
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 19 (2020) 155–171
https://doi.org/10.26493/1855-3974.2286.ece

(Also available at http://amc-journal.eu)

Oriented area as a Morse function
on polygon spaces∗

Daniil Mamaev †

Chebyshev Laboratory, St. Petersburg State University,
14th Line V.O., 29, Saint Petersburg 199178 Russia

Received 20 March 2020, accepted 16 July 2020, published online 13 November 2020

Abstract

We study polygon spaces arising from planar configurations of necklaces with some of
the beads fixed and some of the beads sliding freely. These spaces include configuration
spaces of flexible polygons and some other natural polygon spaces. We characterise critical
points of the oriented area function in geometric terms and give a formula for the Morse
indices. Thus we obtain a generalisation of isoperimetric theorems for polygons in the
plane.
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1 Preliminaries: necklaces, configuration spaces, and the oriented
area function

Suppose one has a closed string with a number of labelled beads, a necklace. Some of
the beads are fixed and some can slide freely (although the beads never pass through one
another). Having the necklace in hand, one can try to put it on the plane in such a way that
the string is strained between every two consecutive beads. We will call this a (strained
planar) configuration of the necklace. The space of all configurations (up to rotations and
translations) of a given necklace, called the configuration space of the necklace, together
with the oriented area function on it is the main object of the present paper.

Let us now be precise. Given a tuple (n1, . . . , nk) of positive integers and
a tuple (L1, . . . , Lk) of positive reals, we define a necklace N to be a tuple(
(n1, L1), . . . , (nk, Lk)

)
interpreted as follows:
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• the necklace has the total of n = n(N) = n1 + · · ·+ nk beads on it;

• k = k(N) of the beads are fixed and numbered by the index j = 1, . . . , k in counter-
clockwise order, the index j is considered to be cyclic (that is, j = 6k+5 is the same
as j = 5);

• there are (nj−1) freely sliding beads between the j-th and the (j+ 1)-th fixed bead;

• the total length of the string is L = L(N) = L1 + · · ·+ Lk;

• the length of the string between the j-th and the (j + 1)-th fixed bead is equal to Lj .

We fix some notation concerning polygons.

• A planar n-gon is a collection of n (labelled) points (called vertices) (p1, . . . , pn)
in the Euclidean plane R2. Note that all kinds of degenerations, including self-
intersection and collision of vertices, are allowed.

• The space of all planar n-gons Polyn is thus just
(
R2
)n

.

• The edges of a polygon P = (p1, . . . , pn) are the segments pipi+1 for i = 1, . . . , n,
the length of the i-th edge is li = li(P ) = |pipi+1|. Note that the index i = 1, . . . , n
is cyclic (that is, i = 10n+ 3 is the same as i = 3).

To avoid messy indices, we introduce some additional notation associated with a neck-
lace N =

(
(n1, L1), . . . , (nk, Lk)

)
(see Figure 1 for an example). For index j = 1, . . . , k

• denote by j∗ the set of indices corresponding to the j-th piece of N:

j∗ = {n1 + · · ·+ nj−1 + 1, . . . , n1 + · · ·+ nj}; (1.1)

• define a function Lj : Polyn → R, the total length of the edges of a polygon corre-
sponding to the j-th piece of N, that is

Lj(P ) =
∑
i∈j∗

li(P ).

Figure 1: A configuration P = (p1, . . . , p7) of N =
(
(2, L1), (1, L2), (4, L3)

)
.

Definition 1.1. A (strained planar) configuration of a necklace
N =

(
(n1, L1), . . . , (nk, Lk)

)
is a polygon P ∈ Polyn with Lj(P ) = Lj for all

j = 1, . . . , k.
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All configurations of a necklace N =
(
(n1, L1), . . . , (nk, Lk)

)
modulo translations

and rotations form a space M(N) = M
(
(n1, L1), . . . , (nk, Lk)

)
called configuration

space of the necklace N. More formally,

• Consider all the strained planar configurations of N =
(
(n1, L1), . . . , (nk, Lk)

)
:

M̃(N) = {P ∈ Polyn : Lj(P ) = Lj for j = 1, . . . , k} .

• The group Iso+
(
R2
)

of orientation-preserving isometries of the Euclidean plane R2

acts diagonally on the space of all planar n-gons Polyn =
(
R2
)n

.

• The configuration space of the necklace N is the space of orbits:

M(N) = M̃(N)
/

Iso+
(
R2
)
.

Definition 1.2. The oriented area A of an n-gon P = ((x1, y1), . . . , (xn, yn)) ∈
(
R2
)n

is
defined to be

A(P ) =
1

2

∣∣∣∣x1 x2
y1 y2

∣∣∣∣+
1

2

∣∣∣∣x2 x3
y2 y3

∣∣∣∣+ · · ·+ 1

2

∣∣∣∣xn x1
yn y1

∣∣∣∣ . (1.2)

The oriented area is preserved by the action of Iso+
(
R2
)

and thus gives rise to a well-
defined continuous function onM(N) for all the necklaces N. We will denote these func-
tions by the same letter A. The study of critical points (i.e. the solutions of dA(P ) = 0) of
A : M(N)→ R is the subject of the present paper.

The paper is organised as follows. In Section 2 we review previously studied extreme
cases: polygonal linkages (the ‘all beads are fixed’ case) and polygons with fixed perimeter
(the ‘one bead is fixed’ case, which is clearly the same as ‘none of the beads are fixed’ case).
In Section 3 we discuss the regularity properties of configuration spaces of necklaces. In the
subsequent sections we study the non-singular part of the configuration space. In Section 4
we give a geometric description of critical points of the oriented area in the general case
(Theorem 4.1) and deduce a formula for their Morse indices (Theorem 4.2). In Section 5
the auxiliary Lemmata 4.3 and 4.4 concerning orthogonality of certain spaces with respect
to the Hessian form of the oriented area function are proven. In Section 6 we discuss the
‘two consecutive beads are fixed’ case and give a proof of Lemma 4.5.

2 An overview of existing results
2.1 Configuration spaces of polygonal linkages

In the notation of the present paper these are the spaces M
(
(1, l1), . . . , (1, ln)

)
, i.e. the

spaces M(N) for necklaces N with all beads being fixed. These spaces are studied in
many aspects (see e.g. [1] or [2] for a thorough survey). On the side of studying the ori-
ented area on these spaces, the first general fact about its critical points was noticed by
Thomas Banchoff (unpublished), reproved by Khimshiashvili and Panina [5] (their tech-
nique required some non-degeneracy assumptions) and then proved again by Leger [8] in
full generality.

Theorem 2.1 (Critical configurations in the ‘all beads are fixed’ case; Bunchoff, Khimshi-
ashvili, Leger, and Panina). Let N be a necklace with all the beads fixed. Then a polygon
P ∈Msm(N) is a critical point of A if and only if it is cyclic (i.e. inscribed in a circle).
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After describing critical points, the following natural question arises: are these critical
points Morse (i.e. whether HessP A, the Hessian of A at P , is a non-degenerate bilinear
form on TPM(N)) and if they are, what is the Morse index (the maximal dimension of
a subspace on which HessP A is negative definite). The state-of-the-art answer to this
question requires some more notation (see Figure 2 for an example).

Figure 2: Notation for a cyclic polygon.

Definition 2.2. Let P be a cyclic n-gon, o be the circumcentre of P , and i ∈ {1, . . . , n}.

• The central half-angle of the i-th edge of P is

αi(P ) =
|∠piopi+1|

2
∈ [0, π/2].

• The orientation of the i-th edge of P is

εi(P ) =


1, if ∠piopi+1 ∈ (0, π);

0, if ∠piopi+1 ∈ {0, π};
−1, if ∠piopi+1 ∈ (−π, 0).

(2.1)

We will denote by Cn the configuration space of cyclic n-gons with at least three ver-
tices. More precisely,

Cn =

{
P ∈

(
R2
)n

:
P is a cyclic polygon;
AffineHull(P ) = R2

}/
Iso+

(
R2
)
. (2.2)

For P ∈ Cn denote by ΩP its circumscribed circle, by oP its circumcentre, and by RP the
radius of ΩP .
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Definition 2.3. Let P be a cyclic polygon with at least three distinct vertices. It is called
admissible if no edge of P passes through its circumcentre o. In this case its winding
number wP = w(P, o) with respect to o is well-defined.

Theorem 2.4 (Morse indices in the ‘all beads are fixed’ case; Gordon, Khimshiashvili,
Panina, Teplitskaya, and Zhukova). Let N =

(
(1, l1), . . . , (1, ln)

)
be a necklace without

freely moving beads, and let P ∈Msm(N) be an admissible cyclic polygon. Then P is a
Morse point of A if and only if

∑n
i=1 εi tanαi 6= 0 and in this case its Morse index is

µP (A) = #
{
i ∈ {1, . . . , n} : εi > 0

}
− 1− 2wP −

{
0, if

∑n
i=1 εi tanαi > 0;

1, otherwise.

The formula more or less explicitly appeared in [6, 9], and [11], but in this form, with
the precise condition of being Morse, the theorem was proved only in [3]. The following
definition was first given in [3].

Definition 2.5. An admissible cyclic polygon P is called bifurcating if∑n
i=1 εi tanαi = 0.

2.2 Configuration space of n-gons with fixed perimeter

This is the spaceM
(
(n,L)

)
= M(n,L) (for different L these spaces are isomorphic, so

usually L is set to 1). It is no secret since antiquity, that, with perimeter fixed, convex
regular polygons maximise the area. All the critical points of the oriented area together
with their indices were determined only in a recent paper [7] by Khimshiashvili, Panina
and Siersma.

Definition 2.6. A regular star is a cyclic polygon P such that all its edges are equal and
have the same orientation (see (2.1)). A complete fold is a regular star P with pi = pi+2

for all i = 1, . . . , n. It exists for even n only.

Theorem 2.7 (Critical configurations and Morse indices in the ‘one bead is fixed’ case;
Khimshiashvili, Panina, and Siersma).

(1) M(n,L) is homeomorphic to CPn−2.

(2) A polygon P ∈Msm(n,L) is a critical point of A if and only if it is a regular star.

(3) The stars with maximal winding numbers are Morse critical points of A.

(4) Under assumption that all regular stars are Morse critical points, the Morse indices
are:

µnP (A) =


2wP − 2, if wP < 0;

2n− 2wP − 2, if wP > 0;

n− 2, if P is a complete fold.

Remark 2.8. The super-index in µP (A) allows one to identify the domain of A. For ex-
ample, µnP (A) is the Morse index ofA : M

(
n,L1(P )

)
→ R at point P (as in (4) of Theo-

rem 2.7), and µ1,...,1
P (A) is the Morse index of A : M

((
1,L1(P )

)
, . . . ,

(
1,Ln(P )

))
→ R

at point P (as in Theorem 2.4). This notation will be of much use in the proof of Theo-
rem 4.2.
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Let us also mention an auxiliary statement proven in [7].

Lemma 2.9 (Khimshiashvili, Panina, and Siersma). Let P be a regular star which is not a
complete fold with wP > 0. Then P is a non-degenerate local maximum on Cn.

In fact, this lemma together with Theorem 2.4 and Lemma 4.3 allows one to omit the
assumption in (4) of Theorem 2.7. All the critical points of the oriented area on Cn were
described in a recent preprint [10] by Siersma.

3 Singular locus of the configuration space
Definition 3.1. Let P be a configuration of a necklace N =

(
(n1, L1), . . . , (nk, Lk)

)
. It

is called non-singular if L = (L1, . . . ,Lk) is a smooth submersion at P (i.e. L is differ-
entiable at P and its differential DPL : TP Polyn → TPRk is a surjective linear map),
otherwise it is called singular.

First we give a geometric characterisation of singular configurations. Consider a poly-
gon P = (p1, . . . , pn), with pi = (xi, yi) ∈ R2 and li = |pi+1 − pi| 6= 0 for all
i = 1, . . . , n. Define βi to be the oriented angle between vectors (1, 0) and (pi+1 − pi).
Denote by s(j) = n1 + · · ·+ nj−1 + 1 the index of the j-th fixed bead. Then every Lj is
differentiable at P and the derivative of Lj with respect to xi and yi is as follows:

∂Lj
∂xi

(P ) =


− cosβi, if i = s(j);

cosβi−1 − cosβi, if i ∈ j∗ \ {s(j)};
cosβi−1, if i = s(j + 1);

0, otherwise.

(3.1)

∂Lj
∂yi

(P ) =


− sinβi, if i = s(j);

sinβi−1 − sinβi, if i ∈ j∗ \ {s(j)};
sinβi−1, if i = s(j + 1);

0, otherwise.

(3.2)

Definition 3.2. Let N =
(
(n1, L1), . . . , (nk, Lk)

)
be a necklace. An index

i ∈ {1, . . . , n(N)} is called boundary if it is equal to s(j) for some j ∈ {1, . . . , k},
otherwise it is called inner.

In Figure 1 the indices 1, 3, 4 are boundary and the indices 2, 5, 6, 7 are inner.

Lemma 3.3. A configuration P ∈ Polyn of the necklace N =
(
(n1, L1), . . . , (nk, Lk)

)
is

singular if and only if one of the following holds:

(1) li = 0 for some i ∈ {1, . . . , n(N)};
(2) P fits in a straight line in such a way that βi = βi−1 for all inner indices i.

Proof. The first condition is equivalent to L being differentiable at P . Therefore, what is
left to prove, is that for P ∈ M̃(N) with no vanishing edges, the second condition holds if
and only if the gradients gradP L1, . . . , gradP Lk are linearly dependent.

Suppose that λ1 gradP L1 + · · · + λk gradP Lk = 0 is a non-trivial vanishing linear
combination. If λj 6= 0, then, using formulae (3.1) and (3.2) for boundary index s(j),
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we get −λj cosβs(j) + λj−1 cosβs(j)−1 = 0 and −λj sinβs(j) + λj−1 sinβs(j)−1 = 0.
It means that points λj(cosβs(j), sinβs(j)) 6= (0, 0) and λj−1(cosβs(j)−1, sinβs(j)−1)
coincide, which implies that 2(βs(j)−βs(j)−1) = 0 and λj−1 = cos(βs(j) − βs(j)−1)λj 6=
0. It follows then that λj 6= 0 for all j = 1, . . . , k, consequently, (we now use (3.1) and
(3.2) for inner indices) βi = βi−1 for all inner indices i, meaning that P is composed of
straight segments of lengths L1, . . . , Lk. Taking into account previously deduced formula
2(βi−βi−1) = 0 for boundary i, we conclude that P does satisfy condition (2). Reversing
the above argument, we get the reverse implication.

Definition 3.4. A singular configuration P of a necklace N is called strongly singular, if it
satisfies (2) in Lemma 3.3. Otherwise it is called weakly singular.

Remark 3.5. Let N =
(
(n1, L1), . . . , (nk, Lk)

)
be a necklace. Then

• weakly singular configurations of N are, in a sense, inessential (for instance,M(N)
is a topological manifold around them);

• if (L1, . . . , Ln) is such that ±L1 ± · · · ± Ln 6= 0 for any choice of ± (such tuples
are called generic in [2]), then there are no strongly singular configurations of N.

Together, these two facts allow to deduce some information about topology ofM(N) for
generic N from Theorems 4.1 and 4.2, but this is not the subject of the present paper.

Now let M̃sm(N) be the set of non-singular configurations of necklace N and
Msm(N) be the non-singular part ofM(N):

Msm

(
N) =

M̃sm(N)

Iso+ (R2)
=

{
P ∈ Polyn :

P is a non-singular
configuration of N

}/
Iso+

(
R2
)

If these spaces are non-empty, they are smooth manifolds. This statement generalises
previous results on smoothness of configuration spaces of polygonal linkages by Kapovich–
Millson [4] and Farber [2].

Definition 3.6. A necklace N = ((n1, L1), . . . , (nk, Lk)
)

is called realisable if for all
j = 1, . . . , k, such that nj = 1, the inequality 2Lj < L1 + · · ·+ Lk holds.

Proposition 3.7. Let N be a realisable necklace. Then

(1) M̃sm(N) is a smooth (2n− k)-dimensional submanifold of Polyn = R2n;

(2) Msm(N) is a topological manifold of dimension 2n − k − 3 with a unique smooth
structure making the quotient map M̃sm(N)→Msm(N) a smooth submersion;

(3) the oriented area function A is a smooth function onMsm(N).

Proof. It follows from Lemma 3.3, that the inequalities 2Lj < L1 + · · ·+Lk are necessary
and sufficient for M̃sm(N) to be non-empty.

The first claim is clear since M̃sm(N) is locally a level of a smooth submersion
L = (L1, . . . ,Lk) :

(
R2
)n → Rk.

To establish the second claim, we first note thatMsm(N) is an orbit space of the action
of 3-dimensional Lie group Iso+

(
R2
)

on the smooth manifold M̃sm(N). Thus, it suffices
to observe that the action is free and proper, which is indeed the case.

The third claim is obvious since the smooth structure on Msm(N) is induced from
Polyn, and the oriented area A is a smooth function (cf. (1.2)) on Polyn preserved by the
action of Iso+

(
R2
)
.
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4 Main results: critical configurations and their Morse indices in the
general case

The following theorem describes critical points of the oriented area on configuration spaces
of necklaces. It generalises Theorem 2.1 and (2) in Theorem 2.7.

Theorem 4.1 (Critical configurations in the general case). A polygon
P ∈ Msm

(
(n1, L1), . . . , (nk, Lk)

)
is a critical point of A if and only if all of the

following conditions hold:

(1) P is cyclic;

(2) li(P ) = Lj/nj for all i ∈ j∗;
(3) εi1(P ) = εi2(P ) for all i1, i2 ∈ j∗,

where j∗ is the set of indices corresponding to the j-th piece of a necklace (see (1.1)) and
εi(P ) is the orientation of the i-th edge of a cyclic polygon P (see (2.1)).

The proof essentially is a reformulation of geometric arguments into the language of
Lagrange multipliers, so we first write partial derivatives of A with respect to xi and yi:

2 · ∂A
∂xi

(P ) = li−1 sinβi−1 + li sinβi (4.1)

2 · ∂A
∂yi

(P ) = −li−1 cosβi−1 − li cosβi. (4.2)

We follow the convention 0 · undefined = 0 hence both sides are defined for all P ∈ Polyn.

Proof of Theorem 4.1. Let P be a non-singular configuration of a necklace N =(
(n1, L1), . . . , (nk, Lk)

)
. Then P is a critical point of A if and only if there exist λ1, . . . ,

λk ∈ R, such that 2 · gradP A = λ1 gradP L1 + · · ·+ λk gradP Lk.
Assume that 2 · gradP A = λ1 gradP L1 + · · · + λk gradP Lk. Applying formu-

lae (3.1), (3.2), (4.1), (4.2) to an inner index i ∈ j∗, one deduces

li−1 sinβi−1 + li sinβi = λj (cosβi−1 − cosβi) ;

−li−1 cosβi−1 − li cosβi = λj (sinβi−1 − sinβi) .

If βi = βi−1, then li = li−1 = 0, but P is non-singular, so it cannot be the case
by Lemma 3.3. The only other possibility for these equations to hold is li−1 = li and
λj = li cot

(βi−βi−1

2

)
. Since we have such equations for all inner indices corresponding to

j, we get li1 = li2 for all i1, i2 ∈ j∗, which implies condition (2) of the theorem. Moreover,
for all i ∈ j∗ \ s(j) we get cot

(βi−βi−1

2

)
=

njλj

Lj
, therefore βi − βi−1 is the same for all

i ∈ j∗ \ s(j), which implies that there is a circle Ωj with centre oj such that conditions (2)
and (3) of the theorem hold. It now remains to prove that P is cyclic, i.e. oj is the same
for all j = 1, . . . , k. If P is a smooth point ofMsm((1, l1), . . . , (1, ln)) ⊂ Msm

(
N
)
, in

other words, if P does not fit in a straight line, then we are done by Theorem 2.1. Suppose
that P fits in a straight line. Pick a boundary vertex i = s(j + 1), denote lj = Lj/nj , and
apply formulae (3.1), (3.2), (4.1), (4.2) to i:

lj sinβi−1 + lj+1 sinβi = λj cosβi−1 − λj+1 cosβi;

−lj cosβi−1 − lj+1 cosβi = λj sinβi−1 − λj+1 sinβi.
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Since P fits in a straight line, 2(βi − βi−1) = 0. If βi−1 = βi = β, then the points
(lj + lj+1)(cosβ, sinβ) and (λj − λj+1)(cos(β + π/2), sin(β + π/2)) coincide which
cannot be the case since lj , lj+1 > 0. If βi−1 = βi + π = β + π, then the points
(lj − lj+1)(cosβ, sinβ) and (λj + λj+1)(cos(β + π/2), sin(β + π/2)) coincide, which
implies that lj = lj+1. Since this is the case for all j, P is a complete fold and thus indeed
is cyclic.

Now assume that a non-singular configuration P of necklace N satisfies con-
ditions (1) – (3). Let Ω be its circumscribed circle with centre o. Denote by
γj the oriented angle ∠ps(j)ops(j)+1

and set λj = li cot (γj/2) for some in-
dex i corresponding to j. Since γj = βi − βi−1 for inner indices i, equality
2 · gradP A = λ1 gradP L1 + · · ·+ λk gradP Lk holds in all inner indices. For a bound-
ary index i = s(j + 1) we can (performing rotation around o) assume that βi−1 = 0, and
what we need to check then is the following two equalities:

lj+1 sinβi = lj cot(γi−1/2)− lj+1 cot(γi/2) cosβi;

−lj − lj+1 cosβi = −lj+1 cot(γi/2) sinβi,

Putting the origin at o, we note that

pi+1 − pi = lj+1 · (cosβi, sinβi),

pi+1 + pi = lj+1 cot
γi
2
· (− sinβi, cosβi),

pi =

(
lj
2
,− lj

2
cot

γi−1
2

)
,

and thus the desired equalities are just the coordinate manifestations of the obvious identity

pi+1 − pi
2

− pi+1 + pi
2

+ pi = (0, 0).

The following theorem provides a criterion for an admissible cyclic polygon to be a
Morse point of the oriented area and gives a formula for its Morse index. It generalises
Theorem 2.4 and allows one to omit the assumption in (4) of Theorem 2.7.

Theorem 4.2 (Morse indices in the general case). Let N =
(
(n1, L1), . . . , (nk, Lk)

)
be a

realisable necklace (see Definition 3.6), and P ∈Msm(N) be an admissible (see Defini-
tion 2.3) critical point of the oriented area A. Then P is a Morse point of A if and only
if it is not a bifurcating polygon (see Definition 2.5). In this case its Morse index can be
computed as follows:

µP (A) =
1

2

k∑
j=1

(2nj − 1) · (Ej + 1)− 1− 2wP −

{
0, if

∑k
j=1 njEj tanAj > 0;

1, otherwise,

where Ej = εi and Aj = αi for some i ∈ j∗ (due to Theorem 4.1 this does not depend on
the choice of i).

Proof. Let P be as in the theorem. First, let us split the tangent space of Msm(N)
at the critical point P into subspaces that are orthogonal with respect to the Hessian
form HessP A. For this, given a polygon P , we introduce the following submanifolds
inMsm(N):
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(1) EP = Msm((1, l1), . . . , (n, ln)) ⊂ Msm(N) is the space of all polygons having
the same edge length as P ;

(2) CP =Msm(N) ∩ C is the subspace of cyclic polygons;

(3) CPj =

{
Q ∈Msm(N) :

(qs(j), . . . , qs(j+1)) is cyclic
qi = pi for i /∈ j∗ \ {s(j)}

}
for j = 1, . . . , k.

We will deduce the theorem from Lemmata 4.3, 4.4, and 4.5 (see Sections 5 and 6 for
their proofs).

Lemma 4.3. Let P be as in Theorem 4.2. Then

(1) EP ⊂ Msm(N) is a smooth (n − 3)-dimensional submanifold in a neighbourhood
of P ;

(2) CP ⊂ Msm(N) is a smooth (n − k)-dimensional submanifold in a neighbourhood
of P ;

(3) EP and CP intersect transversally at P , i.e. TPMsm(N) = TPEP ⊕ TPCP ;

(4) TPEP and TPCP are orthogonal with respect to the bilinear form HessP A.

One can note that none of the CPj are contained in CP . Nonetheless, from the following
lemma one sees that in the first approximation they very much are.

Lemma 4.4. Let P be as in Theorem 4.2. Then

(1) CPj ⊂Msm(N) is a smooth (nj − 1)-dimensional submanifold in a neighbourhood
of P ;

(2)

TPCP =

k⊕
j=1

TPCPj

(3) TPCPj are pairwise orthogonal with respect to the bilinear form HessP A.

It remains to compute the Morse index of P with respect to A on each CPj .

Lemma 4.5. Suppose that P ∈ Cn+1 is such that l1 = · · · = ln = L/n and εi = 1
(εi = −1) for i = 1, . . . , n. Then P is a non-degenerate local maximum (minimum) of the
oriented area onMsm((n,L), (1, ln)) ∩ Cn+1.

Now we are ready to prove the theorem. From Lemmata 4.3 and 4.4, P is a Morse
point of A onMsm if and only if it is a Morse point of A on EP and all of CPj . Since P
is always a Morse point on each CPj (because by Lemma 4.5 it is a non-degenerate local
extremum), it is a Morse point of A onMsm if and only if it is a Morse point of A on EP ,
which is equivalent to P not being bifurcating by Theorem 2.4.

Moreover, Lemmata 4.3 and 4.4 imply that if P is a Morse point of A onMsm, then
its Morse index is

µn1,...,nk

P (A) = µE
P

P (A) + µC
P

P (A) = µ1,...,1
P (A) +

k∑
j=1

µ
CPj
P (A).
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From Theorem 2.4 we know that

µ1,...,1
P (A) =

1

2

k∑
j=1

nj(Ej + 1)− 1− 2ω −

{
0, if

∑k
j=1 njEj tanAj > 0;

1, otherwise.

From Lemma 4.5 and (1) of Lemma 4.4 we get

µ
CPj
P (A) =

1

2
(nj − 1) · (Ej + 1).

Summing all up, we obtain the desired formula.

5 Orthogonality with respect to the Hessian form of the oriented area
Let us remind that Cn is the configuration space of cyclic polygons with at least three
different vertices (see (2.2)). First, we parametrise Cn smoothly. For this we introduce

Hn =
{

(θ1, . . . , θn) ∈
(
S1
)n

: #{θ1, . . . , θn} ≥ 3
}/

S1,

where S1 acts on
(
S1
)n

diagonally by rotations. Consider the following map

ϕ̃ :
((
S1
)n \Diag

)
× R>0 →

(
R2
)n \Diag ,

(θ1, . . . , θn, R) 7→ R · ((cos θ1, sin θ1), . . . , (cos θn, sin θn)) .

Lemma 5.1. ϕ̃ induces a diffeomorphism ϕ : Hn × R>0 → Cn.

Proof. ϕ is obviously a bijection, so the only thing we need to check is that the Jacobian
of ϕ̃ has rank (n + 1) at every point. In fact, it is just a statement of the form ‘S1 × R>0

is diffeomorphic to R2 \ {0} via polar coordinates’, but we compute the Jacobian for the
sake of completeness:

Jacϕ =


Jac1 ϕ

...
Jacn ϕ

Jacn+1 ϕ

 =


−R sin θ1 R cos θ1 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . −R sin θn R cos θn
cos θ1 sin θ1 cos θ2 . . . cos θn sin θn


The first n rows are obviously linearly independent. Suppose one has Jacn+1 ϕ =
λ1 Jac1 ϕ+ · · ·+ λn Jacn ϕ. Then for any i = 1, . . . , n one gets

(cos θi, sin θi) = λ1(−R sin θi, R cos θi) = λ1R (cos (θi + π/2) , cos (θi + π/2)) ,

which implies λi = 0, a contradiction.

We now provide local coordinates for Cn.

Lemma 5.2. LetP ∈ Cn be an admissible non-bifurcating cyclic polygon with edge lengths
l1, . . . , ln > 0. For Q ∈ Cn let ti(Q) = li(Q) − li. Then (t1, . . . , tn) are smooth local
coordinates for Cn around P .
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Proof. In view of Lemma 5.1 we just need to show that for

ψ : Hn × R>0 → Rn,

(θ1, . . . , θn, R) 7→ R ·
(√

2− 2 cos(θ2 − θ1), . . . ,
√

2− 2 cos(θ1 − θn)
)

Jacψ is of rank n at points where θ1 6= θ2 6= · · · 6= θn 6= θ1. Indeed, Jacψ is

R sin(θ1−θ2)√
2−2 cos(θ1−θ2)

0 · · · 0 R sin(θ1−θn)√
2−2 cos(θ1−θn)

R sin(θ2−θ1)√
2−2 cos(θ2−θ1)

R sin(θ2−θ3)√
2−2 cos(θ2−θ3)

· · · 0 0

...
...

...
. . .

...

0 0 · · · R sin(θn−1−θn)√
2−2 cos(θn−1−θn)

0

0 0 · · · R sin(θn−θn−1)√
2−2 cos(θn−θn−1)

R sin(θn−θ1)√
2−2 cos(θn−θ1)

√
2−2 cos(θ2−θ1)

√
2−2 cos(θ3−θ2) · · · √

2−2 cos(θn−θn−1)
√

2−2 cos(θ1−θn)


Since 2(θi+1− θi) 6= 0, all the entries are well-defined and non-zero. Consider a vanishing
non-trivial linear combination of columns. The form of the first n rows forces the coeffi-
cient at the i-th column to be equal (up to the common multiplier) to

√
2−2 cos(θi−θi+1)

sin(θi−θi+1)
, but

then for the last row we have

0 =

n∑
i=1

2− 2 cos(θi − θi+1)

sin(θi − θi+1)
= 2

n∑
i=1

tan

(
θi − θi+1

2

)
,

which means exactly that P is bifurcating and contradicts the assumptions of the lemma.
Thus, Jacψ has rank n as desired.

Proof of Lemma 4.3. To prove the first two claims let us note that smooth structures on
EP , CP , and Msm(N) come from the smooth structure on Polyn =

(
R2
)n

. Thus, the
first claim immediately follows from Lemma 3.3, as the only cyclic polygon fitting into a
straight line is a complete fold, which is not admissible. The dimension of EP is computed
according to (2) in Proposition 3.7. From Lemma 5.1 it follows that Cn around P is a
smooth submanifold in Polyn/ Iso+, and from Lemma 5.2 we deduce that CP around P is
a smooth (n− k)-dimensional submanifold of Cn as it is a preimage of the linear subspace
of codimension k in Rn under the map Q 7→ (t1(Q), . . . , tn(Q)). Thus the second claim
is also proved.

The third claim is equivalent (by dimension count) to representability of every vector in
TPMsm(N) as a sum of two vectors from TPEP and TPCP respectively, but this is indeed
the case since every polygon Q near P inMsm(N) can be obtained first by a move in CP
making the edges of desired length (by Lemma 5.2) and then by a move inside EQ.
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Finally, we establish the fourth claim. Consider v ∈ TPC and w ∈ TPE. To compute
HessP A(v, w), we choose a curve γ : (−ε, ε)→ TPC such that γ(0) = P and γ′(0) = v,
then we extend w to a vector field W (t) ∈ Tγ(t)Eγ(t) along γ. Then

HessP A(v, w) =
d

dt

∣∣∣∣
t=0

dγ(t)A(W (t)).

But dγ(t)A vanishes on Tγ(t)Eγ(t) by Theorem 4.1.

The following lemma allows one to relate CPj with CP .

Lemma 5.3. Let P ∈ Cn be an admissible non-bifurcating cyclic polygon such that l1 = l2
and ∠p1op2 = ∠p2op3, where o is the centre of the circumscribed circle Ω. Let V be a
local vector field around P equal to

(
∂
∂t1
− ∂

∂t2

)
in the coordinates from Lemma 5.2.

Then (V R) (P ) = 0 and (V dab) (P ) = 0 for a, b ∈ {1, . . . , n} \ {2}, where V f is the
derivative of a function f along V , R(Q) is the radius of the circumscribed circle of Q
and dab(Q) = |qb − qa|.

Proof. Consider a curve P (s) : (−ε, ε) → Cn, (t1, . . . , tn)(P (s)) = (s,−s, 0, . . . , 0).
We choose representatives P̃ (s) ∈ Polyn in such a way that oP̃ (s) = (0, 0) and (p3 − p1)

is codirectional with x-axes. Notice that P̃ (−s) is obtained from P̃ (s) by the following
procedure: pi(−s) = pi(s) for i 6= 2 and p2(−s) is symmetric to p2(s) relative to y-axes.
From this it follows that P̃ (s)− P̃ (−s)) = (0, 0, 2η, 0, . . . , 0) for some η > 0. Hence all
pi for i 6= 2 are not moving in the first approximation, which implies the statement of the
lemma.

Proof of Lemma 4.4. The space
{
Q ∈Msm(N) : qi = pi for i /∈ j∗ \ {s(j)}

}
is a

smooth submanifold inMsm(N) diffeomorphic toMsm

(
(nj , Lj), (1, |ps(j+1)− ps(j)|)

)
.

Under this identification, CPj is just CP . Applying (2) of Lemma 4.3 to
Msm

(
(nj , Lj), (1, |ps(j+1) − ps(j)|)

)
, we get the first claim.

To establish the second claim it suffices to find bases in every TPCPj such that their
disjoint union forms a basis of TPCP . Consider the coordinates from Lemma 5.2. On
the one hand, when we consider cyclic polygons coordinatised by (t1, . . . , tn), the vectors(

∂
∂ti−1

− ∂
∂ti

)
for inner i form a basis of TPCP . On the other hand, when we consider CPj

coordinatised by (si)i∈j∗\{s(j)}, where si = li(Q)− li(P ), the vectors
(

∂
∂si−1

− ∂
∂si

)
for

i ∈ j∗ \ {s(j)} form a basis of TPCPj . It now follows from Lemma 5.3 that
(

∂
∂ti−1

− ∂
∂ti

)
=(

∂
∂si−1

− ∂
∂si

)
for i ∈ j∗ \ {s(j)} thus the second claim is proven.

Now we pass to the third claim. Consider v ∈ TPCPj and w ∈ TPCPh , take a curve
γ : (−ε, ε) → CPj such that γ(0) = P and γ′(0) = v, and a curve σ : (−ε, ε) → CPh , such
that σ(0) = P and σ′(0) = w. Then extend w to a vector field W (t) ∈ Tγ(t)Msm(N)

along γ by setting W (t) = σ′t(0), where σt : (−ε, ε) → Cγ(t)h is such that σt(0) = γ(t)
and for all i ∈ j∗ \ s(j) the i-th vertex of σt(s) is the same as the i − th vertex of σ(s).
Then

HessP A(v, w) =
d

dt

∣∣∣∣
t=0

W (t)A,

and it vanishes since W (t)A does not depend on t.
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6 Configuration spaces of polygons with perimeter and one edge
length fixed

These are the spaces M
(
(n,L), (1, l)

)
for L ≥ l. Vividly speaking, it is the space of

broken lines of given length with fixed endpoints. One can think that the first and the last
vertices have coordinates (0, 0) and (l, 0) respectively. Our interest in these spaces was
first motivated by the fact that they are simple enough to be studied completely, but then it
turned out that they are important for understanding the case of general necklaces.

Proposition 6.1 (Configuration space in the ‘two consecutive beads are fixed’ case). Let
L > l and n ≥ 2. ThenM

(
(n,L), (1, l)

)
is homeomorphic to the sphere S2n−3.

Proof. By setting p1 = (0, 0) and pn+1 = (l, 0) we identify M
(
(n,L), (1, l)

)
with the

level set

F−1(L) =
{

(p2, . . . , pn) ∈
(
R2
)n−1

: F (p2, . . . , pn) = L
}
,

where F (p2, . . . , pn) = |p2|+ |p3 − p2|+ · · ·+ |pn − pn−1|+ |(l, 0)− pn|.

F is a convex function as sum of convex functions. The sublevel set F−1((−∞, L]) is
bounded since if any of |pi| is greater than L, then F (p2, . . . , pn) ≥ L by triangle inequal-
ity. Also, the set F−1((−∞, L)) is non-empty, since if all of the pi are in the disk of radius
δ around (l/2, 0), then F (p2, . . . , pn) < (l/2 + δ) + (n− 3)δ+ (l/2 + δ) = l+ (n− 1)δ,
which is less than L for small δ. So, F−1(L) is a boundary of the compact convex
set F−1((−∞, L]) ⊂

(
R2
)n−1

with non-empty interior and thus is homeomorphic to
S2n−3.

The following two propositions are easily deduced from Theorems 4.1 and 4.2 respec-
tively.

Proposition 6.2 (Critical points in the ‘two consecutive beads are fixed’ case). Let L > l
and n ≥ 2. Then critical points of A on Msm

(
(n,L), (1, l)

)
are in bijection with the

solutions of

|Un−1(x)| = nl

L
(6.1)

where Un−1 is the (n − 1)-th Chebyshev polynomial of second kind, that is,
Un−1(cosϕ) = sinnϕ

sinϕ .

Proof. By Theorem 4.1 a configuration P ∈ Msm

(
(n,L), (1, l)

)
is a critical point of A

if and only if it is inscribed in a circle Ω with centre o and radius R in such a way that
∠p1op2 = · · · = ∠pnopn+1 =: α(P ) = α. Let us construct a bijection

{critical points of A onMsm

(
(n,L), (1, l)

)
} → {solutions of (6.1)}, P 7→ cP .

Let cP = cos(α/2), where α/2 ∈ (0, π). Since L/n = R
√

2− 2 cosα = 2R sin(α/2)
and l = R

√
2− 2 cos(nα) = 2R| sin(nα/2)|, we get Un−1(cP ) = nl/L. Since the map

R
2πZ

\ {0} → (−1, 1), α 7→ cos(α/2)

is a bijection and P is uniquely determined by α(P ), the constructed map P 7→ cP is
indeed a bijection.
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Proposition 6.3 (Morse index in the ‘two consecutive beads are fixed’ case). If P is an ad-
missible non-bifurcating critical configuration ofA onMsm((n,L), (1, l)), then its Morse
index is

µn,1P (A) =

{
2n− 2− i, if cP is the i-th largest positive solution of (6.1);
i− 1, if cP is the i-th smallest negative solution of (6.1).

Proof. By symmetry reasons, to prove the claim, it suffices to prove it only for P with
cP > 0. Then by Theorem 4.2 one has

µn,1P (A) = (2n− 1) +
1

2
(εn+1 + 1)− 1−wP −

{
0, if n tan(α/2) > εn+1 tan(nα/2);

1, otherwise.

The roots and extrema of Un−1(t) are interchanging. Let us start from t = 1 and move to
the right. The extrema correspond to the bifurcating polygons (i.e. those with n tan(α/2) =
εn+1 tan(nα/2)) and the roots correspond to polygons with ln+1 = 0. So, when t passes
a root, εn+1 changes from 1 to −1 and whenever t passes an extrema, the last summand
changes from 0 to 1. When p1pn+1 passes through o, wP increases by 1, and εn+1 changes
from −1 to 1, which does not change the Morse index. The right-most t corresponds to the
global maximum, so the above argument completes the prove.

Finally, we check the last yet unproven ingredient in the proof of Theorem 4.2.

Proof of Lemma 4.5. Let P be as in the lemma. Without loss of generality we can assume
that ΩP = Ω is the unit circle with centre o, and, due to symmetry, it is enough to prove
the statement for P with wP > 0. We should prove that the function

A
l2n+1

:

{
polygons P inscribed in the unit circle with

L1(P )

ln+1(P )
=
L

l

}
→ R

attains a non-degenerate local maximum at P . For this it suffice to prove that the function

G :

{
polygons inscribed
in the unit circle

}
→ R,

G(Q) =
2A(Q)

ln+1(Q)2
− λ

(
L1(Q)2

ln+1(Q)2
− L2

l2

)
− µ

(
L1(Q)2

ln+1(Q)2
− L2

l2

)2 (6.2)

attains a non-degenerate local maximum at P for suitable λ and µ. Set
α = ∠p1op2 = · · · = ∠pnopn+1 ∈ (0, π) and introduce local coordinates by setting
ti(Q) = ∠qioqi+1 − α for i = 1, . . . , n. First, we write the functions involved in the defi-
nition (6.2) in these coordinates:

ln+1 (t1, . . . , tn) =

√√√√2− 2 cos

(
nα+

n∑
i=1

ti

)
;

L1 (t1, . . . , tn) =

n∑
i=1

√
2− 2 cos(α+ ti);

2A (t1, . . . , tn) =

n∑
i=1

sin(α+ ti)− sin

(
nα+

n∑
i=1

ti

)
.
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Secondly, we perform the computations in the 2-jets at the point P , which by the aforemen-
tioned coordinates are identified with R[t1, . . . , tn]/I , where I is the ideal generated by all
products titjth with i, j, h = 1, . . . , n. It turns out that the 2-jets of the functions we are in-
terested in are all contained in the subring R+RT1+RT 2

1 +RT2, where T1 =
∑n
i=1 ti and

T2 =
∑n
i=1 t

2
i . This subring is naturally identified with the ring R[T1, T2]/(T 3

1 , T
2
2 , T1T2).

With all the identifications done, the 2-jets of the functions involved in the definition (6.2)
look as follows:

j2ln+1 = l ·
(

1 +
1

2
cot
(nα

2

)
T1 −

1

8
T 2
1

)
;

j2L1 = L ·
(

1 +
1

2n
cot
(α

2

)
T1 −

1

8n
T2

)
;

j2(2A) = (n sinα− sin(nα)) + (cosα− cosnα)T1 −
sinα

2
T2 +

sin(nα)

2
T 2
1 .

Now, setting x = tan α
2 and y = tan nα

2 , we can write the 2-jets of the summands in (6.2)
in more or less compact form:

j2

(
L2
1

l2n+1

− L2

l2

)
=
nx(1 + y2)(y − nx)

y3(1 + x2)
T1 −

nx2(1 + y2)

4y2(1 + x2)
T2 + C1(n, x, y)T 2

1 ;

j2

(
L2
1

l2n+1

− L2

l2

)2
=
n2x2(1 + y2)2(y − nx)2

y6(1 + x2)
T 2
1 ;

j2

(
2A
l2n+1

− 2A(P )

l2

)
=

(1 + y2)(y − nx)

2y3(1 + x2)
T1 −

x(1 + y2)

4y2(1 + x2)
T2 + C2(n, x, y)T 2

1 .

To get rid of T1 in j2G we set λ = 1
2nx , and then finally obtain

j2
(
G−G(P )

)
= − x(1 + y2)

8y2(1 + x2)
T2

+

(
C2(n, x, y)− 1

2nx
C1(n, x, y)− µ · n

2x2(1 + y2)2(y − nx)2

y6(1 + x2)

)
T 2
1 .

Note that the first summand is a negative definite quadratic form since x > 0. As for the
second one, nx − y 6= 0 as P is not bifurcating, and thus, whatever C1 and C2 are, when
µ is big enough the second term is a non-positive definite quadratic form. Therefore, G
attains a non-degenerate local maximum at P for λ = 1

2nx and large positive µ.
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