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ABSTRACT

The covariogram of a measurable et RY is the functiongs which to eacty € RY associates the Lebesgue
measure oAN (y+ A). This paper proves two formulas. The first equates the doresit derivatives at the
origin of ga to the directional variations oh. The second equates the average directional derivativeeat t
origin of ga to the perimeter oA. These formulas, previously known with restrictions, areved for any
measurable set. As a by-product, it is proved that the cogeaim of a sef is Lipschitz if and only ifA has
finite perimeter, the Lipschitz constant being half the medidirectional variation. The two formulas have
counterparts for mean covariogram of random sets. Theypasait to compute the expected perimeter per
unit volume of any stationary random closed set. As an iiiign, the expected perimeter per unit volume of
stationary Boolean models having any grain distributiotoisiputed.

Keywords: Boolean model, covariogram, directional véoiat random closed sets, set of finite perimeter,
specific variation.

INTRODUCTION and the directional variation in the directiore $#-1
of Aiis (Ambrosioet al,, 2000, Section 3.11)
The object of study of this paper is the
covariogram g, of a measurable s&& ¢ RY defined Vu(A) = sup{/ 1A(X)(0¢ (x),u) dx :
for all y € RY by ga(y) = L9 (AN(y+A)), where Rd

29 denotes the Lebesgue measure. Note that some 1 (o

authors prefer the termeet covarianceor covariance €t (R ’R> 1]l < 1} ’
function(Cabo and Janssen, 1994; Cabo and Baddeley, _

1995: Rataj, 2004). where %} (RY,-) denotes the set of continuously

_ _ differentiable functions with compact support. The
Given the covariogranga of an unknown set ., specialist reader may ask how the perimeter

A a general inverse problem is to determine thePegA% is related to the(d — 1)-Hausdorff measure
geometric information onA that ga contains. As -1 of the topological boundargA, which one

an important example, Averkov and Bianchi havemignt consider to be the intuitive notion of surface
recently established Matheron's conjecture: up 10 &rea Let us recall that i is a compact set with
translation and a reflection, convex bodie®éf that is Lipschitz boundary €.g, A is a convex body), then
compact convex sets with non-empty interior, are fuIIyPe'(A) = #91(9A) v’vhereas in the generél case
determined by their covariogram (see Averkand o only have PéA) o #9-1(3A) (Ambrosioet al.
Bianchi, 2009) and the references within). Contrary,gog, proposition 3.62). More precisely, if one defines
to the above mentioned result, this paper focusege essential boundageA of A as the set of points
on geometric information which is shown to be ot pd \yhich are neither Lebesgue density pointsiof
contained in the covariogram of any measurable sefq, of the complementary ok, then d.A C dA and
the perimeter. PerA) = 79 1(9A) < 791 (AA) (Ambrosioet al,

As our main results will demonstrate, the perimete2000, Eq. 3.62). As shown in Chlg1997), the same
which can be computed from the covariogram isconclusion holds for directional variations: defining
the one from the theory of functions of boundedthe projection measug, in the directioru € §-1 by
variation (Ambrosioet al,, 2000). In this framework,

the perimeter of a set is defined by Hu(B) = _ A° (BN (x+Ru)) 2% H(dx)
PelA) = sup{/ 1a(X)dive (x)dx: for all measurable subseBc RY, one hasv,(A) =
RY Hu(GeA) < y(dA). In particular, ifAis a convex body

1/ed —d thenVy(A) = 229 1(py(A)), where p, denotes the
A (R R ) s (1l < 1} ’ orthogonal projection with direction.
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Results. We prove that for every measurable set Eg. 2 has been widely stated in the mathematical
A of finite Lebesgue measure, morphology literature (Haast al., 1967; Matheron,
1975; Serra, 1982; Lang&joul, 2002), under (more or
lim 920 —0alrw) _ 1, (A),ue 1 (1) less explicit) regularity assumptions on the Aetve
r—0 Ir| 2 rigorously show that it is valid for any measurable
set A having finite Lebesgue measure, provided the

In addition, noting(g4)’ (0+) := lim 9a(ru) —9a(0)  perimeter PeiA) is understood as the variation Af
r—0+ r . . . . .
the right directional derivatives at the origin of the ~ The Lipschitz continuity of the covariogram seems

covariogram, it is shown that to haV(-"T received less attention in the Iite_rature. It is
stated in (Matheron, 1986) that the covariogram of a
_ 1 7 uy/ d—1 compact convex set is Lipschitz and the upper bound

PerA) = 1 /g;ifl (ga) (0+)2#7(du),  (2) of the Lipschitz constant given by Matheron is twice

the actual value of this constant.
wherewy_1 denotes the Lebesgue measure of the unit

ball in R%1. Hence, for any measurable st the Applications. The covariogram is of particular
perimeter PeiA) can be computed from the directional Importance in stochastic geometry when dealing
derivatives at the origin of the covariograga. As a  With random closed sets (RACS) (Matheron, 1975;
by-product, it is also shown that a measurablesset Stoyanet al, 1995; Molchanov, 2005; Schneider and
has finite perimeter if and only if its covariograga ~ VVeil, 2008). In this context, one defines the mean
is Lipschitz, and in this case the Lipschitz constant i€ovariogram of a RACX as the functionyx(y) =

given by E(£9(XN(y+X))). The mean covariogram of a
_ RACS X is related to the probability that two given
Lip (ga) = 5 s;plvu(A) : points belong tX according to the following relation
ues'—
Previous work. Eq. 1 has already been proved ¥ (y) = /de(xe X andx+y € X) dx.

for certain classes of sets. It was well-known by the , _
mathematical morphology school (Matheron, 1965AS @ consequence the mean covariogram is
Haaset al, 1967; Matheron, 1975; 1986) that the rightsystema‘tlcally mvol_ved in second order statistics
directional derivative at the origin of the covariogram©f classic germ-grain models, such as the Boolean
ga Of a convex body equals minus the surface area diedel (Matheron, 1975; Stoyanal, 1995; Schneider
the orthogonal projection of the sat The convexity and Weil, 2008), the shot noise model (Rice, 1977;
assumption was relaxed in (Rataj, 2004) where Ratzﬁe'n”(:h and Schmidt, 1985), or the dead leaves
extends the result to compact sets#pg satisfying a medel (Matheron, 1968; Jeulin, 1997; Laejoul,
condition of full-dimensionalityZpr being the family 2002; Bordenavet al, 2006).

of locally finite unions of sets with positive reach  All the established properties of covariograms
such that all their finite intersections also have positiveyf deterministic sets extend to the case of mean
reach. In this more general framework, the surfacecovariograms of random closed sets. In particular,
area of the orthogonal projection is replaced by thehe stochastic equivalent of Egs. 1 and 2 show that
total projectionT R,(A) of A, the directional analogue the expectations of the variations of a RAGSare

of the (d — 1)-total curvature®y_;(A) of A (Federer, proportional to the directional derivatives of its mean
1959). Eq. 1 thus implies thatis a full-dimensional covariogramy (see property 8 of Proposition 16).
compactZpr-set thenvy(A) = 2T R,(A). This identity

is the directional equivalent of a recent result duecovgri g< r:ma(;% S::Egsna\lgluz?%’ +t£§nar::js trr::f;an
to Ambrosio, Colesanti, and Villa (2008): a full- 9 y ’

dimensional compact set with positive reahatisfies always degenerate. Nevertheless Egs. 1 and 2 also
Pe(A) = 2®y_1(A) (Ambrosioet al, 2008, Theorem perfr_mt t?] study_]'E_he df.“eaf‘ varllatlo_n of statlona]rcy RACS.
9) (one could directly prove thaf,(A) = 2TR,(A) by I?]e Ine thespecific |fr((ej(;t|on§1 V"’}”at'p'@’u(;) of X as
using the techniques developed in (Ambrosipal, ¢ Mean amount of directional variation fper unit
2008) and (Rataj, 2004)). Since Eq. 1 is valid forVolume (see Section “Specific variation of a stationary
any measurable Js’e; such thatgd(pg' < +oo. ONe RACS” for a detailed definition). For any stationary

can argue that the directional variation is the reIevanItQACSX’ itis shown using Eq. 1 that
general concept when it comes to the derivative at the

1
origin of the covariogram. &, (X) =2lim =P (ru e X,0¢ X) .

Il

1We refer to (Federer, 1959) and (Rataj ar&h®, 2001) for definitions and results regarding sets with positive r@ad/pr-sets
respectively.
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Again, integrating over all directiong one obtains an As initially noted by Matheron (1965), the
expression of thepecific variation8, (X) of X (i.e,  covariogram ofA can be expressed as the convolution
the mean amount of variation &f per unit volume) of the indicator functions oA and its symmetricA =

{—x|xe A}:
& (X) Oa=Ta*1;.

1 .1

= wm/s“!mﬂp(ru €X,0¢X)#%1(du).  Asillustrated in the following proposition, this point
- of view is useful to establish some analytic properties

As for Eqg. 2, the above formula has been statedf ga.

in the early works of Matheron (Matheron, 1967, »

p. 30) (Lant@joul, 2002, p. 26), but assumptions Proposition 2. Let AC RY be agd?measurgble set

on the regularity of the RACS were not clearly of finite Lebesgue measure andlge its covariogram.

formulated. It should be emphasized that the specifi¢ hen

variation is well-defined for any stationary RACS, d o

and that it can be easily computed as soon asl' Forally € RY, 0 < ga(y) < 9a(0) = Z(A).

one knows the probabilitieB (ru € X,0¢ X). As an 2. gais even: for all ye RY, ga(—=y) = ga(y).

illustration, the specific directional variations and the

specific variation of stationary Boolean models are3. dgA(Y) dy:-i”d(A)z-

computed in this paper. The obtained expressions

generalize known statistics of Boolean models with4. ga is uniformly continuous overRY and

convex grains (Schneider and Weil, 2008). Because lim ga(y) =0.

it is well-defined for any stationary RACS and [yl

easily computable, we claim that, when dealing

with non negligible RACS, the specific variation is Proof. The proofs of the three first properties are

an interesting alternative to other extension of thestraightforward. Sincels and 1z are in L2 (Rd),

usual specific surface area that derives from Steinerthe fourth property is obtained in applying the-

formula (Schneider and Weil, 2008). LP -convolution theorem t@a = 14 1; (see Hirsch
Contents. In Section “Covariogram of a and Lacombe, 1999, Proposition 3.2 p. 171, for

measurable set’ the covariograga of a Lebesgue ©€Xa@mple). -
measurable sef is defined and several properties

of ga are recalled and established. In particular it  Itis well-known that the covariogram is a positive-
is shown that as soon a& is non negligible its definite function (Matheron, 1965, p. 22; Lagfaul,
covariogramga is a strictly positive-definite function. 2002, p. 23). The next proposition improves slightly
The following section gathers several known resultshis result. In particular, it shows that for atl 0,
from the theory of functions of bounded directionalg,(x) < ga(0).

variation. In Section “Directional variation, perimeter

and covariogram of measurable sets”, the main resulfdroposition 3 (Strict positive-definiteness of the
relating both the derivative at the origin and thecovariogram) Let A be aZY%-measurable set such that
Lipschitz continuity of the covariogram of a set to 0 <.29(A) < ++o. Then its covariogramgis a strictly
its directional variations and its perimeter are statedpositive-definite function, that is, for all integers>L,
Finally, in the last section, applications of these result$or all p-tuples(ys,...,yp) of distinct vectors ofRd,

to the theory of random closed sets are discussed amahd for all (wy, ..., wp) € RP\ {0} we have

illustrated.

p
Z WjWia(Yk —Yj) > 0.
COVARIOGRAM OF b
A MEASURABLE SET

The proof of Proposition 3 makes use of the

i . following lemma.
Definition 1 (Covariogram of a measurable sebet g

A C RY be a,,iﬂd—m_easurable set of finite Lebesguel emma 4 (The translations of an integrable function
measure. Theovariogramof A is the function §:  are linearly independent).et f be a non null function

R? — [0, +w) defined for all ye RY by of L1 (RY) and let yi,...,yp be p distinct vectors of
§ RY. Then the functions f(x+yj), j=1,...,p, are
9aly) =L (AN (y+A)) = /Rd LAG)La(X—y) dx. linearly independent in 1(RY).
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Proof. Let (wy,...,wp) € RP be such that
p
Z f(x+yj) =0 foraexeR%
Applying the Fourier transform we have

(i w,-é<f-fyj>> f(§)=0forall £ e RY.
=1

Since f is non null and integrablef is non null

and continuous. Hence there exists an open ball

B = B(&,r) of center& € RY and radiusr > 0
such that for allé € B, f(E) # 0, and thus for
all £ €B, S¢&) =3 w;e&¥i) = 0. One easily
shows that the sunS(E) is null for all & € RY in
considering the one-dimensional restrictiorsafn the

line containingé andé&y: by the identity theorem, this —
one-dimensional function is null since it is analytic
and null over an open interval. Applying the inverse

generalized Fourier transform t8 = 0 shows that
Z?zle dy; = 0. This implies thatw; = --- = wp =0,
since by hypothesis the vectorsare distinct. O

Proof of Proposition 3.By Lemma 4, the function
p

X Z w;I1a(Xx+Yyj) is not a.e. equal to 0. Hence
=1

p
WjWiOA (Y —Yj)

j.,g:l j j
p

= WiW, Ta(X)La(X— i) dx
3 e [ TAOTAGK Y )

p
= WiW, Ta(X La(X+yi)dx
3 e [, TAOCE WA )

2
p
= Jo <lewj]lA(x+yj)> dx>0.

O]

Proposition 5. Let AC RY be a.#9-measurable set of
finite Lebesgue measure and lgthe its covariogram.
Then for all yze RY

9a(0) —

[9a(Y) —0a(2)| < Oa(Y—2).
Proof. Firstlet us show that for all measurable sifs

Ao, andAz

LYALINAY) — LY(ALNA)

3
< LA\ Ag) = Z9(Ag) — (A3 A). ©

42

We have
LYAINA) — LYALNAS)
< ZYANAY) — LY AINANAS)
= 29(ANA) \ (ALNANAR)) .

Now using that/A1 NA2) \ (A1 NA2NAg) is included
in the setA; \ Az, Eq. 3 is proved. Applying Eg. 3 to
the setd\; = A, A, = y+ AandAz = z+ Awe get

0a(Y) —0a(2) = Z¢ (AN (Y+A) — 2% (AN (z+A))
< ZYUy+A) - ZY((y+A)N(z+A)

= 29N - 24 (AN ((z—y) +A))
=0a(0) —ga(z—y) .
O
Remark.
The weaker inequality
9a(Y) — 9a(2)] < 2(ga(0) —galy—2))

was established by Matheron (1986, p. 1).

The inequality of Proposition 5 shows that the
Lipschitz continuity of the covariogram only
depends on the behavior of the function in 0.

FACTS FROM THE THEORY
OF FUNCTIONS OF BOUNDED
DIRECTIONAL VARIATION

This section gathers necessary results from the
theory of functions of bounded variation. For a general
treatment of the subject we refer to the textbook
of Ambrosio, Fusco, and Pallara (2000). When
the enunciated properties of functions of bounded
variation are not found in (Ambrosiet al, 2000),
full proofs are given for the convenience of the reader.
Let us add that these proofs can be skipped without
impeding on the understanding of the main results of
the paper that will be established in the next section.

For any open subskt c RY, #(U) denotes the set
of Borel subsets dfJ, and we write/ cc U if V cU
is open and relatively compact ih.

Definition 6 (Functions of bounded varlatlon)_et U

be an open set oRY. We say that fe L} (U) is

a function of locally bounded variatioin U if the

distributional derivative of f is representable byR4-

valued Radon measure, i.e., if there exis®R%valued
Radon measure, noted D (D4 f,...,Dgf), such that
forall ¢ = (¢1,...,¢q) € %5 (U,RY)

/f Ydiv ¢ (x Z/tb x)Dif(dx). (4)
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The vector space of all functions of locally boundedand
variation in U is denoted by By(U). The functions

f € BVioc(U) such that fe L*(U) and|Df|(U) < 4 Vi(f.U) — IDuf|(U) if feBW(U),
are said to befunctions of bounded variatiom U u(f,u) = 400 otherwise.
and the corresponding function space is denoted by

BV(U).

If Ac RYis a.#9%measurable set, by definition
In what follows, ™1 denotes the unit Euclidean theperimeterof Ain U is the variation of the indicator
sphere iRY. If ¢ € 62 (U,R) andu € -1, we write  functionlainU and one notes Pk, U ) 1=V (14,U).
Besides, one write§/,(A,U) := Vy(1a,U) for the
o¢ d directional variationof A in the directionu in U. In
%(X) = (0p(x),u), xeR™, the case wher&) = RY, one simply writesV (f) =
o o ) o V (f,R%) andVy(f) =V, (f,RY), and similarly for the
for the directional derivative of in the directionu. variations of a set.
Definition 7 (Functions of bounded directional As shown by the next proposition, given all the
variation) Let U be an open set oR? and let directional variationsV,(f,U), u € $*1, one can

ue S f e L (U) is a function of locally compute the variatiow (,U).
bounded directional variatioimn the direction u in

U if the directional distributional derivative of f in Proposition 8 (Variation and directional variations)
the direction u is representable by a signed Rador-etU be an open set @Y and let fe L1(U). Then,
measure, i.e., if there exists a signed Radon measurthe three following assertions are equivalent:

noted O, f, such that for allp € z° (U,R)

(i) feBV().
- -1
/ f(X)Zd)(X)dX:—/ ¢(X)Duf(dX) (ll) f EBVU(U)fOI’ aIIUGSd .
v u v (i) For all vectors @ of the canonical basis,
The corresponding space is denoted by, BMU). feBVg (U).
The functions & BV, joc(U) such that fe L2 (U) and |, addition
|Duf|(U) < 40 are said to befunctions of bounded ’
directional variationin the direction u in U and the 1 1 d
corresponding function space is denoted by;®V. aV(f,U) <y Ve (f,U) < S;p W(f,U)<V(f,U),
i= uesi-1
The variation in U of a function f € Lt (U) is and
defined by
V(U =5 [ ()i, )
V(f,U) :sup{/ f(x)dive(x)dx: 20041 J1
U
wherewy_; denotes the Lebesgue measure of the unit
b e (U,Rd) 19l < 1}. ball in RY-1,

A fundamental result of the theory of function of  The results of this proposition are mostly
bounded variation states that the variatibff,U) of  from (Chlelik, 1997). A proof is reproduced below

f € LY(U) isfinite if and only if f € BV(U) (Ambrosio  for the convenience of the reader. First one needs the
et al, 2000). More precisely, following lemma.

IDF|(U) if f € BV(U), Lemma 9. Let f € LY(U) and let u,...,u € S*1
such that fe BV, (U) forall j = 1,...,k. Then for all

V(f,U):{
u=y;Ajuj € S nspan{uy,...,ul, f € By (U).

+-00 otherwise.

Similarly, for all f € L}, (U) one defines the

directional variationin the directionu of f by Proof. With the above notation one easily checks
that D,f = Zj)\jDujf is a signed Radon measure

B 29 _ which represents the directional derivative bfin
Wu(f,U) _SUD{/U f(x)ﬁ(x) ox: the directionu. Besides, by the triangle inequality

. IDuf|(U) < $%|Aj][Dy, f|(U) < +eo, and thusf €
b CLULR), |r¢||ms1}, BVL(U). N
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Proof of Proposition 8.Clearly, Assertior(ii) implies
Assertion(iii) . Let us show tha(i) implies (ii). Let

For all v € S~ the following well-known identity
holds

f e BV(U), let Df = (D1f,...,Dgqf) be the Radon
measure representing its dlstrlbutlonal derivative, and
let uc L Then(Df,u) := 5%, uD;if is a signed
Radon measure which represents the directional
derivative of f in the directionu, and by the Cauchy- Hence by Fubini’s theorem
Schwarz inequality

/Sd,l [(v,u)| 29 "(du) = 2ay_1 .

/ V(f,U) #(du)

Vu(f,U) =|(Df,u)| (U) < Zl\u. |D; f|(U
— [ (. [l i ) oo
< |u[[Df|(U) =[Df|(U) =V(f,U) < fe. s

= 2uwy-1|Df|(U)

Hence f € BV,(U) and V,(f,U) <V(f,U). Let us — 2wy 1V(f,U)

now show thaf(iii) implies (i). For all vectorsg of - o

the canonical basisf € BVg (]Rd) and there exists =

a signed Radon measul® f which represents the

distributional partial derivatives of. But tdhen one

easily checks thatDe, f,...,De,f) is a R°-valued The next proposition recalls fundamental

Radon measure which represents the distribution
derivative of f. In addition, from the definition of the
variation

6ﬁ)ropertles related to the approximation of functions
of bounded directional variation. For simplicity we
restrict ourselves to the cake= RY. See (Ambrosio

d et al,, 2000, Section 3.11) for the proofs.

V(f,U)g_Zqu(f,U)<+oo,

Proposition 10 (Directional variation and
and thusf € BV(U). This concludes the proof of the approximation)
announced equivalence as well as the proof of the o _
inequalities since Variation of smooth functions: If f €
; ¢! (RY) NL (RY) then
= uet1 vu(f):/Rd 2 ax.

To finish let us show Eq. 5. First let us suppose that
f ¢ BV(U) and let us show that the right-hand side

of Eqg. 5 is equal to+o. Remark that by Lemma 9 —

Lower semi-continuity with respect to the!-

and the equivalence above the set of directians
S#1 for whichVy(f,U) < 4o is contained in a linear
subspace of dimension less thdn- 1 (otherwisef
would be inBV,(U) for all u and consequentlyf
would be inBV(U)). Hence forz9 1-all uin §-1
Vu(f,U) = 4+, and thus the right-hand side of Eq. 5
equalstoo. Let us now suppose théte BV(U ). By the
polar decomposition theorem (Ambroso al., 2000,
Corollary 1.29) there exists a uniqu f|-integrable
function o : U — S~1 such thatDf = g|Df|. With
this notation, observe that for alic 1 andA e
AU),

Duf(A) = (DF,U)(A) = | (0(,u)|DT|(c .

Hence, by (Ambrosiet al, 2000, Proposition 1.23)

)= | ltotx

2|, Ambrosio, personal communication.

Vu(f,U) = [Duf|(U u)| D[ (dx) .

44

convergencelf f, converges towards f in]L(]Rd)
then \((f) < ILmJirnf Vu(fn).
— Approximation by smooth functionsfor every
function fe BV, (RY), there exists a sequence
of smooth functions nfe € (RY) N BV, (RY)

such that § converges towards f in]t(Rd) and
nIIT Vu(fn) :Vu(f)

One practical advantage of directional variations
Vu(f) over the non-directional variatiov(f) is that
it can be computed from the integrals of difference
guotients, as the next proposition recalls. Although this
is a standard result &V functions theor§/, the author
is not aware of any standard textbook which enunciates
it. Consequently a proof is given for the convenience of
the reader.
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Proposition 11 (Directional variation and difference we deduce that for att > 0

quotient) Let ue $1 and let fe L (RY) be any If (x+ru) — f(X)]
integrable function. Then for all 0, Vu(fe) < liminf » "] dx.
| f(X+ru) — f(X)] dx <V (f Using the lower semi-continuity of the directional
/Rd Ir| u(f) variation with respect to the'-convergence we get the
result. O
and
[ Fxru) — F(x)|
lim » = dx =V, (f) . DIRECTIONAL VARIATION,

PERIMETER AND COVARIOGRAM
Proof. To prove the inequality we can suppose that OF MEASURABLE SETS
BV, (RY). First suppose thatt € % (RY) N BV, (RY).
Then In this section, the main results of the paper are
established (see Theorem 13 and Theorem 14).

|f(x+ru)—f(x)| = ‘/ r— (X+tru) ' Lemma 12 ((Matheron, 1986)) Let A be a.Z9-
measurable set having finite Lebesgue measure and let
< ['m%

ga be its covariogram. Then for all ¢ RY
1
N G0 -0a) =5 [, [Ty~ Ta(0)] ox.
Hence, using Fubini’s theorem and the first point of Rd
Proposition 10,

x+tru)

Proof.
/Rd |f(x+r|ur)|— f(X)|dX /Rd|11A(x+y)_]1A(x)|dx
< /01< [, glfj(x-uru) dx) dt = Vu(f) . :/]Rd (La(X+Y) — Ta(x))2dx

o . . =2(9a(0) —aaly)) -
This inequality is shown to be valid for any €

BV, (RY) by using approximation by smooth functions
(see Proposition 10).

Let us now turn to the second part of the statement. Let
f € L1 (RY). Using the above inequality it is enough to

O]

The identity of Lemma 12, which is due to
atheron (1986), is the key point to apply the results
from the theory of functions of bounded directional

show that L : . , : ;
variations enunciated in the previous section. First, one
|f(x+ru)— f(X)] establishes Eq. 1 and obtains a characterization of sets
u(f) < liminf | | ] dx. of finite directional variation.

_ _ . _ Theorem 13 (Directional variation and covariogram
Let us consider a family of mollifiergoe) .., thatis  of measurable sets)Let A be a.Z9-measurable
functionspe (x) := e 9p(x/€) where the functiop is  set having finite Lebesgue measure, lei be
even, non negative;, with support contained in the its covariogram, and let & 1. The following
unit ball, and such thafRd p(X) dx = 1. Definefe = assertions are equiva|ent:
f % pg. Thenfs € € (RY) NL! (RY) and f, converges

_ i) A has finite directional variation Y(A).
towardsf in L! (R%) ase tends to 0. By Fatou’s lemma 0 YA

we have (il m%gMohhm«nUeﬂﬁsamﬁsﬁmm.
r—
of
Vu(fe) = a—g(x) dx (i) The one-dimensional restriction of the
R] oU X . covariogram { : r — ga(ru) is Lipschitz.
<liminf [ e =Tl In addition,
o " (0)—garu) 1
. . ga(U) —ga(ru
Since Lip (ga) = lim T =5Wu(A)

| fe(-+ru) — fe ()|l = |(F(-4ru) — () *pell1 the second equality being also valid whep(®) =
< HFC+ru) =0l oo
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Remark. Note that Assertion(ii) of Theorem 13 Theorem 14 (Perimeter and covariogram of
above can be replaced by “The right directionalmeasurable sets).et A be a.ZY-measurable set

derivativegy (0+) exists and is finite” since having finite Lebesgue measure, and lgt log its
covariogram. The following assertions are equivalent:
ga(0+) := lim 9a(ru) —9a(0) (i) A has finite perimetePer(A).
o r i) For al s (gy) (0+) =
— _lim ga(0) —ga(ru) ® r a(ru)_u (eo) GO =
-0 Ir| ' Iirg+ u exists and is finite.
r—

Proof. Since from Lemma 12, (i) The covariogram g is Lipschitz.
In addition the following relations hold:

0a(0) —ga(ru) 1 |Ta(X—+ru) — Ta(X)]

= . 1 1
Ir| 2 Jra Ir| o, Lip (ga) = 5 sup Vu(A) < S Per(A)
2 ueg-1 2
by applying Proposition 11 witf = 1 one obtains and
the equivalence ofi) and (ii) as well as the formula 1 / i1
. OA(0)—ga(u) 1 PelA)=———  (da) (0+)° (du), (6)

Let us show thafi) implies (iii) . By Proposition 5, for this last formula being also valid whePer(A) = +o.

allr andse R Proof. The equivalence ofi) and (ii) as well as

ga(ru) — ga(su)| < ga(0) — ga((r —s)u) the integral geometric formula of Eq. 6 derive from

1 Proposition 8 and the identity
_ E/Rd ILAX+ (F —S)U) — Ta(X)|dx .

(@) (0+) = tim SO Py ).

Applying the inequality of Proposition 11 with= 14,
PPN a Y P A Let us now show thafi) implies (iii). Lety,z € RY.
|gA(ru) —ga(su)| Denote byu the direction ofS"~1 such thaty — z =
B B |y — zJu. By Proposition 5 and Theorem 13
|/ |1a(X+ (r —s)u) lA(x)|dX

Ir—s| 9a(Y) — 9a(2)] < 9A(0) —galy—2)
1
< WA=l < S(Ally—2 < (;ues;plvum)) y-2.

1
Henceg, is Lipschitz and Lifga) < 3Vu(A). Hencega is Lipschitz and Lifga) < 2sup,Vu(A).
Let us now show thaiii) implies(i). For allr #0we As for the converse implication and inequality, for all

have uc gt
i . 0a(0) —ga(ru) _ 1
: 0) — i GA0) —ga(ru) 1 |
Lip (da) > g“()mg“(r“) Lip (ga) = Jim === 5Vu(A)
|]lA(x+ru) 1a(X)] Hence for allu € §71, ,(A) < 400 and Lip(ga) >
2 Ir| ox. 1sup,Vu(A). This concludes the proof. O

By Proposition 11 the right-hand side tends towards One natural question is whether Eq. 6 extends to
qu(A) asr tends to 0. Henc@ has finite directional the case of functions, that is if one can recover the

variation in the directiou and Llp(gA) 1VIJ( ) All variation V(f) of a function f from the directional

in all we have shown thafi) and (i) aré equivalent derivatives of its covariograngs(y) = [pa f(X+
and that Lip(g4) = 2V, (A). 0 y)f(x)dx. The answer to this question is negative.

Indeed, if one considers a smooth functidne
%2 (RY), then its covariograng; is well-defined and
Considering all the possible directiomsc §'-1, s differentiable in 0. But sincgs is even, its derivative
the results of the previous theorem lead to Eq. 2t the origin equals zero, and thus the variatiorf @
(reproduced below as Eg. 6) and a characterization afot equal to the integral of the directional derivatives
sets of finite perimeter. of the covariograngs.
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APPLICATIONS TO RANDOM
CLOSED SETS

MEAN COVARIOGRAM OF A RANDOM
CLOSED SET

A random closed set (RACSX is a measurable
map from a probability spacgQ,«/,P) to the
space Z (RY) of closed subsets oRY endowed
with the o-algebra generated by the family
{{F € 7 (RY), FNK =0}, K compac} (Matheron,
1975; Molchanov, 2005; Stoyaat al.,, 1995).

field f a.s.inL! (RY) are defined by
E(|Df| (RY)) if f has a.s. bounded

EV(f)) = variation,
+o0 otherwise,
and
E(|Dyf|(RY)) if f has a.s. bounded
EWu(f)) = directional variation,

00 otherwise.

Since any RACSX defines a jointly measurable
random field by(cw,X) — Lx(e)(X) (see (Molchanov,

Definition 15 (Mean covariogram of a random 2005, p. 59)), the mean perlmeﬂE(Pet(X)) and the
closed set) Let X be a random closed set (RACS)mean directional variatioris(Vy(X)) of a RACSX are
of RY having finite mean Lebesgue measure, Well-defined.

IE(,Zd (X)) < 4. Themean covariograng of X is  Proposition 16 (Properties of the mean covariogram
the expectation of the covariogram of X with respect tmwf a RACS) Let X be a RACS oRY satisfying
its distribution, that isyy : R? — [0, ) is the function E (.£9(X)) < +o0 and letyk be its mean covariogram.

defined by

w(y) =E(9x(¥))
:E(yd(Xm

= Jran?

As the next proposition will show, all the results

(y+X)))
T (AN (y-+A)) P (dA)

relative to covariograms of deterministic measurable
sets can be adapted for mean covariograms of RACSS:
However before stating these results, we need to

introduce the notions of mean perimetg(Per(X))
and mean directional variatior&(Vy(X)), u € S*-1
of a RACSX.

We say that a jointly measurable random field 8.

f:QxRY — R almost surely (a.s.) i} (RY) has
a.s.locally bounded variatiorif there exists a random
RY-valued Radon measth®f which represents the
distributional derivative off, i.e, Eq. 4 holds a.s.
If in addition f € L1 (RY) a.s. andDf| (RY) is a.s.
finite, then f is said to have a.dounded variation
in RY. Similarly, f : Q x RY — R a.s. inL} (RY)
has a.slocally bounded directional variatiomn the
direction u € §-1 if there exists a random signed
Radon measur®,f representing the distributional
directional derivative off. If f € L1(RY) a.s. and
IDuf| (RY) < +w as., then one says thdt has
bounded directional variatioin the directionu.

The mean variation E(V(f)) and the mean
directional variationsE(V,(f)), u€ §-1, of a random

Then
1. Forallye RY, 0 < y(y)
2. Y iseven.

< ¥(0) = E (£9(X)).

3.

¥ (Y)

Jra W (y)dy=E (£%(X)?) € [0, +co].

5. If E(.£9(X)) > 0, theny is a strictly positive-
definite function.

/dIP’(xeX and x+y € X) dx.
R

4,

Forally,ze RY,

¥ (Y) = ¥ (2] < ¥ (0) — i (y—2) -

7. v is uniformly continuous overRY and

ﬂmww 0.
We have

¥ (0) —w(ru) 1
and, noting(y)’ (0+) = Iirg+w,

r—

L 08 01 ) = E (Pexx)).

Wy—1 Joo-1

The proofs are omitted since they mostly consist
in integrating the results of the previous sections
with respect to the distribution of the RACS.
When E (Vy(X)) < +e and E (Pel(X)) < 4o, both
formulas of property 8 follows easily from the
bounded convergence theorem. Using Fatou’s lemma,
one shows that these formulas are also valid when
E (Mu(X)) = +o0 andE (Per(X)) =

3We refer to (Horowitz, 1985) for definitions relative to random Radomsnees and for a proof of the fact that the variatiphof a
random Radon measureis a well-defined random positive Radon measure.
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SPECIFIC VARIATION OF A 6y (X). Eq. 7 is the formula given in (Lan&jpul, 2002,
STATIONARY RACS p. 26) and which originates from Matheron (1967, p.
, _ ) ) 30). In these references, the constant corresponding
A RACS X is said to bestationaryif for all o the variation intensity, (X) is called thespecific
y € RY, the translated RACY + X has the same (4 — 1)-volume of X (specific perimeterif d = 2,
distribution asX. If a RACS X is stationary, one specific surface areaf d = 3). However, in the

defines itsvariogram vx as the functionvx(y) = |ater works of Matheron (1975) as well as on recent
P(y € X,0¢ X) (seee.qg, (Lantigjoul, 2002) for more  yeference textbooks (Stoyaet al, 1995; Schneider
details on variograms). and Weil, 2008), thespecific surface measurefers

If a stationary RACSX has locally bounded t0 the surface measure that derives from Steiner’s

variation, then one easily checks that its derivativdormula. This measure has different names, depending
D1y, which is by definition a randonR%-valued 0N _its _normalization e_lnd the degree of g_eneraliz_ation:
Radon measure, is also stationary. Consequently, thatrinsic volume of indexd — 1 and Minkowski's
variation measurtD 1| is a stationary positive Radon content of index 1 for convex sets (Schneider and
measure, and thus there exists a real nurmé)() c Well, 2008), total curvature of inded — 1 for sets .
[0, 0] such that for all nonempty open sets—c RY,  With positive reach an@/pr-sets (Federer, 1959; Rataj
and Zahle, 2001), or also, in a more general setting,
E(V(X,U)) ;:E(|D1X|(U)):a,(x)gd(u), outer Minkowski content (Ambrosicet al, 2008;
Villa, 2009; see also Hugt al, 2004). Even though
We choose to call this consta/ (X) the specific the (variational) perimeter of a set and this notion
variation of X or the variation intensity of X  of surface measure agree for convex sets (Ambrosio
(see the discussion below). Similarly, for alle et al, 2008), the distinction is important. Indeed
-1 there exists a reay,(X) € [0,+] such that their extensions to non convex sets have different
E (|Dylx|(U)) = 8y,(X)ZL%(U). 84,(X) is called the behaviors. For example, the outer Minkowski content
specific directional variationof X in the direction counts twice the isolated fine parts of a set having a
u (or also thedirectional variation intensity As bounded andd — 1)-rectifiable topological boundary,
before, one extends the definition of the specifiovhereas these fine parts have no influence on the
variation for stationary RACX which do not have a.s. perimeter (Villa, 2009, Proposition 4.1) (here “isolated
locally bounded variation by settirgy (X) =+, and fine parts” denotes the part of the boundary which
similarly for the specific directional variatiof,,,(X). = has Lebesgue density 0). In order to make a clear
In this context the integral-geometric formula of Eq. 5distinction between the (variational) perimeter and the

gives surface measure from Steiner’s formula, the constant
1 6y (X) is named thespecific variatiorof X and not its
X) = X).229 1 (du) . “specific perimeter”.
8 (X) = 5 [, , B ()2 ()

As mentioned in the introduction, one should
Theorem 17(Specific variations and variogram)et  notice that, contrary to the specific surface
X be a stationary RACS, lek be its variogram, and, area (Schneider and Weil, 2008), the specific
variation 6,(X) is well-defined for any stationary
RACS. Besides, Theorem 17 shows that the specific
Then for all ue S the specific directional variation directional variationg, (X) and the specific variation

1
for all u € S™1, denote(vy)' (0+) := lim —vx (ru).
r—

6y,(X) is given by 6y (X) are easily computed as soon as one knows the
variogram ofX. This will be illustrated in the next
-1 section where the specific variations of stationary
— uy/ — i
& (X) = 2(v) (0+) = 2fim, M]P’(ru €X.0¢X) - Boolean models are computed.

In other words, the specific directional variation is L€t US now turn to the proof of Theorem 17 which
twice the right directional derivative of the variogram USes the following intuitive lemma.,

at the origin. Ir}t_egrat!ng_ over all directions, one Lemma 18. Let A be a.#d
obtains the specific variation of X:

1 / _
= /SH(VQ) (O Hdw) . (D) yyAB) <V, (AmB,Rd) < V(A B) +Vy(B,RY) .

-measurable set and B be
an open ball. Then for all & -1,

& (X)

Before proving this theorem let us discuss theReferences for the proofThe first inequality is
terminology specific variationof X for the constant immediate from the definition of the directional
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variation on an open set (Ambrosiet al, 2000). As for the lower bound,
The second inequality is easily proved using
the interpretation of the directional variation as P(rueX,0¢X)

the projection measure of the essential boundary ¥n8(0) — ¥ne(ru)  gs(0) —ga(ru)
mentioned in the introduction (Chlgg 1997). O - 2£4(B) Z£4(B)
Again, by Proposition 16 and the first inequality of
Proof of Theorem 17First remark that Lemma 18, we have
P(rueX,0¢X)=P(0€X,—ru¢X) IiminfiP(rueX,OgéX)
—P(0eX)-P(0cXand—rue X) r—0 |r|
—P0eX)-POeXN(ru+X)) . S IEM(XNB)) 1 Vu(B)
—2 z4(B) 2.24(B)
Let B be any nonempty open ball. Since is a 1 1 Vy(B)
stationary RACS 2 EGK/U(X) S 224B) "
E (gd(x N B)) The two established inequalities are true for any
P(0eX) = O nonempty open baB. Noting R the radius oB,
-1
As XN (ru+X) is also a stationary RACS, we have e\;d(z) _ f*hw;z _ a:}jl; .
E(£9(XN(ru+X)NB)) The enunciated formula is obtained by lettiRgends
P0eXN(ru+X)) = Z4(8) : {0 -+ oo, -

In order to introduce the mean covariogram of the

setX NB, let us denotd&, = (XNB) N (ru+ (XNB)). COMPUTATION OF THE SPECIFIC

Clearly we have the following inclusions VARIATIONS OF BOOLEAN MODELS
In this section we apply Theorem 17 to compute
E-cXn(ru+X)NB the specific directional variations and the specific
q variation of any stationary Boolean model. The
an

Boolean model (Stoyaet al, 1995; Schneider and
Weil, 2008) with intensityA and grain distributior

X (ru+X)NBJ\Er CB\ (BN(ru+B)) . is the stationary RACS defined by
Noting that#? (B\ (BN (ru+B))) = ga(0) — ga(ru), Z=Jx+X,
we obtain ieN
wes(ru) _ E(L9(XN(ru+X)NB)) where {x;,i € N} ¢ RY is a stationary Poisson point
£4(B) < 74(B) process with intensityA > 0 and (X),.y is a

sequence of i.i.d. RACS with common distributiBg,

independent of x;,i € N}. Moreover, the RACSX)

are supposed to have a finite mean Lebesgue measure
Of(otherwiseZ = RY a.s.). The avoiding functional of

the Boolean modef is well-known: for any compact

K c RY we have

P(rueX,0¢ X) < VX”B(?;;(EX)“B(W) ' P(ZNK = 0) = exp(—/\E (.zd (Xa K))) . (8)

yxne(ru) | gs(0) —gs(ru)
="79B) T 79B)

This yields both an upper and a lower bound
P(ru e X,0 ¢ X). We have

N where X denotes a RACS with distributioRx and
By property 8 of Proposition 16 and the secondx ¢;K = {x—y, xe X, y€ K} (seeg.g, Stoyaret al,

inequality of Lemma 18, 1995, p. 65 or Lantgjoul, 2002, p. 164). Starting from
the general expression of Eq. 8 (which determines the

lim Supip(ru €X,0¢X) < }w distribution ofZ), let us compute the variogramy of
=0 || 2 29B) Z. ForK = {0}, Eq. 8 becomes
1 1 Vu(B)
Sée\/u(X)Jrégd(B) - q::IP’(OgéZ):exp(—AE(.,%d(X)» :
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For K = {0, —ru}, with r #£ 0 andu € §1, remark REFERENCES
that we have

24 (X@eK) =24(XUuru+X)
_ d _ cod Ambrosio L, Colesanti A, Villa E (2008). Outer Minkowski
=227(X) = L7 (XN (u+X)) . content for some classes of closed sets. Math Ann
Hence in this case 342:727-48.
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=P(0¢Z)-P(ZN{0,—ru} = 0) Bordenave C, Gousseau Y, Roueff F (2006). The dead leaves
—q— exp(—/\ <2E (gd (X)) _ yx(ru))) model: a general tessellation modeling occlusion. Adv
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