Strojniški vestnik - Journal of Mechanical Engineering 52(2006)5, 292-308 UDK - UDC 004.94:621.039.519:532.5 Izvirni znanstveni članek - Original scientific paper (1.01) Simuliranje eksplozije pare v reaktorski votlini s splošnim programom za računsko dinamiko tekočin Simulation of a Reactor Cavity Steam Explosion with a General Purpose Computational Fluid Dynamics Code Matjaž Leskovar - Boštjan Končar - Leon Cizelj (Institut “Jožef Stefan”, Ljubljana) Do eksplozije pare v reaktorski votlini lahko pride, če med hipotetično resno nezgodo v jedrski elektrarni popusti reaktorska posoda in se staljena sredica izlije v vodo, ki je v reaktorski votlini. Eksplozija pare je pojav medsebojnega delovanja goriva in hladiva pri katerem je časovna lestvica prenosa toplote s staljene sredice na vodo manjša od časovne lestvice za tlačno razbremenitev. To lahko povzroči tlačne udarne valove in kasneje, med raztezanjem pare, ki je pod visokim tlakom, nastanek izstrelkov, ki lahko poškodujejo okoliške objekte. Namen prispevka je predstaviti, kako je eksplozije pare mogoče obravnavati s splošnim programom za računsko dinamiko tekočin (RDT), podati vpogled v dogajanja med eksplozijo pare v reaktorski votlini tipičnega tlačnovodnega jedrskega reaktorja, in podati grobo oceno ogroženosti sten reaktorske votline in reaktorske posode ob eksploziji pare. Za dosego teh ciljev smo najprej razvili ustrezen namenski model eksplozije pare in nato opravili obsežno, primerno konzervativno parametrično analizo eksplozije pare v poplavljeni reaktorski votlini. Večfazni tok v reaktorski votlini med raztezanjem visokotlačne mešanice razpršene taline, kapljevite vode in vodne pare smo simulirali s programom CFX-5.7.1 za RDT, napetosti v stenah reaktorske votline pa s programom za simulacijo mehanike trdnin ABAQUS/ Explicit. © 2006 Strojniški vestnik. Vse pravice pridržane. (Ključne besede: reaktorji jedrski, nezgode reaktorjev, eksplozija pare, votlina reaktorska, računska dinamika tekočin) A reactor cavity steam explosion might occur when, during a hypothetical severe reactor accident, the reactor vessel fails and the molten core pours into the water in the reactor cavity. A steam explosion is a fuel-coolant interaction process where the heat transfer from the melt to the water is so intense and rapid that the timescale for the heat transfer is shorter than the timescale for the pressure relief. This could lead to the formation of shock waves and the production of missiles at later times, during the expansion of the highly pressurized water vapour, which might endanger surrounding structures. The purpose of the paper is to demonstrate how steam explosions can be treated with a general purpose Computational Fluid Dynamics (CFD) code, to give an insight into the steam-explosion phenomenon in a typical Pressurized Water Reactor (PWR) cavity, and to provide a rough assessment of the vulnerabilities of cavity structures to steam explosions. To achieve this, a fit-for-purpose steam-explosion model was developed, followed by a comprehensive and reasonably conservative parametric steam-explosion study. The multiphase flow in the reactor cavity during the high-pressure pre-mixture expansion was simulated with the CFD code CFX-5.7.1 and the stresses in the reactor cavity walls were determined with the stress-analysis code ABAQUS/Explicit. © 2006 Journal of Mechanical Engineering. All rights reserved. (Keywords: nuclear reactor accident, steam explosion, reactor cavity, computational fluid dynamics) 0 UVOD 0 INTRODUCTION Eno od najpomembnejših nerešenih vprašanj One of the most important remaining issues in na področju taljenja sredice med hipotetično resno core-melt progression during a hypothetical severe 292 Strojniški vestnik - Journal of Mechanical Engineering 52(2006)5, 292-308 nezgodo v jedrski elektrarni je, kakšna je verjetnost nastanka eksplozije pare in kakšne so lahko njene posledice. Eksplozija pare se lahko razvije, ko pride staljena sredica v stik s hladilno vodo v reaktorski votlini. Eksplozija pare je pojav interakcije goriva in hladiva, pri katerem je časovna lestvica prenosa toplote s staljene sredice na vodo manj ša od časovne lestvice tlačne razbremenitve ([1] do [3]). To lahko povzroči tlačne udarne valove in kasneje med raztezanjem pare, ki je pod visokim tlakom, nastanek izstrelkov, ki lahko poškodujejo okoliške objekte. Eksplozija pare je zapleten, močno nelinearen, več-sestavinski in večfazen pojav, ki poteka na različnih krajevnih in časovnih lestvicah. Posledično je modeliranje eksplozij pare zelo zahtevno, negotovosti simuliranj resnih nezgod opravljenih z računalniškimi programi, ki temeljijo na modeliranju osnovnih pojavov eksplozije pare, pa so še vedno zelo velike. Zato je za oceno ogroženosti sten reaktorske votline in reaktorske posode med eksplozijo pare potreben parametričen postopek, ki zajame negotovosti razumevanja in modeliranja eksplozije pare. V ta namen smo razvili parametričen model eksplozije pare, ki ga je mogoče preprosto uporabiti in neposredno vključiti v splošne programe za računsko dinamiko tekočin (RDT). Glavni namen opravljene študije je predstaviti, kako je eksplozije pare mogoče obravnavati s splošnim programom za RDT, podati fizikalno sliko dogajanj med eksplozijo pare v reaktorski votlini tipičnega tlačnovodnega jedrskega reaktorja in podati grobo oceno ogroženosti sten reaktorske votline in reaktorske posode ob eksploziji pare. Eksplozijo pare smo modelirali kot raztezajočo se visokotlačno mešanico staljene sredice, kapljevite vode in vodne pare, ki je v delno poplavljeni reaktorski votlini. Podoben, vendar manj zahteven postopek so uporabili tudi v študiji eksplozije pare, ki je predstavljena v [4]. Večfazni tok med raztezanjem visokotlačne mešanice smo simulirali s programom CFX-5.7.1 za RDT [12], napetosti v stenah reaktorske votline pa s programom za simulacijo mehanike trdnin ABAQUS/Explicit [13]. 1.1 Model eksplozije pare Pri mešanju dveh kapljevin, pri katerih je temperatura ene kapljevine višja od temperature vrelišča druge, lahko pride do eksplozije pare. Potek accident in a nuclear power plant is the likelihood and the consequences of a steam explosion, which might occur when the hot core melt comes into contact with the coolant water. A steam explosion is a fuel-coolant interaction process where the heat transfer from the melt to the water is so intense and rapid that the timescale for the heat transfer is shorter than the timescale for the pressure relief ([1] to [3]). This could lead to the formation of shock waves and the production of missiles at later times, during the expansion of the highly pressurized water vapour, which might endanger surrounding structures. A steam explosion is a complex, highly nonlinear, coupled multi-component, multi-phase, multi-space-scale and multi-time-scale phenomenon. Consequently, the modelling of steam explosions is a difficult task and the uncertainties of reactor simulations performed with steam-explosion codes based on modelling fundamental steam explosion processes are still large. Therefore, for assessing the vulnerability of reactor-cavity structures to an ex-vessel steam explosion a parametric approach capturing the uncertainties in steam-explosion understanding and modelling is needed. For this purpose a comprehensive parametric steam-explosion model that can also be straightforwardly implemented in general purpose Computational Fluid Dynamics (CFD) codes was developed. The main purpose of the performed study was to present how steam explosions can be treated with a general purpose CFD code, to give an insight into the steam-explosion phenomenon in a typical Pressurized Water Reactor (PWR) cavity, and to provide a rough assessment of the vulnerabilities of cavity structures to steam explosions. The steam explosion was modelled as an expanding high-pressure pre-mixture of dispersed molten fuel, liquid water and vapour in the partially flooded reactor cavity. A similar, but less sophisticated, approach was also used in the steam-explosion study presented in [4]. The multiphase flow during the high-pressure pre-mixture expansion was simulated with the CFD code CFX-5.7.1 [12] and the stresses in the cavity walls were determined with the stress analysis code ABAQUS/Explicit [13]. 1.1 Steam Explosion Model Steam explosions are a subclass of what is called fuel-coolant interactions (FCI) in the safety studies of nuclear reactors. Based on the phenomena 1 OPIS MODELA 1 MODEL DESCRIPTION Simuliranje eksplozije pare v reaktorski votlini - Simulation of a Reactor Cavity Steam Explosion 293 Strojniški vestnik - Journal of Mechanical Engineering 52(2006)5, 292-308 Faza mešanja Faza sprožitve Faza širjenja Faza raztezanja Premixing phase Triggering phase Propagation phase Expansion phase talina goriva/ molten fuel J Sl. 1. Shema štirih zaporednih faz eksplozije pare Fig. 1. Schematic presentation of the four consecutive phases of the steam explosion eksplozije pare lahko glede na dogajanja razdelimo v štiri zaporedne faze: faza mešanja, faza sprožitve, faza širjenja in faza raztezanja (sl. 1). V fazi mešanja nastane območje, v katerem je staljena sredica grobo pomešana s hladilno vodo. Ker so delci taline obdani s plastjo pare, je prenos toplote s taline na vodo razmeroma majhen. V fazi sprožitve se eksplozija pare sproži. Sprožitveni dogodek je motnja, ki destabilizira plast pare okoli nekega delca taline, tako da pride do neposrednega stika med talino in vodo, ki privede do lokalnega povečanja prenosa toplote in povišanja tlaka ter fine fragmentacije delca. Med fazo širjenja pride do stopnjevanja eksplozije pare zaradi sklopitve potujočih tlačnih valov, fine fragmentacije delcev in prenosa toplote po sprožitvenem dogodku. Med fazo raztezanja se toplotna energija hladiva spreminja v mehansko energijo. Raztezanje visokotlačne mešanice razpršenega staljenega goriva, vode in vodne pare, ki povzroča odmikanje okoliških tekočin in tlačno obremenitev okoliških struktur, določa možen obseg škode, ki jo lahko povzroči eksplozija pare. Bolj izčrpen opis posameznih faz eksplozije pare je podan v [1] do [3]. Da bi lahko obravnavali eksplozijo pare s splošnim programom za RDT, smo razvili ustrezen parametrični model eksplozije pare. Za razliko od specializiranih programov za RDT za simulacijo eksplozij pare, pri katerih eksplozije pare modelirajo na mikroskali z osnovnimi povprečenimi ohranitvenimi enačbami večfaznega toka ([1], [2], [5] do [7]), v predstavljenem postopku eksplozijo pare modeliramo kot raztezajočo se visokotlačno mešanico razpršene taline goriva, kapljevite vode in vodne pare. Podoben postopek so uporabili tudi v študiji eksplozije pare, predstavljeni v [4], kjer so eksplozijo occurring during a steam explosion it can be divided into four consecutive phases: the premixing phase, the triggering phase, the propagation phase and the expansion phase (Fig. 1). In the pre-mixing phase a coarsely mixed region of molten corium and coolant water is formed. The melt and the water are separated by a vapour film, so the heat transfer between the melt and the water is relatively low. In the triggering phase the steam explosion is triggered. The triggering event is a disturbance that destabilizes the vapour film around a melt particle allowing liquid-liquid contact, which leads to locally enhanced heat transfer, pressurization and local fine fragmentation. During the propagation phase there is an escalation process resulting from the coupling between the pressure-wave propagation, the fine fragmentation, and the heat transfer after the triggering event. During the expansion phase the thermal energy of the coolant is converted into mechanical energy. The expansion of the high-pressure pre-mixture of dispersed molten fuel, water and vapour against the inertial constraints imposed by the surroundings determines the damage potential of the steam explosion. A more comprehensive description of the steam-explosion phases is presented in [1] to [3]. To be able to treat the steam explosion with a general purpose CFD code, an appropriate fit-for-pur-pose analytical model of the steam explosion was developed. In contrast to specialized steam-explosion CFD codes, where the steam explosion is modelled on a micro-scale using fundamental averaged multiphase flow conservation equations ([1], [2], [5] to [7]), in the presented approach the steam explosion is modelled reasonably simplified as an expanding high-pressure pre-mixture of dispersed molten fuel, liquid water and vapour. A similar approach was also used in the steam-explosion study presented in [4], where the steam 294 Leskovar M. - Končar B. - Cizelj L. Strojniški vestnik - Journal of Mechanical Engineering 52(2006)5, 292-308 pare obravnavali bolj preprosto kot raztezajoč visokotlačni parni mehur. V splošnem predlagani model eksplozije pare temelji na Hicks-Menziesovem termodinamičnem postopku [1], vendar poleg tega upošteva tudi zamisel mikrointerakcijskega območja [8]. Zamisel mikrointerakcijskega območja praktično pomeni, da med eksplozijo pri termični interakciji med delci taline in hladivom ne sodeluje celotno hladivo, ampak le tisto, ki se nahaja v okolici delcev taline. Na sliki 2 je shematično prikazan model eksplozije pare. Staljena sredica je označena s črno barvo in nadpisom cor, vodna para s svetlo sivo barvo in nadpisom vap in kapljevita voda s temno sivo barvo in nadpisom wat. Predpostavili smo, da si vse faze delijo isto hitrostno polje in isti tlak, kar je smiselna poenostavitev. V prikazani nadzorni prostornini je vsaka faza opisana s prostorninskim deležem faze a, prostornino V, gostoto r in temperaturo T. Mikrointerakcijsko explosion was treated less sophisticatedly as an expanding high-pressure vapour bubble. In general, the developed steam-explosion model is based on the Hicks-Menzies thermodynamic approach [1], taking into account the micro-interaction zone concept [8]. According to the micro-interaction zone concept not all the coolant thermally participates in the explosion, but only the coolant that is in the surrounding of the melt particles. In Figure 2 the steam-explosion model is schematically presented. The corium phase is denoted by the black colour and the superscript cor, the vapour phase by the light-grey colour and the superscript vap, and the liquid water phase with the dark-grey colour and the superscript wat. It was assumed that all the phases share the same velocity field and the same pressure, which is a reasonable simplification. In the presented control volume each phase is described with the phase volume fraction a, volume V, density r and temperature T. a) Faza mešanja (indeks 1) / Premixing phase (index 1) cor cor vap vap wat a,V a,V a ,V r1cor ,T1cor r1vap ,T1vap r1wat ,T1 b) Faza sprožitve in širjenja / Triggering and Propagation phase MI MI a ,V c) Konec faze širjenja in začetek faze raztezanja (indeks 2) / End of Propagation phase and Start of Expansion phase (index 2) d) Konec faze raztezanja (indeks 3) / End of Expansion phase (index 3) a3cor ,V3cor a3vap ,V3v r3cor ,T3cor r3vap ,T3v vap vap a 3wat ,V3wa r3wat ,T3wa Sl. 2. Shema modela eksplozije pare (črna - staljena sredica, svetlo siva - para, temno siva - kapljevita voda, pikčasta siva - kapljevita voda v mikrointerakcijski coni) Fig. 2. Schematic presentation of steam-explosion model (black - molten core, light grey - vapour, dark grey - liquid water, dotted grey - liquid water in micro-interaction zone) Simuliranje eksplozije pare v reaktorski votlini - Simulation of a Reactor Cavity Steam Explosion 295 Strojniški vestnik - Journal of Mechanical Engineering 52(2006)5, 292-308 območje je označeno s pikčasto sivo barvo in indeksom MI. V modelu smo predpostavili, da se ves prenos toplote med staljenim gorivom in hladivom dogodi v prvih treh fazah eksplozije pare in da se v fazi raztezanja proizvedena para, ki je pod visokim tlakom, razteza adiabatno. Opravljeno delo med predpostavljeno adiabatno fazo raztezanja A3 lahko izračunamo iz enačbe: vr p2(V2 vap ) k 4^3= 3 pdV = - V2vap k 1 kjer sta p2 in p3 tlaka na začetku in na koncu faze raztezanja, k pa razmerje med specifično toploto pare pri stalnem tlaku in pri stalni prostornini. Pomemben parameter eksplozije pare je energijski izkoristek eksplozije pare, ki ga merijo tudi pri preizkusih eksplozije pare, in pomeni razmerje med opravljenim mehanskim delom med eksplozijo in začetno notranjo energijo staljene sredice [1]. V našem modelu pomeni energijski izkoristek eksplozije pare h osnovo za izračun vseh preostalih parametrov eksplozije pare. Ko izberemo razmere med fazo mešanja, lahko tlak na začetku faze raztezanja p2 izračunamo iterativno z enačbo: The micro-interaction zone is denoted with the dotted grey colour and the index MI. In the model it was assumed that all the heat transfer from the molten fuel to the coolant occurs during the first three steam-explosion phases, and that during the expansion phase the generated vapour, which is at high pressure, adiabatically expands. The work performed during the presumed adiabatic expansion phase A23 can be calculated as: 1 Vk -1 p2V2 vap k -1 -1 (1), where p2 and p3 are the pressures at the start and the end of the expansion phase, and k is the ratio of the vapour specific heats at constant pressure and at constant volume. An important parameter of the steam explosion is the steam-explosion energy-conversion ratio, which is also quantified in steam-explosion experiments and reflects how much internal energy of the melt is transformed into the mechanical energy of the explosion [1]. In our model the steam-explosion energy-conversion ratio, h, was used as the basis for the calculation of all the other steam-explosion parameters. After the conditions during the pre-mixing phase are chosen, the pressure at the start of the expansion phase, p , can be calculated by iteratively solving the equation: p2 =h kjer so p3 tlak v zadrževalnem hramu, ccor specifična toplota sredice in Tsat temperatura nasičenja vode pri tlaku v zadrževalnem hramu. Prostorninski delež mikrointerakcijskega območja aMI, ki določa prostorninski delež pare na začetku faze raztezanja a2vap = aMI + a1vap, smo izbrali tako, da je bil tlak p2 na začetku faze raztezanja največji, pri čemer smo upoštevali fizikalno izvedljivost pojava. Zaradi predpostavke o adiabatnem raztezanju pare je mogoče gostoto mešanice med raztezanjem r2L3 izračunati le kot funkcijo tlaka: k -1) r1cora1cor ccor (T1cor -T1sat ) -1 (2), p2 where p3 is the containment pressure,