68.631 2264.017 89.129 943.423 238.490 654.623 22.446 4I 2253.710 52.210 952.440 52.182 550.618 69.020 2265.107 90.492 945.408 237.920 656.555 22.804 5I 2240.587 52.788 948.728 51.823 545.128 68.186 2252.787 91.257 941.936 236.074 653.750 22.343 6I 2321.753 58.447 986.898 64.669 561.387 74.668 2330.588 101.285 978.722 286.458 675.741 26.117 7I 2292.149 0.000 963.880 0.000 555.459 0.000 2302.334 0.000 970.810 0.000 666.318 0.000 EXPIa 2201 - 949 - 551 S 2195 S 954.4 S 664.0 M SiH3Br 1I 2242.121 60.507 934.849 302.548 412.972 41.807 2256.275 85.214 957.868 52.290 629.298 14.267 2I 2253.500 60.829 941.516 309.309 414.344 42.619 2266.682 87.174 964.467 53.937 632.530 14.627 3I 2248.585 58.506 925.677 285.551 426.408 41.170 2263.905 78.220 948.855 48.191 625.876 14.128 4I 2251.594 58.192 927.508 284.767 429.298 41.412 2266.042 78.566 950.109 48.035 627.288 14.165 5I 2236.190 59.154 924.521 283.036 425.261 40.902 2251.003 80.742 946.807 47.602 625.460 13.941 6I 2320.444 65.329 959.709 340.908 439.605 44.851 2332.252 89.058 982.719 59.105 645.396 17.028 7I 2290.032 0.000 966.547 0.000 434.576 0.000 2304.147 0.000 966.547 0.000 635.936 0.000 EXPIa 2200 - 930 S 430 M 2196 S 950.4 S 632.6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 xh3y V1 I1 V2 I2 V3 I3 V4 I4 V5 I5 V6I6 GeH3F 1I 2154.843 25.680 865.958 65.778 667.185 104.507 2166.739 122.048 865.958 65.778 628.143 36.201 2I 2164.580 32.297 876.224 65.426 673.228 106.758 2173.078 124.352 871.051 66.041 630.701 37.398 3I 2168.948 37.025 865.537 58.925 683.570 105.565 2182.164 105.478 870.726 58.160 627.839 36.340 4I 2177.874 30.321 868.845 60.893 686.758 107.461 2193.203 111.945 873.606 61.618 629.572 37.267 5I 2163.700 29.240 868.948 59.265 678.775 104.768 2174.969 118.148 863.965 59.813 626.978 36.258 6I 2235.889 22.971 892.957 75.686 738.329 154.334 2232.867 131.666 892.957 75.686 635.794 40.505 7I 2193.716 0.000 875.666 0.000 728.836 0.000 2199.086 0.000 877.538 0.000 623.501 0.000 EXPIb 2120.6 S 859.0 VS 689.1 S 2131.7 S 874.0 S 624.6 M GeH3Cl 1I 2150.816 47.597 843.756 164.019 406.513 54.466 2164.156 98.140 871.551 46.105 591.816 15.681 2I 2157.763 51.052 851.401 168.007 407.99 55.547 2167.861 100.009 878.860 47.453 596.876 16.316 3I 2166.886 49.089 843.021 152.159 420.072 54.589 2185.186 92.325 870.053 42.671 595.831 15.701 4I 2173.003 50.688 847.562 154.920 423.685 55.482 2189.300 93.663 873.485 43.310 598.601 16.467 5I 2160.173 47.590 842.237 153.936 417.765 54.383 2175.691 94.380 870.031 42.894 594.969 15.819 6I 2231.680 57.714 873.858 199.143 608.571 20.791 2232.132 106.184 896.933 54.880 433.193 60.802 7I 2196.527 0.000 858.485 0.000 598.571 0.000 2199.906 0.000 881.248 0.000 428.853 0.000 EXPIb 2119.9 S 847.5 VS 421.7 S 2128.9 S 874.1 S 602.2 GeH3Br 1I 2148.268 53.753 829.336 213.569 294.152 27.101 2163.497 90.527 871.769 43.215 569.974 10.049 2I 2153.914 59.216 837.249 219.436 295.125 27.614 2167.140 88.735 875.750 44.400 574.380 10.539 3I 2163.073 54.254 829.638 199.376 305.906 27.027 2185.006 83.239 870.208 39.299 570.518 10.331 4I 2173.380 52.990 832.306 202.993 307.277 27.614 2187.211 85.561 873.141 40.078 570.015 10.381 5I 2155.804 56.421 828.326 200.721 303.623 27.054 2169.929 84.383 868.348 39.451 569.100 10.343 6I 2225.913 62.544 861.330 251.476 314.744 30.247 2227.435 98.264 896.378 51.291 588.031 14.163 7I 2188.916 0.000 846.592 0.000 310.434 0.000 2191.258 0.000 881.017 0.000 578.270 0.000 EXPIb 2115.2 - 832.7 - 307.7 - 2126.7 - 870.9 - 578.2 - a Taken from ref. 28. b Taken from ref. 29. creased level of complexity associated with such calculations. We do believe that by using high level ab initio methods with an extended basis set experimentally reliable calculations can be obtained. The results suggest that it is difficult to choose the most reliable method for all studied systems. Several trends in results are, however, clear. In the geometry optimization, both DFT methods, MP2 and MP4 methods can Fig. 1. Vibrational modes of the XH3Y molecules that belong to the C3v point group. get very accurate results (except for the CH3Cl angles). Since MP2 and MP4 calculations are much more time consuming and have no obvious advantages for geometry optimization, we believe that DFT calculations are more favorable for geometry optimizations of these systems. For frequency analysis, in some cases the MP4 approach can give more accurate results than DFT methods (see for example v4 of CH3F, or v1 of CH3Br). In most cases DFT calculations are, however, also accurate and give better results than MP2 and MP4 calculations. For almost all frequency calculations MP2 results are the least accurate. Our calculations reveal that in many cases the accuracy of DFT methods is very high, with the average error of only 30 cm-1. This is, however, not true for the v1 vibration, where we usually obtain larger variations (of more than 50 cm-1). Considering the applicability of different DFT methods, one can see that some of the functionals tend to be superior to the commonly used B3LYP method. Taking the frequency analysis of SiH3F as an example, the experimental value of v1 is 2206 cm-1, and the result of MPW1PW91 calcul1ation is 2252.988 cm-1 while the result of B3LYP calculation is 2267.097 cm-1. Similarly, B1LYP predicts v2 better than B3LYP, and MPW1PW91 predicts v3 better than B3LYP. Unfortunately it is impossible to find a single DFT method which will accurately predict all of the six vibrational frequencies. The differen- 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 Table 2b. Scaled vibrational frequencies (cm ') by a factor of 0.9496 (which are represnted as the vSC values) for various species shown in Table 1 (X, Y are ligands from the table and modes shown in Figure 1) ,where I is the intensities (in parentheses, KM/mol) and the values in EXP are the experimental values computed at the1B3LYP, 2B1LYP, 3B3P86, 4MPW1PW91, 5B3PW91, 6MP2, 7MP4/6-311++G (3df, 3pd) level. XH3Y v41S 'I 3032.706 3044.911 3040.286 3051.952 3034.949 3087.626 3140.294 2879.857 2891.447 2887.055 2898.133 2881.987 2932.009 2982.023 EXPIa 2964 1493.811 1503.724 1488.878 1495.452 1487.639 1526.495 1495.132 1464 1418.522 1427.936 1413.838 1420.081 1412.661 1449.559 1419.777 1047.734 1053.839 1078.917 1088.562 1073.793 1084.246 1060.481 1048.6 CH3F 994.928 1000.725 1024.539 1033.698 1019.673 1029.600 1007.032 3111.68 3124.841 3127.575 3139.167 3121.566 3193.168 3042.339 3005.8 2954.851 2967.349 2969.945 2980.952 2964.239 3032.232 2889.005 1485.097 1494.857 1480.935 1488.823 1480.214 1510.283 1510.556 1466.5 1410.248 1419.516 1406.295 1413.786 1405.611 1434.164 1434.423 1192.920 1200.444 1194.225 1200.858 1193.286 1213.531 1200.321 1182.4 1132.796 1139.941 1134.036 1140.334 1133.144 1152.369 1139.824 1I 2I 3I 4I 5I 6I 7I 3070.33 3082 3080.45 3092.04 3075.28 3108.1 3071.089 2879.28 2915.585 2926.667 2925.195 2936.201 2920.285 2951.451 2916.306 1384.861 1394.292 1381.586 1388.759 1380.888 1416.413 1405.264 1354.9 1315.064 1324.020 1311.954 1318.766 1311.291 1345.026 1334.439 717.452 720.097 746.176 754.434 744.185 778.977 756.982 732.1 CH3Cl 681.292 683.804 708.569 716.411 706.678 739.717 718.830 3073.504 3085.068 3081.847 3093.002 3076.592 3108.840 3174.764 3039.31 2918.599 2929.581 2926.522 2937.115 2921.532 2952.154 3014.756 1483.535 1493.063 1476.528 1483.276 1475.680 1510.858 1499.922 1452.1 1408.765 1417.813 1402.111 1408.519 1401.306 1434.711 1424.326 1030.959 1037.636 1032.360 1038.550 1031.851 1059.318 1048.810 1017.3 978.999 985.339 980.329 986.207 979.846 1005.928 995.950 1I 2I CH3Br 3192.553 3205.113 3203.389 3214.590 3197.989 3235.335 3077.104 2972 3031.648 3043.575 3041.938 3052.575 3036.810 3072.274 2922.018 1331.354 1340.431 1329.709 1337.538 1329.283 1367.053 1354.874 1305.9 1264.254 1272.873 1262.692 1270.126 1262.287 1298.154 1286.588 591.795 594.552 619.852 627.434 617.251 651.982 628.485 611.1 561.969 564.587 588.611 595.811 586.142 619.122 596.809 3087.012 3099.315 3092.580 3104.095 3087.830 3116.225 3189.677 3056.35 2931.427 2943.110 2936.714 2947.649 2932.203 2959.167 3028.917 1476.512 1486.243 1469.810 1476.296 1469.212 1503.635 1492.876 1442.7 1402.096 1411.336 1395.732 1401.891 1395.164 1427.852 1417.635 963.025 968.851 966.334 971.902 965.883 991.62 978.613 954.7 914.489 920.021 917.631 922.918 917.202 941.642 929.291 1I 2I 3I 4I 5I 6I 7I 2267.097 2258.106 2263.168 2265.130 2252.988 2335.498 2303.199 2206 2152.835 2144.297 2149.104 2150.967 2139.437 2217.789 2187.118 998.272 947.959 852.817 991.367 941.402 848.105 983.627 934.052 858.770 985.406 935.742 861.734 981.240 931.786 853.381 996.323 946.108 860.767 979.119 929.771 850.669 990 872 959.559 911.197 533.361 966.278 917.578 534.863 950.754 902.836 546.902 952.440 904.437 550.618 948.728 900.912 545.128 986.898 937.158 561.387 963.880 915.300 555.459 949 551 934.849 887.733 412.972 941.516 894.064 414.344 925.677 879.023 426.408 927.508 880.762 429.298 924.521 877.925 425.261 959.709 911.340 439.605 966.547 917.833 434.576 930 430 SiH3F 809.835 3 805.361 815.488 818.303 810.371 817.384 807.795 2262.430 2251.946 2255.505 2258.402 2245.660 2332.776 2308.866 2196 2148.404 2138.448 2141.828 2144.579 2132.479 2215.204 2192.499 973.759 924.682 728.057 691.363 967.474 918.713 723.057 686.615 959.401 911.047 719.543 683.278 961.022 912.586 721.196 684.848 957.176 908.934 718.038 681.849 996.496 946.273 739.474 702.205 1002.660 952.126 729.681 692.905 956 728.1 952.550 904.541 657.685 624.538 959.379 911.026 662.338 628.956 943.423 895.874 654.623 621.630 945.408 897.759 656.555 623.465 941.936 894.462 653.750 620.801 978.722 929.394 675.741 641.684 970.810 921.881 666.318 632.736 954.4 664.0 957.868 909.591 629.298 597.581 964.467 915.858 632.530 600.650 948.855 901.033 625.876 594.332 950.109 902.224 627.288 595.673 946.807 899.088 625.460 593.937 982.719 933.190 645.396 612.868 966.547 917.833 635.936 603.885 950.4 632.6 1I 2I 3I 4I SiH3Cl 2248.240 2259.045 2251.632 2253.710 2240.587 2321.753 2292.149 2201 2134.929 2145.189 2138.150 2140.123 2127.661 2204.737 2176.625 506.480 507.906 519.338 522.867 517.654 533.093 527.464 2259.531 2269.248 2264.017 2265.107 2252.787 2330.588 2302.334 2195 2145.651 2154.878 2149.911 2150.946 2139.247 2213.126 2186.296 1I 2I 3I 4I 5I 6I 7I SiH3Br 2242.121 2253.500 2248.585 2251.594 2236.190 2320.444 2290.032 2200 2129.118 2139.924 2135.256 2138.114 2123.486 2203.494 2174.614 392.158 393.461 404.917 407.661 403.828 417.449 412.673 2256.275 2266.682 2263.905 2266.042 2251.003 2332.252 2304.147 2196 2142.559 2152.441 2149.804 2151.833 2137.552 2214.706 2188.018 SC SC SC SC SC 1 2 2 3 3 4 5 5 6 6 I 2 I 3 I 4 I 5 I 6 I EXPra I 3 I 4 I 5 I 6 I 7 I EXP a I EXP a I 5 I 6 I 7 I EXP a I EXP a I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 xh3y V1 v1SC V2 v2SC V3 v3SC v4 v41SC v5 v5SC v6 v6SC GeH3F ■'I 2154.843 2046.239 865.958 822.314 667.185 633.559 2166.739 2057.535 865.958 822.314 628.143 596.485 2I 2164.580 2055.485 876.224 832.062 673.228 639.297 2173.078 2063.555 871.051 827.150 630.701 598.914 3I 2168.948 2059.633 865.537 821.914 683.570 649.118 2182.164 2072.183 870.726 826.841 627.839 596.196 4I 2177.874 2068.109 868.845 825.055 686.758 652.145 2193.203 2082.666 873.606 829.576 629.572 597.842 5I 2163.700 2054.650 868.948 825.153 678.775 644.565 2174.969 2065.351 863.965 820.421 626.978 595.378 6I 2235.889 2123.200 892.957 847.952 738.329 701.117 2232.867 2120.331 892.957 847.952 635.794 603.750 7I 2193.716 2083.153 875.666 831.532 728.836 692.103 2199.086 2088.252 877.538 833.310 623.501 592.077 EXPIb 2120.6 859.0 689.1 2131.7 874.0 624.6 GeHjCl 1I 2150.816 2042.415 843.756 801.231 406.513 386.025 2164.156 2055.083 871.551 827.625 591.816 561.988 2I 2157.763 2049.012 851.401 808.490 407.99 387.427 2167.861 2058.601 878.860 834.565 596.876 566.793 3I 2166.886 2057.675 843.021 800.533 420.072 398.900 2185.186 2075.053 870.053 826.202 595.831 565.801 4I 2173.003 2063.484 847.562 804.845 423.685 402.331 2189.300 2078.959 873.485 829.461 598.601 568.432 5I 2160.173 2051.300 842.237 799.788 417.765 396.710 2175.691 2066.036 870.031 826.181 594.969 564.983 6I 2231.680 2119.203 873.858 829.816 608.571 577.899 2232.132 2119.633 896.933 851.728 433.193 411.360 7I 2196.527 2085.822 858.485 815.217 598.571 568.403 2199.906 2089.031 881.248 836.833 428.853 407.239 EXPIb 2119.9 847.5 421.7 2128.9 874.1 602.2 GeH3Br 1I 2148.268 2039.995 829.336 787.537 294.152 279.327 2163.497 2054.457 871.769 827.832 569.974 541.247 2I 2153.914 2045.357 837.249 795.052 295.125 280.251 2167.140 2057.916 875.750 831.612 574.380 545.431 3I 2163.073 2054.054 829.638 787.824 305.906 290.488 2185.006 2074.882 870.208 826.350 570.518 541.764 4I 2173.380 2063.842 832.306 790.358 307.277 291.790 2187.211 2076.976 873.141 829.135 570.015 541.286 5I 2155.804 2047.151 828.326 786.578 303.623 288.320 2169.929 2060.565 868.348 824.583 569.100 540.417 6I 2225.913 2113.727 861.330 817.919 314.744 298.881 2227.435 2115.172 896.378 851.201 588.031 558.394 7I 2188.916 2078.595 846.592 803.924 310.434 294.788 2191.258 2080.819 881.017 836.614 578.270 549.125 EXPIb 2115.2 832.7 307.7 2126.7 870.9 578.2 a Taken from ref. 28. b Taken from ref. 29. ces between the results for different DFT methods are, on the other hand, not very large and, compared with experimental values, rather small. Thus, we believe that any of the five tested DFT methods is a reliable tool to perform vibrational analysis of monohalogenated species. The IR intensities are predicted accurately, although for some systems there is not a single method reproducing ideally all the experimental data. The last question concerns the necessity of using a large, 6-311++G(3df,3pd) basis set. Table 3 shows the relative error in frequency assignments using different computational approaches and basis sets for the CH3Cl system. Clearly, the larger basis set improves the results obtained at the B3LYP level of theory. The results for the lar- gest basis set are also more accurate then in the case of more sophisticated ab-initio methods using smaller basis sets. Thus we believe that DFT calculations can provide us with more reliable results than high level ab-initio methods for the frequency analysis of small organic molecules, and a large basis set of 6-311++G (3df,3pd) is crucial for the improvement of accuracy. 4. Conclusions From theoretical studies we provide the geometrical structures, vibrational frequencies as well as IR intensities of monohalogenated carbon family species using five Table 3. Av values (Av = vcalculated-ve dmental) for the frequency analysis of CH3Cl at different levels of theory. B3LYP B3LYP B3LYP MP4 CISD QCISD CCSD 6-311++(3df,3pd) 6-31G* 6-311+G(3df,2p) 6-311G* 6-31G* 6-311G** 6-311G* Av, 191 216 a 191 a 193 a 288 a 218 a 209 a Av„ 30 59 a 26 a 80 a 120 a 83 a 89 a Av3 -14.7 -11.1 a -17.1 a 30 a 58 a 41 a 38 a AV^ 34 156 a 125 a 137 a 229 a 156 a 149 a Av5 31 49 a 34 a 51 a 102 a 44 a 58 a AV6 14 28 a 12 a 44 a 74 a 43 a 51 a a Taken from ref. 26. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 DFT methods (B3LYP, B1LYP, B3P86, MPW1PW91, B3PW91) and two high level of ab-initio methods (MP2, MP4) at 6-311++G (3df,3pd) level of theory. DFT methods are shown to be as accurate as MP2 and MP4 methods in geometry optimization. The advantages of DFT methods over MP2 and MP4 approaches in frequency analysis are presented. In comparison with the available data, we conclude that for the frequency analysis of a small organic systems there is no need to use high level ab-initio methods, since DFT methods with large basis set of 6-311++G (3df,3pd) can provide more reliable results. Other attempts to estimate the anharmonicity have been attempted. Recently, a Car-Parrinello simulation of a Mannich base, (4,5-dimethyl-2(N,N-dimethylaminemet-hyl)phenol) was performed. This system has been shown to be troublesome due to the internal hydrogen bonding network32. Mavri and co-workers proposed a package that uses ab initio or DFT calculated points and fits them to calculate accurate expectation values, and IR spectra33. The advantage to such a technique is that it accounts for anharmonicity effects. Future prospects in this work include the use of such models to study the systems described herein. While we have only considered fundamental modes there is some knowledge available on the overtones and hot transitions for certain species34 from a theoretical perspective. Experimentally, there is very little knowledge known about the hot transitions and overtones in molecules of this type. However, other investigations have shown that hot transitions and overtones can be adequately accounted for (in correlation to experiments) by using DFT methods and gaussian basis sets35. To the best of our knowledge limited information on these data points are available for the compounds investigated herein. The results from all tested DFT methods are all similar. At this point it is difficult to choose a method, which would be the most accurate in all cases. A benchmark study of various density functionals to evaluate the performance of more density functional techniques for the frequency analysis of the discussed systems is in process. 5. Acknowledgments Special thanks are extended to DGSCA as well as UNAM for valuable resources. 6. References 1. R. H. Martin, F. W. Lampe and R. W. Taft, J. Am. Chem. Soc. 1966, 88, 1353-1357. 2. J. R. Lacher, R. E. Scruby and J. D. Park, J. Am. Chem. Soc. 1950, 72, 333-336. 3. J. E. Boggs and H. C. Agnew, J. Phys. Chem. 1959, 63, 1127-1128. 4. W. M. Litchman and D. M. Grant, J. Am. Chem. Soc. 1968, 1 90, 1400-1407. 2 5. R. D. Void, J. Am. Chem. Soc. 1935, 57, 1192-1195. 3 6. E. Gelles and K. S. Pitzer, J. Am. Chem. Soc. 1953, 75, 4 5259-5267. 5 7. C. R. Zobel and A. B. F. Duncan, J. Am. Chem. Soc. 1955, 6 77, 2611-2615. 7 8. H. Adachi, J. Electron. Spectrosc. Relat. Phenom. 1979, 16, 8 277-284. 9 9. N. Mercau, R. Aroca, E. A. Robinson, J. Aron, J. Bunnell and 10 T. J. Ford, J. Comput. Chem. 1984, 5, 427-440. 11 10. W. Schneider and W. Thiel, J. Chem. Phys. 1987, 86, 12 923-936. 13 11. W. Schneider and W. Thiel, Chem. Phys. 1992, 159, 49-66. 14 12. M. P. Fernández-Liencres, M. F. Gümez, J. J. L. González 15 and N. Rajamanickam, J. Mol. Struct. 1997, 407, 101-116. 16 13. D. Papousek, Z. Papousková and D. P. Chong, J. Phys. 17 Chem. 1995, 99, 15387-15395. 18 14. M. T. Swihart and R. W. Carr, J. Phys. Chem. A 1997, 101, 19 7434-7445. 20 15. L. Wang and J. Zhang, J. Phys. Chem. A 2004, 108, 21 10346-10353. 22 16. L. F. Pacios, O. Gálvez and P. C. Gümez, J. Phys. Chem. A 23 2000, 104, 7617-7624. 24 17. D. Papousek, Z. Papousková and D. P. Chong, J. Mol. Struct. 25 (Theochem) 1996, 363, 115-124. 26 18. G. Klatt, A. Willets and N. C. Handy, Chem. Phys. Lett. 27 1996, 249, 272-278. 28 19. A. M. Kuznetsov, E. D. German, A. N. Masliy and G. V. 29 Korshin, J. Electroanal. Chem. 2004, 573, 315-325 . 30 20. P. Marshall, G. N. Srinivas and M. Schwartz, J. Phys. Chem. 31 A 2005, 109, 6371-6379. 32 21. A. F. Jalbout and A. M. El-Nahas, J. Mol. Struct. (Theochem) 33 2004, 671, 125-132. 34 22. A. F. Jalbout, Chem. Phys. Lett. 2001, 340, 571-580. 35 23. B. S. Jursic, Int. J. Quantum. Chem. 1996, 57, 213-217. 36 24. O. Kwon and Y. Kwon, J. Mol. Struct. (Theochem) 1999, 37 460, 213-220. 38 25. Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. 39 B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. 40 A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. 41 M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennuc- 42 ci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Na- 43 katsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hase- 44 gawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, 45 M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. 46 Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Strat- 47 mann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. 48 Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salva- 49 dor, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. 50 Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Ra- 51 buck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, 52 A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. 53 Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. 54 J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakka- 55 ra, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. 56 1 W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wal- 30. A. P. Scott, L. Radom, J Phys Chem 1996, 100, 16502- 1 2 lingford CT, 2004. 16513. 2 3 26. Russell D. Johnson III (Ed.): NIST Computational Chemi- 31. V. Rodriguez-Garcia, K. Yagi, K. Hirao, S. Iwata, S. Hirata, 3 4 stry Comparison and Benchmark Database, NIST Standard J. Chem. Phys., 2006, 125, 104109-104118. 4 5 Reference Database Number 101, Release 12, Aug 2005. 32. J. Stare, J. Mavri, Comp. Phys. Comm., 2002, 143, 222-240. 5 6 27. K. J. Donald, M. C. Böhm and H. J. Lindner, J. Mol. Struct. 33. A. Jezierska, J. J. Panek, A. Koll, J. Mavri, J. Chem. Phys., 6 7 (Theochem) 2005, 713, 215-226. 2007, 126, 205101-205109. 7 8 28. T. Shimanouchi, in: Tables of Molecular Vibrational Fre- 34. S. Schmatz, J. Chem. Phys., 2005, 122, 234306/1- 8 9 quencies Consolidated Volume I, National Bureau of Stan- 234306/20 9 10 dards, Washington, 1972, pp. 1-160. 35. K. Balazic, J. Stare, J. Mavri, J. Chem. Inf. Mod, 2007, 47, 10 11 29. T. Shimanouchi, J. Phys. Chem. Ref. Data 1972, 6, 993- 832-839. 11 12 1102. 12 13 13 14 14 16 Povzetek 17 Z metodami gostotnostnega funkcionala B3LYP, B1LYP, B3P86, MPW1PW91 in B3PW91 kot tudi z MP2 in MP4 z 17 18 uporabo baznega seta 6-311++G (3df,3pd) smo izračunali geometrijske parametre, valovna števila infrardečih nihanj in 18 19 njihove intenzitete za molekule XH3Y (X=C, Si, Ge in Y=F, Cl, Br). Izračune smo primerjali z opaženimi vrednostmi iz 19 20 literature. Prednosti DFT metod so razvidne iz primerjav izračunanih in opaženih vrednosti. V članku predlagamo naju- 20 21 streznejše metode in bazne sete. 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47 48 48 49 49 50 50 51 51 52 52 53 53 54 54 55 55 56 56