VSEBINA – CONTENTS IZVIRNI ZNANSTVENI ^LANKI – ORIGINAL SCIENTIFIC ARTICLES A fatigue characterization of honeycomb sandwich panels with a defect Utrujenostna karakterizacija satastih sendvi~nih panelov z napako B. Keskes, Y. Menger, A. Abbadi, J. Gilgert, N. Bouaouadja, Z. Azari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Fatigue properties of a high-strength-steel welded joint Utrujenostne lastnosti zvara visokotrdnega jekla Z. Burzi}, V. Grabulov, S. Sedmak, A. Sedmak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Mehanske lastnosti zvara iz jekla maraging po izlo~evalnem `arjenju Mechanical properties of maraging steel welds after aging heat treatment D. Klob~ar, J. Tu{ek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 An experimental verification of numerical models for the fracture and fatigue of welded structures Eksperimentalna verifikacija numeri^nih modelov za prelom in utrujenost zvarjenih struktur S. Sedmak, A. Sedmak, M. Arsi}, J. Vojvodi~ Tuma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Izra~un parametrov Weibullove porazdelitve za oceno upogibne trdnosti valovitih stre{nih plo{~ Computation of the parameters of the Weibull distribution for estimating the bending strength of corrugated roofing sheets M. Ambro`i~, K. Vidovi~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 STROKOVNI ^LANKI – PROFESSIONAL ARTICLES Investigation of the influence of the melt slag regime in a ladle furnace on the cleanliness of the steel Raziskava vpliva re`ima `lindre v ponov~ni pe~i na ~istost jekla Z. Adolf, I. Husar, P. Suchánek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 The influence of illite-kaolinite clays’ mineral content on the products’ shrinkage during drying and firing Vpliv vsebnosti glin ilinit-kaolinit na kr~enje pri su{enju in `ganju M. Krgovi}, N. Marstijepovi}, M. Ivanovi}, R. Zejak, M. Kne`evi}, S. \urkovi} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 The application of spheroidal graphite cast iron in Bosnia and Herzegovina Uporaba nodularne grafitne litine v Bosni in Hercegovini D. Pihura, M. Oru~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 15. KONFERENCA O MATERIALIH IN TEHNOLOGIJAH / 8. – 10. oktober, 2007, Portoro`, Slovenija 15th CONFERENCE ON MATERIALS AND TECHNOLOGY / 8–10 october, 2007, Portoro`, Slovenia . . . . . . . . . . . . . . . . . . . . . . . 197 ISSN 1580-2949 UDK 669+666+678+53 MTAEC9, 41(4)155–195(2007) MATER. TEHNOL. LETNIK VOLUME 41 [TEV. NO. 4 STR. P. 155–195 LJUBLJANA SLOVENIJA JULY-AUGUST 2007 B. KESKES ET AL.: A FATIGUE CHARACTERIZATION OF HONEYCOMB SANDWICH PANELS WITH A DEFECT A FATIGUE CHARACTERIZATION OF HONEYCOMB SANDWICH PANELS WITH A DEFECT UTRUJENOSTNA KARAKTERIZACIJA SATASTIH SENDVI^NIH PANELOV Z NAPAKO Boualem Keskes1,2 , Yves Menger1, Ahmed Abbadi1, Joseph Gilgert1, Nourredine Bouaouadja2 , Zitouni Azari1 1LFM Université de Metz ENIM Île du Saulcy, F-57045 Metz cedex 01, France 2 Mechanic and Optic department, University of Setif Algeria, Algeria b_keskesuniv-metz.fr Prejem rokopisa – received: 2006-12-11; sprejem za objavo – accepted for publication: 2007-02-19 Honeycomb sandwich panels are used because of their high stiffness, good fatigue resistance and low weight. These panels are used in a variety of applications, but particularly in the aerospace industry. When this is the case a simple knowledge of the static properties is not sufficient and additional information about the fatigue properties is required. In real situations these panels can be affected by manufacturing defects and impacts, and it is important to know the effects of these defects and the behaviour of the damaged panel; it also important to determine the location of the defect. In our investigation these defects will be simulated by a blind hole in the centre of the lower face sheet. Static and fatigue tests (four-point bending) with acoustic-emission monitoring were carried out on sandwich panels with defects. The load/displacement and the S-N fatigue curves are presented and analyzed. Key words: sandwich, honeycomb, four-point bending, fatigue, defect, acoustic emission Satasti sendvi~ni paneli se odlikujejo po veliki togosti, dobri odpornosti proti utrujenosti in nizkem razmerju mase. Te panele se uporablja za razli~ne namene, posebno v letalski industriji. V tem primeru ni dovolj poznanje stati~nih lastnosti, zato so potrebne dodatne informacije o utrujenosti. Pri uporabi lahko na lastnosti panelov vplivajo napake pri izdelavi in po{kodbe, zato je treba poznati u~inek napak in razvoj po{kodb, pa tudi znati dolo~iti mesto po{kodbe. Napake so v tem delu simulirane s slepo izvrtino v sredini spodnje povr{ine panelne plo{~e. Izvr{eni so bili stati~ni in utrujenostni preizkusi s {tirito~kovnim upogibom z akusti~no emisijo na panelih z napako. Predstavljene in analizirane so odvisnosti obremenitev – pomik in utrujenostne krivulje S-N. Klju~ne besede: sendvi~, satje, 4-to~kovni upogib, utrujenost, napaka, akusti~na emisija 1 INTRODUCTION The main benefits of using the sandwich concept in structural components are the high stiffness, the good fatigue resistance and the low weight. Recent advances in materials and manufacturing techniques have resulted in further improvements and the increased uniformity of the properties of sandwich composites. In order to use these materials in different applications, a knowledge of their static properties alone is not sufficient, and additional information about their fatigue properties is required. However, many difficulties are encountered, mainly in forecasting their fatigue life, which reduce the utilisation of such materials in various industrial and aerospace applications. Investigations of the bending-fatigue behaviour of sandwich beams were performed by Olsson and Lönnö 1, Echtermeyer et al. 2, Allen and Shenoi 3, Lagunegrand et al. 4, Burman and Zenkert 5. It was found that under fatigue cycling of constant amplitude, the nucleation phase of fatigue damage extends over the major part of the fatigue life, while the phase of defect propagation is very short. The fatigue life of a component will also be adversely affected by damage, though the magnitude of this reduction in fatigue life is often more difficult to establish 6,7. The fatigue of damaged (initial defects) structures may be determined by the extensive testing of specimens with various defects at different load levels 8. Static overload or fatigue damage may cause significant degradation of the core or skin, which is not easily detectable by a visual inspection or conventional non-destructive evaluation techniques. Damage in a sandwich structure is not only caused by in-service loads; in the manufacturing processes used, defects within the sandwich, such as skin/core interface disbanding and stress concentrations at joints between core materials, can also occur 9,10. Acoustic emission (AE) provides the possibility to monitor, dynamically in real time, the response to a discontinuity under an imposed structural stress, and has a significant advantage over other non-destructive testing methods. AE is a quality-control and non-destructive evaluation (NDE) technique that has proven to be most useful in metals and sandwich-composite structures 11,12. Basically, AE employs a transducer, fixed to the structure, which registers emitted sounds from the loaded structure. The emitted sounds are then quantified and compared to a database of known sound-defect relation- ships, and the degree of damage from which the sounds are emitted can be quantified 13. The analysis of the AE signals in the time and frequency domains can allow AE monitoring to be used to identify failure modes. Materiali in tehnologije / Materials and technology 41 (2007) 4, 157–161 157 UDC/UDK 539.4:620.17 ISSN 1580-2949 Original scientific article/Izvirni znanstveni ~lanek MTAEC9, 41(4)157(2007) Attempts to correlate our results with those from other researchers are also complicated by the effect that acquisition parameters, such as filtering, threshold settings and sensor response, may have on the processed results. Of primary interest when performing mechanical testing utilising AE equipment, is the amount of activity (e.g. hits, events or counts), when it occurs (relative to load and/or time), where it originates (multiple sensor arrays allow location detection), and the characteristics of the signals in both the time and frequency domains. The signal amplitude is widely used as the first stage of damage characterisation. The main disadvantage of AE is that it requires a knowledge of the signal-propagation characteristics and a history of typical failures for the material and the structure under investigation. In practice it is common to determine experimentally the velocity by measuring the time taken by a known signal to travel a defined distance. The sound velocity in the sandwich panel was found to be approximately 2500 m/s 12,14. To establish a robust fatigue-life model, a better understanding of the various failure mechanisms during cyclic loading is necessary. Fatigue tests (four-point bending) have been carried out on sandwich panels with and without a defect. To study the growth of the damage near the hole, AE was used, since it was expected that the different stages of the failure mode would be revealed. The expected result is a diminution of the remaining fatigue-life time, in proportion to the size of the hole. 2 MATERIAL AND EXPERIMENTAL TECHNIQUES Sandwich panels consist of an aluminium core and a pure aluminium face sheet. The honeycomb core is an open cell with a density of 82 kg/m3 of aluminium core. The cell size is 9.6 mm. The dimensions of these panels are shown in Table 1. Table 1: Sample dimension Tabela 1: Dimenzije preizku{anca L (mm) b mm h mm hc (mm) tf mm L2 mm L1 mm 500 250 10 8.80 0.60 420 210 The skin material is AlMg3 5754. The properties of the core are shown in Table 2 15. Table 2: Core mechanical properties Tabela 2: Mehanske lastnosti jedra panela Material Aluminium – Aluminium Core ECM Cell dimension /mm 6.4 Density /(kg/m3) 82 Shearing Strength (configuration L) /MPa 2.4 Shearing Modulus (configuration L) /MPa 430 Shearing Strength (configuration W) /MPa 1.40 Shearing Modulus (configuration W) /MPa 220 Compression Strength /MPa 4.5 The beams with defects were tested with four-point bending and were monitored with AE, as shown in Figures 1 and 2. The tests were carried out with a servo-hydraulic Instron 8501 universal testing machine with a 10-KN capacity and a 2-mm/min crosshead velocity (Figure 3). Cyclic flexural tests were also performed. The tests were carried out under load control at a load ratio R = 0.1 using a sinusoidal wave form. The beams were cycled at a frequency of 2 Hz. The fatigue data were generated at load levels of 100 %, 90 %, 80 %, 70 % and 60 % of the ultimate static load. The fatigue life of the specimens is defined as the number of cycles to ultimate failure. The normalised applied load is plotted against the number of cycles on a log-log scale. The AE system used was a Vallens AMSY-5, data-acquisition unit with Vallens SE-45-type trans- B. KESKES ET AL.: A FATIGUE CHARACTERIZATION OF HONEYCOMB SANDWICH PANELS WITH A DEFECT 158 Materiali in tehnologije / Materials and technology 41 (2007) 4, 157–161 Figure 1: Honeycomb sandwich panel showing L and W configu- rations 15 Slika1: Satasti sendiv~ni panel v L- in v W-konfiguraciji 15 Figure 2: Schematic of sandwich beam for four-point bending and hole geometry Slika2: Shema sendvi~ne grede pri 4-to~kovnem upogibu in geome- trija izvrtine ducers 16. These sensors have sensitivity in the range 25 kHz to 120 kHz and a secondary range of sensitivity from 120 kHz to approximately 450 kHz. The AE signal was band-pass filtered with a 30 kHz to 1 MHz pream- plifier and the total system amplification maintained at 40 dB allowed processing of the preamplifier input signal up to 99.9 dB above 1 mV (±99 mV peak). The AE sensors were mounted directly on the lower skin without any preparation of the contact surface using petroleum jelly as the acoustic coupling. The contact pressure was maintained with elastic tape. 3 RESULTS AND DISCUSSION 3.1 Static tests AE was used to detect the damage and the crack mechanisms in the structure. Figures 4 to 5 show the applied load vs. the displacement. However, the same observation can be made with the energy or the amplitude of the events. The same test had already been performed on the same sample, but without a defect 10. We observed that the sandwich structures present a maximum ultimate load and exhibit ductile behaviour. The material shows more resistance in the L than in the W cell configuration (Figures 4 and 5). At the begin- ning of the plasticity domain, and during the catastrophic failure, there is intense AE activity. Moreover, the hole does not have an influence on the static behaviour of the honeycomb sandwich panels. The modes of collapse were identified: the face yield, the cell buckling, and the indentation beneath the loading rollers, as shown in Figure 6. These modes of collapse are confirmed by a number of investigations 6,8 The final failure for all the static tests occurred in the top skin and the core by a local indentation in the vicinity of the loading points, as illustrated in Figure 6. The localization of the damage in all cases was in the region close to the support, between the support and the adjacent load application. B. KESKES ET AL.: A FATIGUE CHARACTERIZATION OF HONEYCOMB SANDWICH PANELS WITH A DEFECT Materiali in tehnologije / Materials and technology 41 (2007) 4, 157–161 159 Figure 3: Test setup Slika 3: Shema preizkusne naprave Figure 6: Failure mode showing local indentation skin and cell buckling Slika 6: Na~in po{kodbe z lokalnim vdorom in izlo~anjem alumi- nijastih celic Figure 4: Load-deflexion Alu-Alu direction W Slika 4: Obremenitev upogiba Alu-Alu v smeri W Figure 5: Load-deflexion Alu-Alu direction L Slika 5: Obremenitev upogiba Alu-Alu v smeri L 3.2 Fatigue tests To investigate the effect of the defect (hole) on the fatigue life, flexural tests were performed in the cell direction L for an aluminium-aluminium sandwich panel with 82 kg/m3. Both curves (Figures 7 and 8) show the AE activity (Energy) vs. time and the minimal displacement vs. time. AE makes it possible to locate the crack initiation. Indeed, when the crack begins to grow there is a peak in the energy consumed. The displacement vs. time dependence shows that the crack initiation occurred at the same time. The Wöhler curves were plotted with all the results of these tests and compared to the results for the same panels without a defect (Figure 9). The results show that the fatigue life is the highest for the panels without a defect for the same applied load. Indeed, for an applied load of 65 % of the ultimate static load the number of cycles to failure is about of 5.105 cycles (Figure 9) for the panel with a defect, while for the panels without a defect it is greater than 106 cycles. The final fractures for the panels with and without a defect are shown in Figure 10 and Figure 11, respectively. The crack started at the hole and grew in terms of its width (Figure 10). 4 CONCLUSION Defect effects in static and fatigue studies of honeycomb core sandwich panels were investigated and the following observations were made. B. KESKES ET AL.: A FATIGUE CHARACTERIZATION OF HONEYCOMB SANDWICH PANELS WITH A DEFECT 160 Materiali in tehnologije / Materials and technology 41 (2007) 4, 157–161 Figure 11: Fatigue-failure mode of the panel without a defect Slika 11: Na~in preloma panela brez napake Figure 8: Results for sample 2. AE activity (Energy) and the minimal displacement vs. time (70 % ultimate load) Slika8: Rezultati AE aktivnosti za preizku{anec 2 in minimalni upogib v odvisnosti od ~asa (70 % kon~ne obremenitve) Figure 9: Wöhler Curves Aluminium-Aluminium Slika 9: Wöhlerjeve krivulje aluminij-aluminij Figgure 7: Results for sample 1. AE activity (Energy) and the minimal displacement vs. time (80 % ultimate load) Slika7: Primer AE aktivnosti za preizku{anec 1 in minimalen upogib v odvisnosti od ~asa (80 % kon~ne obremenitve) Figure 10: Fatigue-failure mode showing cracking skin through the defect Slika 10: Utrujenostna po{kodba, ki prikazuje razpoke skozi ko`o No defect effect was observed in the case of the static study, in contrast to the case of the fatigue behaviour of the sandwich honeycomb panels. In the fatigue study, the fatigue life of the defect panels decreased rapidly when the applied load increased, compared to the panels without a defect. The results of the acoustic emission show the crack initiation and propagation and can be used as a reliable survey method for the damage mechanisms. The analysis of the acoustic signals confirmed that the majority of the damage growth occurs at peak-load levels and demonstrated the significant effect of the loading level on the progress of the damage. 5 REFERENCES 1 Olsson KA, Lönnö A., Test procedures for foam core materials, In: Olsson KA, Reichard RP, editors. Proceedings of the First International Conference on Sandwich Constructions. Solihull, UK: EMAS, UK, 1989, 293–318 2 Echtermeyer AT, Buene L, McGeorge D, Sund OE. Four point bend testing of GRP sandwich beams – Part 1. Der Norske veritas VR-91-P0013. 1991 3 Allen HG, Shenoi RA. Flexural fatigue tests on sandwich structures, In: Weismann-Bermann D, Olsson KA, editors. Proceedings of the Second International Conference on Sandwich Constructions. Solihull, 1992, 499–517 4 Lagunegrand L, Lorriot Th, Harry R, Wargnier H. Design of an improved four point bending test on a sandwich beam for free edge delamination studies, Composites: Part B 37 (2006), 127 5 Burman M, Zenkert D. Fatigue of undamaged and damaged honey- comb sandwich beams. J Sandwich Struct Mater (2000) 2, 50–74 6 Kapil Mohana, Yip Tick Hon, Sridhar Idapalapati, Hong Pheow Seow Failure of sandwich beams consisting of alumina face sheet and aluminum foam core in bending Materials Science and Engineering A 409 (2005), 292–30 7 A. Abbadi, Z. Azari, S. Belouatar, J. Gilgert, S. Dominiack Static and fatigue characterization of honeycomb sandwich panels JNC14 Compiègne, French (2005) 8 Demelio G, Genovese K, Pappalettere C, An experimental investi- gation of static and fatigue behaviour of sandwich composite panels, Composites B Eng 32 (2001) 4, 299–308 9 H. Chen, R. Bai, Postbuckling behavior of face/core debonded com- posite sandwich plate considering matrix crack and contact effect, Compos Struct 57 (2002) 1, 305–313 10 Arnaud pollien, Yves Conde, Laurent Pambaguiam, Andreas Mortensen, Graded open Cell aluminium foam core sandwich beams Materials Science and Engineering A 404 2005) 11 S. Mechraoui, S. Benmedakhene, S. Amami, A. Laksimi – Damage crack analysis of glass/epoxy composite laminates by acoustic emission, JNC15, Compiègne (2005) 12 B. SHAFIQ, A. QUISPITUPA – Fatigue characteristics of foam core sandwich composites International Journal of Fatigue, 28 (2006), 96–102 13 Nondestructive Testing Handbook-Volume 5, Acoustic Emission, Testing, American Society for NDT 5asnt), 1987 14 Prosser W, Advanced AE techniques in composite materials research, Journal of Acoustic Emission 14, (1996) 3/4, 1–11 15 EURO-COMPOSITES, ECM-Honeycomb Technical Manuel, Euro- composites S.A, Luxembourg, 1998 16 Vallen System, www.vallen.de.com B. KESKES ET AL.: A FATIGUE CHARACTERIZATION OF HONEYCOMB SANDWICH PANELS WITH A DEFECT Materiali in tehnologije / Materials and technology 41 (2007) 4, 157–161 161 Z. BURZI] ET AL.: FATIGUE PROPERTIES OF A HIGH-STRENGTH-STEEL WELDED JOINT FATIGUE PROPERTIES OF A HIGH-STRENGTH-STEEL WELDED JOINT UTRUJENOSTNE LASTNOSTI ZVARA VISOKOTRDNEGA JEKLA Zijah Burzi}1, Vencislav Grabulov1, Stojan Sedmak2, Aleksander Sedmak3 1Military Technical Institute, Katani}eva 15, 11000 Beograd, Serbia & Montenegro 2Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Beograd, Serbia & Montenegro 3Faculty of Mechanical Engineering, Kraljice Marije 16, 11000 Beograd, Serbia & Montenegro zijah_burzicrvkds.net Prejem rokopisa – received: 2006-05-17; sprejem za objavo – accepted for publication: 2007-03-09 In addition to the strength and toughness properties, the fatigue properties of welded joints are necessary for the design of high-strength steel structures exposed to variable loading. Wöhler curves were determined for smooth tensile specimens tested with variable loading. The fatigue behaviour of a welded joint can be improved by removing the overfill; however, the fatigue properties are still lower than the values for the parent metal. Tests with pre-cracked specimens have shown the difference in the fatigue-crack growth-rate properties to be less significant than other crack parameters. Keywords: HSLA, welded joint, low-cycle fatigue, high-cycle fatigue, crack growth rate Utrujenostne lastnosti so potrebne poleg trdnosti in `ilavosti za na~rtovanje struktur iz visokotrdnih jekel, ki prena{ajo spremenljivo obremenitev. Wöhlerjeve krivulje so bile dolo~ene za gladke preizku{ance in spremenljivo obremenitev. Utrujenostno vedenje zvarjenega spoja se lahko izbolj{a z odstranitvijo nadvi{enja, vendar ostanejo utrujenostne lastnosti ni`je kot pri osnovnem materialu. Preizkusi na vzorcih z razpoko so pokazali, da je manj izrazita razlika v hitrosti rasti razpoke kot pri drugih parametrih razpoke. Klju~ne besede: HSLA, zvarjeni spoj, malocikli~na utrujenost, velikocikli~na utrujenost, hitrost rasti razpoke 1 INTRODUCTION When selecting a material for a particular application, the ease and cost of welding must be considered, and the material selected should give a welded product with adequate properties for the minimum cost. The steels developed for heavily loaded structures and their welded joints have to be resistant to variable loading, in addition to having adequate strength and toughness properties 1. The benefits of a strength increase can be expressed in terms of reduced com- ponent dimensions, followed by a significant reduction in welded-joint cross-sections, the consumption of welding electrodes and the time necessary to produce the welded joints. Since defects are frequently involved in welded structures, it is necessary to design against low-stress failure by fatigue. By maintaining an adequate level of control by non-destructive testing, it is possible to ensure that cracks exceeding some maximum size, as the most dangerous defects, will be avoided and the stress concentration in components be reduced as a result. This is important for the welded joints of high-strength steel that are exposed to fatigue. The data about the fatigue behaviour of HSLA steel welded-joint constituents are necessary, starting with the design stage, since the benefits gained by having a high strength could be lost under variable loading. 2 PREPARATION OF SAMPLES The experiments were performed with the high-strength steel NIONICRAL-70 (NN70), with the nominal yield-stress class of 700 MPa and its welded joints, produced with metal manual arc welding (MAW). This steel is designed for the manufacturing of pressure vessels and in shipbuilding, e.g., for submarines, but is also applicabble for other heavy-duty sructures. The chemical composition and the mechanical properties are shown in Tables 1 and 2, respectively. Two plates of NIONICRAL-70, 18 mm thick, were prepared by edge machining for asymmetric 2/3 X and welded in 6 passes with a Tenacito-80 electrode, which produced a slightly undermatched welded joint. 3 TESTING FOR FATIGUE-ENDURANCE DETERMINATION Low-cycle fatigue initiation can be expected in the region of welded joints, because the yield stress can be achieved locally by stress concentration. The smooth specimens for testing with variable loading are presented in Figure 1. Four sets of smooth specimens were prepared: OM, from the parent metal and from welded samples; XN, in the as-welded condition; XB, with the overfill removed by grinding; and XO, with both sides machined to 15 mm and so the rough layer of rolling was removed together with the overfill. The specimens were Materiali in tehnologije / Materials and technology 41 (2007) 4, 163–166 163 UDC/UDK 539.4:669.14.018.298 ISSN 1580-2949 Original scientific article/Izvirni znanstveni ~lanek MTAEC9, 41(4)163(2007) tested on a hydraulic machine, with the lower grip fixed and the upper grip oscillating with the frequency f = 9 Hz to 15 Hz, depending on the maximum load in the cycle, g , at the stress ratio R = d/g = 0.1 (d is the lower stress in the cycle). Local plastic deformation ahead the crack tip is typical for crack initiation and growth in the early stage of low-cycle fatigue, followed by shear lips. But, if the frequency is low, in low-cycle fatigue of high-strength steel the fracture appearance is similar to that obtained in high-cycle fatigue, with no shear lips. In some cases the loading level was so low that the specimens did not fracture, even after more than one million cycles. As a result of this they were tested in a high-cycle regime. For a high stress level (691 MPa), close to the yield stress (Table 2), the as-welded XN specimens fractured with low-cycle fatigue after only 6700 cycles. The fatigue crack initiated in the region of stress concentration, in the transition from the overfill to the heat-affected zone (HAZ), and developed through the HAZ’s coarse-grain region, followed by significant contraction of the cross-section. The crack grows on both sides of the specimen, and the final fracture occurred in the weld metal in a reduced ligament size. At a stress of 415 MPa the specimen fractured after 66,300 cycles. The high-cycle fatigue crack in the third XN specimen initiated in the same region and propagated in the plane normal to the load direction, completely through the HAZ’s coarse-grain region of reduced ductility. The stress level was 274 MPa and the number of cycles at fracture was 143,700. The stress con- centration in the XB specimens was reduced by removing the overfill. This increased the number of cycles to fracture: (a) for stress 685 MPa to 13,700 cycles, (b) for 228 MPa to 690,800 cycles. The crack initiated in the HAZ’s coarse-grain region in both low-cycle (a) and high-cycle (b) fatigue and developed mostly through the HAZ. The best results for the welded samples were obtained with machined sides of the XO specimen in the absence of the stress concentration due to geometry. The crack initiated in the weld metal’s critical microstructure. In low-cycle fatigue (a) the crack developed under 45° at a load of 586 MPa, up to 49,100 cycles. In high-cycle fatigue (b) the crack path is normal to the applied load of 443 MPa, and the fracture occurred after 565,300 cycles. In some specimens the crack initiated from embedded defects. The results are summarized in the upper part of the relationship applied load vs. number of cycles N (Wöhler) (Figure 2). The fracture stress is satisfactory for the parent metal (OM) = 625 MPa and for the machined specimens (XO) = 530 MPa, but the results for the XN specimens in the as-welded condition ( = 370 MPa) and for the XB specimens with the overfill Z. BURZI] ET AL.: FATIGUE PROPERTIES OF A HIGH-STRENGTH-STEEL WELDED JOINT 164 Materiali in tehnologije / Materials and technology 41 (2007) 4, 163–166 Table 1: Chemical composition of NIONICRAL-70 steel, w/% Tabela 1: Kemi~na sestava jekla Nionicral 70, w/% C Si Mn P S Cr Ni Mo V Al 0.1 0.2 0.23 0.009 0.018 1.24 3.1 0.29 0.05 0.08 Table 2: Mechanical properties of NIONICRAL-70 steel Tabela 2. Mehanske lastnosti jekla Nionicral 70 Specimen orientation Yield stress Tensilestrength Elongation Contraction Charpy V impact energy, E/J Rp0.2/MPa Rm/MPa A/% Ζ/% +20 °C −60 oC −100 °C Parallel 780 820 19 66 126 117 93 Perpendicular 770 810 20 74 81 76 49 Figure 2: Upper part of the relationship applied load vs. number of cycles N Slika 2: Zgornji del odvisnosti obremenitev – {tevilo amplitud Figure 1: Smooth specimens for testing by variable loading Slika 1: Gladki preizku{anci za preizkus pri variabilni obremenitvi ground away ( = 415 MPa) are not acceptable. This is confirmed by the value of the coefficient m – the Wöhler curve slope in the initial part, up to 100,000 cycles, which is 5.90 for the OM specimens, 5.80 for the XO specimens, 4.23 for the XB specimens and 4.17 for the XN specimens. The recommended design values are 5 to 7 2. 4 TESTING OF FATIGUE-CRACK GROWTH RATE Welded structures can contain small pre-existing cracks, which will propagate under repeated loads up to the size critical for fracture. Since in this case the zone ahead of the crack tip, exposed to the cyclic plasticity, is small, a plane-strain state is formed, even for a small thickness, and generally the data obtained with small specimens can be applied. The testing of the fatigue-crack growth rate is performed using the ratio R = 0.1, with precracked SE(B) specimens (width W = 16 mm, thickness B = 12 mm, span S = 4W) of parent metal, weld metal and HAZ, on a CRACKTRONIC dynamic testing device. The number of cycles was registered for each 0.1 mm of crack growth, as presented in the crack length a vs. number of cycles of N relation (Figure 3). The curve on the right-hand side is for the parent metal, the middle curve is for the weld metal, and the curve on the left-hand side is for the HAZ. From these curves the data necessary for Paris law are derived: d d ma N C K= ( )∆ (1) Here, da/dN is the crack size a growth per unit cycle, N is the cycle number, C and m are constants obtained from experiments and given in Table 3, K = Kmax – Kmin is the stress-intensity factor range in the loading cycle. The obtained relationships da/dN vs. K are given in Figure 4. It is interesting that the difference in the fatigue threshold value, the value of the stress-intensity factor range, Kth, at which existing crack will not grow, is not significant: for the parent metal it is 10.22 MPa m1/2, for the weld metal it is 9.11 MPa m1/2 and for heat-affected zone it is 8.51 MPa m1/2. Z. BURZI] ET AL.: FATIGUE PROPERTIES OF A HIGH-STRENGTH-STEEL WELDED JOINT Materiali in tehnologije / Materials and technology 41 (2007) 4, 163–166 165 Figure 4: Diagram da/dN – K Slika 4: Odvisnost da/dN-K Figure 3: Crack length a vs. number of cycles N for parent metal (right), weld metal (in the middle) and HAZ (left) Slika 3: Odvisnost dol`ine razpoke – {tevilo ciklov za osnovni material (desno), deponirani material (sredina) in HAZ (levo) Table 3: The values for parameters C and m in the Paris equation Tabela 3: Vrednosti parametrov C in m v Parisovi ena~bi Specimen C m Specimen C m Parent metal HAZ I 3.98 1014 4.139 I 1.90 1020 10.259 II 1.67 1013 3.765 II 4.63 1012 2.667 Weld metal III 2.90 1016 6.403 I 8.38 1015 4.798 IV 7.87 1013 3.560 II 3.30 1019 8.462 V 1.48 1016 6.505 III 7.93 1015 5.078 VI 1.74 1014 4.929 5 CONCLUSIONS The importance of reducing the stress concentration for fatigue life can be easily seen from Figure 3. The critical load for N = 105 cycles for the smooth parent- metal specimen is 625 MPa, reduced in the machined specimen of the welded joint to 530 MPa, with the overfill ground away it is reduced to 415 MPa, and down to 370 MPa in the as-welded condition. In regime I the crack-growth rate is low since the threshold for the crack Kth is approached. In regime II the Paris law is obeyed, while in regime III the crack- growth rate increases above that predicted by the Paris relation. The fatigue resistance of the weld metal and the HAZ is reduced, compared to the parent metal, and this has to be taken into account when a welded structure is designed with high-strength steel. Acknowledgement The paper was prepared with the financial support of the Serbian Ministry of Science and Environment Protection – project ON 14027 "Special topics in fracture mechanics of materials". 6 REFERENCES 1 W. S. Pellini: Guidelines for fracture-safe and fatigue-reliable design of steel structures, The Welding Institute, Abington, Cambridge, 1983 2 H. W. Munse: Fatigue of welded steel structures, Welding Research Council, 1964 Z. BURZI] ET AL.: FATIGUE PROPERTIES OF A HIGH-STRENGTH-STEEL WELDED JOINT 166 Materiali in tehnologije / Materials and technology 41 (2007) 4, 163–166 D. KLOB^AR, J. TU[EK: MEHANSKE LASTNOSTI ZVARA IZ JEKLA MARAGING PO IZLO^EVALNEM @ARJENJU MEHANSKE LASTNOSTI ZVARA IZ JEKLA MARAGING PO IZLO^EVALNEM @ARJENJU MECHANICAL PROPERTIES OF MARAGING STEEL WELDS AFTER AGING HEAT TREATMENT Damjan Klob~ar, Janez Tu{ek Fakulteta za strojni{tvo, Univerza v Ljubljani, A{ker~eva 6, 1000 Ljubljana, Slovenija Prejem rokopisa – received: 2006-09-21; sprejem za objavo – accepted for publication: 2007-06-06 V industriji tla~nega litja aluminija so bile narejene pilotne raziskave, ki naj bi potrdile mnenje, da orodja iz jekel maraging dose`ejo dalj{o trajnostno dobo in s tem ni`jo ceno ulitka. Zato smo se odlo~ili, da jekla maraging uporabimo za reparaturno varjenje orodij. Ta raziskava je del tiste, s katero smo ugotavljali primernost tega jekla za reparaturno varjenje orodij za tla~no litje aluminija. Cilj dela je bil ugotoviti optimalne parametre izlo~evalnega `arjenja varov iz jekla maraging, ki bodo zagotovili optimalne mehanske lastnosti. Posebej pripravljene varjence z utori v obliki ~rke U smo po postopku TIG navarili z jeklom maraging UTP A702. Varjenje je potekalo z minimalnim vnosom energije v za{~itni atmosferi plina argona. Tako pripravljene varjence smo izlo~evalno `arili pri ~asih od 0,7 h do 10,8 h ter temperaturah od 445 °C do 515 °C. Analizirali smo tudi varjence v navarjenem stanju in tiste, katerih varki so bili med varjenjem kovani. Iz posameznega varjenca smo izdelali 3 epruvete ISO-V za `ilavost, rezino za analizo mikrostrukture in trdote ter 7 miniaturnih epruvet za natezno trdnost. Navar iz jekla maraging dose`e optimalne mehanske lastnosti z 2-urnim izlo~evalnim `arjenjem na temperaturi 480 °C. Izlo~evalno `arjenje pri temperaturi 515 °C naj bi trajalo 1 h, pri temperaturi 445 °C pa 3 h. Kovanje varkov pove~uje `ilavost zvara. Klju~ne besede: jeklo maraging, izlo~evalno `arjenje, mehanske lastnosti, mikrostruktura, varjenje TIG, tla~no litje aluminija Investigations have shown that tools from maraging steels achieved longer tool life in high pressure die casting of aluminum. We have decided to check the use of maraging steel for repair welding of tools. A part of more extensive investigation aimed to establish the suitability of maraging steel for repair welding of high pressure die-casting toolings is done. In this work the results of the investigation used to establish optimal precipitation hardening parameters of maraging steel welds, which provides optimal mechanical properties is presented. Specimens with a “U” shaped grove were weld cladded with maraging steel UTP A702. GTA welding was carried out in protective atmosphere of argon gas and with minimal heat input. The test specimens were than precipitation annealed from 0.7 h to 10.8 h and temperatures from 445 °C to 515 °C. Specimens in as-welded condition and specimens with hammered welds were checked parallely. From same specimen 3 ISO-V specimens for toughness test, a slice for microstructure analysis and measurement of hardness, and 7 miniature specimens for tensile test were manufactured. The results showed that maraging steel welds achieve optimal mechanical properties after precipitation annealing for 2.5 h at 480 °C. Precipitation annealing at 515 °C should last for 1 h and at 445 °C for 3 h. The hammering of welds increases weld toughness. Keywords: maraging steel, precipitation annealing, mechanical properties, microstructure, GTA welding, high pressure die-casting, response surface modelling 1 UVOD Tla~no litje aluminijevih zlitin je velikoserijski po- stopek za proizvodnjo izdelkov zahtevnih geometrijskih oblik v ozkih dimenzijskih tolerancah. Med tla~nim litjem se v orodje vliva talino aluminijeve zlitine s temperaturami do 700 °C, pri ~emer je hitrost taline od 30 m/s do 100 m/s ter polnilni tlak od 50 MPa do 80 MPa 1. Te obremenitve kraj{ajo trajnostno dobo orodij s a) termi~nimi cikli, ki povzro~ajo utrujenostne razpoke na povr{ini gravure, b) s korozijo ali sprijemanjem taline aluminija na gravuro, c) z erozijo povr{ine zaradi pretoka aluminija in ~) lomom orodja 2-4. Kon~na cena ulitka je odvisna od parametrov tla~nega litja, ki vplivajo na trajnostno dobo orodja. Namen raziskave je podalj{ati trajnostno dobo orodij za tla~no litje aluminija z repa- raturnim varjenjem, pri ~emer bi kot dodajni material uporabili jekla maraging zaradi njihovih izjemnih mehanskih lastnosti. Prednost jekel maraging v primerjavi s klasi~nimi za delo v vro~em se ka`e v manj{em modulu elasti~nosti in manj{em linearnem temperaturnem razteznostnem koeficientu (tabela 1). To povzro~a manj{e napetosti v orodju med temperaturnimi obremenitvami. Ve~ja toplotna prevodnost jekla maraging dodatno zmanj{a temperaturo povr{ine in posledi~no napetosti. Maraging jekla imajo v primerjavi s klasi~nimi jekli za delo v vro~em ve~jo `ilavost in trdnostne lastnosti, kar vpliva na bolj{o odpornost proti termi~nemu utrujanju. Za uspe{no podalj{anje trajnostne dobe orodja morajo imeti materiali za orodja za tla~no litje aluminija dobro stabilnost mehanskih lastnosti pri povi{anih tempera- turah. To dosegajo z jekli maraging z vsebnostjo niklja 14 % 5, 12 % (Thyrotherm 1.2799) ali celo 2 % 6. Manj{a vsebnost Ni premakne transformacijo ferita v avstenit k vi{jim temperaturam. Slabost manj{e vsebnosti Ni je slab{a `ilavost 6. Nasprotno od klasi~nih orodnih jekel za delo v vro~em imajo jekla maraging omejeno vsebnost C, H in N, svoje odli~ne lastnosti pa dose`ejo z legiranjem s/z Co, Mo, Ti in Al 7-9. Dodatna prednost je njihova odli~na varivost, saj jih pri varjenju ni treba predgrevati ali Materiali in tehnologije / Materials and technology 41 (2007) 4, 167–171 167 UDK/UDC 669.14:620.17:621.791.05 ISSN 1580-2949 Izvirni znanstveni ~lanek/Original scientific article MTAEC9, 41(4)167(2007) pogrevati, da bi dobili duktilen in `ilav martenzit. Tudi mehanska in EDM-obdelava se izvajata la`e kot pri klasi~nih orodnih jeklih. Toplotna obdelava jekla maraging zajema topilno in izlo~evalno `arjenje. Topilno `arjenje poteka pri temperaturah 815–915 °C eno uro, pri tem pa se v avstenitu topijo legirni elementi. Po ohlajanju na zraku se tvori mehak martenzit, nasi~en z legirnimi elementi. Pri varjenju z manj{im vnosom energije kot 1,8 kJ/mm topilno `arjenje ni potrebno in varjenju sledi izlo~evalno `arjenje 10. Slednje navadno poteka pri temperaturah od 470 °C do 550 °C pribli`no tri ure, dejanski parametri pa so odvisni od kemi~ne sestave jekla. Med tem `arjenjem se v materialu tvorijo izlo~ki, ki povzro~ajo deformacije kristalnih re{etk. To povzro~a linearno spremembo dimenzij od 0,05 % do –0,1 %, velikost spremembe pa je odvisna od parametrov izlo~evalnega `arjenja 8. Kljub odli~nim mehanskim lastnostim se jekla maraging le malo uporabljajo kot material za orodja. Vzrok je vi{ja cena. Na{a ideja je bila, da bi uporabili jekla maraging za reparaturno popravilo orodij oz. za navarjanje na povr{ino. S tem bi dobili cenovno sprejem- ljiva visokokakovostna orodja. Na povr{ino orodja za tla~no litje aluminija je treba navariti dovolj debelo plast jekla maraging, da prepre~imo akumulacijo toplote na prehodu med osnovnim jeklom in navarjeno plastjo. Uspe{en odvod energije s povr{ine orodja bomo zagotovili, ~e bo povr{inski sloj jekla maraging segal do hladilnih kanalov. Namen {tudije je bil karakterizirati jekla maraging (z 18 % Ni) glede na mehanske lastnosti in mikrostrukturo. Narejena je bila analiza varjenja TIG jekla maraging glede na vnos energije, temperaturo predgrevanja in ko- vanje varkov, analiziran pa je bil tudi vpliv parametrov izlo~evalnega `arjenja na razvoj mikrostrukture in mehanske lastnosti. 2 EKSPERIMENTALNI DEL Pripravljena je bila serija vzorcev iz jekla 1.2344 z izdelanim utorom U po sliki 1. Pred navarjanjem so bili vzorci pobolj{ani na trdoto HRc 46. V posamezen utor U je bilo po postopku TIG navarjenih 14 varkov, dolgih 75 mm. Varjenje je potekalo z varilnim tokom 150 A, varilno napetostjo 12 V, s hitrostjo varjenja 5 cm/min in vnosom energije 2,1 kJ/mm v za{~iti plina argona s pretokom 10 L/min. Navarjali smo dodajni material jeklo maraging 1.6356 (tabela 2), ki je bilo v obliki palic premera 2,5 mm in dol`ine 1000 mm. Tik pred varjenjem smo s povr{ine varilnih `ic odbrusili bakreno za{~itno plast ter `ico o~istili z acetonom. S tem smo prepre~ili kontaminacijo vara z bakrom. Teme varka smo pred varjenjem novega varka o~istili z `i~no {~etko in acetonom. Varjenje ve~ine vzorcev je potekalo pri temperaturi predgrevanja 100 °C, en vzorec je bil varjen s predgrevanjem pri temperaturi 400 °C, varki enega vzorca pa so bili med varjenjem ro~no kovani. S kovanjem spremenimo natezne zaostale napetosti v zvaru v tla~ne in zmanj{amo verjetnost pokanja med termi~nim utrujanjem. Navarjeni vzorci so bili izlo~evalno `arjeni po na~rtu izlo~evalnega `arjenja, ki je bil izdelan s statisti~nim na~rtovanjem eksperimentov. Uporabili smo sredi{~no zasnovan na~rt eksperimentov in metodologijo povr{in odziva, ki omogo~a razvoj regresijskih modelov vi{jega reda. Parametri izlo~evalnega `arjenja so bili dolo~eni tako, da zajamejo {ir{e obmo~je toplotne obdelave. D. KLOB^AR, J. TU[EK: MEHANSKE LASTNOSTI ZVARA IZ JEKLA MARAGING PO IZLO^EVALNEM @ARJENJU 168 Materiali in tehnologije / Materials and technology 41 (2007) 4, 167–171 Tabela 1: Mehanske in fizikalne lastnosti jekel 5,12 Table 1: Mechanical and physical properties of steels 5,12 Lastnost 1.2344 UTP A7021.6356 Marlok C1650 Gostota /(kg/dm3) 7,8 – 8,09 Modul elasti~nosti /GPa 210 191 186 Natezna trdnost /MPa 1430 1763 1600 Meja plasti~nosti /MPa 1230 1688 1500 Trdota /HRc 43–54 40–50 47–51 @ilavost /J 20 °C 15–20 15–21 25 200 °C – – 35 400 °C – – 45 Temperaturni koeficient dol`inskega raztezka /(10–6 mm/(mm °C)) 20°C–400°C 12,5 – 10 20°C–600°C 13,1 – 5,6 Toplotna prevodnost /(W/(m °C)) 20 °C 25 – 28 500 °C 28,5 – 32 600 °C 29,3 – 33 Tabela 2: Kemi~na sestava jekel v masnih dele`ih (%) 5,12 Table 2: Chemical composition of steels in % 5,12 Element 1.2344 1.6356 Marlok C1650 C 0,3–0,4 0,02 <0,008 Cr 4,8–5,5 – <0,30 Mo 1,2–1,5 4,0 4,5 Ni – 18,0 14,0 Co – 12,0 10,5 Ti – 1,6 0,2 Si 0,8–1,2 – <0,10 Mn 0,2–0,4 – <0,10 Al – 0,1 – Slika 1: Shema gradnje varkov v vzorcu z utorom U Figure 1: Schematic of U grove specimen weld filling Temperatura izlo~evalnega `arjenja je bila izbrana v obmo~ju od 445 °C do 515 °C, ~as pa v obmo~ju od 0,7 h do 10,8 h. Centralna to~ka sredi{~no zasnovanega na~rta eksperimentov je bila izbrana po priporo~ilu proizvajalca pri 480 °C in treh urah. Varjenci so bili po varjenju in toplotni obdelavi razrezani po shemi na sliki 2. Iz vsakega varjenca so bile izdelane tri epruvete ISO-V za preizkus `ilavosti, rezina za analizo mikrostrukture in sedem miniaturnih epruvet za natezni preizkus. Natezni preizkusi so bili narejeni na ra~unalni{ko krmiljeni napravi Zwick Z050, ki je imela vgrajen senzor sile GTM 50 kN in ekstenziometer tip 66607. Preizkusi so bili izvedeni po standardu EN 10002-1. Preizkus udarne `ilavosti po Charpiju je bil opravljen v skladu s standardoma EN 10045-1:2000 in EN 10045-2:1992. Iz posameznega varjenca so bile preizku{ene tri epruvete ISO-V in izra~unane povpre~ne vrednosti `ilavosti. Na rezinah vzorcev je bila narejena metalografska analiza in meritev trdote po Vickersu. Vzorci so bili polirani in jedkani v 4-odstotni raztopini nitala (4 % HNO3 + 96 % C2H5OH) ter pregledani na opti~nem mikroskopu. 3 REZULTATI Diagram na sliki 3 prikazuje trdoto in natezno trdnost temenskih varkov iz jekla maraging v navarjenem stanju ter `ilavost ve~varkovnega vara iz jekla maraging. Najvi{jo natezno trdnost 1170 MPa je dosegel var, narejen pri temperaturi predgrevanja 100 °C. Kovan varek je imel nekoliko ni`jo natezno trdnost (1046 MPa), medtem ko se je pri varku, narejenem pri temperaturi predgrevanja 400 °C, drasti~no zmanj{ala natezna trdnost na 953 MPa. Trdota temenskega vara v navarjenem stanju je bila HV 400, kar je ve~ kot trdota jekla maraging v homogeniziranem stanju, ki ima od HV 305 do HV 339. Trdota se je pri tem povi{ala zaradi izlo~evalnega `arjenja med varjenjem TIG ter zaradi temperature predgrevanja. Trdota kovanih varkov se je zvi{ala na HV 410 zaradi kovanja, ki varke mehansko utrdi. Trdota temenskega varka, narejena pri temperaturi predgrevanja 400 °C je bila HV 390. Padec trdote je posledica ve~jega vnosa energije med varjenjem, ki se pojavi zaradi vi{je temperature predgrevanja. Najve~jo `ilavost zvara 86 J smo dobili pri varjencu s kovanimi varki. @ilavost vara v navarjenem stanju je bila 80 J, medtem ko je bila `ilavost vara, narejena pri temperaturi predgrevanja 400 °C, le 56 J. Slika 4 prikazuje potek trdote in natezne trdnosti temenskih varkov iz jekla maraging ter `ilavost ve~var- kovnega vara v navarjenem stanju in po izlo~evalnem `arjenju z razli~nimi parametri. Iz diagrama je razvidno, da se z vi{anjem temperature in dalj{anjem ~asa izlo~e- valnega `arjenja natezna trdnost in trdota pove~ujeta, medtem ko se `ilavost zmanj{uje. Ob~uten padec `ila- vosti se pojavi `e po kratkotrajnem izlo~evalnem `arjenju (480 °C/ 0,7 h), ko se v mehkem martenzitu oblikujejo izlo~ki, mikrostruktura pa je {e premalo starana (slika 5a). Pri tem dose`e var `ilavost 27,7 J, trdoto HV 410 in natezno trdnost 1306 MPa. S pove~anjem temperature in ~asa izlo~evalnega `arjenja dobimo dobro staran var, katerega mikrostruktura je prikazana na sliki 5b (445 °C/ 3 h). Za dobro staran var je zna~ilna `ilavost okoli 20 J, trdota okoli HV 505 ter natezna trdnost 1383 MPa. ^e ~as izlo~evalnega `arjenja D. KLOB^AR, J. TU[EK: MEHANSKE LASTNOSTI ZVARA IZ JEKLA MARAGING PO IZLO^EVALNEM @ARJENJU Materiali in tehnologije / Materials and technology 41 (2007) 4, 167–171 169 0 200 400 600 800 1000 1200 1400 1600 1800 varjeno stanje 480 °C/0,7 h 505 °C/1,1 h 445 °C/3 h 480 °C/10,8 h T rd o ta H V in R m /M P a 0 10 20 30 40 50 60 70 80 90  il a v o s t /J Povr{ina - trdota / Povr{ina - /MPa @ilavost /J HV Rm Slika 4: Trdota, `ilavost in natezna trdnost varov v varjenem stanju ter po izlo~evalnem `arjenju z razli~nimi parametri Figure 4: Hardness, toughness and tensile strength of a surfacing weld after different precipitation hardening Slika 2: Iz varjenca smo izrezali: a) 7 miniaturnih epruvet za natezni preizkus, 3 standardne epruvete ISO-V za `ilavost ter rezino za meritev trdote in analizo mikrostrukture. b) Shemati~en prikaz epruvete za natezni preizkus. Figure 2: From the welded specimen were manufactured: a) 7 tensile test specimens, 3 toughness test specimens and a slice for microstructure analysis. b) Scheme of tensile test specimen. 0 200 400 600 800 1000 1200 varjeno s tanje varjeno s t., kovanje varjeno st., T = 400 °C T rd o ta H V in R m /M P a 0 20 40 60 80 100 120 p Povr{ina - trdota / Povr{ina - /MPa @ilavost /J HV Rm Slika 3: Trdota, `ilavost in natezna trdnost temenskih varov v varje- nem stanju v odvisnosti od tehnologije varjenja Figure 3: Hardness, toughness and tensile strength of surfacing weld in as-welded condition of different conditions welding {e podalj{amo in/ali povi{amo temperaturo (npr. 480 °C/ 10,8 h), dobimo preve~ starano mikrostrukturo (slika 5c). Zanjo je zna~ilna trdota HV 540, natezna trdnost 1758 MPa in `ilavost 14,6 J. Pri izbiri parametrov toplotne obdelave izlo~evalnega `arjenja je potrebna posebna pozornost. Izbrati je namre~ treba parametre, ki dajo najbolj ustrezne mehanske lastnosti za posamezno aplikacijo. S tem namenom je bila narejena statisti~na analiza mehanskih lastnosti varov iz jekla maraging z metodologijo povr{in odziva. Izdelani so bili modeli za napoved trdote, `ilavosti in natezne trdnosti v odvisnosti od parametrov izlo~eval- nega `arjenja. Modeli so prikazani v grafi~ni obliki na slikah 6a–c). Pove~anje temperature in/ali ~asa toplotne obdelave izlo~evalnega `arjenja pove~a trdoto in natezno trdnost ter zmanj{a `ilavost vara iz jekla maraging. Mikrostrukture varov so primerjane na sliki 5. Mikrostruktura na sliki 5a je premalo starana in je tipi~na za var v varjenem stanju oz. za var, izlo~evalno `arjen pri prekratkih ~asih ali prenizkih temperaturah. Mikrostruktura, prikazana na sliki 5b, je dobro starana in jo dobimo pri izlo~evalnem `arjenju z optimalnimi parametri. Slika 5c je zna~ilna za preve~ starano mikrostrukturo. Na mejah med celi~nimi dendriti se pojavijo zna~ilna bela podro~ja, ki so bogata z Ni. Na teh mestih se pretvorba v povratni avstenit pojavi `e pri ni`jih temperaturah. Taka mikrostruktura ni `elena, ker ima majhno `ilavost. Pri bolj izrazitem prestaranju se zni`ata tudi trdota in natezna trdnost, kar posledi~no vpliva na ve~jo obrabo in slab{o odpornost proti termi~nemu utrujanju. Na osnovi analize mikrostrukture je bil izdelan grafi~ni prikaz stanja mikrostrukture glede na parametre izlo~evalnega `arjenja (slika 6d). Premalo staran var dobimo pri izlo~evalnem `arjenju pri ni`jih temperaturah kraj{i ~as. Dobro staran var dobimo z izlo~evalnim `arje- njem s parametri iz osrednjega podro~ja, preve~ staran var pa z izlo~evalnim `arjenjem pri visokih temperaturah in dolgih ~asih. S slike 6d) lahko ugotovimo take parametre izlo~evalnega `arjenja, pri katerih bomo v izbranem jeklu dobili `eleno mikrostrukturo. ^e te rezultate kombiniramo z razvitimi modeli za napoved mehanskih lastnosti, dobimo dodatno informacijo, ki omogo~a la`jo izbiro parametrov izlo~evalnega `arjenja za aplikacijo. 4 DISKUSIJA Priporo~en vnos energije med varjenjem je po lite- raturi 1,8 kJ/mm 10, mi pa smo varili z vnosom energije 2,1 kJ/mm. Mikrostruktura vara v navarjenem stanju je premalo starana in ima visoko `ilavost ter relativno nizko trdoto in natezno trdnost. Glede na trdoto jekla maraging v homogeniziranem stanju je trdota v navarje- nem stanju ve~ja. Zaradi manj{ega pove~anja trdote in premalo starane mikrostrukture topilno `arjenje ni D. KLOB^AR, J. TU[EK: MEHANSKE LASTNOSTI ZVARA IZ JEKLA MARAGING PO IZLO^EVALNEM @ARJENJU 170 Materiali in tehnologije / Materials and technology 41 (2007) 4, 167–171 a) b) Slika 6: Spreminjanje a) `ilavosti /J, b) trdote HV, c) natezne trdnosti /MPa in d) stanja mikrostrukture v odvisnosti od parametrov izlo~e- valnega `arjenja Figure 6: Change of weld a) toughness, b) hardness, c) tensile strength and d) microstructure after different precipitation annealing µ µ µ Slika 5: Mikrostrukture temenskih varkov po izlo~evalnem `arjenju: a) 480 °C / 0,7 h, b) 445 °C / 3 h, 480 °C / 10,8 h Figure 5: Microstructures of surfacing welds after precipitation hardening: a) 480 °C / 0,7 h, b) 445 °C / 3 h, 480 °C / 10,8 h potrebno. Kljub temu pomeni varjenje z vnosom energije 2,1 kJ/mm zgornjo vrednost vnosa energije. Kovanje varkov med varjenjem je zamudno. Pri varjenju trdih in krhkih orodij je pogosto neizogibno, da prepre~imo pokanje. Kovanje spremeni natezne zaostale napetosti, ki nastanejo v varu zaradi varjenja, v tla~ne in posledi~no prepre~uje {irjenje razpok. Varom iz jekla maraging pove~a `ilavost in trdoto. Vi{ja `ilavost je najverjetneje posledica drobljenja ve~jih kristalnih zrn v manj{a, vi{ja trdota pa je posledica mehanske utrditve. Kovanje varkov iz jekla maraging je priporo~ljivo. Predgrevanje na temperaturo 400 °C negativno vpliva na mehanske lastnosti vara iz jekla maraging, saj zmanj{uje trdoto, natezno trdnost in `ilavost, najverjet- neje zaradi segrevanja varkov v obmo~ju temperatur od 700 °C do 1000 °C, to je v obmo~ju krhkosti. Pri tem se na mejah avstenitnih zrn in celi~nih dendritov pojavijo Ti(C, N)-izlo~ki, ki povzro~ajo krhkost jekla 7. Zaradi pomanjkanja Ti v preostanku mikrostrukture sta manj{a tudi natezna trdnost in trdota zvara. Predgrevanje na temperaturo 400 °C se zato ne priporo~a. Najvi{ja temperatura predgrevanja, ki jo priporo~a literatura, je 200 °C 12. Jekla maraging so dobro variva tudi pri sobni temperaturi, ker se pri ohlajanju na zraku pojavi duktilen in `ilav martenzit. Pove~anje trdote in natezne trdnosti ter zmanj{anje `ilavosti s pove~evanjem ~asa in temperature izlo~e- valnega `arjenja je `e poznano iz literature. Pri tem je zanimivo, da se pove~anje trdote in natezne trdnosti sklada s padcem `ilavosti. To je v skladu z objavljenimi podatki v literaturi za jekla maraging 8,12. Pri tem velja poudariti, da literatura navadno ne navaja podatkov za natezno trdnost, niti podatkov za mehanske lastnosti zvarov. Prednost razvitih modelov za napoved mehan- skih lastnosti po izlo~evalnem `arjenju je, da lahko parametre dolo~imo na osnovi `elenih mehanskih lastnosti. S tem zagotovimo, da ima material optimalne mehanske lastnosti za dolo~eno uporabo `e vnaprej in posledi~no vplivamo na trajnostno dobo orodja. Grafi~en prikaz stanja mikrostrukture varov iz jekla maraging glede na parametre izlo~evalnega `arjenja predstavlja pomembno informacijo pri izbiri optimalnih parametrov za posamezno aplikacijo. ^e ta model kombiniramo z modeli za napoved mehanskih lastnosti ter z zahtevami orodjarjev, se nam zo`ijo mo`nosti izbire parametrov izlo~evalnega `arjenja. Kljub temu pa lahko izberemo take parametre, ki bodo omogo~ali vi{jo trdoto ali natezno trdnost ali vi{jo `ilavost. 5 SKLEPI Analiza varjenja TIG jekla maraging z 18 % Ni ter analiza izlo~evalnega `arjenja varov glede na mikro- strukturo in mehanske lastnosti je pokazala naslednje: • varjenje z vnosom energije do 2,1 kJ/mm je prakti~no in povzro~a le delno izlo~evalno `arjenje vara, zato topilno `arjenje po varjenju ni potrebno; • temperatura predgrevanja 400 °C je previsoka za varjenje jekel maraging z vsebnostjo 18 % Ni ali ve~. Priporo~a se predgrevanje do 200 °C; • kovanje varkov je za`eleno, saj zvi{uje `ilavost in trdoto varkov ter spreminja natezne zaostale nape- tosti v tla~ne; • izlo~evalno `arjenje poteka hitreje pri vi{jih tem- peraturah. S pove~evanjem temperature in ~asa izlo~evalnega `arjenja se natezna trdnost in trdota pove~ujeta, `ilavost pa pada; • dobro starano mikrostrukturo dobimo npr.: pri izlo~evalnem `arjenju na temperaturi 515 °C eno uro, pri temperaturi 445 °C tri ure oz. z uporabo razvitih modelov, ki so prikazani na sliki 6; • premalo starano jeklo maraging ni primerno za povr{inski sloj orodij, ker ima prenizko trdoto, pri preve~ staranem materialu pa se pojavi ob~uten padec `ilavosti. 6 LITERATURA 1 A. Srivastava, V. Joshi, R. Shivpuri, Computer modeling and prediction of thermal fatigue cracking in die-casting tooling, Wear 256 (2004), 38–43 2 A. Persson, S. Hogmark, J. Bergstrom, Simulation and evaluation of thermal fatigue cracking of hot work tool steels, International Journal of Fatigue 26 (2004), 1095–1107 3 A. Persson, S. Hogmark, J. Bergstrom, Thermal fatigue cracking of surface engineered hot work tool steels, Surface and Coatings Technology 191 (2005), 216–227 4 W. Young, Why Die Casting Dies Fail, Paper No. G-T79-092, 10th SDCE International die casting exposition & congress, St.Louis, Missouri, North American Die Casting Association, 1979 5 Metso Powdermet, Materials Technology Solutions, Marlok, Longer die life Better quality, www.metsopowdermet.com/, (2005) 6 Y. Wang, A study of PVD coatings and die materials for extended die-casting die life, Surface and Coatings Technology 94–95 (1997), 60–63 7 R. F. Decker, S. Floreen, Maraging steels – The first 30 years, Wilson, R. K., Maraging steels – recent developments and applica- tions, The Metals & Minerals Society, Warrendale, PA, 1988 8 J. Grum and M. Zupan~i~, Suitability assessment of replacement of conventional hot-working steels with maraging steel, Part I: Mechanical properties of maraging steel after precipitation hardening treatmen, Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques 93 (2002), 164–170 9 J. Grum, M. Zupan~i~, Suitability assessment of replacement of conventional hot-working steels with maraging steel, Part II: Microstructure of maraging steel after precipitation hardening treatment, Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques 93 (2002), 171–176 10 D. A. Canonico, Gas Metal-Arc Welding of 18 % Nickel Maraging Steel, Welding Research (1964), 433–442 11 D. Klob~ar, J. Tu{ek, B. Taljat, G. Scavino, Influence of thermal fatique on materials for die-casting tooling, Rosso, M., Actis Grande, M., in Ugues, D., Tooling materials and their applications from research to market: proceedings of 7th International Tooling Conference, 2.5.2006 Torino, Politechnico di Torino, 479–485 12 A. T. Minotto, B. Taljat, J. Tu{ek, Development of weld-cladding processes for surface enhancement of hot-work tooling, 5th Inter- national Conference on Industrial Tools, ICIT 2005, 12.4.2005 Velenje, TECOS Celje, 207–214 D. KLOB^AR, J. TU[EK: MEHANSKE LASTNOSTI ZVARA IZ JEKLA MARAGING PO IZLO^EVALNEM @ARJENJU Materiali in tehnologije / Materials and technology 41 (2007) 4, 167–171 171 S. SEDMAK ET AL.: AN EXPERIMENTAL VERIFICATION OF NUMERICAL MODELS ... AN EXPERIMENTAL VERIFICATION OF NUMERICAL MODELS FOR THE FRACTURE AND FATIGUE OF WELDED STRUCTURES EKSPERIMENTALNA VERIFIKACIJA NUMERI^NIH MODELOV ZA PRELOM IN UTRUJENOST ZVARJENIH STRUKTUR Stojan Sedmak1, Aleksander Sedmak2, Miodrag Arsi}3, Jelena Vojvodi~ Tuma4 1Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Beograd, Serbia & Montenegro 2Faculty of Mechanical Engineering, Kraljice Marije 16, 11000 Beograd, Serbia & Montenegro 3Institute for Material Testing, Bulevar vojvode Mi{i}a 43, 11000 Beograd, Serbia & Montenegro 4Institute of Metals and Technology, Lepi pot 11, 10000 Ljubljana, Slovenia Prejem rokopisa – received: 2006-05-17; sprejem za objavo – accepted for publication: 2006-12-19 By allowing a more detailed analysis, numerical modelling has an important role to play in the development of structures. However, the results of a numerical model’s analysis have to be verified with an experimental analysis for the application. Two full-scale welded-structure tests were used for the verification of the proposed numerical models. In the first case a pressure vessel pre-cracked in weld metal and instrumented for a J-integral measurement was tested. In this way the crack’s driving force, expressed as the J integral, could be determined directly. The crack’s driving force was calculated by applying the Ratwani-Erdogan-Irwin (REI) numerical model. The experimental results were compared to the values obtained with the REI model. In was shown that the application of the model produces conservative results and that the model can be applied for a structural integrity assessment of cracked pressure vessels. The second case was the welded structure of a rotor excavator. The critical welded components were modelled in full scale. The loading was recorded with strain gauges at critical locations, analyzed and elaborated in the form of the stress spectrum applied in the testing. The experimental results were compared to those obtained with numerical models. The comparison revealed that the model significantly overestimates the real cycle number for the fatigue limit. These two examples clearly demonstrated the complexity of the problem. In the case of the pressure vessel the model results are conservative, while those obtained for the fatigue are too optimistic. Keywords: welded joint, numerical model, experiment, fracture, fatigue Numeri~no modeliranje je zelo pomembno za razvoj struktur, ker omogo~a bolj natan~no analizo, vendar je potrebno rezultate numeri~ne analize eksperimentalno verificirati. Dve varjeni strukturi sta bili uporabljeni za verifikacijo predlo`enih numeri~nih modelov. V prvem primeru je bila preverjena posoda pod pritiskom z razpoko v zvaru. Posoda je bila instrumentirana za neposredno dolo~itev J-integrala. Gonilna sila za propagacijo razpoke je bila izra~unana z numeri~nim Ratwani-Erdogan- Irwinovim (REI) modelom. Eksperimentalne rezultate smo primerjali z REI-vrednostmi. Pokazalo se je, da so rezultati modela konservativni pri oceni integritete v primeru razpoke v posodi pod pritiskom. Drugi analiziran primer je bila zvarjena struktura dela rovokopa~a. Kriti~ni zvarjeni del je bil modeliran v pravi velikosti. Obremenitev je bila registrirana z merilnimi trakovi na razli~nih mestih, nato pa analizirana in predstavljena v obliki spektra napetosti. Rezultati preizkusa so bili primerjani z rezultati iz numeri~nega modela. Primerjava je pokazala, da model pomembno preceni realno {tevilo obremenitev do utrujenostne trdnosti. Ta dva primera ka`eta na kompleksnost problema. V primeru posode pod pritiskom so rezultati modela konservativni, v primeru utrujenosti pa optimisti~ni. Klju~ne besede: zvarni spoj, numeri~ni model, preizkus, prelom, utrujenost 1 INTRODUCTION The impressive developments in fracture mechanics and the numerical modelling of structures during the past 40 years has enabled the improvement of existing and the introduction of new methods for the evaluation of residual life and the assessment of structural integrity 1. By applying these methods the service safety of structures has been increased and their life has been extended, resulting in significant cost savings. Today, numerical modelling is an invaluable tool for the design of different structures, as well as the manufacturing and use of steel structures, power and petrochemical plants, aircraft, machinery and vehicles. Welded structures have a very important role in many of these sectors and, therefore, require special attention. The reason for this is the possibility of cracks occurring in welded joints, which can endanger the structural integrity and nega- tively affect the service safety. Many standards and documents consider this structural integrity, and probably the most important is the SINTAP (Structural INTegrity Assessment Procedure) 2,3, which is based on fracture-mechanics analyses and experience with cracks in a welded structure 4. The fracture-mechanics approach was applied with success and formally accepted in the case of the Trans Alaska Crude Oil Pipeline 5, for a "fitness-for-purpose" approach. The maximum allowed crack size was verified experimentally before the proposal for when and how to repair the cracks in welded joints. The most important conclusion in this investigation was that "fracture-mechanics analysis is an acceptable basis for an allowable exception from valid standards under circumstances, under the condition that this analysis provides a clear and conservative structural integrity assessment". Materiali in tehnologije / Materials and technology 41 (2007) 4, 173–178 173 UDC/UDK 539.42:621.791.05 ISSN 1580-2949 Original scientific article/Izvirni znanstveni ~lanek MTAEC9, 41(4)173(2007) Numerical models are developed based on the available data, which do not necessarily coincide in all cases with the real situation. Two important require- ments before the acceptance of a proposed model are: 1. the model has to be conservative in order to cover different circumstances, 2. the model must be experimentally verified. Experiments with full-scale welded structures are not frequently performed, because they are connected with many problems in their organization and realisation, and, not surprisingly, they are very expensive. The obtained results are, however, generally valid for the tested structure and the applied testing conditions. For this reason, numerical modelling has an important role to play in the development of structures since it allows a more detailed analysis. In any case, it is questionable whether the results of the numerical model analysis represent the real situation of the considered structure, because a large number of influential parameters have to be considered. The answer to this question can only be obtained from a proper experimental analysis. 2 CRACK-GROWTH ANALYSIS WITH THE J-INTEGRAL Two aspects of the J integral have to be considered for a structural integrity assessment. In the first the J integral is an elastic-plastic fracture-mechanics para- meter that defines the cracked body’s geometry and the loading (the crack driving force – CDF), and in the second it represents the crack resistance of the material (JIc and J–R curve) 6. The fundamental difference bet- ween these two aspects is the crack-growth behaviour. In the first case the crack size is not variable and it is used as a parameter with the stress. In the second case, however, the crack growth is included. The criterion for the initiation of stable crack growth is mathematically defined as: J a J( , )σ ≥ Ic (1) where J(,a) is the crack driving force (CDF), depen- ding on the remote stress, , and the crack length, a, whereas JIc is the material’s resistance to the initiation of stable crack growth. In the case of elastic-plastic fracture mechanics the crack growth analysis is not restricted to the application of Equation (1), but also involves the stable crack growth and the condition for the initiation of its unstable spreading, e.g., the J–R curve, which is compared to the CDF using a con- venient graphical method. The initiation of unstable crack growth is given by: ∂ ∂ ∂ ∂ J a a J a ( , )σ ≥  indicating that the increase in the CDF must be greater than the increase of the material’s crack resistance for the same crack extension. When the value J(,a) reaches the value JIc (1), (the intersection of the CDF curve and the J–R curve), the stable crack growth is initiated, and it continues up to the instant at which J(,a)/a becomes greater than J/a (2), (the tangent of the CDF curve to the J–R curve) producing unstable crack growth. The extent of the stable crack growth, a, is the difference (on the abscissa) of the marked points A and ao, including the crack-tip blunting. A theoretical–analytical model, such as the Ratwani- Erdogan-Irwin (REI) model 7, can be applied for the CDF determination. The crack resistance can be determined experimentally, e.g., according to ASTM E1820 8 or by applying the J-integral direct-measure- ment method 9. 3 VERIFICATION OF THE STRUCTURAL INTEGRITY ASSESSMENT MODEL The conservative prediction of the structural integrity of a cracked welded structure means that the material’s crack resistance is greater than the maximum CDF. Thus, it should be proved that the applied model for the CDF and the residual strength prediction is conservative. With this aim the experimental pressure vessel (Figure 1) was welded from high-strength low-alloyed SM80P steel (700 MPa yield strength class) 16-mm steel plates, applying a qualified welding procedure, and prepared for S. SEDMAK ET AL.: AN EXPERIMENTAL VERIFICATION OF NUMERICAL MODELS ... 174 Materiali in tehnologije / Materials and technology 41 (2007) 4, 173–178 Figure 1: Experimental pressure vessel: I, shape and dimensions; II, detail of crack; III, integration path; IV, distribution of strain gauges. A notch. B fatigue pre-crack. C,D stable crack growth. E final fatigue Slika 1: Eksperimentalna posoda pod pritiskom: I oblika in mere. II Detail razpoke. III pot integracije. IV Porazdelitev merilnih trakov za napetost. A zareza. B utrujenostna pred-razpoka. C, D Stabilna rast razpoke. E Kon~na utrujenost the verification of the REI model 10. This was performed using a J-integral direct measurement 9 on the fatigue pre-crack positioned in the WM (Figure 1.II). To prepare the fatigue pre-crack, a segment of size 180 mm × 380 mm, containing the SAW weld metal, was cut from the welded prototype. After machining the notch in the centre of the weld metal, a fatigue pre-crack was produced according to the standard procedure, and the segment was than re-welded in the pressure vessel. The properly selec- ted contour DCBAB’C’D", given in Figure 1.III, was covered by regularly distributed strain gauges, Figure 1.IV, and the clip gauge applied for the crack-opening displacement enabled a direct evaluation of the J integral. It is interesting to note that during the test the crack increased in length, from the initial value of 2c = 64.25 mm up to 72 mm after the first stage and up to the final value of 80 mm measured after the experiment. The crack did not grow in terms of depth, as can also be seen in Figure 1.II. The shell parameter , necessary in the next calcu- lation for the crack length 2c = 64.25 mm for the mid-thickness shell radius 2R = 1184 mm, the wall thick- ness W = 16 mm, and the Poisson’s ratio  = 0.3, is: [ ] [ ]λ = − = − ⋅ =12 1 12 1 0 3 32125 1184 0 016 0 62 1 4 2 1 4( ) ( . ) . . . / / ν (3) The crack driving forces for the axial surface crack in the pressure vessel were calculated using the REI model for this value of the shell parameter and expressed by the set of lines in Figure 2, depending on crack ratio, a/W, and the normalized pressures pR/WRp0.2 (p is the applied pressure, Rp0.2 is the weld metal’s yield stress). Point "A" is experimentally obtained at a pressure of 100 bar for the crack depth, measured after testing (a = 11 mm, crack ratio a/W = 0.69). For the same pressure CDF, calculated with the REI model for a/W = 0.69, is 40 % higher than the point "A", indicating that the model is conservative and can be used for a structural integrity assessment. For the J-R curve the determination of the SEN (B) specimen was selected (Figure 3.I) for the single- specimen technique (ASTM E1820), and instrumented tensile panels with a surface crack (Figure 3.II) for the S. SEDMAK ET AL.: AN EXPERIMENTAL VERIFICATION OF NUMERICAL MODELS ... Materiali in tehnologije / Materials and technology 41 (2007) 4, 173–178 175 Figure 4. Typical plots of load, P, vs. crack-opening displacement (COD) for a crack in the HAZ (I – tensile panel; II – three-point bend specimen – arrow indicates "pop-in") Slika 4. Tipi~ne odvisnosti P od premika odprtja razpoke (COD) za razpoko v HAZ (I – natezna plo{~a; II – trito~kovni upogibni preiz- ku{anec; pu{~ica je ozna~ba to~ke "pop-in") Figure 2: Crack driving forces with marked point "A" for the experimentally obtained J integral Slika 2: Gonilna sila razpoke s to~ko A za eksperimentalno dolo~en J-integral Figure 3: Pre-cracked specimens (I – three-point bend specimen; II – tensile panel, III – details of surface cracks on tensile panels) Slika 3: Preizku{anci s pred-razpoko (I – trito~kovni upogibni preizku{anec; II – natezna plo{~a; III – detalj; s povr{inskimi razpokami na nateznih plo{~ah) J-integral direct-measurement method 9. The cracks located in the HAZ of the tensile panel are presented in Figure 3.III. From the extended experimental program 10 the specimens precracked in the HAZ were selected as the most critical for the structural integrity assessment. The two plots of load vs. crack opening displacement are typical, one of the uniform form (tensile panels) and the other with "pop-in", indicating an arrested, rapidly growing crack (some of the SEN(B) specimens) (Figure 4.II). The derived corresponding J-R curves with critical SEN(B) specimens are presented in Figure 5. The pop-in occurred only for the small ratio a/W = 0.21 and a/W = 0.20 in SEN(B) – TPB specimens of HAZ (Figures 4 and 5) indicating that a through crack can develop easily, which was not observed for tensile panels. In a real pressure vessel the crack is similar to that in the tensile panel and pop-in is not expected. The lower bound (LB) curve covers the pop-ins found during testing (Figure 6) and the obtained relations indicated that the structural integrity was not critical because of the crack ratio a/W = 0.548, the crack depth is ao = 8.77 mm, the pressure of p = 120 bar, significantly higher than the operating pressure, can produce an unstable crack growth of an additional 0.8 mm, before the crack tip reaches the region of tougher material in which the crack can continue to grow under increasing pressure in a stable manner. A crack of that size is not probable in a real pressure vessel because much smaller cracks can be detected with non-destructive testing. Thus, the structural integrity assessment of the cracked pressure vessel with the considered REI model is conservative and can be reliably applied. 4 VERIFICATION OF THE FATIGUE-CRACK GROWTH MODEL Service fatigue cracks frequently occur in the welded components of rotor excavator bearing structures (Figure 7). The program of the performed investigation included the identification of critical regions, the measuring of strains with strain gauges in different service conditions, the determination of the stress spectrum, the model design of a critical welded joint and the model testing by constant amplitude load and using a defined stress spectrum. The obtained experimental results are compared to numerical solutions obtained by applying the linear fatigue-damage accumulation hypothesis by Palmgren-Miner 11, and a modified linear hypothesis, Corten-Dolan 12, Serensen-Kogaev 13 and Haibach 14. S. SEDMAK ET AL.: AN EXPERIMENTAL VERIFICATION OF NUMERICAL MODELS ... 176 Materiali in tehnologije / Materials and technology 41 (2007) 4, 173–178 Figure 7: Cracks in critical regions of the welded components of a rotor excavator Slika 7: Razpoke v kriti~nih podro~jih zvarjenih komponent rotorja rovokopa~a Figure 5: Scatter band J–R curves set of SEN(B) – TPB specimens for HAZ with two cases of pop-ins for a/W values 0.21 and 0.20 Slika 5: Trosenje obmo~ja krivulj J–R za SEN(B) – TPB-preizku- {ance za HAZ z dvema primeroma "pop-in" za vrednosti a/W 0,21 in 0,20 Figure 6: Structural integrity assessment for HAZ J–R curves lower bound (LB), including specimens with pop-in Slika 6: Ocena integritete strukture za HAZ J–R-krivulje spodnjega praga (LB) z vklju~enim "pop-in" The specimen for experimental fatigue testing was modelled as a critical cross-welded joint to simulate the bearing structure component exposed to cracking (Figure 8). The applied variable loading of the bearing structure consisted of transport (4 %), average operation (60 %) and full cut (36 %), as part of the digging process and by low-frequency self-vibrations. The time- dependent complex stresses of the structural elements are presented in Figure 9, as discriminated according to the stress origin in order to establish a stress spectrum simulating real-service loading 15. The total spectrum of stress ranges also involved the pick loadings, repre- senting 0.05 % to 10 % of the total operating time, which are so high that they can arrest the excavator operation. The experiments were performed at constant amplitude on a high-frequency resonant pulsator and by a defined spectrum on a servo-hydraulic closed-loop device. The obtained relations of stress, S, vs. the number of cycles, N, are presented in the double logarithmic diagram in Figure 10, designed as a F. S. for the constant amplitude loading (S6.7N = const), and as an A. S. for the simulating spectrum. The numerically obtained results for all the applied hypotheses are also presented for comparison. The comparison of the fatigue testing results shows that the effect of the constant amplitude is more obvious (Figure 10), indicating that the structure in real operating conditions with a different amplitude can exhibit a longer fatigue life than expected, based on laboratory tests using a constant amplitude. The four hypotheses considered revealed a too optimistic fatigue life compared to the experimental results, overestimating the number ND for the fatigue limit. For this reason they should be applied with caution. It should be noted that the Haibach hypothesis is proposed for welded joints. 5 CONCLUSION When applying the experimental results it is clear that the numerical models in the structural analysis have to be applied with a necessary caution because their efficiency is dependent on the considered influencing factors, since all the relevant factors and their real effect on the situation must be considered. It was found that in the case of a welded vessel exposed to internal pressure the applied model produces conservative – and thus acceptable – results, and that in the case of the fatigue of the rotor excavator’s welded components the numerical model results overestimate the experimental values and cannot be applied as sufficiently conservative. Acknowledgement The paper is prepared with the financial support of the Serbian Ministry of Science and Environment Protection – project ON 14027 "Special topics in fracture mechanics of materials". 6 REFERENCES 1 R. W. Nichols: The use of fracture mechanics as an engineering tool, The 1984 ICF Honour Lecture, ICF 6, New Delhi, India, 1984 2 SINTAP: Structural Integrity Assessment Procedure, Final Report, EU-Project BE 95-1462. Brite Euram Programme, Brussels, 1999 3 N. Gubeljak, U. Zerbst: SINTAP- Structural INTegrity Assessment Procedure, in From fracture mechanics to structural integrity S. SEDMAK ET AL.: AN EXPERIMENTAL VERIFICATION OF NUMERICAL MODELS ... Materiali in tehnologije / Materials and technology 41 (2007) 4, 173–178 177 Figure 10: Comparison of S–N curves, obtained experimentally with constant (F. S.) and a variable amplitude loading spectrum (stress spectrum) (A. S.) and calculated by linear accumulation hypothesis (Corten-Dolan – C-D, Haibach – H, Serensen-Kogaev – S-K and Palmgren-Miner – P-M) Slika 10: Primerjava eksperimentalnih odvisnosti S-N s konstantno (F. S.) in spremenljivo amplitudo spektra obremenitve (spekter napetosti) (A. S.) in izra~unane s hipotezo linearne akumulacije (Corten – Dolan – C-D, Haibach – H, Serensen-Kogaev – S-K in Palmgren-Miner – P-M) Figure 9: Stress variations measured in rotor excavator operation Slika 9: Variacije napetosti, izmerjene pri delu rovokopa~a Figure 8: Specimen for fatigue testing, model of cross-welded joint of rotor excavator arrow Slika 8: Preizku{anec za preizkus utrujenosti, model kri`no varjenega spoja konice rotorja rovokopa~a assessment, ed. Z. Radakovi} and S. Sedmak, DIVK, TMF, Beograd, 2004 4 F. M. Burdekin: The assessment of critical crack size in pressure vessels, the monograph Modern aspects of desing and manufacturing of pressure vessels and penstocks. ed. S. Sedmak, GO[A, TMF, Beograd, 1982 5 R. P. Reed, H. I. MacHenry, M. B. Kasen: A fracture mechanics evaluation of flaws in pipeline girth welds, Welding Research Council Bulletin, No 245, 1979 6 B. Bozi}, S. Sedmak, B. Petrovski, A. Sedmak: Crack gowth resistance of weldment constituents in a real structure, Bulletin T. Cl de l’Academie serbe des Sciences at des Arts, Classe des Sciences techniques, No 25, Beograd, 21–42, 1989 7 M. M. Ratwani, F. Erdogan, G. R. Irwin: Fracture propagation in cylindrical shell containing an initial flaw, Lehigh University, Bethlehem, 1974 8 ASTM E 1820-99: Standard Test Method for Measurement of Fracture Toughness 9 D. T. Read: Experimental method for direct evaluation of the J contour integral, ASTM STP 791, 1983 10 US-Yugoslav joint project Fracture mechanics of weldments, Annual reports, Faculty of Technology and Metallurgy, Beograd, Principal investicator S. Sedmak, 1982-1992 11 M. A. Miner: Cumulative damage in fatigue, J. Appl. Mech. Trans. ASME, 12, 1945 12 H. T. Corten, T. J. Dolan: Cumulative fatigue damage, Proc. Int. Conference on Fatigue of metals, ASME and IME, 1956 13 S. V. Serensen, V. P. Kogaev, R. M. Snejderovic: Bearing capacity and calculation of machine elements resistance, in Russian, Mashinostroenie, Moskva, 1975 14 E. Haibach: Modifizierte lineare Schädenakkumulationshypothese zur Berücksichtigung des Dauerfestigheitsabfals mit fortschreitender Schädigung, Laboratorium fur Betriebsfestigheit, TM, No 50/70, Darmstadt, 1970 15 M. Arsi}: Correlation between endurance limit and fatigue threshold of welded joints, Ph. D. thesis, in Serbian, Mechanical Engineering Faculty, Pri{tina, 1995 S. SEDMAK ET AL.: AN EXPERIMENTAL VERIFICATION OF NUMERICAL MODELS ... 178 Materiali in tehnologije / Materials and technology 41 (2007) 4, 173–178 M. AMBRO@I^, K. VIDOVI^: IZRA^UN PARAMETROV WEIBULLOVE PORAZDELITVE ... IZRA^UN PARAMETROV WEIBULLOVE PORAZDELITVE ZA OCENO UPOGIBNE TRDNOSTI VALOVITIH STRE[NIH PLO[^ COMPUTATION OF THE PARAMETERS OF THE WEIBULL DISTRIBUTION FOR ESTIMATING THE BENDING STRENGTH OF CORRUGATED ROOFING SHEETS Milan Ambro`i~1, Krunoslav Vidovi~2 1Institut "Jo`ef Stefan", Jamova 39, 1000 Ljubljana, Slovenija 2Esal, d. o. o. Anhovo, Vojkova 9, 5210 Deskle, Slovenija milan.ambrozicijs.si Prejem rokopisa – received: 2006-11-20; sprejem za objavo – accepted for publication: 2007-02-21 V ~lanku je opisana uporaba Weibullove porazdelitve pri vrednotenju ve~kratnih meritev nekaterih mehanskih veli~in valovitih stre{nih plo{~ iz vlaknocementa, ki so bile izdelane v redni proizvodnji podjetja Esal, d. o. o. Anhovo. Tu se omejimo na zlomno silo pri pre~ni upogibni obremenitvi plo{~e in zlomni moment pri vzdol`ni upogibni obremenitvi. V vsakem primeru smo izra~unali oba Weibullova parametra, od katerih je pomemben predvsem Weibullov modul, ki podaja {irino porazdelitvene funkcije merjene veli~ine. Klju~ne besede: vlaknocementi, valovite stre{ne plo{~e, mehanske lastnosti, Weibullova statistika In this paper the application of the Weibull distribution for the evaluation of repeated measurements of some mechanical quantities on corrugated roofing sheets made from fibre-cement composites in the serial production of the company Esal d.o.o. Anhovo is described. The focus is on the breaking force in the transversal bending, loading and breaking moment during the longitudinal bending loading of the plate. For all cases the two Weibull parameters were calculated; especially important is the Weibull modulus, which gives the width of the distribution function of the measured quantity. Key words: fibre-cement composites, corrugated roofing sheets, mechanical properties, Weibull statistics 1 UVOD Vlaknocementi (VC) so kompoziti iz cementa in oja~itvenih vlaken, ki pove~ajo natezno in upogibno trdnost materiala; znano je namre~, da sam hidratizirani cement zdr`i veliko ve~je tla~ne obremenitve kot natezne. Zaradi nevarnosti za zdravje so azbestna vlakna v VC nadomestili z drugimi: z naravnimi (npr. lesno celulozo iz drevesnih vrst, ki so raz{irjene na podro~ju uporabe vlaknocementnih izdelkov) in sinteti~nimi (steklenimi, ogljikovimi, polivinilalkoholnimi itd.).1-6 Od sinteti~nih organskih vlaken so med najustreznej{imi tista iz polivinil alkohola (PVA). V podjetju Esal, d. o. o., v Anhovem, ki je me{ana dru`ba Salonita Anhovo in Eternita iz [vice, uporabljajo PVA-vlakna za izdelavo vlaknocementov za valovitne stre{ne plo{~e. Glede na {tevilo celih valov v plo{~i, 5 ali 8, ozna~ujemo plo{~e na kratko V5 ali V8. Pri razvoju novih VC gradbenih elementov in tudi med velikoserijsko proizvodnjo je treba s standardnimi preizkusi preveriti razli~ne mehan- ske lastnosti materiala in izdelkov, tudi glede na namen- skost in na klimatske razmere okolja, kjer naj bi izdelke vgrajevali7-9. Veliko je proizvodnih parametrov, s katerimi lahko izbolj{amo kakovost vlaknocementnih izdelkov5,10-13. Kar se ti~e samih oja~itvenih vlaken v cementni matrici, so pomembni vrsta, volumenski dele`, dol`ina in poravna- nost vlaken5. Pri izbiri vrste vlaken je treba med drugim upo{tevati njihov elasti~ni modul, natezno trdnost in povr{inske lastnosti, ki omogo~ajo dober spoj med vlakni in cementno matrico. Poleg optimalnih mehanskih lastnosti izdelkov je treba gledati tudi na proizvodne stro{ke, saj so sinteti~na vlakna relativno draga. Tako je najugodnej{i volumenski dele` PVA-vlaken nekaj odstotkov. Izmerjene vrednosti zna~ilnih mehanskih lastnosti kon~nih izdelkov, npr. zlomne sile, navadno ustrezajo Weibullovi porazdelitvi, posebno pri krhkih materialih, kot sta keramika in cement14-19. Weibullovo porazdelitev so uspe{no uporabili na {tevilnih podro~jih, npr. v strojni{tvu, gradbeni{tvu, pri in`enirski keramiki in biokeramiki20-24. Navadno se uporablja 2-parametri~na Weibullova porazdelitev, ki bo podrobneje opisana v nadaljevanju, v nekaterih primerih pa je ustreznej{a uporaba 3-parametri~ne Weibullove porazdelitve. Pri vsaki seriji izdelanih plo{~ izmerimo v Esal-u nekatere mehanske lastnosti na nekaj vzor~nih plo{~ah, to je navadno od 12 do 15 preizkusnih plo{~ na teden. Tako se je nabralo `e veliko {tevilo meritev in v tem prispevku bomo spoznali, da se dajo izmerjene mehan- ske koli~ine na plo{~ah dobro opisati z 2-parametri~no Weibullovo porazdelitvijo. Opisana bo koristnost upo- rabe Weibullove porazdelitve pri napovedi mehanskih Materiali in tehnologije / Materials and technology 41 (2007) 4, 179–184 179 UDK/UDC 539.4:691.54 ISSN 1580-2949 Izvirni znanstveni ~lanek/Original scientific article MTAEC9, 41(4)179(2007) lastnosti izdelkov v velikoserijski proizvodnji. Za in`enirja in za uporabnika vlaknocementnih izdelkov so Weibullovi diagrami nazoren prikaz statisti~ne poraz- delitve vrednosti merjene veli~ine in s tem mehanske zanesljivosti vlaknocementnih izdelkov. 2 SESTAVA IN DIMENZIJE VALOVITIH STRE[NIH PLO[^ V5 O sestavi in izdelavi vlaknocementnih izdelkov po Hatzschekovemu postopku je v tej reviji `e bil objavljen prispevek11.Tu omenimo le, da so vhodne surovine za izdelavo stre{nih plo{~ portlandski cement, voda, polnila in vlakna. Poleg oja~itvenih PVA-vlaken se uporabljajo tudi celulozna vlakna, med drugim zaradi olaj{anja proizvodnega postopka. Skupni masni dele` celuloznih in PVA-vlaken v navadni redni proizvodnji stre{nih plo{~ je 6,1 % glede na trdne sestavine (brez vode in zraka); od tega je 1/3 masnega dele`a PVA-vlaken in 2/3 celuloznih vlaken. Pri opisu dimenzij se omejimo na plo{~e V5, ki jih v Esalu izdelajo ve~ kot plo{~ V8. Geometrijo plo{~ V5 dolo~ajo parametri: {irina W = 920 mm, dol`ina L = 1250 mm, valovna dol`ina profila = 177 mm, vi{ina profila (dvojna amplituda vala) H = 51 mm, debelina T  6 mm. 3 MERJENJE MEHANSKIH LASTNOSTI PREIZKUSNIH PLO[^ Neposredno pred mehanskimi preskusi se plo{~e namakajo 24 h v vodi. S tem simuliramo slab{e vremen- ske razmere; po namakanju se namre~ poslab{ajo mehanske lastnosti plo{~. Izmerili smo razli~ne mehanske lastnosti plo{~ V5, od katerih v tem prispevku opi{emo le zlomno silo pri pre~ni upogibni obremenitvi (glede na valove plo{~, slika 1a) in zlomni moment pri vzdol`ni obremenitvi (slika 1b). Za merjenje zlomne sile smo uporabljali laboratorijsko merilno napravo BP-10, Walter+Bai AG, [vica, ki ima merilno obmo~je od 2 kN do 10 kN. Glede eksperimentalnih pogojev, kot so geometrijski parametri, smo upo{tevali standarda EN 49425 in DIN 274/126. Razdalje na sliki 1a so podane v milimetrih. Naprava neposredno izmeri silo FT pri pre~nem (transverzalnem) zlomu, medtem ko zlomni moment ML pri vzdol`nem (longitudinalnem) zlomu izra~unamo iz zlomne sile FL in geometrijskih parametrov: M F L LL L s= 4 (1) kjer je Ls razmik med sredinama podpor, L pa dol`ina plo{~e. Enota za moment je sicer N m, vendar pa ra~u- namo zlomni moment na dol`insko enoto plo{~e; da poudarimo to renormalizacijo zlomnega momenta, bomo zanj pisali enoto N m/m. Relativne napake pri meritvah so pribli`no 0,5 % za silo in 0,1 % ali manj za dol`inske dimenzije. Zato lahko iz ena~be (1) ocenimo {e relativno napako za zlomni moment, to je 0,7 %. Omenimo {e, da lahko pri obeh na~inih upogibne obremenitve izra~unamo tudi druge veli~ine, npr. efektivno upogibno trdnost materiala. Zaradi valovite geometrije plo{~ je treba upogibne trdnosti ra~unati numeri~no, in merilna naprava je povezana z ra~unal- nikom, ki ima ustrezni ra~unalni{ki program. 4 STATISTI^NA OBDELAVA PODATKOV Velikokrat se pri statisti~ni obravnavi izmerjenih ali izra~unanih podatkov zadovoljimo z izra~unom pov- pre~ne vrednosti in standardne deviacije veli~ine, ki pa nam ne povesta vse informacije o statisti~ni porazdelitvi vrednosti merjene veli~ine. Zato je priporo~ljivo najprej ugotoviti (~e je to mogo~e!), za katero statisti~no porazdelitveno funkcijo v danem primeru sploh gre, potem pa najti proste parametre te funkcije. ^eprav se verjetno v ve~ini primerov pri statisti~ni obravnavi za ve~je mno`ine podatkov uporabi Gaussova porazdelitev, je za nekatere mehanske lastnosti konstrukcijskih mate- rialov (kovine, keramika, cement in beton) ustreznej{a Weibullova porazdelitev. M. AMBRO@I^, K. VIDOVI^: IZRA^UN PARAMETROV WEIBULLOVE PORAZDELITVE ... 180 Materiali in tehnologije / Materials and technology 41 (2007) 4, 179–184 Slika 1: Geometrija pri pre~ni (a) in vzdol`ni (b) upogibni obremenitvi plo{~e V5 glede na evropska standarda EN 494 in DIN 274/1 Figure 1: Geometry for transversal (a) and longitudinal (b) bending loading of the plate V5, in agreement with the European standards EN 494 and DIN 274/1 Ozna~imo merjeno veli~ino z x. Njeno porazdelitev lahko opi{emo s katerokoli od naslednjih dveh funkcij. Prva je navadna porazdelitvena funkcija ali verjetnostna gostota p(x), tako da pomeni njen dolo~eni integral P a x b p x x a b ( ) ( )≤ ≤ = ∫ d (2a) verjetnost, da bo izmerjena vrednost veli~ine x le`ala med vrednostima a in b. Druga funkcija je kumulativna porazdelitvena funkcija P x p x x x x ( ) ( ' ) ' min = ∫ d (2b) ki pomeni verjetnost, da bo izmerjena vrednost dane veli~ine le`ala med teoreti~no najmanj{o mo`no vred- nostjo xmin in variabilno vrednostjo x. Tako sta 2-parametri~ni Weibullovi porazdelitveni funkciji naslednji: p x m x x x x x m m ( ) exp= ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ − ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ − 0 0 1 0 (3a) P x x x m ( ) exp= − − ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟1 0 (3b) Weibullova parametra sta Weibullov modul m in umeritveni parameter x0 (angle{ko scale parameter). Parameter x0 v literaturi imenujejo tudi karakteristi~ni parameter: ~e je merjena veli~ina x na primer sila F, potem ta parameter ozna~imo z F0 in ga imenujemo karakteristi~na sila. Weibullov modul je brezdimenzijski in je za zna~ilne krhke snovi veliko ve~ji od 1, karak- teristi~ni parameter pa ima dimenzijo spremenljivke x. Oba parametra dolo~ata {irino krivulje p(x): ~im ve~ji je m in ~im manj{i x0, tem o`ja je krivulja, hkrati x0 podaja tudi pri~akovano vrednost spremenljivke x (ena~bi 5). ^eprav funkciji p(x) in P(x) dajeta ekvivalentno informacijo o statisti~ni porazdelitvi, je za relativno majhno {tevilo izmerjenih vrednosti spremenljivke x primernej{a direktna uporaba funkcije P(x). Funkcijo P(x) bomo na kratko imenovali Weibullova funkcija. Njeni mejni vrednosti sta P(0) = 0 in P() = 1, pri ~emer je teoreti~no najmanj{a mo`na vrednost veli~ine x kar enaka ni~. Omenimo {e, da dobimo 3-parametri~no Weibullovo statistiko iz 2-parametri~ne tako, da dodamo {e parameter premika xmin in v desnih straneh ena~b (3) naredimo transformacijo x  x – xmin; to pomeni, da je teoreti~no najmanj{a mo`na vrednost veli~ine x enaka xmin namesto ni~. Sliki 2 prikazujeta 2-parametri~no Weibullovo funkcijo za m = 10 v naravni skali in v skali, kjer je graf lineariziran. Sliki ponazorita tudi geome- trijski pomen obeh parametrov: Weibullov modul m je smerni koeficient premice v lineariziranem grafu, pri x = x0 pa je verjetnost P enaka 1 – 1/e  63,2 %, temu pa ustreza to~ka (0, 0) v lineariziranem grafu (kro`ca na obeh slikah). Pri danem statisti~nem vzorcu imamo N izmerjenih ali izra~unanih vrednosti spremenljivke x, ki jih ozna- ~imo z xi. Cilj je najti Weibullova parametra, ki najbolj ustrezata statisti~nemu vzorcu16,27-32. Vrednosti xi najprej uredimo po velikosti od najmanj{e do najve~je. Nato vsakemu (i-temu po vrsti) izmerku priredimo {e ocenje- no verjetnost Pi; za kar obstaja ve~ na~inov, najve~krat pa se uporablja preprosta ena~ba: P i Ni = − + 0 3 0 4 , , (4) Tako dobimo N urejenih parov (xi, Pi), ki jim priredimo Weibullovo funkcijo, tako da se jim najbolj prilega. Pri tem si pomagamo z linearizacijo ena~be (3b), kot prikazuje slika 2b. Povle~i moramo premico, ki se najbolj prilega mno`ici to~k v transformiranem kordi- natnem sistemu. Namesto prikaza na sliki 2b raje upo- rabljamo posebne Weibullove diagrame z originalnima spremenljivkama in nelinearno skalo, kot je prikazano na sliki 3.16 Ko sta Weibullova parametra znana, lahko izra~u- namo razli~ne statisti~ne veli~ine, kot sta pri~akovana vrednost in standardna deviacija σx veli~ine x: < >= ⋅ +⎛ ⎝⎜ ⎞ ⎠⎟ x x m0 1 1Γ (5a) s x m m x = ⋅ + ⎛ ⎝⎜ ⎞ ⎠⎟ − +⎛ ⎝⎜ ⎞ ⎠⎟0 21 2 1 1Γ Γ (5b) kjer je  gama funkcija. Ker sklepamo o statisti~ni verjetnosti iz omejenega {tevila podatkov, sta izra~unana parametra m in x0 pravzaprav le oceni in ne natan~ni teoreti~ni vrednosti, pa ~eprav bi bila sama porazdelitev res natan~no M. AMBRO@I^, K. VIDOVI^: IZRA^UN PARAMETROV WEIBULLOVE PORAZDELITVE ... Materiali in tehnologije / Materials and technology 41 (2007) 4, 179–184 181 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 0,0 0,2 0,4 0,6 0,8 1,0 (1, 0,632) (a) P x/x 0 -1,0 -0,5 0,0 0,5 1,0 -10 -5 0 5 10 (0, 0) (b) ln (l n (1 /( 1 -P )) ) ln(x/x 0 ) Slika 2: Graf funkcije P(x/x0) za m = 10; a) naravni spremenljivki, b) linearizirani graf s prirejenima spremenljivkama. Obmo~je neodvisne spremenljivke v grafu (b) ustreza intervalu x/x0 od 1/e do e, v mejnih to~kah pa je verjetnost P prakti~no 0 in 1. Figure 2: Diagram of the function P(x/x0) for m = 10; a) natural variables, b) linear diagram with transformed variables. The range of the independent variable in diagram (b) corresponds to the interval x/x0 from 1/e from e, while the probability P is practically 0 and 1, respectively, for these limit points. Weibullova.27 Zato navadno podajamo interval 90 % zaupanja (na kratko 90 % IZ); npr. ~e je za parameter m ta interval enak 90 % IZ = 8–12, to pomeni, da lahko pri~akujemo z verjetnostjo 90 %, da je prava vrednost m res med 8 in 12. 5 REZULTATI IN RAZPRAVA Kot zgled vzemimo izmerjene vrednosti FT in ML za nebarvane plo{~e V5 z zgoraj navedenimi merami iz redne proizvodnje v letih 2003 in 2004, kar nam da okrog 400 meritev za obe leti skupaj za vsako mehansko veli~ino. Vrednosti smo ovrednotili z Weibullovo statistiko, kjer je spremeljivka x sila FT ali moment ML. Rezultate za N = 50, 100, 200 in 400 podatkov za obe veli~ini prikazujeta tabeli 1 in 2; pri tem za prve tri vrednosti N vzamemo po vrsti podatke iz leta 2003, za N = 400 pa podatke obeh let. Po standardu EN 494 naj bi se sicer sila FT prera~unala na 1 m {irine plo{~e, vendar je zaradi nazornosti v tabeli 1 prikazana izmerjena sila za dejansko {irino 920 mm; prera~un za {irino 1 m bi nam dal nekaj ve~je vrednosti, kot so v tabeli. Weibullov modul m je v vseh primerih reda velikosti 10, kar je zna~ilno za krhke konstrukcijske materiale, kot so keramika in cementni kompoziti. Korelacijski koeficient  v zadnjem stolpcu tabele pove, kako dobro se Wei- bullova funkcija prilega eksperimentalnim podatkom; pri tem  = 1 pomeni popolno ujemanje. Zaradi ve~je nazornosti je v tabeli zapisan v odstotkih. Ugotavljamo, da je  v vseh primerih nad 96 %, torej Weibullova porazdelitev zelo dobro opisuje podatke. Poleg ocenjenih vrednosti Weibullovega modula m in parametra FT0 ali ML0, ki ustreza parametru x0 v ena~bah (3), prikazujeta tabeli tudi ustrezne 90-odstotne intervale zaupanja. Intervali zaupanja za m so za N = 50 dokaj {iroki, ker je to {e vedno premajhen vzorec za zares zanesljivo stati- stiko. Z nara{~ajo~im N se vsi intervali zaupanja postopoma o`ajo, in za m je 90 % IZ okrog desetine ocenjene vrednosti m {ele pri N = 400. Za preizkus smo z uporabo naklju~nega generiranja {tevil izvedli tudi numeri~no simulacijo Weibullove porazdelitve za dan par parametrov m in x0 in izra~unane „naklju~ne” vrednosti xi statisti~no obdelali podobno, kot da bi bili eksperimentalni izmerki. Ugotovili smo podobno o`anje 90 % IZ za m in x0 kot pri obdelavi pravih eksperimen- talnih podatkov. V tabelah sta podane tudi ocene za pri~akovano vrednost (PV) in standardno deviacijo (SD) veli~in, izra~unane iz ena~b (5); te vrednosti so blizu vrednostim, dobljenimi s standardnimi statisti~nimi obrazci, npr.: < >= = ∑x N x ii N1 1 Tako kot za oba Weibullova parametra lahko izra~u- namo tudi 90%IZ za PV in SD zlomne sile in momenta, vendar jih tu ne navajamo. Sliki 3 prikazujeta prila- goditev Weibullovih diagramov v nelinearni skali ekspe- rimentalnim podatkom (N = 50) za zlomno silo in moment pri obeh na~inih obremenitve. Narejeni sta bili s komercialnim programom za Weibullovo porazdelitev Reliasoft’s Weibull ++.16 ^im ve~ja je strmina premice, tem o`ja je statisti~na porazdelitev in manj{a je verjetnost, da bodo v vsakdanji rabi izdelki odpovedali pri relativno majhnih mehanskih obremenitvah. Pri znanih Weibullovih parametrih lahko s preureditvijo ena~be (3b) izra~unamo, kolik{na je pri podani verjet- nosti, npr. P = 10 %, mejna vrednost veli~ine (sile ali momenta), tako da pri~akujemo z verjetnostjo P, da bo meritev koli~ine dala vrednost, manj{o od mejne vred- nosti. Nekaj zgledov je prikazanih v tabeli 3 za Weibullova parametra, ki ustrezata tabelama 1 in 2 pri N = 400. Tabelo 3 je treba pravilno razumeti: na primer, podatek za mejno silo 3518 N pri verjetnosti 0,1 % M. AMBRO@I^, K. VIDOVI^: IZRA^UN PARAMETROV WEIBULLOVE PORAZDELITVE ... 182 Materiali in tehnologije / Materials and technology 41 (2007) 4, 179–184 Tabela 1: Parametri Weibullove porazdelitve za pre~no zlomno silo FT Table 1: Weibull parameters for the transversal breaking force FT N m FT0/N PV, SD/N /% ocena 90 % IZ ocena 90 % IZ FT 50 11,63 9,86−13,72 6625 6475−6778 6341 661 97,0 100 12,71 11,40−14,16 6452 6355−6551 6196 594 97,5 200 11,70 10,83−12,65 6167 6093−6242 5904 612 96,7 400 12,29 11,63−12,98 6172 6124−6219 5919 586 98,3 Tabela 2: Parametri Weibullove statistike za vzdol`ni zlomni moment ML Table 2: Weibull parameters for the longitudinal breaking moment ML N m ML0/ (N⋅m/m) PV, SD/(N⋅m/m) /% ocena 90 % IZ ocena 90 % IZ ML 50 10,74 8,90−12,95 99,81 97,57−102,10 95,23 10,71 99,0 100 11,32 9,93−12,89 98,52 97,01−100,05 94,20 10,08 98,6 200 11,04 10,11−12,06 96,54 95,44−97,65 92,22 10,10 98,6 400  −  −     pomeni, da pri~akujemo, da bo po~ila komaj ena od tiso~ plo{~ pri pre~ni sili manj kot 3518 N. Tabela 3: Mejne vrednosti zlomne sile in zlomnega momenta pri dani verjetnosti Table 3: Limiting values of the breaking force and breaking moment for a given probability P/(% FT /N ML/(N⋅m/m) 10 5139 79,97 1 4245 64,85 0,1 3518 52,79 6 SKLEP Dvoparametri~na Weibullova funkcija dobro opisuje porazdelitev zlomnih sil in momentov pri pre~ni in vzdol`ni upogibni obremenitvi valovitih stre{nih plo{~ V5 iz vlaknocementa. Vizualizacija podatkov z grafi (sliki 3) daje nazoren prikaz ujemanja med meritvami in Weibullovo porazdelitvijo. ^im ve~ja je strmina pre- mice, kar pomeni ve~ji Weibullov modul m, tem ve~ja je mehanska zanesljivost izdelkov, tj. manj{a je verjetnost (pri istem parametru x0), da se bodo plo{~e zlomile pri majhnih obremenitvah. To je posledica dejstva, da pomeni ve~ji Weibullov modul manj{e nihanje zlomnih obremenitev – manj{o standardno deviacijo. Ugotovitev ponazorimo z nekaj {tevilkami. Vzemimo zaokro`eno vrednost karakteristi~ne zlomne sile F0 = 6000 N, Weibullov modul pa naj bo 10 ali 15. Vrednost m ne vpliva bistveno na povpre~no zlomno silo : ta je enaka 5708 N pri m = 10 in 5794 N pri m = 15. Mo~no pa se spremeni verjetnostna porazdelitev za manj{e sile. Za zgled vzemimo mejno silo 4000 N: pri m = 10 je verjetnost, da se izdelek zlomi pri manj{i sili od dane vrednosti 4000 N, enaka 1,72 %, pri m = 15 pa je ta verjetnost samo {e 0,23 %. Pri oceni statisti~nih parametrov se moramo zavedati, da se lahko ta ocena zelo odmika od dejanske vrednosti parametrov. Iz tabel 1 in 2 je razvidno, da je za 400 podatkov pri~akovani interval (z 90-odstotnim zaupa- njem) za resni~no vrednost Weibullovega modula {irok okrog 10 % izra~unane vrednosti tega parametra, medtem ko je izra~un drugega parametra Weibullove porazdelitve (FT0 ali ML0) zanesljivej{i. 7 LITERATURA 1 J. B. Studinka, Asbestos substitution in the fibre cement industry. The International Journal of Cement Composites and Lightweight Concrete, 11 (1989), 73–78 2 H. Savastano, P. G. Warden, R. S. P. Coutts, Potential of alternative fibre cements as building materials for developing areas, Cem. Concr. Compos., 25 (2003), 585–592 3 R. S. P. Coutts, A review of Australian research into natural fibre cement composites, Cem. Concr. Compos., 27 (2005), 518–526 4 V. Agopyan, H. Savastano, V. M. John, M. A. Cincotto, Develop- ments on vegetable fibre-cement based materials in Sao Paolo, Brasil: an overview, Cem. Concr. Compos. 27 (2005), 527–536 5 Y. P. Ma, B. R. Zhu, M. H. Tan, Properties of ceramic fiber rein- forced cement composites, Cem. Conc. Res., 32 (2005), 296–300 6 A. Peled, B. Mobasher, Pultruded fabric-cement composites, ACI Mater. J., 102 (2005), 15–23 7 S. A. S. Akers, J. B. Studinka, Ageing behaviour of cellulose fibre cement composites in natural weathering and accelerated tests, The International Journal of Cement Composites and Lightweight Concrete, 11 (1989), 93–97 8 S. A. S. Akers, Micromechanical studies of fresh and weathered fibre cement composites, The International Journal of Cement Composites and Lightweight Concrete, 11 (1989), 117–131 9 P. Purnell, J. Beddows, Durability and simulated ageing of new matrix glass fibre reinforced concrete, Cem. Concr. Compos., 27 (2005), 875–884 10 K. Vidovi~, B. Lovre~ek, M. Hraste, Influence of surface charge on sedimentation and filtration behaviour of fibrous material, Chem. Biochem. Eng. Q, 10 (1996), 33–38 11 K. Vidovi~, Vlaknocement – Lastnosti materiala in tehnologija proizvodnje, Mater. tehnol. 38 (2004), 197–203 12 C. Negro, A. Blanco, I. S. Pio, J. Tijero, Methodology for flocculant selection in fibre-cement manufacture, Cem. Concr. Compos., 28 (2006), 90–96 13 Beaudoin JJ. Handbook of Fiber-Reinforced Concrete – Principles, Properties, Developments and Applications. Noyes Publications, New Jersey, US, 1990 14 Weibull W. A statistical representation of fatigue failure in solids. Transactions of the Royal Institute of Technology 1949, No. 27, Stockholm 15 Weibull W. A statistical distribution function of wide applicability. J Appl Mech. 18(1951), 293–297 M. AMBRO@I^, K. VIDOVI^: IZRA^UN PARAMETROV WEIBULLOVE PORAZDELITVE ... Materiali in tehnologije / Materials and technology 41 (2007) 4, 179–184 183 1,00 5,00 10,00 50,00 90,00 99,00 3000,00 8000,00 Zlomna sila FT / / / N P % 1,00 5,00 10,00 50,00 90,00 99,00 200,00100,00 Zlomni moment ML / (Nm/m) P % a) b) Slika 3: Weibullova grafa P(FT) (a) in P(ML) (b) za N = 50 meritev Figure 3: Weibull diagrams P(FT) (a) and P(ML) (b) for N = 50 measurements 16 ReliaSoft’s Weibull ++, Life Data Analysis Reference. ReliaSoft Publishing, 1992 17 Kosma~ T, Oblak C, Jevnikar P, Funduk N, Marion L. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dental Mater. 15 (1999), 426–433 18 Setien VJ, Armstrong SR, Wefel JS. Interfacial fracture tougness between resin-modified glass ionomer and dentin using three different surface treatment. Dent Mater. 21 (2005) 6, 498–504 19 Lewis G, van Hooy-Corstjens CSJ, Bhattaram A, Koole LH. Influence of the radiopacifier in an acrylic bone cement on its mechanical, thermal, and physical propertires: Barium sulfate- containing cement versus iodine-containing cement. J. Biomed Mater Res B; 73B (2005) 1, 77–87 20 Anton N, Ruiz-Prieto JM, Velasco F, Torralba JM. Mechanical properties and wear behaviour of ceramic matrix composites based on clinker portland doped with magnesia. J Mater Processing Tech; 78 (1998), 12–17 21 Toutanji HA. Evaluation of the tensile strength of cement-based advanced composite wrapped specimens. Comp Sci Tech; 59 (1999) 15, 2261–2268 22 Caliskan S. Aggregate/mortar interface: influence of silica fume at the micro- and macro-level. Cem Concr Compos; 25 (2003) 4–5, 557–564 23 Li QS, Fang JQ, Liu DK, Tang J. Failure probability prediction of concrete components. Cem Concr Res; 33 (2003) 10, 1631–1636 24 Huang JS, Cheng CK. Fracture toughness variability of foamed alumina cements. Cem Concr Res; 34 (2004) 5, 883–888 25 EN 494, Fibre-cement profiled sheets and fittings for roofing – Product specification and test methods. December 2004 26 DIN 274/1, Asbestzement-Wellplatten – Masse, Anforderungen, Prufungen. April 1972 27 Quinn G. Flexure strength of advanced structural ceramics: A round robin. J. Am Ceram Soc; 73 (1990) 8, 2374–2384 28 Ritter JE, Bandyopadhyyay N, Jakus K. Statistical reproducibility of dynamic and static fatigue experiments. Ceram Bullet; 60 (1981), 798–806 29 Johnson LG. The median ranks of sample values in their population with an application to certain fatigue studies. Industrial Mathematics 1951; 2 30 Lloyd DK, Lipow M. Reliability: Management, Methods and Mathe- matics. Prentice Hall, Englewood Cliffs, New Jersey,1962 31 Li GQ, Cao H, Li QS, Huo D. Theory and its Application of Structural Dynamic Reliability. Earthquake Press, Beijing 1993 32 Wu D, Zhou J, Li Y. Unbiased estimation of Weibull parameters with the linear regression method. J Eur Ceram Soc; 26 (2006), 1099–1105 M. AMBRO@I^, K. VIDOVI^: IZRA^UN PARAMETROV WEIBULLOVE PORAZDELITVE ... 184 Materiali in tehnologije / Materials and technology 41 (2007) 4, 179–184 Z. ADOLF ET AL.: INVESTIGATION OF THE INFLUENCE OF THE MELT SLAG REGIME ... INVESTIGATION OF THE INFLUENCE OF THE MELT SLAG REGIME IN A LADLE FURNACE ON THE CLEANLINESS OF THE STEEL RAZISKAVA VPLIVA RE@IMA @LINDRE V PONOV^NI PE^I NA ^ISTOST JEKLA Zdenk Adolf, Ivo Husar, Petr Suchánek V[B-Technical University of Ostrava, Department of Metallurgy, 17. listopadu 15/2172, Ostrava-Poruba, 708 33, Czech Republic zdenek.adolfvsb.cz Prejem rokopisa – received: 2006-10-16; sprejem za objavo – accepted for publication: 2007-01-15 An experimental investigation of the influence of the ladle slag’s chemical composition, the ladle slag’s mass and the furnace slag’s mass (during the tapping flow in the ladle) on the sulphur content in steel was carried out. The parameters of the slag and the steel were obtained in operational conditions of oxygen LD converter melts and from the subsequent ladle furnace LF processing. Key words: ladle furnace, steel processing, effect of slag composition, refining effect Eksperimentalna raziskava vpliva kemi~ne sestave, koli~ine (pri izlivu jekla v ponovco) na vsebnost `vepla v jeklu. Parametri jekla in `lindre so dolo~eni pri izdelavi jekla v kisikovem konvertorju in obdelavi taline v ponov~ni pe~i. Klju~ne besede: ponov~na pe~, procesiranje jekla, sestava `lindre, rafinacijski u~inek 1 INTRODUCTION Steel refined in a ladle furnace should have the following characteristics prior to casting: • a chemical composition within the prescribed interval of alloying-element content and limited amounts of impurities, • the required metallographic purity in terms of com- position, magnitude, number and density of inclu- sions, • the required casting temperature, depending on the steel’s liquidus temperature. In order to achieve these parameters the steelmaker usually has at his or her disposal a reheating ladle fur- nace, aluminium wire and a cored wire feeder, the mixing of steel with argon blowing or with induction stirring and an oxygen activity measurement system. The slag is the most important factor for ensuring the quality of molten steel in the ladle. Ladle slag is formed from the products of de-oxidation of the steel, the added mixtures and from the corrosion products of the ladle lining, particularly at the slag line. Admixtures added intentionally to the slag ensure the required chemical composition of the slag, its fluidity and its ability to refine steel, i.e., for the absorption of inclusions and unwanted elements from the steel. The admixtures consist mostly of lime, fluorspar, calcium carbide and fireclay. Also, synthetic slags usually containing Al2O3, CaO, MgO, SiO2, and a minimum of iron oxides, MnO and sulphur are used more and more often. Slags are often prepared from waste materials, either by simple mixing or by sintering, while the most expensive slags of the highest quality are manufactured by re-melting the input raw materials. These slags are usually used as a replacement for fluorspar and for the preservation of the required fluidity and for obtaining a sufficient refining effect in the ladle. In this article the slag regime in a ladle furnace during steel refining, partly under fluorspar and partly under alumina slags, is compared. The slag regime of heats was evaluated with respect to the type and mass of the additions to the ladle, the ladle slag mass, the mass of converter slag overflowed to the ladle, the mass of corroded ladle lining and the slag desulphurisation capacity. 2 CHARACTERISTICS OF THE HEATS The investigated steel I (intended for rail production) has an increased content of carbon (0.70–0.76 %), manganese (0.85–0.85 %) and silicon (0.30–0.40 %), controlled amounts of sulphur (0.01–0.02 %) and limited amounts of aluminium (0.003 %). It is, therefore, produced according to a technology without the use of aluminium and the deoxidation of steel in the ladle with coke, FeSi and MnSi. At the same time, during the tapping from the LD converter slag-forming materials are added to the ladle, e.g., lime (1200 kg), fluorspar (300 kg) and fireclay (150 kg), or lime, fluorspar and synthetic slag CCA with high contents of Al2O3 (see Table 1). Materiali in tehnologije / Materials and technology 41 (2007) 4, 185–188 185 UDC/UDK 669.041:669.14 ISSN 1580-2949 Professional article/Strokovni ~lanek MTAEC9, 41(4)185(2007) Table 1: Chemical composition of the synthetic slag CCA Tabela 1: Kemi~na sestava sinteti~ne `lindre CCA w/% Al2O3 CaO MgO SiO2 S Granularity average 55.05 26.60 6.56 3.21 0.0295 5–50 mmmin 53.60 26.10 6.21 3.21 0.0290 max 56.50 27.10 6.91 3.21 0.0300 The refining of the rail steel was compared to that of the structural steel II with 0.18–0.20 % C, 0.41–0.51 % Mn, 0.20–0.30 % Si, with limited sulphur content (0.020 %) and a specified aluminium content (0.015–0.030 %). During tapping to the ladle this steel is deoxidised by aluminium and alloyed with FeMn and FeSi. At the same time, lime (1200 kg) and fluorspar (200 kg), or lime (900 kg) and synthetic slag CCA (700 kg), replacing the fluorspar, are added to the ladle. The average chemical composition of ladle slags based on lime and fluorspar prior to the exit from the LF stand is given in Table 2. Alumina slags were formed during the making of steel I for rails with synthetic slag CCA (700 kg) with 800 kg of lime (variant A), or with 600 kg of lime (variant B), and during the making of structural steel II with the synthetic slag CCA (700 kg) with 900 kg of lime. Table 3 gives their average chemical composi- tions. The average content of FeO in the fluorspar slags was 0.55 %, and in the alumina slags it was 2.0 %. If we compare both types of slags, then fluorspar slags have approximately 8 % to 11 % more CaO, higher basicity and a significantly higher content of CaF2, which is added to the ladle during tapping in the form of fluorspar. On the other hand, alumina slags have higher contents of Al2O3 (by 9 % to 13 %) and MgO (by 1.5 % to 3.5 %). The synthetic slag CCA is, apart from converter slag and lime, also a source of MgO and Al2O3. 3 RESULTS AND DISCUSSION The mass of the slag in the ladle was calculated from the balance of CaF2 (Steel I - fluorspar slags) and from the balance of Al2O3 (Steel I and II - alumina slags). The mass of converter slag that overflowed into the ladle was calculated from the balance of CaO, and the extent of the wear of the ladle from the balance of MgO in the ladle slag. These data are for fluorspar slags and for two variants of alumina slags (rail steel I or structural steel II) summarised in Table 4. The data in Table 4 shows that ladle slags differ primarily in terms of their mass. Steel I fluorspar slags are formed, apart from SiO2, from deoxidising silicon, lime, fluorspar and fireclay. The sum of the masses of these three components in the charge was approximately 1720 kg. The converter slag that overflowed into the ladle during the tapping affects the mass and the Z. ADOLF ET AL.: INVESTIGATION OF THE INFLUENCE OF THE MELT SLAG REGIME ... 186 Materiali in tehnologije / Materials and technology 41 (2007) 4, 185–188 Table 2: Chemical composition of the fluorspar slags (CaF2) Tabela 2: Kemi~na sestava fluoridnih (CaF2) `linder w/% CaO SiO2 Al2O3 MgO CaF2 S Basicity Steel I - rails average 52.9 23.5 4.2 4.9 13.29 0.64 2.25 min 50.9 21.9 3.5 4.5 11.74 0.42 2.12 max 55.2 25.2 5.1 5.7 14.48 0.75 2.52 Steel II - structural average 56.41 19.34 12.94 7.02 4.22 0.41 2.92 min 50.30 17.40 10.90 5.30 2.84 0.28 2.52 max 59.80 21.70 14.60 14.00 6.11 0.66 3.23 Table 3: Chemical compositions of alumina slags (CCA) Tabela 3: Kemi~na sestava aluminatnih `linder (CCA) w/% CaO SiO2 Al2O3 MgO CaF2 S Basicity Steel I - rails Variant A average 45.2 22.3 15.4 8.11 1.0 0.23 2.02 min 45.0 20.9 15.0 7.88 0.6 0.19 1.93 max 45.5 23.6 15.7 8.50 1.8 0.20 2.15 Variant B average 44.7 20.1 17.9 8.5 0.9 0.23 2.22 min 44.0 18.9 17.4 7.7 0.2 0.14 2.13 max 45.3 21.3 18.3 9.3 1.5 0.31 2.44 Steel II - structural average 45.23 17.89 22.05 8.51 0.10 0.20 2.53 min 41.10 15.50 18.00 6.80 0.00 0.13 2.12 max 48.30 21.10 25.30 11.00 0.27 0.31 2.95 chemical composition of the ladle slag. The mass of the slag in the heats with fluorspar slag was approximately 250 kg lower than the average for heats with alumina slag, for which a slightly lower overall mass of ladle slag was used. Alumina slags are formed of lime and synthetic slag CCA with an average mass of 1510 kg in variant A, and 1310 kg in variant B (again, apart from the SiO2 from the deoxidising silicon). For steel II the fluorspar slags are formed, apart from SiO2 and Al2O3, from deoxidising silicon and aluminium, of lime and fluorspar with a total mass of 1400 kg; for alumina slags fluorspar is replaced with the slag CCA and the new mass of lime and slag CCA is 1600 kg. The wear of the lining is expressed as the mass of MgO released from the ladle wear into the slag. The smallest lining wear for steel I was observed in the variant B, while the greatest wear was observed for the variant A of alumina slag. This is apparently related to the considerable differences in the total mass of slag in the ladle. The fluorspar slag shows – contrary to expectations – on average a low wear of lining; however, with a large scatter of values of approximately 30 kg of MgO. The mass of converter slag overflowed into the ladle was, for the structural steel, three to five times greater then for the steel I. The share of converter slag in approximately 35 % of the total slag mass in the ladle is the source of the relatively high content of MgO in the ladle slag. The wear of the lining is practically the same for both types of ladle slags, and it is more influenced by the slag’s mass then by the slag’s chemical composition. The parameters of the steel II desulphurisation with fluorspar and alumina slags are given in Table 5. Table 5: Parameters of steel II desulphurisation by fluorspar and alumina slags Tabela 5: Parametri raz`veplanja jekla II s fluoridno in z aluminatno `lindro c's w SBOF/% w SLF/% /% Ls Fluorspar slag average 0.009945 0.026 0.011 68.769 40.24 min 0.006744 0.016 0.006 47.619 15.56 max 0.015171 0.043 0.018 80.000 55.00 Alumina slag average 0.002481 0.030 0.019 36.131 11.42 min 0.001426 0.018 0.011 20.000 4.48 max 0.003582 0.038 0.029 52.778 20.71 Note: c's= sulphide capacity of slag, 1 SBOF = sulphur content in steel during tapping from the converter, w/% SLF = sulphur content in steel after treatment in the ladle furnace, w/% = rate of steel desulphurisation after treatment in the ladle furnace, % Ls = distributing coefficient of sulphur (Sslag /Ssteel), 1 It can be concluded from Table 5 that fluorspar slags have a greater desulphurisation effect than alumina slags (see , Ls), due to their higher basicity and their higher value of sulphide capacity given by the CaO content, which is on average higher by 10 %. It was observed that fluorspar slags had a greater fluidity than alumina slags. This means that a small content of CaF2 (up to 5 %) in the fluorspar slag increases the fluidity of this slag in a wide range of chemical compositions, especially of the CaO content. In contrast to this, the liquidity of the alumina slags can only approach that of the fluorspar slags in a relatively narrow range of content of the more active oxides (CaO, Al2O3, SiO2, MgO). It is necessary to increase the CaO content to at least 50 %, the Al2O3 content to 25–30 %, and preserve the SiO2 content at the level of 15–20 % and the MgO content at the level of 7 % in order to increase the sulphide capacity of the alumina slag to the level of the fluorspar slag. 4 CONCLUSION The slag regime of heats during the making of rail steel I with a limited content of aluminium, increased amounts of C, Mn and Si and with controlled amounts of sulphur and structural steel II deoxidised by aluminium with a limited sulphur content are compared. The original fluorspar slag with low amounts of Al2O3 was substituted with an alumina slag in which the fluorspar was replaced by synthetic slag CCA. Z. ADOLF ET AL.: INVESTIGATION OF THE INFLUENCE OF THE MELT SLAG REGIME ... Materiali in tehnologije / Materials and technology 41 (2007) 4, 185–188 187 Table 4: Parameters of ladle slags Tabela 4: Parametri ponov~ne `lindre m/kg LS CS MgO lining Steel I - rails Fluorspar slags average 2411 325 71.5 min 2319 291 52.6 max 2508 380 82.9 Alumina slags – variant A average 2569 564 99.1 min 2519 431 93.4 max 2637 745 111.0 Alumina slags – variant B average 2210 590 69.0 min 2161 521 64.9 max 2273 719 75.6 Steel II – structural Fluorspar slags average 3374 1495 88.4 min 2632 153 57.3 max 4092 2800 99.8 Alumina slags average 3650 1693 86.9 min 2743 323 59.3 max 4645 3308 101.0 Note: mass LS = mass of ladle slag, m/kg mass CS = mass of converter slag that overflowed into the ladle, m/kg MgO lining = wear of ladle lining, m/kg The following conclusions from the comparison of both slag regimes of these heats (based on 200-tonne heats) are proposed: a) Alumina slags formed by lime, synthetic slag CCA and the products of steel deoxidisation have a lower desulphurisation capacity then the fluorspar slags due to their lower CaO content. b) The main advantage of fluorspar slags is in their great desulphurisation effect over a wide range of slag chemical compositions, even for a low CaF2 content. c) The liquidity of alumina slags is limited to a narrow range of CaO, Al2O3, SiO2 and MgO content. d) The mass of ladle slags is markedly affected by the volume of furnace slag overflowed into the ladle that has to be minimised. e) The wear of the lining depends on the mass of the ladle slag. The effect of the slag’s chemical composition is of minor importance. This investigation was carried out in the frame of Grant project Reg. No. 106/04/0029 with the financial support of the Grant Agency of the Czech Republic and the project EUREKA Reg. No. OE214, with the finan- cial support of the Ministry of Education, Youth and Sports of the Czech Republic. Z. ADOLF ET AL.: INVESTIGATION OF THE INFLUENCE OF THE MELT SLAG REGIME ... 188 Materiali in tehnologije / Materials and technology 41 (2007) 4, 185–188 M. M. KRGOVI] ET AL.: THE INFLUENCE OF ILLITE-KAOLINITE CLAYS’ MINERAL CONTENT ... THE INFLUENCE OF ILLITE-KAOLINITE CLAYS’ MINERAL CONTENT ON THE PRODUCTS’ SHRINKAGE DURING DRYING AND FIRING VPLIV VSEBNOSTI GLIN ILINIT-KAOLINIT NA KR^ENJE PRI SU[ENJU IN @GANJU Milun Krgovi}1, Nada Marstijepovi}1, Mileta Ivanovi}1, Radomir Zejak2, Milo{ Kne`evi}2, Sne`ana \urkovi}1 1University of Montenegro, Faculty of Metallurgy and Technology, Cetinjski put bb, 81000 Podgorica, Montenegro 2University of Montenegro, Faculty of Civil Engineering, Cetinjski put bb, 81000 Podgorica, Montenegro miluncg.ac.yu Prejem rokopisa – received: 2007-01-19; sprejem za objavo – accepted for publication: 2007-03-18 In this paper an investigation of the influence of the mineral content of illite-kaolinite clays on the products’ shrinkage during drying and firing is presented. Under the same conditions for preparing raw materials and ceramic mass, as well as under the same firing regime, the products’ shrinkage during drying and firing is mostly influenced by the amounts of quartz and the illite and kaolinite clay minerals. Keywords: clay, linear shrinkage, total shrinkage, sintering, porosity Predstavljena je raziskava vpliva vsebnosti glin ilinit-kaolinit na kr~enje pri su{enju in `ganju. Pri enakih pogojih priprave surovega materiala in keramike in enakemu re`imu `ganja na kr~enje najbolj vpliva razmerje med kremenom ter glino ilinit-kaolinit. Klju~ne besede: glina, linearno kr~enje, skupno kr~enje, sintranje, poroznost 1 INTRODUCTION The illite-kaolinite clays differ significantly in mineral composition from illite, kaolinite, quartz, feldspar, Fe2O3 and CaCO3 1,2. The presented raw material composition, depending on the sintering temperature, produces solid-state reactions, polymorphic transformations of quartz and liquid-phase formation3. Besides the sintering temperature of the ceramic mass, the raw material mineral content also has an important role for the relations between the microstructure constituents4. The appearance of the liquid phase accelerates the solid-state reactions5. The mineral content of illite-kaolinite clays, besides other factors, determines the formation of new crystal phases during the sintering process, and the polymorphic transformations of quartz caused by volume changes6. During the drying of shaped ceramic products, the simultaneous transfer of mass and heat in the homo- geneous polydispersive system material with water occurs7. The water is transported from the internal area of the material through capillaries to the surface of the products, where it evaporates. The process depends on the diffusion and evaporation rates. The difference in the water content on the surface and in the inside layers of the material enables humidity to transfer continuously from the inside to the surface by diffusion8. The volume changes during the drying induce internal stresses. 2 EXPERIMENTAL Two types of illite-kaolinite clays were used for the preparation of samples (the clays are marked "PV" and "BP"). The samples were formed by plastic shaping in a mould of parallelepiped shape with dimensions 7.7 cm × 3.9 cm × 1.6 cm and marked with the numbers 1, 2, 3, 4, 5 … 15. The clays’ analyses consisted of a determination of the mineral content with x-ray analysis, as well as che- mical and granulometric analyses with a determination of the particle size distribution. The grain shape was determined microscopically. The linear and volume shrinkage of the samples during the drying in air to a constant mass and during drying in a dryer at 110 °C were determined too. The samples were fired at 800 °C, 900 °C, 1000 °C, 1100 °C and 1200 °C. The total porosity, the mineral content by x-ray analysis, and the microscopic analyses were assessed for the sintered samples. 3 RESULTS AND DISCUSSION On the basis of the mineral and chemical compo- sitions shown in Figure 1, Figure 2 and Table 1, it was concluded that the investigated specimens were illite-kaolinite clay types containing -quartz, carbonate and Fe2O3. In the "BP" clay the content of -quartz was Materiali in tehnologije / Materials and technology 41 (2007) 4, 189–192 189 UDC/UDK 553.61:663.3.041 ISSN 1580-2949 Professional article/Strokovni ~lanek MTAEC9, 41(4)189(2007) lower and there was a larger content of illite and kaolinite. The granulometric analysis shows a higher average content of "PV" clay grain (Table 2), although the pulverization of the clays was performed under the same conditions. This is due to the difference in mineral content, particularly the higher percentage of quartz in the "PV" clay. The higher content of -quartz in the "PV" clay and the higher average content of grains explain the lower average value of the volume shrinkage for the 15 samples during the air drying to a constant mass (Figure 3, Figure 4 and Table 3). The results of the volume shrinkage, as well as the average value for 15 samples during drying in a dryer to a constant mass, show higher values of the volume shrinkage for the samples based on "PV" clay (Figure 5, Figure 6 and Table 4). The higher the content of -quartz, the lower the content of clay minerals and the higher average value of the grains in this clay enable the easier transport of water from the internal area of the samples through the capillaries to the surface at a drying temperature of 110 °C. The different values of the volume shrinkage of the samples during drying are the consequence of an unequal pressure during plastic shaping in a mould. The volume shrinkage during firing is smaller for the samples based on the "PV" clay (Figure 7). The X-ray M. M. KRGOVI] ET AL.: THE INFLUENCE OF ILLITE-KAOLINITE CLAYS’ MINERAL CONTENT ... 190 Materiali in tehnologije / Materials and technology 41 (2007) 4, 189–192 Table 1: Chemical composition of clay Tabela 1: Kemi~na sestava gline Oxides SiO2 Fe2O3 Al2O3 CaO MgO Na2O K2O SO3 Ig. loss Clay "BP" Percentage by weight, w/% 72.68 5.70 10.98 0.48 0.70 0,31 1.12 – 8.03 Clay "PV" Percentage by weight, w/% 71 5.51 10.55 1.42 0.62 0.45 1.86 0.25 8.34 Table 2: Average grains value of the investigated clay types Tabela 2: Povpre~na velikost zrn v preiskanih glinah Clay type Average grains value (MV), d/µm "BP" 17 "PV" 27 Table 3: Average values of volume shrinkage during drying in air to the constant mass Tabela 3: Povpre~no volumensko kr~enje pri su{enju na zraku do konstantne mase Clay type Average values of volume shrinkage (for15 samples) /% "BP" 18.4 "PV" 15.8 Table 4: Average values of volume shrinkage during drying in dryer to the constant mass Tabela 4: Povpre~no volumensko kr~enje pri su{enju v su{ilniku do konstantne mase Clay type Average values of volume shrinkage (for15 samples) /% "BP" 0.98 "PV" 1.65 Figure 3: Volume shrinkage during drying to a constant mass in air ("PV" clay) Slika 3: Volumensko kr~enje pri su{enju do konstantne mase na zraku ("PV"-glina) Figure 2: X-ray diffractogram of "BP" clay Slika 2: Rentgenski difraktogram "BP"-gline Figure 1: X-ray diffractogram of "PV" clay Slika 1: Rentgenski difraktogram "PV"-gline M. M. KRGOVI] ET AL.: THE INFLUENCE OF ILLITE-KAOLINITE CLAYS’ MINERAL CONTENT ... Materiali in tehnologije / Materials and technology 41 (2007) 4, 189–192 191 Figure 9: X-ray diffractogram of sintered product ("PV" clay, T = 1200 °C) Slika 9: Rentgenski difraktogram za sintrani produkt ("PV"-glina, T = 1200 °C) Figure 6: Volume shrinkage during drying to a constant mass in dryer ("BP" clay) Slika 6: Volumensko kr~enje pri su{enju do konstantne mase v su{ilniku ("BP"-glina) Figure 5: Volume shrinkage during drying to a constant mass in dryer ("PV" clay) Slika 5: Volumensko kr~enje pri su{enju do konstantne mase v su{ilniku ("PV"-glina) Figure 4: Volume shrinkage during drying to a constant mass in air ("BP" clay) Slika 4: Volumensko kr~enje pri su{enju do konstantne mase na zraku ("BP"-glina) Figure 8: X-ray diffractogram of sintered product ("BP" clay, T = 1200 °C) Slika 8: Rentgenski difraktogram za sintrani produkt ("BP"-glina, T = 1200 °C) 0 2 4 6 8 10 12 14 16 18 20 800 900 1000 1100 1200 F BP PV iring temperature, T / ºC T o ta l sh ri n k ag e % , Figure 7: Volume shrinkage during sintering Slika 7: Volumensko kr~enje pri `ganju analysis of the sintered products shows a higher content of the minerals sillimanite, Al2O3·SiO2, and mullite, 3Al2O3·2SiO2, formed during the sintering of the samples based on "BP" clay (Figure 8). The higher content of the -quartz in the "PV" clay and the higher total porosity explain the lower volume shrinkage during sintering, when the quartz is partly transformed into tridimite (Figure 9). The microstructures of the sintered products are shown in Figures 10 and 11. 4 CONCLUSION The investigation of the influence of illite-kaolinite clays’ mineral content on the linear and volume shrinkage during drying and firing shows that the shrinkage depends on the following factors: • Using the same conditions for the preparation of raw materials and ceramic mass during drying in air and in a dryer to a constant mass, the most important factor is the influence of the relation between the quartz and clay’s minerals content • the values of the volume and linear shrinkage of samples during the firing process depend also on the relation between the quartz and the clay’s minerals content. This influence is particularly strong at temperatures above 1000 °C. 5 REFERENCES 1 M. Tecilazi}-Stevanovi}, Principles of Ceramic Technology, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (1990) 2 R. E. Grim, Clay Mineralogy, New York: McGraw-Hill Book Co., (1983) 3 M. M. Krgovi}, N. Z. Blagojevi}, @. K. Ja}imovi}, R. Zejak, Res. J. Chem. Environ. 8 (2004) 4, 73–76 4 J. Griffiths, Ind. Min., 272 (1990), 35–40 5 M. M. Krgovi}, Z. K. Ja}imovi}, R. Zejak, Tile & Brick Int. 17 (2001) 3, 178–181 6 M. Krgovi}, M. Ivanovi}, N. Z. Blagojevi}, @. Ja}imovi}, R. Zejak, M. Kne`evi}, Interceram, 55 (2006) 2, 104–106 7 Lj. Kosti}-Gvozdenovi}, R. Ninkovi}, Inorganic Technology, Faculty of Technology and Metallurgy, University of Belgrade, Bel- grade (1997) 8 B. @ivanovi}, R. Vasi}, O. Janji}, Ceramic Tiles, Institute of Mate- rials in Serbia, Belgrade, (1985) M. M. KRGOVI] ET AL.: THE INFLUENCE OF ILLITE-KAOLINITE CLAYS’ MINERAL CONTENT ... 192 Materiali in tehnologije / Materials and technology 41 (2007) 4, 189–192 Figure 11: Microstructure of sintered product ("BP" clay, T = 1200 °C) Slika 11: Mikrostruktura sintranega produkta ("BP"-glina, T = 1200 °C) Figure 10: Microstructure of sintered product ("PV" clay, T = 1200 °C) Slika10: Mikrostruktura sintranega produkta ("PV"-glina, T = 1200 °C) D. PIHURA, M. ORU^: THE APPLICATION OF SPHEROIDAL GRAPHITE CAST IRON ... THE APPLICATION OF SPHEROIDAL GRAPHITE CAST IRON IN BOSNIA AND HERZEGOVINA UPORABA NODULARNE GRAFITNE LITINE V BOSNI IN HERCEGOVINI Dervi{ Pihura, Mirsada Oru~ University of Zenica, Metallurgical institute "Kemal Kapetanovi}", Travni~ka cesta 7, 72000 Zenica, Bosnia and Herzegovina pihurayahoo.com Prejem rokopisa – received: 2006-07-20; sprejem za objavo – accepted for publication: 2007-02-16 Modern technology ensures the quality and the economy of machine parts manufactured from spheroidal graphite iron (SGI) castings. Although this technology has been in widespread use in the EU countries for half a century and the production volumes continue to increase, in Bosnia and Herzegovina (B&H) there is no interest in the production and use of SGI. From an analysis of industrial facilities we have concluded that the foundry industry in B&H could also be competitive in the market for SGI. Key words: Spheroidal graphite iron castings, machine parts Moderna tehnologija zagotavlja kakovost in ekonomi~nost strojnih delov, izdelanih iz nodularne grafitne litine. ^eprav je ta `e pol stoletja veliko uporabljena v dr`avah EU in v ZDA, obseg proizvodnje pa stalno raste, v Bosni ni zanimanja za proizvodnjo in uporabo nodularnih odlitkov. Iz analize industrijskih kapacitet sklepamo, da bi lahko bila livarska industrija v BiH konkuren~na tudi na trgu nodularnih odlitkov. Klju~ne besede: nodularna siva litina, strojni deli 1 INTRODUCTION Spheroidal graphite iron (SGI) castings are not produced and used in the metallurgical industry in Bosnia and Herzegovina (B&H), which is the opposite situation to most industrial countries, where the use of SGI castings increases at rates of up to 10 % per year (Figure 1). It is reasonable to expect that such industrial branches as energy, transport, agriculture, etc. will be forced into an increasing use of SGI, especially for moving and rotating machine parts, for example: • The increasing speeds used on railways requires the substitution of some steel cast parts, for example, gears, with gears made from SGI. These gears are used to advantage when operating railways at speeds from a hundred up to a few hundred kilometres per hour. • The automotive industry needs high-quality machine cast parts. The B&H foundry industry needs to set up for casting machine blocks from SGI, as well as other cast parts. • The use of wind energy is a solution that B&H will soon exploit. When generating energy from wind machines, a great number of the parts are made from SGI. 2 INVESTIGATIONS AND DEVELOPMENT OF SGI IN B&H The development work for the production of parts from SGI castings began approximately 30 years ago at the "Kemal Kapetanovic" Metallurgical Institute in Zenica. The technology for the manufacture of specific SGI machine parts was developed at the institute, after which it was transferred to the former foundry of the Energoinvest company in Sarajevo, the foundry in Ilija{, and other foundry companies. The investigations were carried out to answer different questions, relating to: • the economics of the production of SGI in B&H; • the influence of properties due to the presence of residuals and impurities in the melting charge on the process of nodulation and the final degree of nodularity of the solidified SGI castings in relation to the extended and the conventional chemical analysis; Materiali in tehnologije / Materials and technology 41 (2007) 4, 193–195 193 UDC/UDK 669.13:669.1(497.15) ISSN 1580-2949 Professional article/Strokovni ~lanek MTAEC9, 41(4)193(2007) 0 5000 10000 15000 20000 25000 1950 1960 1970 1980 1990 2000 2010 Years P ro d u c ti o n (t x 1 0 0 0 ) Figure 1: Growth in the world production of SGI from 1950 to 2000 1 Slika 1: Rast svetovne proizvodnje nodularnih odlitkov v obdobju 1950 do 2000 1 • the relation between the degree of nodularity and the microstructure homogeneity and the mechanical properties of SGI parts; • the effect of the optimal addition of alloys and of the processing parameters on the nodulation; • the kinetics of nodulation. Many of the findings and the accumulated field experience could still be used for the renewal of the production of SGI and various castings 2,3, especially since customers may inquire about mutually exclusive properties for some specific castings. 3 CHARACTERISTICS OF SGI CASTINGS It is clear that the production of castings from SGI of different quality levels could be revived in B&H in order to replace the supply or imports from abroad. In this way it is possible to produce castings from SGI for specific uses and for the substitution of steel castings. The melting temperature for SGI is about 300 °C lower than that for steel, and this in itself is a significant advantage in terms of saving energy and ecology. Apart from the better castability, the easier mechanical machining and the lower friction explain the continuous increase in the production of machine parts from SGI in the countries of the EU and the USA. It seems natural to expect that also in B&H SGI should again achieve the position it had in the foundry industry two decades ago, particularly since a large part of the production was delivered to customers abroad because of its high quality. The increase in the world production of SGI (Figure 1) asks the question, which casting iron will dominate the production of castings: spheroidal or lamellar graphite iron, malleable cast iron or cast steel? Malleable cast-iron production started to decrease in the early 1980s, while SGI production increases continuously, partly because of the substitution of other cast irons and partly because of new uses for the castings. The increase in the production of SGI becomes clear from a comparison of the casting technology and the cast’s properties in Figure 2 and 3 4. The comparison accounts for several factors, such as, the chemical analysis, the mechanical properties, the section and size of the cast parts, the processing time, the assortment, the energy consumption, the total costs, the sampling, the testing and the examination and control 2. The effect of graphite nodules on the stress-strain relations can be calculated from the equation Rm = (1 – e –Eo–t)/ where Eo is the modulus elasticity,  is a factor of the dependence of Eo from the stress up to the value of Rp0.2 and can be expressed as  = 1/Rp0.2, and t is the elongation. The as-cast microstructures of SGI castings depend on the chemistry and the cooling rate. The micro- structure consists of ferrite, pearlite and free carbides, and it can be modified by subsequent heat treatments. When compared to steel castings, SGI castings are less expensive, show a greater yield, and thus a greater weight of the final cast part versus the weight of the used melt. The consumption of energy for the production of SGI parts is one-third lower than that for cast steel parts. Also, the investment costs for the SG foundry are lower than those for a steel foundry 2,4. The basic advantages of SGI are accurate dimensions, better uniformity of the strength properties, less hot and cold cracking, and an easy heat treatment. Additional advantages of the SGI castings are a lower coefficient of thermal expansion, less shrinkage and piping, better damping properties, better fluidity, better machinability and reduced surface scaling. Also, with SGI castings the effect of the wall thickness on the mechanical properties is smaller (2). 4 FURTHER DEVELOPMENT The increasing market demand for a better and more uniform quality of castings and improved mechanical properties as well as the pressure to lower prices require that foundries develop and use improved technologies and new grades of castings. They have to do this even though the optimal combination of different properties can be obtained with SGI (Figure 3). Accordingly, the world production of SGI is increasing rapidly; an increase of about 50 % was achieved in the past decade, a growth rate that is only rarely met with other major industrial products. However, methods for the production of parts competing for the same applications as SGI castings are also constantly improving and the SGI foundry industry is forced to compete, not only with other cast-iron alloys, but also other materials that are potential substitutes. In this competition SGI castings seem to be in better position than other iron castings because of the more D. PIHURA, M. ORU^: THE APPLICATION OF SPHEROIDAL GRAPHITE CAST IRON ... 194 Materiali in tehnologije / Materials and technology 41 (2007) 4, 193–195 Figure 2: Mechanical properties of cast irons, cast steels and rolled steels for the period 1950–1960 (left-hand side) and 2000 (right-hand side) 2,5; (LG – gray iron, MG – malleable iron, SG – spheroidal graphite iron, RS – rolled steel, CS – cast steel), (Rm – Tensile strength, Rp0.2 – Yield strength, A5 – elongation) Slika 2: Mehanske lastnosti `elezovih litin, litega `eleza in valjanega jekla za obdobje 1950–1960 (levo) in 2000 (desno) 2,5; (LG – siva litina, MG – temprana litina, SG – nodularna litina, RS – valjano jeklo, CS – jeklena litina), (Rm – raztr`na trdnost, Rp0.2 – meja plasti~nosti, A5 – raztezek) ecologically friendly production process and its lower costs. With the introduction of new technological processes such as ADI and ESR better mechanical properties of SGI (Figure 2 and 3) are being achieved and the com- petitiveness of castings, especially for use in more severe conditions, is strengthened. 5 CONCLUSION The overall competitiveness involving the economy of production and the properties make SGI castings very suited to a number of applications in machine parts. The increased production and use of SGI castings is justified if advanced technology and organisation are achieved in the production and delivery of castings with qualities that satisfy export-market requirements. 6 REFERENCES 1 www.ductile.org/didata/Section 2/figures 2 R. Hummer et al.: Giesserei, 88 (2001) 9–11, 49–55 3 World Steel production, Worldsteel News, January (2005), 5 4 F. Kritschtner: Livarski vestnik, (1996), 4, 1–15 5 Gusseisen mit Kugelgraphite: Giesserei Kalender, 1985, 72–81 6 P.M. Cabanne, Hommes & Fonderie, 306 (2000), Aout/Septembre, 18–22 D. PIHURA, M. ORU^: THE APPLICATION OF SPHEROIDAL GRAPHITE CAST IRON ... Materiali in tehnologije / Materials and technology 41 (2007) 4, 193–195 195 Properties Cast Iron Gray Malleable White Steel Nodular Fluidity Machining NA Damping Surface hardening NA Modulus off elasticity NA Impact energy NA Corrosion resistant Strength/Mass NA Abrasion Costs The best The worst Figure 3: Properties of cast ferrous materials 5,6 Slika 3: Lastnosti litih `eleznih materialov 5,6