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ABSTRACT

The covariogram of a measurable setA⊂ R
d is the functiongA which to eachy∈ R

d associates the Lebesgue
measure ofA∩ (y+ A). This paper proves two formulas. The first equates the directional derivatives at the
origin of gA to the directional variations ofA. The second equates the average directional derivative at the
origin of gA to the perimeter ofA. These formulas, previously known with restrictions, are proved for any
measurable set. As a by-product, it is proved that the covariogram of a setA is Lipschitz if and only ifA has
finite perimeter, the Lipschitz constant being half the maximal directional variation. The two formulas have
counterparts for mean covariogram of random sets. They alsopermit to compute the expected perimeter per
unit volume of any stationary random closed set. As an illustration, the expected perimeter per unit volume of
stationary Boolean models having any grain distribution iscomputed.

Keywords: Boolean model, covariogram, directional variation, random closed sets, set of finite perimeter,
specific variation.

INTRODUCTION

The object of study of this paper is the
covariogram gA of a measurable setA ⊂ R

d defined
for all y ∈ R

d by gA(y) = L d (A∩ (y+A)), where
L d denotes the Lebesgue measure. Note that some
authors prefer the termsset covarianceor covariance
function(Cabo and Janssen, 1994; Cabo and Baddeley,
1995; Rataj, 2004).

Given the covariogramgA of an unknown set
A, a general inverse problem is to determine the
geometric information onA that gA contains. As
an important example, Averkov and Bianchi have
recently established Matheron’s conjecture: up to a
translation and a reflection, convex bodies ofR

2, that is
compact convex sets with non-empty interior, are fully
determined by their covariogram (see  Averkov and
Bianchi, 2009) and the references within). Contrary
to the above mentioned result, this paper focuses
on geometric information which is shown to be
contained in the covariogram of any measurable set:
the perimeter.

As our main results will demonstrate, the perimeter
which can be computed from the covariogram is
the one from the theory of functions of bounded
variation (Ambrosioet al., 2000). In this framework,
the perimeter of a setA is defined by

Per(A) = sup

{

∫

Rd
1A(x)divϕ(x)dx :

ϕ ∈ C
1
c

(

R
d,Rd

)

, ‖ϕ‖∞ ≤ 1

}

,

and the directional variation in the directionu ∈ Sd−1

of A is (Ambrosioet al., 2000, Section 3.11)

Vu(A) = sup

{

∫

Rd
1A(x)〈∇ϕ(x),u〉dx :

ϕ ∈ C
1
c

(

R
d,R

)

, ‖ϕ‖∞ ≤ 1

}

,

where C 1
c

(

R
d, ·

)

denotes the set of continuously
differentiable functions with compact support. The
non-specialist reader may ask how the perimeter
Per(A) is related to the(d − 1)-Hausdorff measure
H d−1 of the topological boundary∂A, which one
might consider to be the intuitive notion of surface
area. Let us recall that ifA is a compact set with
Lipschitz boundary (e.g., A is a convex body), then
Per(A) = H d−1(∂A), whereas in the general case
we only have Per(A) ≤ H d−1(∂A) (Ambrosioet al.,
2000, Proposition 3.62). More precisely, if one defines
the essential boundary∂eA of A as the set of points
of R

d which are neither Lebesgue density points ofA
nor of the complementary ofA, then ∂eA ⊂ ∂A and
Per(A) = H d−1(∂eA)≤H d−1(∂A) (Ambrosioet al.,
2000, Eq. 3.62). As shown in Chlebı́k (1997), the same
conclusion holds for directional variations: defining
the projection measureµu in the directionu∈ Sd−1 by

µu(B) =
∫

(Ru)⊥
H

0(B∩ (x+Ru))H d−1(dx) ,

for all measurable subsetsB ⊂ R
d, one hasVu(A) =

µu(∂eA) ≤ µu(∂A). In particular, ifA is a convex body
thenVu(A) = 2H d−1(pu(A)), where pu denotes the
orthogonal projection with directionu.
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Results. We prove that for every measurable set
A of finite Lebesgue measure,

lim
r→0

gA(0)−gA(ru)

|r|
=

1
2

Vu(A) , u∈ Sd−1. (1)

In addition, noting(gu
A)′ (0+) := lim

r→0+

gA(ru)−gA(0)

r
the right directional derivatives at the origin of the
covariogram, it is shown that

Per(A) = −
1

ωd−1

∫

Sd−1
(gu

A)′ (0+)H d−1(du), (2)

whereωd−1 denotes the Lebesgue measure of the unit
ball in R

d−1. Hence, for any measurable setA, the
perimeter Per(A) can be computed from the directional
derivatives at the origin of the covariogramgA. As a
by-product, it is also shown that a measurable setA
has finite perimeter if and only if its covariogramgA
is Lipschitz, and in this case the Lipschitz constant is
given by

Lip (gA) =
1
2

sup
u∈Sd−1

Vu(A) .

Previous work. Eq. 1 has already been proved
for certain classes of sets. It was well-known by the
mathematical morphology school (Matheron, 1965;
Haaset al., 1967; Matheron, 1975; 1986) that the right
directional derivative at the origin of the covariogram
gA of a convex body equals minus the surface area of
the orthogonal projection of the setA. The convexity
assumption was relaxed in (Rataj, 2004) where Rataj
extends the result to compact sets inUPR satisfying a
condition of full-dimensionality,UPR being the family
of locally finite unions of sets with positive reach
such that all their finite intersections also have positive
reach1. In this more general framework, the surface
area of the orthogonal projection is replaced by the
total projectionTPu(A) of A, the directional analogue
of the (d−1)-total curvatureΦd−1(A) of A (Federer,
1959). Eq. 1 thus implies that ifA is a full-dimensional
compactUPR-set thenVu(A) = 2TPu(A). This identity
is the directional equivalent of a recent result due
to Ambrosio, Colesanti, and Villa (2008): a full-
dimensional compact set with positive reachA satisfies
Per(A) = 2Φd−1(A) (Ambrosioet al., 2008, Theorem
9) (one could directly prove thatVu(A) = 2TPu(A) by
using the techniques developed in (Ambrosioet al.,
2008) and (Rataj, 2004)). Since Eq. 1 is valid for
any measurable setA such thatL d(A) < +∞, one
can argue that the directional variation is the relevant
general concept when it comes to the derivative at the
origin of the covariogram.

Eq. 2 has been widely stated in the mathematical
morphology literature (Haaset al., 1967; Matheron,
1975; Serra, 1982; Lantuéjoul, 2002), under (more or
less explicit) regularity assumptions on the setA. We
rigorously show that it is valid for any measurable
set A having finite Lebesgue measure, provided the
perimeter Per(A) is understood as the variation ofA.

The Lipschitz continuity of the covariogram seems
to have received less attention in the literature. It is
stated in (Matheron, 1986) that the covariogram of a
compact convex set is Lipschitz and the upper bound
of the Lipschitz constant given by Matheron is twice
the actual value of this constant.

Applications. The covariogram is of particular
importance in stochastic geometry when dealing
with random closed sets (RACS) (Matheron, 1975;
Stoyanet al., 1995; Molchanov, 2005; Schneider and
Weil, 2008). In this context, one defines the mean
covariogram of a RACSX as the functionγX(y) =
E

(

L d (X∩ (y+X))
)

. The mean covariogram of a
RACS X is related to the probability that two given
points belong toX according to the following relation

γX(y) =
∫

Rd
P(x∈ X andx+y∈ X) dx .

As a consequence the mean covariogram is
systematically involved in second order statistics
of classic germ-grain models, such as the Boolean
model (Matheron, 1975; Stoyanet al., 1995; Schneider
and Weil, 2008), the shot noise model (Rice, 1977;
Heinrich and Schmidt, 1985), or the dead leaves
model (Matheron, 1968; Jeulin, 1997; Lantuéjoul,
2002; Bordenaveet al., 2006).

All the established properties of covariograms
of deterministic sets extend to the case of mean
covariograms of random closed sets. In particular,
the stochastic equivalent of Eqs. 1 and 2 show that
the expectations of the variations of a RACSX are
proportional to the directional derivatives of its mean
covariogramγX (see property 8 of Proposition 16).

If X is any stationary RACS, then its mean
covariogram only takes values in{0,+∞} and thus
is always degenerate. Nevertheless Eqs. 1 and 2 also
permit to study the mean variation of stationary RACS.
Define thespecific directional variationθVu(X) of X as
the mean amount of directional variation ofX per unit
volume (see Section “Specific variation of a stationary
RACS” for a detailed definition). For any stationary
RACSX, it is shown using Eq. 1 that

θVu(X) = 2 lim
r→0

1
|r|

P(ru ∈ X,0 /∈ X) .

1We refer to (Federer, 1959) and (Rataj and Zähle, 2001) for definitions and results regarding sets with positive reachandUPR-sets
respectively.
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Again, integrating over all directionsu, one obtains an
expression of thespecific variationθV(X) of X (i.e.,
the mean amount of variation ofX per unit volume)

θV(X)

=
1

ωd−1

∫

Sd−1
lim
r→0

1
|r|

P(ru ∈ X,0 /∈ X)H d−1(du) .

As for Eq. 2, the above formula has been stated
in the early works of Matheron (Matheron, 1967,
p. 30) (Lantúejoul, 2002, p. 26), but assumptions
on the regularity of the RACS were not clearly
formulated. It should be emphasized that the specific
variation is well-defined for any stationary RACS,
and that it can be easily computed as soon as
one knows the probabilitiesP(ru ∈ X,0 /∈ X). As an
illustration, the specific directional variations and the
specific variation of stationary Boolean models are
computed in this paper. The obtained expressions
generalize known statistics of Boolean models with
convex grains (Schneider and Weil, 2008). Because
it is well-defined for any stationary RACS and
easily computable, we claim that, when dealing
with non negligible RACS, the specific variation is
an interesting alternative to other extension of the
usual specific surface area that derives from Steiner’s
formula (Schneider and Weil, 2008).

Contents. In Section “Covariogram of a
measurable set” the covariogramgA of a Lebesgue
measurable setA is defined and several properties
of gA are recalled and established. In particular it
is shown that as soon asA is non negligible its
covariogramgA is a strictly positive-definite function.
The following section gathers several known results
from the theory of functions of bounded directional
variation. In Section “Directional variation, perimeter
and covariogram of measurable sets”, the main results
relating both the derivative at the origin and the
Lipschitz continuity of the covariogram of a set to
its directional variations and its perimeter are stated.
Finally, in the last section, applications of these results
to the theory of random closed sets are discussed and
illustrated.

COVARIOGRAM OF
A MEASURABLE SET

Definition 1 (Covariogram of a measurable set). Let
A ⊂ R

d be a L d-measurable set of finite Lebesgue
measure. Thecovariogramof A is the function gA :
R

d → [0,+∞) defined for all y∈ R
d by

gA(y) = L
d (A∩ (y+A)) =

∫

Rd
1A(x)1A(x−y)dx .

As initially noted by Matheron (1965), the
covariogram ofA can be expressed as the convolution
of the indicator functions ofA and its symmetričA =
{−x| x∈ A}:

gA = 1A∗1Ǎ .

As illustrated in the following proposition, this point
of view is useful to establish some analytic properties
of gA.

Proposition 2. Let A⊂ R
d be aL d-measurable set

of finite Lebesgue measure and gA be its covariogram.
Then

1. For all y∈ R
d, 0≤ gA(y) ≤ gA(0) = L d(A).

2. gA is even: for all y∈ R
d, gA(−y) = gA(y).

3.
∫

Rd
gA(y)dy = L

d(A)2.

4. gA is uniformly continuous overR
d and

lim
|y|→+∞

gA(y) = 0.

Proof. The proofs of the three first properties are
straightforward. Since1A and 1Ǎ are in L2

(

R
d
)

,
the fourth property is obtained in applying theLp-
Lp′-convolution theorem togA = 1A ∗1Ǎ (see Hirsch
and Lacombe, 1999, Proposition 3.2 p. 171, for
example).

It is well-known that the covariogram is a positive-
definite function (Matheron, 1965, p. 22; Lantuéjoul,
2002, p. 23). The next proposition improves slightly
this result. In particular, it shows that for allx 6= 0,
gA(x) < gA(0).

Proposition 3 (Strict positive-definiteness of the
covariogram). Let A be aL d-measurable set such that
0< L d(A) <+∞. Then its covariogram gA is a strictly
positive-definite function, that is, for all integers p≥ 1,
for all p-tuples(y1, . . . ,yp) of distinct vectors ofRd,
and for all (w1, . . . ,wp) ∈ R

p\{0} we have

p

∑
j,k=1

w jwkgA(yk−y j) > 0 .

The proof of Proposition 3 makes use of the
following lemma.

Lemma 4 (The translations of an integrable function
are linearly independent). Let f be a non null function
of L1

(

R
d
)

and let y1, . . . ,yp be p distinct vectors of
R

d. Then the functions x7→ f (x+y j), j = 1, . . . , p, are
linearly independent in L1

(

R
d
)

.
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Proof. Let (w1, . . . ,wp) ∈ R
p be such that

p

∑
j=1

w j f (x+y j) = 0 for a.e.x∈ R
d.

Applying the Fourier transform we have
(

p

∑
j=1

w je
i〈ξ ,y j 〉

)

f̂ (ξ ) = 0 for all ξ ∈ R
d.

Since f is non null and integrable,̂f is non null
and continuous. Hence there exists an open ball
B = B(ξ0, r) of center ξ0 ∈ R

d and radiusr > 0
such that for all ξ ∈ B, f̂ (ξ ) 6= 0, and thus for
all ξ ∈ B, S(ξ ) := ∑p

j=1w jei〈ξ ,y j 〉 = 0. One easily

shows that the sumS(ξ ) is null for all ξ ∈ R
d in

considering the one-dimensional restriction ofSon the
line containingξ andξ0: by the identity theorem, this
one-dimensional function is null since it is analytic
and null over an open interval. Applying the inverse
generalized Fourier transform toS = 0 shows that
∑p

j=1w jδy j = 0. This implies thatw1 = · · · = wp = 0,
since by hypothesis the vectorsy j are distinct.

Proof of Proposition 3.By Lemma 4, the function

x 7→
p

∑
j=1

w j1A(x+y j) is not a.e. equal to 0. Hence

p

∑
j,k=1

w jwkgA(yk−y j)

=
p

∑
j,k=1

w jwk

∫

Rd
1A(x)1A(x−yk +y j)dx

=
p

∑
j,k=1

w jwk

∫

Rd
1A(x+yk)1A(x+y j)dx

=
∫

Rd

(

p

∑
j=1

w j1A(x+y j)

)2

dx > 0 .

Proposition 5. Let A⊂R
d be aL d-measurable set of

finite Lebesgue measure and let gA be its covariogram.
Then for all y,z∈ R

d

|gA(y)−gA(z)| ≤ gA(0)−gA(y−z) .

Proof. First let us show that for all measurable setsA1,
A2, andA3

L
d(A1∩A2)−L

d(A1∩A3)

≤ L
d(A2\A3) = L

d(A2)−L
d(A3∩A2).

(3)

We have

L
d(A1∩A2)−L

d(A1∩A3)

≤ L
d(A1∩A2)−L

d(A1∩A2∩A3)

= L
d((A1∩A2)\ (A1∩A2∩A3)) .

Now using that(A1∩A2) \ (A1∩A2∩A3) is included
in the setA2 \A3, Eq. 3 is proved. Applying Eq. 3 to
the setsA1 = A, A2 = y+A andA3 = z+A we get

gA(y)−gA(z) = L
d (A∩ (y+A))−L

d (A∩ (z+A))

≤ L
d(y+A)−L

d ((y+A)∩ (z+A))

= L
d(A)−L

d (A∩ ((z−y)+A))

= gA(0)−gA(z−y) .

Remark.

– The weaker inequality

|gA(y)−gA(z)| ≤ 2(gA(0)−gA(y−z))

was established by Matheron (1986, p. 1).

– The inequality of Proposition 5 shows that the
Lipschitz continuity of the covariogram only
depends on the behavior of the function in 0.

FACTS FROM THE THEORY
OF FUNCTIONS OF BOUNDED
DIRECTIONAL VARIATION

This section gathers necessary results from the
theory of functions of bounded variation. For a general
treatment of the subject we refer to the textbook
of Ambrosio, Fusco, and Pallara (2000). When
the enunciated properties of functions of bounded
variation are not found in (Ambrosioet al., 2000),
full proofs are given for the convenience of the reader.
Let us add that these proofs can be skipped without
impeding on the understanding of the main results of
the paper that will be established in the next section.

For any open subsetU ⊂R
d, B(U) denotes the set

of Borel subsets ofU , and we writeV ⊂⊂U if V ⊂U
is open and relatively compact inU .

Definition 6 (Functions of bounded variation). Let U
be an open set ofRd. We say that f∈ L1

loc(U) is
a function of locally bounded variationin U if the
distributional derivative of f is representable by aR

d-
valued Radon measure, i.e., if there exists aR

d-valued
Radon measure, noted D f= (D1 f , . . . ,Dd f ), such that
for all ϕ = (ϕ1, . . . ,ϕd) ∈ C ∞

c

(

U,Rd
)

∫

U
f (x)divϕ(x)dx = −

d

∑
i=1

∫

U
ϕi(x)Di f (dx). (4)
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The vector space of all functions of locally bounded
variation in U is denoted by BVloc(U). The functions
f ∈ BVloc(U) such that f∈ L1(U) and|D f |(U) < +∞
are said to befunctions of bounded variationin U
and the corresponding function space is denoted by
BV(U).

In what follows,Sd−1 denotes the unit Euclidean
sphere inRd. If ϕ ∈ C 1(U,R) andu∈ Sd−1, we write

∂ϕ
∂u

(x) = 〈∇ϕ(x),u〉 , x∈ R
d ,

for the directional derivative ofϕ in the directionu.

Definition 7 (Functions of bounded directional
variation). Let U be an open set ofRd and let
u ∈ Sd−1. f ∈ L1

loc(U) is a function of locally
bounded directional variationin the direction u in
U if the directional distributional derivative of f in
the direction u is representable by a signed Radon
measure, i.e., if there exists a signed Radon measure,
noted Du f , such that for allϕ ∈ C ∞

c (U,R)

∫

U
f (x)

∂ϕ
∂u

(x)dx = −
∫

U
ϕ(x)Du f (dx) .

The corresponding space is denoted by BVu,loc(U).
The functions f∈ BVu,loc(U) such that f∈ L1(U) and
|Du f |(U) < +∞ are said to befunctions of bounded
directional variationin the direction u in U and the
corresponding function space is denoted by BVu(U).

The variation in U of a function f ∈ L1
loc(U) is

defined by

V( f ,U) = sup

{

∫

U
f (x)divϕ(x)dx :

ϕ ∈ C
1
c

(

U,Rd
)

, ‖ϕ‖∞ ≤ 1

}

.

A fundamental result of the theory of function of
bounded variation states that the variationV( f ,U) of
f ∈ L1(U) is finite if and only if f ∈BV(U) (Ambrosio
et al., 2000). More precisely,

V( f ,U) =

{

|D f |(U) if f ∈ BV(U),
+∞ otherwise.

Similarly, for all f ∈ L1
loc(U) one defines the

directional variationin the directionu of f by

Vu( f ,U) = sup

{

∫

U
f (x)

∂ϕ
∂u

(x)dx :

ϕ ∈ C
1
c (U,R) , ‖ϕ‖∞ ≤ 1

}

,

and

Vu( f ,U) =

{

|Du f |(U) if f ∈ BVu(U),
+∞ otherwise.

If A ⊂ R
d is a L d-measurable set, by definition

theperimeterof A in U is the variation of the indicator
function1A in U and one notes Per(A,U) :=V(1A,U).
Besides, one writesVu(A,U) := Vu(1A,U) for the
directional variationof A in the directionu in U . In
the case whereU = R

d, one simply writesV( f ) =
V

(

f ,Rd
)

andVu( f ) =Vu
(

f ,Rd
)

, and similarly for the
variations of a set.

As shown by the next proposition, given all the
directional variationsVu( f ,U), u ∈ Sd−1, one can
compute the variationV( f ,U).

Proposition 8 (Variation and directional variations).
Let U be an open set ofRd and let f∈ L1(U). Then,
the three following assertions are equivalent:

(i) f ∈ BV(U).

(ii) f ∈ BVu(U) for all u ∈ Sd−1.

(iii) For all vectors ei of the canonical basis,
f ∈ BVei (U).

In addition,

1
d

V( f ,U)≤
1
d

d

∑
i=1

Vei ( f ,U)≤ sup
u∈Sd−1

Vu( f ,U)≤V( f ,U) ,

and

V( f ,U) =
1

2ωd−1

∫

Sd−1
Vu( f ,U)H d−1(du) , (5)

whereωd−1 denotes the Lebesgue measure of the unit
ball in R

d−1.

The results of this proposition are mostly
from (Chleb́ık, 1997). A proof is reproduced below
for the convenience of the reader. First one needs the
following lemma.

Lemma 9. Let f ∈ L1(U) and let u1, . . . ,uk ∈ Sd−1

such that f∈ BVu j (U) for all j = 1, . . . ,k. Then for all
u = ∑ j λ ju j ∈ Sd−1∩span{u1, . . . ,uk}, f ∈ BVu(U).

Proof. With the above notation one easily checks
that Du f := ∑ j λ jDu j f is a signed Radon measure
which represents the directional derivative off in
the directionu. Besides, by the triangle inequality
|Du f |(U) ≤ ∑k

j |λ j ||Du j f |(U) < +∞, and thus f ∈

BVu(U).
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Proof of Proposition 8.Clearly, Assertion(ii) implies
Assertion(iii) . Let us show that(i) implies (ii) . Let
f ∈ BV(U), let D f = (D1 f , . . . ,Dd f ) be the Radon
measure representing its distributional derivative, and
let u ∈ Sd−1. Then〈D f ,u〉 := ∑d

i=1uiDi f is a signed
Radon measure which represents the directional
derivative of f in the directionu, and by the Cauchy-
Schwarz inequality

Vu( f ,U) = |〈D f ,u〉|(U) ≤
d

∑
i=1

|ui ||Di f |(U)

≤ |u||D f |(U) = |D f |(U) = V( f ,U) < +∞ .

Hence f ∈ BVu(U) and Vu( f ,U) ≤ V( f ,U). Let us
now show that(iii) implies (i). For all vectorsei of
the canonical basis,f ∈ BVei

(

R
d
)

and there exists
a signed Radon measureDei f which represents the
distributional partial derivatives off . But then one
easily checks that(De1 f , . . . ,Ded f ) is a R

d-valued
Radon measure which represents the distributional
derivative of f . In addition, from the definition of the
variation

V( f ,U) ≤
d

∑
i=1

Vei ( f ,U) < +∞ ,

and thusf ∈ BV(U). This concludes the proof of the
announced equivalence as well as the proof of the
inequalities since

V( f ,U)≤
d

∑
i=1

Vei ( f ,U)≤d sup
u∈Sd−1

Vu( f ,U)≤dV( f ,U) .

To finish let us show Eq. 5. First let us suppose that
f /∈ BV(U) and let us show that the right-hand side
of Eq. 5 is equal to+∞. Remark that by Lemma 9
and the equivalence above the set of directionsu ∈
Sd−1 for whichVu( f ,U) < +∞ is contained in a linear
subspace of dimension less thand− 1 (otherwise f
would be in BVu(U) for all u and consequentlyf
would be inBV(U)). Hence forH d−1-all u in Sd−1,
Vu( f ,U) = +∞, and thus the right-hand side of Eq. 5
equals+∞. Let us now suppose thatf ∈BV(U). By the
polar decomposition theorem (Ambrosioet al., 2000,
Corollary 1.29) there exists a unique|D f |-integrable
function σ : U → Sd−1 such thatD f = σ |D f |. With
this notation, observe that for allu ∈ Sd−1 and A ∈
B(U),

Du f (A) = 〈D f ,u〉(A) =
∫

A
〈σ(x),u〉|D f |(dx) .

Hence, by (Ambrosioet al., 2000, Proposition 1.23)

Vu( f ,U) = |Du f |(U) =
∫

U
|〈σ(x),u〉| |D f |(dx) .

For all ν ∈ Sd−1 the following well-known identity
holds

∫

Sd−1
|〈ν ,u〉|H d−1(du) = 2ωd−1 .

Hence by Fubini’s theorem

∫

Sd−1
Vu( f ,U)H d−1(du)

=
∫

U

(

∫

Sd−1
|〈σ(x),u〉|H d−1(du)

)

|D f |(dx)

= 2ωd−1|D f |(U)

= 2ωd−1V( f ,U) .

The next proposition recalls fundamental
properties related to the approximation of functions
of bounded directional variation. For simplicity we
restrict ourselves to the caseU = R

d. See (Ambrosio
et al., 2000, Section 3.11) for the proofs.

Proposition 10 (Directional variation and
approximation).

– Variation of smooth functions: If f ∈
C 1

(

R
d
)

∩L1
(

R
d
)

then

Vu( f ) =
∫

Rd

∣

∣

∣

∣

∂ f
∂u

(x)

∣

∣

∣

∣

dx .

– Lower semi-continuity with respect to theL1-
convergence:If fn converges towards f in L1

(

R
d
)

then Vu( f ) ≤ liminf
n→+∞

Vu( fn).

– Approximation by smooth functions:for every
function f ∈ BVu

(

R
d
)

, there exists a sequence
of smooth functions fn ∈ C ∞ (

R
d
)

∩ BVu
(

R
d
)

such that fn converges towards f in L1
(

R
d
)

and
lim

n→+∞
Vu( fn) = Vu( f ).

One practical advantage of directional variations
Vu( f ) over the non-directional variationV( f ) is that
it can be computed from the integrals of difference
quotients, as the next proposition recalls. Although this
is a standard result ofBV functions theory2, the author
is not aware of any standard textbook which enunciates
it. Consequently a proof is given for the convenience of
the reader.

2L. Ambrosio, personal communication.
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Proposition 11 (Directional variation and difference
quotient). Let u∈ Sd−1 and let f ∈ L1

(

R
d
)

be any
integrable function. Then for all r6= 0,

∫

Rd

| f (x+ ru)− f (x)|
|r|

dx≤Vu( f )

and

lim
r→0

∫

Rd

| f (x+ ru)− f (x)|
|r|

dx = Vu( f ) .

Proof. To prove the inequality we can suppose thatf ∈
BVu

(

R
d
)

. First suppose thatf ∈ C 1
(

R
d
)

∩BVu
(

R
d
)

.
Then

| f (x+ ru)− f (x)| =

∣

∣

∣

∣

∫ 1

0
r

∂ f
∂u

(x+ tru)dt

∣

∣

∣

∣

≤
∫ 1

0
|r|

∣

∣

∣

∣

∂ f
∂u

(x+ tru)

∣

∣

∣

∣

dt .

Hence, using Fubini’s theorem and the first point of
Proposition 10,

∫

Rd

| f (x+ ru)− f (x)|
|r|

dx

≤
∫ 1

0

(

∫

Rd

∣

∣

∣

∣

∂ f
∂u

(x+ tru)

∣

∣

∣

∣

dx

)

dt = Vu( f ) .

This inequality is shown to be valid for anyf ∈
BVu

(

R
d
)

by using approximation by smooth functions
(see Proposition 10).
Let us now turn to the second part of the statement. Let
f ∈ L1

(

R
d
)

. Using the above inequality it is enough to
show that

Vu( f ) ≤ liminf
r→0

∫

Rd

| f (x+ ru)− f (x)|
|r|

dx .

Let us consider a family of mollifiers(ρε)ε>0, that is
functionsρε(x) := ε−dρ(x/ε) where the functionρ is
even, non negative,C ∞, with support contained in the
unit ball, and such that

∫

Rd ρ(x)dx = 1. Define fε =
f ∗ρε . Then fε ∈ C ∞ (

R
d
)

∩L1
(

R
d
)

and fε converges
towardsf in L1

(

R
d
)

asε tends to 0. By Fatou’s lemma
we have

Vu( fε) =
∫

Rd

∣

∣

∣

∣

∂ fε
∂u

(x)

∣

∣

∣

∣

dx

≤ liminf
r→0

∫

Rd

| fε(x+ ru)− fε(x)|
|r|

dx .

Since

‖ fε(·+ ru)− fε(·)‖1 = ‖( f (·+ ru)− f (·))∗ρε‖1

≤ ‖ f (·+ ru)− f (·)‖1

we deduce that for allε > 0

Vu( fε) ≤ liminf
r→0

∫

Rd

| f (x+ ru)− f (x)|
|r|

dx .

Using the lower semi-continuity of the directional
variation with respect to theL1-convergence we get the
result.

DIRECTIONAL VARIATION,
PERIMETER AND COVARIOGRAM
OF MEASURABLE SETS

In this section, the main results of the paper are
established (see Theorem 13 and Theorem 14).

Lemma 12 ((Matheron, 1986)). Let A be a L d-
measurable set having finite Lebesgue measure and let
gA be its covariogram. Then for all y∈ R

d

gA(0)−gA(y) =
1
2

∫

Rd
|1A(x+y)−1A(x)| dx .

Proof.
∫

Rd
|1A(x+y)−1A(x)|dx

=
∫

Rd
(1A(x+y)−1A(x))2dx

= 2(gA(0)−gA(y)) .

The identity of Lemma 12, which is due to
Matheron (1986), is the key point to apply the results
from the theory of functions of bounded directional
variations enunciated in the previous section. First, one
establishes Eq. 1 and obtains a characterization of sets
of finite directional variation.

Theorem 13 (Directional variation and covariogram
of measurable sets). Let A be a L d-measurable
set having finite Lebesgue measure, let gA be
its covariogram, and let u∈ Sd−1. The following
assertions are equivalent:

(i) A has finite directional variation Vu(A).

(ii) lim
r→0

gA(0)−gA(ru)

|r|
exists and is finite.

(iii) The one-dimensional restriction of the
covariogram guA : r 7→ gA(ru) is Lipschitz.

In addition,

Lip (gu
A) = lim

r→0

gA(0)−gA(ru)

|r|
=

1
2

Vu(A) ,

the second equality being also valid when Vu(A) =
+∞.

45



GALERNE B: Computation of the perimeter of measurable sets via their covariogram

Remark. Note that Assertion(ii) of Theorem 13
above can be replaced by “The right directional
derivativegu

A(0+) exists and is finite” since

gu
A(0+) := lim

r→0+

gA(ru)−gA(0)

r

= − lim
r→0

gA(0)−gA(ru)

|r|
.

Proof. Since from Lemma 12,

gA(0)−gA(ru)

|r|
=

1
2

∫

Rd

|1A(x+ ru)−1A(x)|
|r|

dx ,

by applying Proposition 11 withf = 1A one obtains
the equivalence of(i) and (ii) as well as the formula

lim
r→0

gA(0)−gA(ru)

|r|
=

1
2

Vu(A).

Let us show that(i) implies(iii) . By Proposition 5, for
all r ands∈ R

|gA(ru)−gA(su)| ≤ gA(0)−gA((r −s)u)

=
1
2

∫

Rd
|1A(x+(r −s)u)−1A(x)|dx .

Applying the inequality of Proposition 11 withf =1A,

|gA(ru)−gA(su)|

≤
1
2
|r −s|

∫

Rd

|1A(x+(r −s)u)−1A(x)|
|r −s|

dx

≤
1
2

Vu(A)|r −s| .

Hencegu
A is Lipschitz and Lip(gu

A) ≤ 1
2Vu(A).

Let us now show that(iii) implies(i). For all r 6= 0 we
have

Lip (gu
A) ≥

gA(0)−gA(ru)

|r|

=
1
2

∫

Rd

|1A(x+ ru)−1A(x)|
|r|

dx .

By Proposition 11 the right-hand side tends towards
1
2Vu(A) asr tends to 0. HenceA has finite directional
variation in the directionu and Lip(gu

A) ≥ 1
2Vu(A). All

in all we have shown that(i) and (iii) are equivalent
and that Lip(gu

A) = 1
2Vu(A).

Considering all the possible directionsu ∈ Sd−1,
the results of the previous theorem lead to Eq. 2
(reproduced below as Eq. 6) and a characterization of
sets of finite perimeter.

Theorem 14 (Perimeter and covariogram of
measurable sets). Let A be a L d-measurable set
having finite Lebesgue measure, and let gA be its
covariogram. The following assertions are equivalent:

(i) A has finite perimeterPer(A).

(ii) For all u ∈ Sd−1, (gu
A)′ (0+) :=

lim
r→0+

gA(ru)−gA(0)

r
exists and is finite.

(iii) The covariogram gA is Lipschitz.

In addition the following relations hold:

Lip (gA) =
1
2

sup
u∈Sd−1

Vu(A) ≤
1
2

Per(A)

and

Per(A) = −
1

ωd−1

∫

Sd−1
(gu

A)′ (0+)H d−1(du) , (6)

this last formula being also valid whenPer(A) = +∞.

Proof. The equivalence of(i) and (ii) as well as
the integral geometric formula of Eq. 6 derive from
Proposition 8 and the identity

(gu
A)′ (0+) = lim

r→0+

gA(ru)−gA(0)

r
= −

1
2

Vu(A) .

Let us now show that(i) implies (iii) . Let y,z∈ R
d.

Denote byu the direction ofSd−1 such thaty− z =
|y−z|u. By Proposition 5 and Theorem 13

|gA(y)−gA(z)| ≤ gA(0)−gA(y−z)

≤
1
2

Vu(A)|y−z| ≤

(

1
2

sup
u∈Sd−1

Vu(A)

)

|y−z| .

Hence gA is Lipschitz and Lip(gA) ≤ 1
2 supuVu(A).

As for the converse implication and inequality, for all
u∈ Sd−1,

Lip (gA) ≥ lim
r→0

gA(0)−gA(ru)

|r|
=

1
2

Vu(A) .

Hence for allu ∈ Sd−1, Vu(A) < +∞ and Lip(gA) ≥
1
2 supuVu(A). This concludes the proof.

One natural question is whether Eq. 6 extends to
the case of functions, that is if one can recover the
variation V( f ) of a function f from the directional
derivatives of its covariogramgf (y) :=

∫

Rd f (x +
y) f (x)dx. The answer to this question is negative.
Indeed, if one considers a smooth functionf ∈
C 1

c

(

R
d
)

, then its covariogramgf is well-defined and
is differentiable in 0. But sincegf is even, its derivative
at the origin equals zero, and thus the variation off is
not equal to the integral of the directional derivatives
of the covariogramgf .
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APPLICATIONS TO RANDOM
CLOSED SETS

MEAN COVARIOGRAM OF A RANDOM
CLOSED SET

A random closed set (RACS)X is a measurable
map from a probability space(Ω,A ,P) to the
space F

(

R
d
)

of closed subsets ofRd endowed
with the σ -algebra generated by the family
{{

F ∈ F
(

R
d
)

, F ∩K = /0
}

, K compact
}

(Matheron,
1975; Molchanov, 2005; Stoyanet al., 1995).

Definition 15 (Mean covariogram of a random
closed set). Let X be a random closed set (RACS)
of R

d having finite mean Lebesgue measure,i.e.
E

(

L d (X)
)

< +∞. Themean covariogramγX of X is
the expectation of the covariogram of X with respect to
its distribution, that isγX : R

d → [0,∞) is the function
defined by

γX(y) = E(gX(y))

= E

(

L
d (X∩ (y+X))

)

=
∫

F(Rd)
L

d (A∩ (y+A))PX(dA) .

As the next proposition will show, all the results
relative to covariograms of deterministic measurable
sets can be adapted for mean covariograms of RACS.
However before stating these results, we need to
introduce the notions of mean perimeterE(Per(X))
and mean directional variationsE(Vu(X)), u ∈ Sd−1,
of a RACSX.

We say that a jointly measurable random field
f : Ω×R

d → R almost surely (a.s.) inL1
loc

(

R
d
)

has
a.s.locally bounded variationif there exists a random
R

d-valued Radon measure3 D f which represents the
distributional derivative of f , i.e., Eq. 4 holds a.s.
If in addition f ∈ L1

(

R
d
)

a.s. and|D f |
(

R
d
)

is a.s.
finite, then f is said to have a.s.bounded variation
in R

d. Similarly, f : Ω × R
d → R a.s. in L1

loc

(

R
d
)

has a.s.locally bounded directional variationin the
direction u ∈ Sd−1 if there exists a random signed
Radon measureDu f representing the distributional
directional derivative off . If f ∈ L1

(

R
d
)

a.s. and
|Du f |

(

R
d
)

< +∞ a.s., then one says thatf has
bounded directional variationin the directionu.

The mean variation E(V( f )) and the mean
directional variationsE(Vu( f )), u∈Sd−1, of a random

field f a.s. inL1
(

R
d
)

are defined by

E(V( f )) =











E(|D f |
(

R
d
)

) if f has a.s. bounded
variation,

+∞ otherwise,

and

E(Vu( f )) =











E(|Du f |
(

R
d
)

) if f has a.s. bounded
directional variation,

+∞ otherwise.

Since any RACSX defines a jointly measurable
random field by(ω,x) 7→ 1X(ω)(x) (see (Molchanov,
2005, p. 59)), the mean perimeterE(Per(X)) and the
mean directional variationsE(Vu(X)) of a RACSX are
well-defined.

Proposition 16 (Properties of the mean covariogram
of a RACS). Let X be a RACS ofRd satisfying
E

(

L d(X)
)

< +∞ and letγX be its mean covariogram.
Then

1. For all y∈ R
d, 0≤ γX(y) ≤ γX(0) = E

(

L d(X)
)

.

2. γX is even.

3. γX(y) =
∫

Rd
P(x∈ X and x+y∈ X)dx.

4.
∫

Rd γX(y)dy= E
(

L d(X)2
)

∈ [0,+∞].

5. If E
(

L d(X)
)

> 0, then γX is a strictly positive-
definite function.

6. For all y,z∈ R
d,

|γX(y)− γX(z)| ≤ γX(0)− γX(y−z) .

7. γX is uniformly continuous overR
d and

lim
|y|→+∞

γX(y) = 0.

8. We have

lim
r→0

γX(0)− γX(ru)

|r|
=

1
2

E(Vu(X)) ,

and, noting(γu
X)′ (0+) = lim

r→0+

γX(ru)− γX(0)

r
,

−
1

ωd−1

∫

Sd−1
(γu

X)′ (0+)H d−1(du) = E(Per(X)) .

The proofs are omitted since they mostly consist
in integrating the results of the previous sections
with respect to the distribution of the RACSX.
When E(Vu(X)) < +∞ and E(Per(X)) < +∞, both
formulas of property 8 follows easily from the
bounded convergence theorem. Using Fatou’s lemma,
one shows that these formulas are also valid when
E(Vu(X)) = +∞ andE(Per(X)) = +∞.

3We refer to (Horowitz, 1985) for definitions relative to random Radon measures and for a proof of the fact that the variation|µ| of a
random Radon measureµ is a well-defined random positive Radon measure.
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SPECIFIC VARIATION OF A
STATIONARY RACS

A RACS X is said to bestationary if for all
y ∈ R

d, the translated RACSy + X has the same
distribution asX. If a RACS X is stationary, one
defines itsvariogram νX as the functionνX(y) =
P(y∈ X,0 /∈ X) (seee.g., (Lantúejoul, 2002) for more
details on variograms).

If a stationary RACSX has locally bounded
variation, then one easily checks that its derivative
D1X, which is by definition a randomR

d-valued
Radon measure, is also stationary. Consequently, the
variation measure|D1X| is a stationary positive Radon
measure, and thus there exists a real numberθV(X) ∈
[0,+∞] such that for all nonempty open setsU ⊂⊂R

d,

E(V(X,U)) := E(|D1X|(U)) = θV(X)L d(U) .

We choose to call this constantθV(X) the specific
variation of X or the variation intensity of X
(see the discussion below). Similarly, for allu ∈
Sd−1 there exists a realθVu(X) ∈ [0,+∞] such that
E(|Du1X|(U)) = θVu(X)L d(U). θVu(X) is called the
specific directional variationof X in the direction
u (or also the directional variation intensity). As
before, one extends the definition of the specific
variation for stationary RACSX which do not have a.s.
locally bounded variation by settingθV(X) = +∞, and
similarly for the specific directional variationθVu(X).
In this context the integral-geometric formula of Eq. 5
gives

θV(X) =
1

2ωd−1

∫

Sd−1
θVu(X)H d−1(du) .

Theorem 17(Specific variations and variogram). Let
X be a stationary RACS, letνX be its variogram, and,

for all u ∈ Sd−1, denote(νu
X)′ (0+) := lim

r→0+

1
r

νX(ru).

Then for all u∈ Sd−1 the specific directional variation
θVu(X) is given by

θVu(X) = 2(νu
X)′ (0+) = 2 lim

r→0

1
|r|

P(ru ∈ X,0 /∈ X) .

In other words, the specific directional variation is
twice the right directional derivative of the variogram
at the origin. Integrating over all directions, one
obtains the specific variation of X:

θV(X) =
1

ωd−1

∫

Sd−1
(νu

X)′ (0+)H d−1(du) . (7)

Before proving this theorem let us discuss the
terminologyspecific variationof X for the constant

θV(X). Eq. 7 is the formula given in (Lantuéjoul, 2002,
p. 26) and which originates from Matheron (1967, p.
30). In these references, the constant corresponding
to the variation intensityθV(X) is called thespecific
(d − 1)-volume of X (specific perimeterif d = 2,
specific surface areaif d = 3). However, in the
later works of Matheron (1975) as well as on recent
reference textbooks (Stoyanet al., 1995; Schneider
and Weil, 2008), thespecific surface measurerefers
to the surface measure that derives from Steiner’s
formula. This measure has different names, depending
on its normalization and the degree of generalization:
intrinsic volume of indexd − 1 and Minkowski’s
content of index 1 for convex sets (Schneider and
Weil, 2008), total curvature of indexd − 1 for sets
with positive reach andUPR-sets (Federer, 1959; Rataj
and Z̈ahle, 2001), or also, in a more general setting,
outer Minkowski content (Ambrosioet al., 2008;
Villa, 2009; see also Huget al., 2004). Even though
the (variational) perimeter of a set and this notion
of surface measure agree for convex sets (Ambrosio
et al., 2008), the distinction is important. Indeed
their extensions to non convex sets have different
behaviors. For example, the outer Minkowski content
counts twice the isolated fine parts of a set having a
bounded and(d−1)-rectifiable topological boundary,
whereas these fine parts have no influence on the
perimeter (Villa, 2009, Proposition 4.1) (here “isolated
fine parts” denotes the part of the boundary which
has Lebesgue density 0). In order to make a clear
distinction between the (variational) perimeter and the
surface measure from Steiner’s formula, the constant
θV(X) is named thespecific variationof X and not its
“specific perimeter”.

As mentioned in the introduction, one should
notice that, contrary to the specific surface
area (Schneider and Weil, 2008), the specific
variation θV(X) is well-defined for any stationary
RACS. Besides, Theorem 17 shows that the specific
directional variationsθVu(X) and the specific variation
θV(X) are easily computed as soon as one knows the
variogram ofX. This will be illustrated in the next
section where the specific variations of stationary
Boolean models are computed.

Let us now turn to the proof of Theorem 17 which
uses the following intuitive lemma.

Lemma 18. Let A be aL d-measurable set and B be
an open ball. Then for all u∈ Sd−1,

Vu(A,B) ≤Vu

(

A∩B,Rd
)

≤Vu(A,B)+Vu(B,Rd) .

References for the proof.The first inequality is
immediate from the definition of the directional
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variation on an open set (Ambrosioet al., 2000).
The second inequality is easily proved using
the interpretation of the directional variation as
the projection measure of the essential boundary
mentioned in the introduction (Chlebı́k, 1997).

Proof of Theorem 17.First remark that

P(ru ∈ X,0 /∈ X) = P(0∈ X,−ru /∈ X)

= P(0∈ X)−P(0∈ X and− ru ∈ X)

= P(0∈ X)−P(0∈ X∩ (ru+X)) .

Let B be any nonempty open ball. SinceX is a
stationary RACS

P(0∈ X) =
E

(

L d(X∩B)
)

L d(B)
.

As X∩ (ru+X) is also a stationary RACS, we have

P(0∈ X∩ (ru+X)) =
E

(

L d(X∩ (ru+X)∩B)
)

L d(B)
.

In order to introduce the mean covariogram of the
setX∩B, let us denoteEr = (X∩B)∩ (ru+(X∩B)).
Clearly we have the following inclusions

Er ⊂ X∩ (ru+X)∩B

and

[X∩ (ru+X)∩B]\Er ⊂ B\ (B∩ (ru+B)) .

Noting thatL d (B\ (B∩ (ru+B))) = gB(0)−gB(ru),
we obtain

γX∩B(ru)

L d(B)
≤

E
(

L d(X∩ (ru+X)∩B)
)

L d(B)

≤
γX∩B(ru)

L d(B)
+

gB(0)−gB(ru)

L d(B)
.

This yields both an upper and a lower bound of
P(ru ∈ X,0 /∈ X). We have

P(ru ∈ X,0 /∈ X) ≤
γX∩B(0)− γX∩B(ru)

L d(B)
.

By property 8 of Proposition 16 and the second
inequality of Lemma 18,

limsup
r→0

1
|r|

P(ru ∈ X,0 /∈ X) ≤
1
2

E(Vu(X∩B))

L d(B)

≤
1
2

θVu(X)+
1
2

Vu(B)

L d(B)
.

As for the lower bound,

P(ru ∈ X,0 /∈ X)

≥
γX∩B(0)− γX∩B(ru)

L d(B)
−

gB(0)−gB(ru)

L d(B)
.

Again, by Proposition 16 and the first inequality of
Lemma 18, we have

liminf
r→0

1
|r|

P(ru ∈ X,0 /∈ X)

≥
1
2

E(Vu(X∩B))

L d(B)
−

1
2

Vu(B)

L d(B)

≥
1
2

θVu(X)−
1
2

Vu(B)

L d(B)
.

The two established inequalities are true for any
nonempty open ballB. NotingR the radius ofB,

Vu(B)

L d(B)
=

ωd−1Rd−1

ωdRd =
ωd−1

ωd

1
R

.

The enunciated formula is obtained by lettingR tends
to +∞.

COMPUTATION OF THE SPECIFIC
VARIATIONS OF BOOLEAN MODELS

In this section we apply Theorem 17 to compute
the specific directional variations and the specific
variation of any stationary Boolean model. The
Boolean model (Stoyanet al., 1995; Schneider and
Weil, 2008) with intensityλ and grain distributionPX
is the stationary RACSZ defined by

Z =
⋃

i∈N

xi +Xi ,

where{xi , i ∈ N} ⊂ R
d is a stationary Poisson point

process with intensityλ > 0 and (Xi)i∈N
is a

sequence of i.i.d. RACS with common distributionPX,
independent of{xi , i ∈ N}. Moreover, the RACS(Xi)
are supposed to have a finite mean Lebesgue measure
(otherwiseZ = R

d a.s.). The avoiding functional of
the Boolean modelZ is well-known: for any compact
K ⊂ R

d we have

P(Z∩K = /0) = exp
(

−λE

(

L
d (

X⊕ Ǩ
)

))

, (8)

where X denotes a RACS with distributionPX and
X⊕ Ǩ = {x−y, x∈ X, y∈ K} (see,e.g., Stoyanet al.,
1995, p. 65 or Lantúejoul, 2002, p. 164). Starting from
the general expression of Eq. 8 (which determines the
distribution ofZ), let us compute the variogramνZ of
Z. ForK = {0}, Eq. 8 becomes

q := P(0 /∈ Z) = exp
(

−λE

(

L
d (X)

))

.

49



GALERNE B: Computation of the perimeter of measurable sets via their covariogram

For K = {0,−ru}, with r 6= 0 andu ∈ Sd−1, remark
that we have

L
d (

X⊕ Ǩ
)

= L
d (X∪ ru+X)

= 2L
d(X)−L

d (X∩ (ru+X)) .

Hence in this case

E

(

L
d (

X⊕ Ǩ
)

)

= 2E

(

L
d (X)

)

− γX(ru) .

As a result the variogramνZ is equal to (Stoyanet al.,
1995, p. 68; Lantúejoul, 2002, p. 165)

νZ(ru) = P(−ru ∈ Z and 0/∈ Z)

= P(0 /∈ Z)−P(Z∩{0,−ru} = /0)

= q−exp
(

−λ
(

2E

(

L
d (X)

)

− γX(ru)
))

= q−qexp(−λ (γX(0)− γX(ru))) .

By Theorem 17 and property 8 of Proposition 16 we
deduce

θVu(Z) = 2(νu
Z)′ (0+)

= 2qλ
1
2

E(Vu(X))

= λE(Vu(X))exp
(

−λE

(

L
d (X)

))

.

Integrating this formula over all directionsu we
obtainθV(Z). Our computation is summarized in the
following statement.

Proposition 19 (Specific variations of a stationary
Boolean model). Let Z be the Boolean model with
Poisson intensityλ and grain distribution PX, let X
be a RACS with distribution PX, and suppose that
E

(

L d(X)
)

< +∞. Then for all u∈ Sd−1,

θVu(Z) = λE(Vu(X))exp
(

−λE

(

L
d (X)

))

and

θV(Z) = λE(Per(X))exp
(

−λE

(

L
d (X)

))

. (9)

Eq. 9 is valid for any grain distributionPX
and generalizes known results for Boolean models
with convex grains (Schneider and Weil, 2008, p.
386). Similar generalizations involving intensity of
surface measures deriving from Steiner’s formula have
recently been established (Huget al., 2004; Villa,
2010). As already stressed out, our result is similar but
not identical since the outer Minkowski content of a set
differs from its (variational) perimeter (Villa, 2009).

A promising direction for further works is to
extend the notion of specific variation for non
stationary RACS. In particular, following (Villa,
2010), one could try to derive local variation densities
of certain non stationary Boolean models.

REFERENCES

Ambrosio L, Colesanti A, Villa E (2008). Outer Minkowski
content for some classes of closed sets. Math Ann
342:727–48.

Ambrosio L, Fusco N, Pallara D (2000). Functions of
bounded variation and free discontinuity problems.
Oxford: Oxford University Press.

Averkov G, Bianchi G (2009). Confirmation of Matheron’s
conjecture on the covariogram of a planar convex body.
J Eur Math Soc 11:1187–202.

Bordenave C, Gousseau Y, Roueff F (2006). The dead leaves
model: a general tessellation modeling occlusion. Adv
Appl Prob 38:31–46.

Cabo A, Baddeley A (1995). Line transects, covariance
functions and set convergence. Adv Appl Prob 7:585–
605.

Cabo AJ, Janssen RHP (1994). Cross-covariance functions
characterise bounded regular closed sets. Tech. Rep.
BS-R9426, CWI.

Chleb́ık M (1997). On variation of sets. preprint 44,
Max-Planck-Institut f̈ur Mathematik in den
Naturwissenschaften Leipzig.

Federer H (1959). Curvature measures. Trans Amer Math
Soc 93:418–91.

Haas A, Matheron G, Serra J (1967). Morphologie
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