© Acta hydrotechnica 21/35 (2003), Ljubljana ISSN 1581–0267 105 UDK/UDC: 556.52:630*1 Prejeto/Received: 20. 8. 2004 Izvirni znanstveni članek – Original scientific paper Sprejeto/Accepted: 15. 12. 2004 DOLO ČANJE INDEKSA LISTNE POVRŠINE LISTNATEGA GOZDA NA POVODJU DRAGONJE – 1. DEL: METODE IN MERITVE ESTIMATING LEAF AREA INDEX OF THE DECIDUOUS FOREST IN THE DRAGONJA WATERSHED – PART I: METHODS AND MEASURING Mojca ŠRAJ V raziskovalni študiji so bile narejene natan čne meritve in analize posameznih komponent hidrološkega kroga gozda in parametrov vegetacije s sodobno mersko opremo na eksperimentalnem povodju Dragonje. V ta namen sta bili v sodelovanju z univerzo Vrije Universiteit iz Amsterdama konec leta 1999 v listnatem gozdu na povodju Dragonje izbrani dve merski ploskvi, ena na severnem (1419 m 2 ) in druga na južnem pobo čju hriba (615 m 2 ) nad soto čjem Dragonje in Rokave. Gozda na severni in južni strani se opazno razlikujeta, tako v strukturi, gostoti in velikosti dreves kot v sami sestavi. Na obeh ploskvah so bile natan čno dolo čene lastnosti vegetacije. Na severni strani skoraj polovico dreves predstavlja kraški gaber (Carpinus orientalis croaticus) (47%), sledi pa mu hrast puhovec (Quercus pubescentis) (34%). Na tej strani najdemo še jesen (Fraxinus ornus, javor (Sorbus torminolis) in rumeni dren (Cornus Mas). Na južni strani ve č kot polovico dreves predstavlja jesen (54%), sledi pa mu hrast puhovec (26%). Na tem pobočju so v manjši meri zastopani še kraški gaber, javor in rumeni dren. Meritve so se za čele jeseni 2000. Indeks listne površine LAI se je dolo čal po treh metodah: neposredni metodi zbiranja odpadlega listja, metodi hemisferi čnega fotografiranja in metodi merjenja fotosintetskega aktivnega sevanja (PAR). Na vsaki ploskvi posebej so se v desetih posebnih košarah redno zbirale koli čine odpadlega listja, v istih to čkah se je izvajalo tudi hemisferi čno fotografiranje krošenj in 3 serije meritev fotosintetskega aktivnega sevanja PAR. Za potrebe dolo čanja indeksa listne površine je bila najpogostejšim vrstam dreves dolo čena specifi čna površina listov SLA. Klju čne besede: indeks listne površine (LAI), specifi čna listna površina (SLA), gozdna hidrologija, Dragonja In the research study detailed measurements and analyses of components of the forest hydrological cycle and vegetational parameters were performed, using up-to-date measuring equipment on the experimental Dragonja watershed. Within the research project carried out in co-operation with the Vrije Universiteit, Amsterdam, two plots were selected at the end of 1999 in the deciduous forest of the Dragonja watershed, one on the north-facing slope (1419 m 2 ) and the other on the south-facing slope (615 m 2 ) on the hill above the confluence of the Dragonja River and Rokava River. There are considerable differences between the forests on the northern and southern slopes, i.e. in terms of structure, density, tree height and composition. On both plots the characteristics of vegetation were specified in detail. On the north plot almost half of the trees are hornbeam trees (Carpinus orientalis croaticus) (47%), followed by pubescent oak (Quercus pubescentis) (34%). The forest also includes ash (Fraxinus ornus), maple (Sorbus torminolis) and cornelian cherry dogwood (Cornus Mas). On the south plot more than half of the trees are represented by ash (54%), followed by pubescent oak (26%). On the plot hornbeam, maple and cornelian cherry dogwood are also found. The measurements started in autumn 2000. Leaf area index (LAI) was estimated with three methods: direct litterfall collection method, method of hemispherical photography, and method of photosynthetically active radiation (PAR). On each plot, litterfall was collected in 10 baskets, and at the same points the hemispherical photography of canopy and 3 sets of PAR measurements were performed. For establishing the LAI index the specific leaf area was established for the most frequent trees. Key words: leaf area index (LAI), specific leaf area (SLA), forest hydrology, Dragonja Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 106 1. UVOD Hidrologija je veda, ki preu čuje kroženje vode v naravi, njene pojavne oblike, razporeditev na zemlji, njeno gibanje ter fizikalne in kemi čne lastnosti (Chow, 1964). Ukvarja se predvsem s kroženjem vode na kopnem, torej z izmenjavo vode med atmosfero, površino zemlje in vodnimi sistemi na njej (Brilly in Šraj, 2000). Gozdna hidrologija preu čuje kroženje vode na z gozdom poraš čenih površinah. Preu čuje poti in na čine prehajanja vode iz atmosfere skozi gozdni ekosistem v tla, podtalnico in površinske vode ter vra čanje vode nazaj v ozra čje (Smolej, 1988). Padavine so glavni vir vode hidrološkega kroga v gozdu (slika 1). Ve činoma predstavljata padavine dež ali sneg, v obmorskih in goratih gozdnih predelih pa se pojavljajo tudi horizontalne padavine – megla. Ponavadi velik del padavin, padlih nad gozdom, prestrežejo drevesne krošnje, manjši del pa jih pade skozi odprtine med krošnjami in listi naravnost na tla – prepuš čene padavine. Koli čina prestreženih padavin (Mikoš et al., 2002) je odvisna od vegetacijskih in meteoroloških parametrov: 1. Kapacitete krošnje, le-ta pa je odvisna od vrste, velikosti, oblike in starosti vegetacije, površine in orientacije listov (iglaste vrste dreves prestrezajo 20–40 %, listnate pa 20–25 % padavin, z ve čjo starostjo vegetacije delež prestreženih padavin naraš ča (Geiger et al., 1995)). 2. Gostote vegetacije (z gostoto dreves prestrežene padavine naraš čajo). 3. Intenzitete, trajanja in pogostosti padavin (manjša intenziteta ali kratko trajanje omogo čata večje izhlapevanje s krošenj, intenziteta izhlapevanja je najve čja na za četku nevihte, pogostejše padavine zmanjšujejo prestrežene padavine). 4. Vrste padavin (pri iglastih vrstah dreves vodni ekvivalent prestreženih snežnih padavin presega koli čino prestreženih teko čih padavin). 5. Klimatskih pogojev (višja temperatura omogo ča ve čje izhlapevanje, veter lahko znatno vpliva na izhlapevanje). 1. INTRODUCTION The hydrological science studies the circulation of water in the nature, its phenomena, distribution on the earth, movement and physico-chemical characteristics (Chow, 1964). It mainly deals with circulation of water between the atmosphere, surface of the earth and its water systems (Brilly and Šraj, 2000). Forest hydrology studies the circulation of water in forested areas. It studies the course and ways of transition of water from the atmosphere through the forest ecosystem into the ground, groundwater and surface waters and its return back to the atmosphere (Smolej, 1988). Precipitation is the main source of water in the hydrological circle (Figure 1). Mostly it is represented by rain and snow, however, in the coastline and in mountainous, forested areas horizontal precipitation occurs, i.e. fog. Usually, most of the precipitation above the forest is intercepted by canopy, and a smaller part falls through the gaps between canopy and leaves to the ground – throughfall. Intercepted precipitation (Mikoš et al., 2002) depends on vegetational and meteorological parameters: 1. Canopy capacity, which depends upon the class of species, size, shape and vegetational age, area and leaf orientation (coniferous trees intercept 20–40 %, and decidous trees 20–25 % precipitation; the higher the vegetational age, the higher the intercepted precipitation (Geiger et al., 1995)). 2.Vegetational density (interception increases with tree density). 3. Intensity, duration and frequency of precipitation (smaller intensity or short duration result in higher evaporation rate from canopy, intensity of evaporation rate is highest at the beginning of storms, frequently occurring precipitation reduces interception). 4. Precipitation type (with coniferous species the water equivalent of intercepted snow exceeds the value of intercepted liquid precipitation). 5. Climate conditions (higher temperatures cause higher evaporation rate, the wind can have high influence over evaporation). 6. Periods in the course of the year (growing Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 107 6. Časovnega obdobja v letu (obdobje rasti, obdobje mirovanja vegetacije). Ovington (1954) je na podlagi raziskav zaklju čil, da je koli čina prestreženih padavin lahko od 6 do 93 odstotkov oziroma da je glede na zelo razli čne pogoje možen zelo razli čen delež prestreženih padavin. Eden pomembnejših parametrov vegetacije pri procesih, kot so prestrezanje padavin, izhlapevanje, transpiracija, evapotranspiracija in kroženje energije, je indeks listne površine. period, dormant period). Based upon research, Ovington (1954) concluded that the quantity of intercepted precipitation may vary between 6 and 93 percent, i.e. in different conditions a very different interception rate may be achieved. The leaf area index is one of the most important parameters of vegetation in terms of processes, such as precipitation interception, evaporation, transpiration, evapotranspiration and energy circulation. Slika 1. Gozdni hidrološki krog. Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 108 Figure 1. Forest hydrological cycle. 2. METODE DOLO ČANJA INDEKSA LISTNE POVRŠINE (LAI) Indeks listne površine (LAI, angl. orig. leaf area index) je definiran kot skupna enostranska površina zelenih listov na enoto površine tal [m 2 /m 2 ] (Watson, 1947; Chen et al., 1997; FAO, 2002). To čnost dolo čitve indeksa listne površine je lahko kriti čna pri razumevanju in modeliranju obnašanja posameznega ekosistema. Medtem ko so za posamezne vegetacije nizke rasti, kot so npr. poljedelske rastline, indeksi listne površine že zelo natan čno določeni (van Dijk in Bruijnzeel, 2001b), pa ostaja dolo čitev listnega indeksa naravnih gozdnih sestavov še vedno velik logisti čni problem. Za LAI je zna čilna prostorska in časovna spremenljvost, ki je v 2. METHODS FOR ESTIMATING THE LEAF AREA INDEX (LAI) Leaf are index (LAI) is defined as the total one-sided leaf area per unit ground area [m 2 /m 2 ] (Watson, 1947; Chen et al., 1997; FAO, 2002). Accuracy in estimating LAI may be critical in understanding and modelling of the behaviour of a single ecosystem. While LAI has been quite accurately estimated for low growing vegetation, such as agricultural plants (van Dijk in Bruijnzeel, 2001b), the estimation of leaf area index of natural forest compositions remains a big logistic problem. Characteristic of LAI is the spatial and time variability, which primarily depends on the type of vegetation and climate. In estimating Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 109 najve čji meri odvisna od vrste vegetacije in podnebja. Za dolo čanje LAI raziskovalci uporabljajo razli čne metode, ki jih v splošnem delimo na neposredne in posredne. Neposredne metode so zanesljivejše, vendar zahtevajo veliko časa in laboratorijskega dela. Posredne metode, pri katerih se indeks listne površine dolo či preko merjenja in analize nekih drugih parametrov, pa so hitrejše in zato omogočajo tudi zajem večjega prostorskega vzorca. Ve čina jih temelji na metodi dolo čanja deleža odprtin v krošnji. Njihova pomankljivost pa je, da ne lo čijo površine listov od površine vej in debla. Neposredne metode za dolo čanje LAI so: 1. Zbiranje in dolo čanje koli čine odpadlega listja. 2. Sekanje rastlin in dolo čanje celotne listne površine rastline. Med posrednimi metodami dolo čanja LAI pa so najpomembnejše: 1. Merjenje koli čine prehajanja son čnega sevanja skozi krošnje s posebnimi senzorji. 2. Hemisferi čno fotografiranje krošenj. 3. Alometri čne metode. 4. Dolo čanje LAI s pomo čjo satelitskih posnetkov. 2.1 METODA ZBIRANJA IN DOLO ČANJA KOLI ČINE ODPADLEGA LISTJA Je zelo natan čna metoda, vendar zahteva ogromno časa in zamudnega laboratorijskega dela. Ponavadi se uporablja v kombinaciji z eno od posrednih metod in služi za njeno kalibracijo. Uporabljena je bila v mnogih raziskavah (Bartelink, 1998; Chason et al., 1991; Clough et al., 2000; Maass et al., 1995; Nebel et al., 2001, Šraj, 2003). Metoda je najprimernejša za listopadni gozd, ki ima omejeno obdobje odpadanja listov. Temelji na predpostavki, da v košare za zbiranje listja lovimo naklju čne vzorce odpadajo čega listja nad njimi. Indeks listne površine se izra čuna iz mase posušenih listov na enoto površine in prej dololo čene specifi čne površine listov SLA. 2.2 SEKANJE RASTLIN IN DOLO ČANJE CELOTNE LISTNE POVRŠINE RASTLINE Metoda je uni čevalna in iz tega razloga LAI, researchers have used several different methods, which are generally divided into direct and indirect ones. Direct methods are more reliable, but they are time-consuming and require more laboratory work. Indirect methods, where LAI is established through measurements and analyses of some other parameters, are faster and thus enable the coverage of a larger spatial sample. Mostly, they are based on the method of estimating the canopy gap fraction. Their primary weakness is that they do not distinguish between leaf area and area of branches and trunks. Indirect methods for establishing the LAI are: 1. Litterfall collection and estimation. 2. Destructive sampling method and estimating the entire leaf area of a plant. Among the indirect methods of estimating LAI, the most prominent include: 1. Measuring the transition of solar radiation through canopy with special sensors. 2. Hemispherical photography of the canopy. 3. Allometric methods. 4. Estimating LAI with satellite imaging. 2.1 LITTERFALL COLLECTION METHOD Litterfall collection method is a very accurate method, but it takes a lot of time- consuming laboratory work. It is used in combination with one of the direct methods and serves for the calibration of the other methods. It was used in numerous studies (Bartelink, 1998; Chason et al., 1991; Clough et al., 2000; Maass et al., 1995; Nebel et al., 2001, Šraj, 2003). The method is best applicable in deciduous forests, where there is a limited period of leaves falling off. It is based on assumption that random samples of leaves are collected in the baskets. The LAI is calculated from the mass of dried leaves over area unit and previously determined specific leaf area SLA. 2.2 DESTRUCTIVE SAMPLING METHOD This is a destructive type of method and thus undesirable. It is suitable for example for Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 110 nezaželena. Primernejša je recimo za poljedelske rastline (Chen et al., 1997; Leuning et al., 1994; Levy in Jarvis, 1999; Whitford et al., 1995), za gozdove pa takoreko č neuporabna, saj je koli čina biomase, ki bi jo bilo treba uni čiti, nedopustno velika. 2.3 MERJENJE KOLI ČINE PREHAJANJA SON ČNEGA SEVANJA SKOZI KROŠNJE S POSEBNIMI SENZORJI Metoda (Chason et al., 1991; Chen, 1995; Le Dantec et al., 2000; Law et al., 2001; Martens et al.; 1993; Maass et al., 1995; Nilson, 1971; Kodani et al., 2002; McPherson in Peper, 1998) temelji na dolo čanju deleža odprtin v krošnji in je zasnovana na štirih predpostavkah (Li-Cor, 1990): − listje je črno in kot tako ne odbija in ne prepuš ča svetlobe; − posamezni listi so majhni; − listje je porazdeljeno naklju čno; − listje je orientirano azimutsko naklju čno. Delež odprtin zavzema vrednosti med 0 (popolnoma prekrito nebo) in 1 (popolnoma odprto nebo). Seveda v naravi nobena vegetacija ne more v celoti izpolnjevati zgornjih predpostavk. Listje navadno ni razporejeno naklju čno, temve č je zbrano okrog vej. Lahko pa govorimo o neki naključni razporeditvi v sami krošnji. Res pa ima listje majhno prepustnost in odbojnost. Vse te ugotovitve so upoštevane pri metodi dolo čanja LAI s pomo čjo razli čnih senzorjev. Najbolj razširjen instrument iz te skupine med raziskovalci in eden novejših je LAI-2000 Plant Canopy Analyser (Li-Cor, 1990). To je opti čno-elektronska naprava, ki deluje na principu opti čnega senzorja in simulira širokokotni objektiv "ribje oko" (angl. orig. fish-eye). Poleg širokokotne le če ima vgrajen tudi detektor sevanja. Instrument izra čuna LAI iz meritev sevanja pod in nad krošnjami. Uporablja se lahko tudi Ceptometer, ki meri fotosintetsko aktivno sevanje (angl. orig. Photosynthetically Active Radiation ali PAR). PAR je del spektra son čnega sevanja, ki ga lahko uporabijo zelene rastline, in sicer med 380 in 710 nm valovne dolžine (Diaci, 1999). LAI se lahko izra čuna iz razmerja med PAR pod krošnjami in nad krošnjami, koeficienta pojemanja svetlobe pri prehodu skozi krošnje posamezne vegetacije ( κ , angl. orig. canopy crops (Chen et al., 1997; Leuning et al., 1994; Levy in Jarvis, 1999; Whitford et al., 1995), but practically unusable for forests, since the biomass quantity that needs to be destroyed is inadmissably large. 2.3 MEASURING THE TRANSIMISSION OF SOLAR RADIATION THROUGH FOREST CANOPY WITH SPECIAL SENSORS The method (Chason et al., 1991; Chen, 1995; Le Dantec et al., 2000; Law et al., 2001; Martens et al.; 1993; Maass et al., 1995; Nilson, 1971; Kodani et al., 2002; McPherson and Peper, 1998) is based on establishing canopy gap fraction, and has been based on four assumptions (Li-Cor, 1990): − the foliage is black and thus does not reflect or transmit any light; − the foliage elements are small; − the foliage is randomly distributed; − the foliage is azimuthally randomly oriented. Canopy gap fraction is estimated from 0 (fully covered sky) to 1 (fully open sky). Notably, in nature no vegetation can ever fit into the extreme-type assumptions. The foliage is usually not random but is collected around branches. However, we can assume that there is random distribution in the canopy itself. The foliage has little transmittance or reflection. All these observations are taken into consideration in establishing LAI with different sensors. One of the most widely used and recently introduced instruments is LAI- 2000 Plant Canopy Analyser (Li-Cor, 1990). This is an optical-electronic device functioning on the principle of an optical sensor and simulating the fish-eye wide-angle lens. Besides the wide-angle lens it has a built-in radiation dector. The instrument calculates LAI from measurements of radation below and above the canopy. A Ceptometer can also be used, measuring the Photosynthetically Active Radiation (PAR). PAR is part of the solar radiation spectrum between 380 and 710 nm of wave length, which can be used by green plants (Diaci, 1999). LAI can be calculated between the ratio of incident and transmitted Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 111 light extinction coefficient) in Beer- Lambertovega zakona (Pierce in Running, 1988). Pojemanje son čnega sevanja pri prehodu skozi vegetacijo je odvisno od razporeditve in gostote listov ter njihove prepustnosti: PAR, canopy light extinction coefficient ( κ ) and the Beer-Lambert law (Pierce in Running, 1988). The canopy light extinction during transmission through vegetation depends on distribution and foliage density as well as its transmittance: LAI i p e Q Q ⋅ − ⋅ = κ (1) Posamezni členi ena čbe so: p Q prepuš čeno son čno sevanje, izmerjeno pod krošnjami [nmol/m 2 /s]; i Q vpadlo son čno sevanje, izmerjeno nad krošnjami [nmol/m 2 /s]; κ koeficient pojemanja [-]; LAI indeks listne površine [-]. Single elements in the equation are: p Q transmitted solar radiation, measured below canopy [nmol/m 2 /s]; i Q incoming solar radiation, measured above canopy [nmol/m 2 /s]; κ light extinction coefficent [-]; LAI leaf area index [-]. 2.4 HEMISFERI ČNO FOTOGRAFIRANJE KROŠENJ Je dolo čanje deleža odprtin v krošnji s posebno obdelavo in analizo fotografij (Frazer et al., 2001; McPherson in Peper, 1998; Walter in Torquebiau, 2000; Chen et al., 1991; van Gardingen et al., 1999; Levy in Jarvis, 1999; Hale in Edwards, 2002). Najpogosteje se v raziskavah uporablja posebna širokokotna le ča "ribje oko" (fish-eye) z vidnim poljem 180 0 , lahko pa se uporabijo tudi druge le če. Osnovni princip metode je, da nebesni svod, ki je prekrit s krošnjami dreves, projiciramo na ravno podlago. Pri fotografiranju je zelo pomembna osvetlitev, da dobimo dober kontrast med listjem in nebom. Chen s sodelavci (1991) priporo ča tako nastavitev osvetlitve, da dobimo belo nebo. Dobili naj bi jo z osvetlitvijo, pove čano za 1 do 2 stopnji (1+, 2+), relativno glede na avtomatsko dolo čeno osvetlitev fotoaparata. Priporo čljivo je, da slikamo ob jasnem vremenu. Izra čun LAI iz meritev deleža odprtin preko hemisferi čnih fotografij so podali mnogi avtorji, med njimi tudi Nilson (1971) ter Lang in Yueqin (1986). Delež razpršenega sevanja, ki pride skozi krošnje, – () θ T – lahko izrazimo kot razmerje med razpršenim sevanjem pod krošnjami in nad krošnjami pri dolo čenem kotu. () θ T imenujemo prepuš čeno sevanje ali delež odprtin v krošnji. Če so 2.4 HEMISPHERICAL PHOTOGRAPHY OF CANOPY Hemispherical photography is a method of establishing the gap canopy fraction by way of special processing and photography analysis (Frazer et al., 2001; McPherson & Peper, 1998; Walter & Torquebiau, 2000; Chen et al., 1991; van Gardingen et al., 1999; Levy & Jarvis, 1999; Hale & Edwards, 2002). In studies, mainly the fish-eye wide-angle lens is used with 180 0 field-of-view. The basic principle of the method is to project the sky covered with tree canopies onto a level base. The brightness is of utmost importance in photography in order to achieve good contrast between the foliage and sky. Chen et al. (1991) suggest such settings of brightness, so that the sky is white. It should be achieved with brightness plus 1 to 2 levels (1+, 2+), with regard to the automatic settings of brightness of the instrument. It is advisable to take pictures in clear weather conditions. Calculation of LAI from measuring canopy gap fraction through hemispherical photography was proposed by several authors, among others Nilson (1971) and Lang & Yueqin (1986). The diffused radiation fraction that transmits through canopy ( ) θ T can be expressed as the ratio between diffused radiation below canopy and above canopy at a specific angle. ( ) θ T is called transmitted solar radiation or canopy gap fraction. If the gaps are large and equally distributed, as with Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 112 odprtine velike ali enakomerno razporejene, kot npr. pri iglastih drevesih ali pri vegetaciji, ki raste v vrsti, je prepuš čeno sevanje ve čje kot skozi listje naravnega gozda, kjer so listi razporejeni na enaki površini naklju čno, zato so tudi ena čbe, ki se uporabljajo za razli čne vrste vegetacij, druga čne. Za naravni listnati gozd je delež odprtin v krošnjah odvisen od gostote in orientacije listov ter dolžine poti skozi krošnje. S pomo čjo Beer-Lambertovega zakona dobimo: coniferous trees or with vegetation growing in a straight line, the transmitted radiation is higher than the radiation through the foliage of natural forests, where the foliage is randomly distributed, thus the equations for different types of vegetation are different. For natural deciduous forests the canopy gap fraction depends on density and orientation of the foliage as well as on the pathlength through the canopy. The Beer-Lambert Law proposes as follows: () () () () θ µ θ θ H G e T ⋅ ⋅ − = ali/or ( ) ( ) ()( ) θ µ θ θ H G T ⋅ ⋅ = − ln (2) V ena čbi (2) je: () θ T delež prepuš čenega son čnega sevanja ali delež odprtin v krošnji [-]; () θ G delež listov projeciranih v smeri kota θ [-]; () θ H dolžina poti skozi krošnjo za vsak kot θ [m]; θ zenitni kot [ 0 ]; µ gostota listja [m 2 /m 3 ]. In Equation (2): ( ) θ T is the fraction of beam penetration or gap fraction [-]; ( ) θ G is the fraction of foliage projected towards angle θ [-]; ( ) θ H is pathlength through the canopy for each view angle θ [m]; θ is zenith angle [ 0 ]; µ is foliage density [m 2 /m 3 ]. Ena čbo za gostoto listja je podal Miller (1967): Equation for foliage density was proposed by Miller (1967): ( ) ( ) () ∫ ⋅ − = 2 0 sin ln 2 π θ θ θ θ µ d H T (3) Če je () θ H znan, lahko ena čbo (3) uporabimo za katerokoli obliko krošenj. Za krošnjo višine (z) velja: If ( ) θ H is known, then Equation (3) can be applied to any canopy shape. For a canopy of size (z) stands: () θ θ cos z H = (4) z LAI ⋅ = µ (5) Ena čbo (5) lahko sedaj zapišemo: Equation (5) can be expressed as: () () θ θ θ θ π d T LAI sin cos ln 2 2 0 ∫ − = (6) 2.5 ALOMETRI ČNE METODE Temeljijo na dolo čanju LAI preko osnovnih 2.5 ALLOMETRIC METHODS Allometric methods are based on estimating the LAI through the basic physical Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 113 fizikalnih lastnosti vegetacije, kot npr. premer debla na dolo čeni višini, višina dreves, biomasa ipd. s predhodno natan čno dolo čenim odnosom med posameznimi parametri (Chen et al., 1997; Jackson, 2000; Karlik in McKay, 2002; McPherson in Peper, 1998; Nowak, 1996). Ta odnos se dolo či na reprezentativnem manjšem vzorcu z eno od neposrednih metod. 2.6 METODA DOLO ČANJA LAI S POMOČJO SATELITSKIH POSNETKOV Metoda (Birky, 2001; Fassnacht et al., 1997; Myneni in Running, 1999) temelji na analizi satelitskih merjenj IR svetlobe (slika 2). Z naraš čanjem LAI odboj IR svetlobe zaradi absorbcije pada. characteristics of vegetation, such as trunk diameter at certain height, tree size, biomass etc. with previously accurately determined relationship between parameters (Chen et al., 1997; Jackson, 2000; Karlik & McKay, 2002; McPherson & Peper, 1998; Nowak, 1996). The relationship is established on a small representative sample with one of the direct methods. 2.6 METHOD OF ESTIMATING LAI WITH SATELLITE IMAGING The method (Birky, 2001; Fassnacht et al., 1997; Myneni & Running, 1999) is based on analysis of satellite measurements of IR light (Figure 2). By increase of LAI the reflection of IR light decreases due to absorption. Slika 2. Globalni LAI, dolo čen s pomo čjo SeaWiFs (angl. orig. sea-viewing wide field-of-view senzor) za september in oktober 1997 (Myneni in Running, 1999). Figure 2. Global LAI estimated by SeaWiFs sea-viewing wide field-of-view sensor for September and October 1997 (Myneni & Running, 1999). 2.7 SPREMENLJIVOST LAI Med posameznimi ekosistemi se indeks listne površine zelo spreminja, od manj kot 1 m 2 /m 2 (aridni predeli) (Scurlock et al., 2001) do ve č kot 10 m 2 /m 2 (nekateri iglasti gozdovi) (Scurlock et al., 2001; Maass et al., 1995; Roberts, 2000). Dolo čanje indeksa listne površine je tema mnogih raziskovalcev po 2.7 VARIABILITY OF LAI Between ecosystems leaf area index has a high degree of variability, from less than 1 m 2 /m 2 (arid land) (Scurlock et al., 2001) to more than 10 m 2 /m 2 (some coniferous forests) (Scurlock et al., 2001; Maass et al., 1995; Roberts, 2000). Estimation of LAI is the research topic of many researchers around the Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 114 svetu (preglednica 1). Najve č študij je bilo narejenih za iglaste gozdove v razli čnih podnebnih pogojih (Chen et al., 1991; Law et al., 2001; Thomas in Winner, 2000), manj pa za listnate (Chason et al., 1991; Le Dantec et al., 2000; McPherson in Peper, 1998) in tropske gozdove (Clough et al., 2000; Maass et al., 1995; Nebel et al., 2001; Schellekens, 2000). Indeks listne površine se lahko zelo spreminja, tako časovno kot prostorsko. Za listnati gozd se npr. LAI spreminja sezonsko in je najve čji v rastni dobi ter najmanjši v mirujo čem obdobju vegetacije (v Sloveniji pozimi). Upoštevanje časovnega spreminjanja je zelo pomembno za razumevanje dobljenih razlik pri raznih fizikalnih in bioloških procesih ekosistema (npr. izhlapevanju). Prostorska spremenljivost indeksa listne površine je predvsem posledica razli čnih pogojev za rast. LAI se spreminja tudi znotraj posameznega ekosistema, odvisno od danih pogojev. V ve č študijah je bila dokazana povezava med indeksom listne površine in razpoložljivimi koli činami vode (Le Dantec et al., 2000; Maass et al., 1995). Pomanjkanje vode ne zmanjša le površine listov, temve č tudi njihovo število. Suša vpliva na površino listov neposredno z vplivom na rast in posredno na ravnotežje ogljika, ker zmanjšuje asimilacijo ogljikovega dioksida skozi stomatalne pore. Indeks listne površine je po najnovejših dognanjih (van Dijk in Bruijnzeel, 2001a; b) eden od pomembnejših parametrov modeliranja izhlapevanja prestreženih padavin. world (Table 1). Most studies were carried out for coniferous forests in different climates (Chen et al., 1991; Law et al., 2001; Thomas & Winner, 2000), fewer for deciduous forests (Chason et al., 1991; Le Dantec et al., 2000; McPherson & Peper, 1998), and tropical forests (Clough et al., 2000; Maass et al., 1995; Nebel et al., 2001; Schellekens, 2000). Leaf area index is highly variable in terms of time and space. For the deciduous forest the LAI changes seasonally and is highest during the growing period and during dormant period (in Slovenia in winter). Considering the time variability is important in understanding the differences in physical and biological processes of the ecosystem (such as evaporation). Spatial variability of leaf area index is mainly the result of different conditions for growth. LAI also changes within any ecosystem, depending on the given conditions. The connection between leaf area index and available water capacity has been proven in several studies (Le Dantec et al., 2000; Maass et al., 1995). The lack of water does not only reduce the leaf area, but also the abundance of leaves. Drought exerts a major influence on leaf area directly by influencing growth and indirectly on the carbon balance, since it reduces the assimilation of carbon dioxide through stomatal pores. According to latest studies (van Dijk & Bruijnzeel, 2001a; b), leaf area index should be considered as one of the most important parameters of modelling of evaporation of intercepted precipitation. Preglednica 1. Pregled vrednosti LAI iz razli čnih raziskovalnih študij. vrsta vegetacije LAI metoda lokacija avtor listopadni gozd (hrast) listopadni gozd (bukev) 0,5–7,0 2,9–8,1 opti čna Francija Le Dantec et al. (2000) listopadni gozd 4,9 neznana Nizozemska Lankreijer et al. (1993) listopadni gozd (bukev) 7,4 PAR Nizozemska Bartenlink (1998) listopadni gozd (hrast) 7,6 PAR Nizozemska Bartenlink (1998) listopadni gozd (hrast) 1,7–2,0 fotografiranj e Škotska van Gardingen et al. (1999) listopadni gozd (hrast, hikori) 4,9 3,8 2,9 zbiranje listja PAR opti čna Tennessee Chason et al. (1991) listopadni gozd (javor, hrast) 4,4–8,4 zbiranje listja Wisconsin Fassnacht et al. (1997) listopadni gozd (hrast) 4,4 sekanje Kalifornija Karlik & McKay (2002) Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 115 listopadni gozd (odprti) 3,1–3,7 3,3 0,9 3,7 3,4 sekanje opti čne PAR fotografiranj e alometri čna Kalifornija McPherson & Peper (1998) listnati gozd (nasad) 3,3 3,2–5,2 2,1–3,2 2,7–6,6 zbiranje listja PAR opti čna fotografiranje Kalifornija Martens et al. (1993) listnati gozd (mangrovec) 3,3–4,9 zbiranje listja Vietnam Clough et al. (2000) mešani gozd 1,6–4,4 zbiranje listja Wisconsin Fassnacht et al. (1997) nasad oljk 0,3–4,8 zbiranje listja Španija Gomez et al. (2001) listnati zimzeleni gozd (evkaliptus) 2,7 neznana Portugalska Valente et al. (1997) listnati zimzeleni gozd (evkaliptus) 1,1 1,1 sekanje alometri čna Avstralija Whitford et al. (1995) listnati zimzeleni gozd (lovor) 7,8 neznana Tenerife Aboal et al. (1999) iglasti gozd 5,1–7,6 PAR Nizozemska Bartenlink (1998) iglasti gozd 2,3 neznana JZ Francija Gash et al. (1995) iglasti gozd 1,5–4 neznana Francija Loustau et al. (1992) iglasti gozd 2,3 neznana Francija Lankreijer et al. (1993) iglasti gozd 3,2 neznana Portugalska Valente et al. (1997) iglasti gozd 4,8–9,0 3,3–5,3 2,9–7,0 PAR opti čna fotografiranje Kalifornija Martens et al. (1993) iglasti gozd 3,6–4,8 fotografiranje Kanada Frazer et al. (2001) iglasti gozd 1,6–4,8 2,0–6,3 opti čne alometri čne Kanada Chen et al. (1997) iglasti gozd 1,5–2,5 1,7–3,3 sekanje opti čna Kanada Chen (1996) iglasti gozd 3,8–4,6 3,8–4,5 opti čna fotografiranje Kanada Chen et al. (1991) iglasti gozd 8,2–9,3 alometri čna Washington Thomas & Winner (2000) iglasti gozd 1,3 1,7 3,7 3,5 opti čna PAR alometri čna zbiranje listja Oregon Law et al. (2001) iglasti gozd 1,4–2,5 zbiranje listja Wisconsin Fassnacht et al. (1997) tropski listnati gozd 4,2 5,1 zbiranje listja PAR Mehika Maass et al. (1995) tropski gozd (akacija) 6,8–8,1 neznana Indonezija Bruijnzeel & Wiersum (1987) tropski deževni gozd 4,2–4,4 zbiranje listja Peru Nebel et al. (2001) Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 116 Table 1. Overview of LAI values from different research studies. Forest type LAI Method Location Author Deciduous forest (oak) Deciduous forest (beech) 0,5–7,0 2,9–8,1 LAI-2000 France Le Dantec et al. (2000) Deciduous forest 4,9 unknown Netherlands Lankreijer et al. (1993) Deciduous forest (beech) 7,4 PAR Netherlands Bartenlink (1998) Deciduous forest (oak) 7,6 PAR Netherlands Bartenlink (1998) Deciduous forest (oak) 1,7–2,0 photography Scotland van Gardingen et al. (1999) Deciduous forest (oak, hickory) 4,9 3,8 2,9 litterfall PAR optical Tennessee Chason et al. (1991) Deciduous forest (maple, oak) 4,4–8,4 litterfall Wisconsin Fassnacht et al. (1997) Deciduous forest (oak) 4,4 destructive California Karlik & McKay (2002) Deciduous forest (open) 3,1–3,7 3,3 0,9 3,7 3,4 destructive optical PAR photography allometric California McPherson & Peper (1998) Deciduous forest (orchard) 3,3 3,2–5,2 2,1-3,2 2,7-6,6 litterfall PAR optical photography California Martens et al. (1993) Deciduous forest (mangrove) 3,3–4,9 litterfall Vietnam Clough et al. (2000) Mixed forest 1,6–4,4 litterfall Wisconsin Fassnacht et al. (1997) Olive trees orchard 0,3–4,8 litterfall Spain Gomez et al. (2001) Deciduous evergreen forest (eucalyptus) 2,7 unknown Portugal Valente et al. (1997) Deciduous evergreen forest (eucalyptus) 1,1 1,1 destructive allometric Australia Whitford et al. (1995) Deciduous evergreen forest (laurel) 7,8 unknown Tenerife Aboal et al. (1999) Coniferous forest 5,1–7,6 PAR Netherlands Bartenlink (1998) Coniferous forest 2,3 unknown SW France Gash et al. (1995) Coniferous forest 1,5–4 unknown France Loustau et al. (1992) Coniferous forest 2,3 unknown France Lankreijer et al. (1993) Coniferous forest 3,2 unknown Portugal Valente et al. (1997) Coniferous forest 4,8–9,0 3,3–5,3 2,9–7,0 PAR optical photography California Martens et al. (1993) Coniferous forest 3,6–4,8 photography Canada Frazer et al. (2001) Coniferous forest 1,6–4,8 2,0–6,3 optical allometric Canada Chen et al. (1997) Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 117 Coniferous forest 1,5–2,5 1,7-3,3 destructive optical Canada Chen (1996) Coniferous forest 3,8–4,6 3,8–4,5 optical photography Canada Chen et al. (1991) Coniferous forest 8,2–9,3 allometric Washington Thomas & Winner (2000) Coniferous forest 1,3 1,7 3,7 3,5 optical PAR allometric litterfall Oregon Law et al. (2001) Coniferous forest 1,4–2,5 litterfall Wisconsin Fassnacht et al. (1997) Tropical deciduous forest 4,2 5,1 litterfall PAR Mexico Maass et al. (1995) Tropical forest (acacia) 6,8–8,1 unknown Indonesia Bruijnzeel & Wiersum (1987) Tropical rain forest 4,2–4,4 litterfall Peru Nebel et al. (2001) 3. MERITVE LAI NA RAZISKOV ALNIH PLOSKV AH V sodelovanju z univerzo iz Amsterdama sta bili konec leta 1999 izbrani dve merski raziskovalni ploskvi v gozdu, ena na severnem pobo čju v podpovodju Rokave (1420 m 2 ), druga na južnem pobo čju v podpovodju Dragonje (615 m 2 ), obe približno enako (2500 m) oddaljeni od vasice Labor, na nadmorski višini približno 200 m in v majhni medsebojni oddaljenosti (400 m) (slika 3). Na obmo čju platoja Pleševica, med vasico Labor in izbranima merskima ploskvama je lepo viden časovni potek zaraš čanja z gozdom. Z oddaljevanjem od Laborja sre čamo tako na platoju 4–5, 10, 15–20 let stare sestoje in na koncu 30–35 let star gozd na strmih pobo čjih (okrog 30 0 ), ki se spuš čajo do dolin Rokave in Dragonje in na katerih sta bili izbrani omenjeni merski ploskvi (Šraj, 2003). Zaradi dolo čitve lastnosti in sestave obeh gozdnih ploskev, so bila na vsaki od njiju oštevil čena vsa drevesa s premerom na višini 1,35 m (DBH, angl. orig. tree diameter at breast height) ve čjim od 3 cm. Vsakemu drevesu posebej je bila nato dolo čena vrsta in premer na višini 1,35 m z merskim trakom natan čnosti 0,1 cm (te Linde, 2001). Dolo čene so bile štiri najpogostejše vrste dreves: hrast (Quercus pubescentis), gaber (Carpinus orientalis croaticus), javor (Sorbus torminolis) in jesen (Fraxinus ornus) in kasneje dodan še 3. MEASURING LAI ON RESEARCH PLOTS In co-operation with the Vrije Universiteit, Amsterdam, two measuring research plots were chosen at the end of 1999, one on the northern slope of the subwatershed of the Rokava (1420 m 2 ), the other on the southern slope in the subwatershed of the Dragonja (615 m 2 ), both situated approximately the same distance from the village of Labor, at an altitude of 200 m and short mutual distance (400 m) (Figure 3). In the area of the Pleševica plateau, between the village of Labor and the chosen plots the temporal course of forestation is well evident. By increasing the distance from Labor, forests are 4–5, 10, 15–20 years old and in the steepest slopes (around 30 0 ) 30– 35 years old, descending into the valleys of the Rokava and Dragonja Rivers and into the sites of the chosen plots (Šraj, 2003). Due to establishing the features and composition of both forest plots, all trees with a diameter of more than 3 cm at 1.35 m breast height (DBH) were numbered. Each tree was classified according to its species and diameter at the height of 1.35 m measured with measuring tape of 0.1 cm accuracy (te Linde, 2001). The four most frequent tree species were estimated: pubescent oak (Quercus pubescentis), hornbeam (Carpinus orientalis croaticus), maple (Sorbus torminolis), and ash (Fraxinus ornus); cornelian cherry dogwood Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 118 rumeni dren (Cornus Mas). Na severni ploskvi je bila vsakemu drevesu s klinometrom in merskim trakom izmerjena tudi višina. Na južni ploskvi pa je gostota vegetacije prevelika, zato ni bilo mogo če lo čiti posameznih drevesnih krošenj. Povpre čna višina dreves na južni strani je bila ocenjena vizualno. (Cornus Mas) was added later. On the north plot, height was measured with clinometer and measuring tape. On the south plot, however, vegetation density was too high, thus tree canopies could not be distinguished from one another. Mean tree height on the south plot was estimated visually. Slika 3. Položaj raziskovalnih ploskev (vir: Interaktivni atlas Slovenije). Figure 3. Position of research plots (source: Interactive Atlas of Slovenia). 3.1 SEVERNA RAZISKOVALNA PLOSKEV Severna gozdna ploskev ima površino 1419 m 2 . Na površini je bilo septembra 2000 naštetih 117 dreves s premerom (DBH na 1,35m) ≥ 3 cm (preglednica 2). Gostota dreves je torej 0,08 drevesa na kvadratni meter. Skoraj polovico dreves predstavlja kraški gaber (Carpinus orientalis croaticus) (47%), sledi hrast puhovec (Quercus pubescentis) (34%), jesen (Fraxinus ornus) (5%), javor (Sorbus torminolis) (3%) in ostale vrste (11%). Med ostalimi vrstami prevladuje rumeni dren 3.1 THE NORTH PLOT The surface area of the north plot is 1419 m 2 . There were 117 trees with a diameter at breast height (DBH at 1.35 m) ≥ 3 cm, counted in September 2000 (Table 2). This resulted in a stem density of 0.08 trees per square metre of forest floor. Hornbeam (Carpinus orientalis croaticus) represents almost half of all trees (47 %), followed by pubescent oak (Quercus pubescentis) (34 %), ash (Fraxinus ornus) (5 %), maple (Sorbus torminolis) (3 %), and other species (11 %). Among other species, cornelian cherry dogwood (Cornus Mas) Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 119 (Cornus Mas), ki je bil izlo čen naknadno. Kot podrastje se v ve čji meri pojavlja bode ča lobodika (Ruscus aculeatus). Povpre čna višina dreves je 12,3 ( ± 5,1) m in povpre čen premer vseh vrst dreves (DBH na 1,35 m) 13,8 ( ± 7,83) cm (preglednica 2). Povpre čen premer hrastovih dreves je 17,6 ( ± 10,3) cm in gabrovih 10,9 ( ± 4,3) cm (te Linde, 2001). prevails, which was added subsequently. The undergrowth is dominated by butcher’s broom (Ruscus aculeatus). Mean tree height was 12.3 m ( ± 5.1) and mean DBH of all species 13.8 ( ± 7.83) cm (Table 2) (Te Linde, 2001). The mean DBH of oak trees was 17.6 ( ± 10.3) cm and hornbeam trees 10.9 ( ± 4.3) cm (te Linde, 2001). Preglednica 2. Zna čilnosti posameznih vrst dreves na severni raziskovalni ploskvi. hrast gaber javor jesen drugo skupaj št. dreves 40 55 3 6 13 117 št. dreves [%] 34.19 47.01 2.56 5.13 11.11 100.00 gostota dreves [dreves/m 2 ] 0.0282 0.0388 0.0021 0.0042 0.0092 0.0824 povp. višina [m] 13.82 10.78 13.75 11.02 14.46 12.32 st.dev. višine [m] 5.74 4.18 8.16 1.27 5.05 5.06 povp. DBH [cm] 17.67 10.92 15.12 11.03 15.07 13.80 st.dev. DBH [cm] 10.25 4.30 8.73 4.93 7.10 7.83 Table 2. Characteristics of trees on the north plot. oak hornbeam maple ash other total No. of trees 40 55 3 6 13 117 No. of trees [%] 34.19 47.01 2.56 5.13 11.11 100.00 Stem density [trees/m 2 ] 0.0282 0.0388 0.0021 0.0042 0.0092 0.0824 Mean height [m] 13.82 10.78 13.75 11.02 14.46 12.32 St. dev. of height [m] 5.74 4.18 8.16 1.27 5.05 5.06 Mean DBH [cm] 17.67 10.92 15.12 11.03 15.07 13.80 St. dev. of DBH [cm] 10.25 4.30 8.73 4.93 7.10 7.83 3.2 JUŽNA RAZISKOVALNA PLOSKEV Južna gozdna ploskev ima površino 615 m 2 , kar je približno polovica velikosti severne ploskve. Kljub manjši površini pa število dreves na južni ploskvi (191) presega število dreves na severni ploskvi (preglednica 3). Gostota dreves je ve č kot trikrat ve čja (0,31 dreves na kvadratni meter) od gostote na severni ploskvi. Višina vsakega posameznega drevesa ni bila izmerjena zaradi prevelike gostote dreves, bila pa je ocenjena na 8 m v povpre čju. Ve č kot polovico dreves predstavlja jesen (Fraxinus ornus) (54 %), sledi hrast (Quercus pubescentis) (26 %), kraški gaber 3.2 THE SOUTH PLOT The south plot has an area of 615 m 2 or approximately half the size of the north plot. Nevertheless, the number of counted trees on the south plot (191) exceeded the number of trees in the north plot (Table 3). The stem density was about three times higher (0.31 trees per square metre) than in the north plot. The tree height could not be measured for each separate tree because of the high tree density but it was estimated at 8 m in average. More than half of the trees are ash trees (Fraxinus ornus) (54 %), followed by oak (Quercus pubescentis) (26 %), hornbeam (Carpinus Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 120 (Carpinus orientalis croaticus) (4 %), javor (Sorbus torminolis) (2 %) in ostale vrste (14 %). Tudi tu med ostalimi vrstami prevladuje rumeni dren (Cornus Mas), ki je bil izlo čen naknadno. Povpre čen premer vseh vrst dreves (DBH na 1,35 m) je 7,14 ( ± 4,84) cm. Povpre čen premer (DBH) jesenovih dreves je 4,7 ( ± 2,7) cm in hrastovih 13,2 ( ± 4,0) cm (te Linde, 2001). Višina in premer dreves na južni ploskvi sta precej manjša kot na severni strani. orientalis croaticus) (4 %), maple (Sorbus torminolis) (2 %), and other species (14 %). Among other species the cornelian cherry dogwood (Cornus Mas) prevails, which was added subsequently. The mean DBH (at 1.35 m) of all species was 7.14 ( ± 4.84) cm. The mean DBH for ash trees was 4.7 ( ± 2.7) cm and for the oak trees 13.2 ( ± 4.0) cm (te Linde, 2001). Tree height and tree diameter on the south plot are both lower than in the north plot. Preglednica 3. Zna čilnosti posameznih vrst dreves na južni raziskovalni ploskvi. hrast gaber javor jesen drugo skupaj št. dreves 50 7 4 104 26 191 št. dreves [%] 26.18 3.66 2.09 54.45 13.61 100.00 gostota dreves [dreves/m 2 ] 0.081 0.011 0.007 0.169 0.042 0.311 povp. DBH [cm] 13.17 5.80 6.21 4.69 5.55 7.14 st. dev. DBH [cm] 4.02 3.61 2.57 2.70 3.53 4.84 Table 3. Characteristics of tree species on the south plot. oak hornbeam maple ash other total No. of trees 50 7 4 104 26 191 No. of trees [%] 26.18 3.66 2.09 54.45 13.61 100.00 Stem density [trees/m 2 ] 0.081 0.011 0.007 0.169 0.042 0.311 Mean height [m] 13.17 5.80 6.21 4.69 5.55 7.14 St. dev. of height [m] 4.02 3.61 2.57 2.70 3.53 4.84 3.3 MERJENJE LAI NA RAZISKOVALNIH PLOSKVAH Na vsaki od merskih ploskev so se poleg meritev posameznih komponent gozdnega hidrološkega kroga izvajale tudi tri razli čne meritve indeksa listne površine. 3.3.1 Dolo čitev specifi čne listne površine SLA Za izra čun indeksa listne površine po neposredni metodi je potrebno najprej dolo čiti specifi čno površino listov SLA. SLA je odnos med površino in maso suhih listov oziroma je površina listov na enoto mase [m 2 /kg]. SLA se je dolo čila za pet najbolj tipi čnih drevesnih vrst na vsaki ploskvi posebej (hrast, gaber, 3.3 MEASURING LAI ON RESEARCH PLOTS Besides measuring the single elements of forest hydrological cycle, on each plot three different measurements of LAI were performed. 3.3.1 Specific leaf area estimation SLA For calculating leaf area index, first the specific leaf area SLA should be determined. SLA is the relationship between area and mass of dry leaves, i.e. SLA is leaf area over mass unit [m 2 /kg]. SLA was determined for five most typical tree species for each plot separately (oak, horbneam, mapel, ash, Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 121 jesen, javor, rumeni dren) poleg tega pa tudi za kategorijo “ostali listi” ter za droben listni material. Za vsako vrsto dreves je bilo nabranih približno 100–300 že razvitih svežih listov. Še svežim listom se je dolo čila njihova površina. Površina je bila dolo čena s pomo čjo skeniranja posameznih listov (resolucija 300 dpi) in digitalno obdelavo ter analizo dobljenih slik. Posamezne zbirke listov so se potem posušile, najprej na zraku, potem pa še v sterilizatorju na 70 0 C (Sterilizator S-45, UL Biotehniška fakulteta) do konstantne mase. Posušeno listje se je stehtalo (tehtnica Sartorius BP 310 S, d = 0,001g, UL Biotehniška fakulteta) do 0.001g natan čno (Šraj, 2003). Z izra čunom razmerja med površino listov in maso posušenih listov pa se je dolo čilo SLA za vsako vrsto dreves posebej. 3.3.2 Zbiranje in dolo čanje koli čine odpadlega listja Zbiranje odpadlega listja se je izvajalo 2 leti, in sicer v sezoni 2000/01 (Vrije Universiteit Amsterdam) ter 2001/02, pri čemer so se v drugem letu meritve izvajale pogosteje in natan čneje. Izlo čena je bila nova drevesna vrsta, rumeni dren. Listje se je na vsaki ploskvi posebej zbiralo v 10 košarah površine 0,2 m 2 (0,55 * 0,37 m), prekritih z mrežo (slika 4), in ro čno pobiralo približno dvakrat mese čno. Mreža je bila rahlo napeta na košare približno 30 cm od tal, kar je prepre čevalo dostop razli čnim listojedim živalim, hkrati pa zagotavljalo tudi dreniranje padavin, da ujeto listje ni gnilo, in zmanjševalo možnost odpihovanja listja. Košare so bile po ploskvah razporejene naklju čno in se med raziskavo niso premikale. Vsaka košara je bila oštevil čena, in sicer od 1 do 10 na severni ploskvi in od 11 do 20 na južni ploskvi. Pri vsakem pobiranju so se vzorci shranjevali v plasti čne vre čke z oznako številke košare in datumom. Pobrani vzorci iz posameznih košar so se vsaki č posušili, najprej na zraku, nato pa v sterilizatorju pri 70 0 C (Sterilizator S-45, UL Biotehniška fakulteta; slika 27a) do konstantne teže. Posušeno listje se je potem razvrš čalo po posameznih vrstah dreves za vsako košaro posebej in stehtalo (tehtnica Sartorius BP 310 S, d = 0,001g, UL Biotehniška fakulteta; slika 27b) do 0,001 g dogwood), and also for the category “other leaves” and fine foliage material. For each tree species, around 100–300 of developed new leaves were gathered. The leaf area was estimated for fresh leaves. Scanning of fresh leaves (with 300 dpi resolution), digital processing and analysis of images was performed. Collected sets of leaves were then dried, first air-dried and then oven-dried at 70 0 C (Sterilizer S-45, UL Biotehnical Faculty) to the constant mass. The dried leaves were weighed (scale Sartorius BP 310 S, d = 0.001 g, UL Biotehnical Faculty) up to 0.001 g accuracy (Šraj, 2003). By calculating the relationshop between leaf area and mass of dried leaves SLA was estimated for each species separately. 3.3.2 Litterfall collection and estimation Litterfall collection was performed for 2 years, i.e. in seasons 2000/01 (Vrije Universiteit Amsterdam) and 2001/02; measurements during the second season were performed more frequently and accurately. The new tree species, the cornelian cherry dogwood, was excluded from the measurements. The leaves were collected on each plot separately in 10 baskets of an area of 0.2 m 2 (0.55 * 0.37 m), which were covered with a net (Figure 4), and manually collected about twice monthly. The net was slightly tensioned on the baskets, approximately 30 cm above the ground, which prevented access to various foliage consumers and at the same time ensured drainage to prevent decay and reduced the possibility of leaves being blown away. Baskets were randomly distributed on the plots and were not moved during the study. Each basket was numbered, i.e. from 1 to 10 on the north plot and from 11 to 23 on the south plot. During each collection the samples were stored into plastic bags with an indication of the basket number and date. Each time, the collected samples were dried, first air-dried and then oven-dried at 70 0 C (Sterilizer S-45, UL Biotehnical Faculty, Figure 27a) to their constant weight. The dried leaves were then classified according to their species for each basket separately, and weighed (scale Sartorius BP 310 S, d = 0.001g, UL Biotehnical Faculty, Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 122 natan čno. Posebej se je izlo čalo in tehtalo tudi semena oz. plodove ter odpadle vejice. Iz koli čine odpadlega listja [kg/m2] in specifi čne površine listov SLA s e j e i z r a čunal indeks listne površine LAI (Šraj, 2003). Figure 27b) up to 0.001 g of accuracy. Seeds, fruits and twigs were screened and weighed separately. From the quanity of fallen leaves [kg/m2] and specific leaf area SLA, leaf area index LAI was calculated (Šraj, 2003). Slika 4. Košara za zbiranje odpadlega listja. Figure 4. Basket for collecting litterfall. 3.3.3 Hemisferi čno fotografiranje Fotografiranje drevesnih krošenj se je izvajalo na vsaki ploskvi v istih desetih to čkah, kjer so bile postavljene tudi košare za zbiranje listja za dolo čitev indeksa listne površine. Izvajalo se je 2 leti, in sicer v sezoni 2000/01 (Vrije Universiteit Amsterdam) ter 2001/02. V prvi sezoni so bile krošnje slikane petkrat v obdobju od 27. 9. 00 do 26. 10. 00. V drugi sezoni pa prav tako petkrat le v daljšem časovnem obdobju (7. 9. 01 do 9. 1. 02). Uporabljen je bil fotoaparat Minolta z 28 mm objektivom. Fotoaparat se je pritrdil na stojalo in v vsaki to čki postavil v vodoravno lego ter usmeril proti severu. Fotografiralo se je z osvetlitvijo, pove čano za 2 stopnji (2+), relativno glede na avtomatsko dolo čeno osvetlitev fotoaparata pod krošnjami, da bi dobili čim boljši kontrast med nebom in krošnjami (Chen et al., 1991). 3.3.3 Hemispherical photography For estimating LAI, photography of tree canopies was performed on each plot at the same ten points, where the baskets for leaf collection were positioned. The measurements were performed for 2 years, i.e. in seasons 2000/01 (Vrije Universiteit Amsterdam) and 2001/02. During the first season, the canopy was photographed 5 times in the period from Sept. 27, 2000, to Oct. 26, 2000. In the second season, the canopy was also photographed 5 times, however, during a longer time period (from Sept. 9, 2001, to Jan. 9, 2002). Minolta camera with a 28 mm lens was used. The camera was fixed onto a stand, positioned horizontally at each point and directed towards north. To achieve the optimal contrast between the sky and canopy, the brightness was plus 2 (2+) relative to the automatically set brightness Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 123 V ve čini študij je za hemisferično fotografiranje uporabljena posebna širokokotna le ča ″ribje oko" (fish-eye) z vidnim poljem 180 0 (Diaci et al., 1999; Frazer et al., 2001; Martens et al., 1993; Silbernagel in Moeur, 2001; Walter in Torquebiau, 2000). Z njo lahko preslikamo krošnje iz poloble v naravi v krog na ravnini. Ker take le če nismo imeli na razpolago, smo uporabili le čo z ožjim vidnim poljem. Kakorkoli pa je Chen s sodelavci (1997) v svoji raziskavi ugotovil, da lahko pri velikih zenitnih kotih pride do podcenjevanja deleža odprtin v krošnji, kot posledica premajhne kotne resolucije in temnejšega neba v bližini horizonta. Oboje skupaj je vzrok, da pri obdelavi fotografije majhne odprtine pri velikih zenitnih kotih izgubimo. Izdelane fotografije so bile potem skenirane z resolucijo 300 dpi in obdelane s programom Paint Shop Pro. Na vsaki fotografiji posebej se je ro čno z razli čnimi orodji programa postopoma iskala meja med nebom in krošnjo, na koncu pa se je fotografija spremenila v 1- bitno sliko ( črno-belo). S pomo čjo histograma je bil potem dolo čen delež belih oziroma črnih to čk in s tem delež odprtin v krošnji. Ta se je potem uporabil za izra čun prepusnosti krošenj za razli čne zenitne kote. Pri širokokotnih le čah se ponavadi za izra čun LAI uporabi pet zenitnih kotov (7, 23, 38, 53 in 68 0 ; Chason et al., 1991; Chen et al., 1991). Ker je bil pri nas uporabljen 28 mm objektiv, sta bila pri izra čunu uporabljena le zenitna kota 7 0 in 23 0 (Šraj, 2003). 3.3.4 Fotosintetsko aktivno sevanje (PAR) Meritve PAR so bile narejene s Sunflect Ceptometrom (Vrije Universiteit Amsterdam). Merilo se je sevanje nad in pod krošnjami na južni ploskvi oktobra 2000. Na severni ploskvi meritev ni bilo mogo če izvesti, ker skozi krošnje dreves ni prehajalo skoraj ni č son čne svetlobe. PAR pod krošnjami se je merilo v istih desetih to čkah, kjer so bile posnete tudi fotografije, nad krošnjami pa na bližnji gozdni jasi. Narejene so bile tri meritve leta 2000 (Vrije Universiteit Amsterdam), in sicer 16., 21., in 22. oktobra v jasnih vremenskih razmerah. Vsaka meritev je v povpre čju obsegala 80 individualnih meritev na 80 fotodiodah Ceptometra, za 8 azimutnih of the camera below canopy (Chen et al., 1991). In most studies a special wide angle fish- eye lens is used with 180 0 field-of-view (Diaci et al., 1999; Frazer et al., 2001; Martens et al., 1993; Silbernagel and Moeur, 2001; Walter and Torquebiau, 2000). The lens helps us copy the canopy from the hempishere in the nature into a circle in plane. Since no such lens was at our disposal, we used a lens with a narower field-of-view. However, Chen et al. (1997) established that in large zenith angles an underestimation of the gap canopy fraction can occur as a consequence of too small angle resolution and darker sky near the horizon. This is the reason that during processing the small gaps with large zenith angles are lost. The photographs are then scanned with a 300 dpi resolution and processed with Paint Shop Pro. By using different program tools, on each separate photo the border between sky and canopy was determined manually, and at the end the photo was changed into a 1-bit (black and white) photo. With a histogram the ratio of white and black points (and thus canopy gaps) was estimated. The ratio was then used for calculating the transmission of the canopy for different zenith angles. With wide-angle lens, 5 zenith angles are usually used (7, 23, 38, 53 and 68 0 ; Chason et al., 1991; Chen et al., 1991). Since a 28 mm lens was used in our case, only the zenith angles 7 0 and 23 0 were used (Šraj, 2003). 3.3.4 Photosynthetically active radiation (PAR) PAR measurements were made using Sunflect Ceptometer (Vrije Universiteit Amsterdam). Incident and transmitted PAR was measured in the south plot in October 2000. Measurements could not be performed on the north plot, since almost no sun light was transmitted throught the tree canopy. Transmitted PAR was measured in the same ten points, where the photographs were taken, incident PAR was measured on a close-by forest clearing. Three measurements were made in 2000 (Vrije Universiteit Amsterdam), i.e. on October 16, 21 and 22 in clear weather conditions. On average, each measurement comprised 80 individual measurements on 80 photodiodes of the Ceptometer, for 8 azimuth Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 124 orientacij. Vsak izmerjeni podatek predstavlja torej integracijo 8 x 80 = 640 to čkovnih meritev (te Linde, 2001). 4. ZAKLJU ČKI Indeks listne površine se je dolo čal po treh metodah, in sicer z neposredno metodo zbiranja in dolo čanja koli čine odpadlega listja ter z dvema posrednima metodama: hemisferi čnim fotografiranjem drevesnih krošenj in z merjenjem fotosintetskega aktivnega sevanja PAR na vsaki ploskvi posebej, saj se opazno razlikujeta tako v strukturi, gostoti in velikosti dreves kot v sami sestavi. Vse tri metode so med seboj zelo razli čne. Pri merjenju PAR s Ceptometrom dobimo rezultate skoraj takoj. Hemisferi čno fotografiranje krošenj je v fazi fotografiranja dokaj hitro, vendar kasnejša obdelava fotografij zahteva veliko časa in dela. Ima pa pred merjenjem PAR prednost v tem, da pri vsaki fotografiji upošteva razli čne zenitne kote in zajame precej velike površine. Direktna metoda zbiranja odpadlega listja pa je po vloženem času in delu najzahtevnejša od vseh treh, je pa zato tudi najbolj natan čna. ZAHVALA Za angleški prevod se zahvaljujem ge. Mojci Vilfan, za finan čno podporo pa Slovenskemu komiteju IHP UNESCO in Ministrstvu za šolstvo, znanost in šport RS. orientations. Thus, each measured data represents the integration of 8 x 80 = 640 point measurements (te Linde, 2001). 4. CONCLUSION Leaf area index was estimated according to three methods, i.e. the direct method of literfall collection and estimation, and two indirect methods: hemispherical photography of the tree canopy and method of photosynthetically active radiation PAR. The measurements were performed on each plot separately, since they differ considerably in terms of structure, density, size and composition. The three methods differ among each other. In PAR measurements with the Ceptometer the results are achieved immediately. Hemispherical photograpy is fairly fast in the phase of photographing, but the later processing is time-demanding and requires high work input. However, the main advantage of hemispherical photography over PAR is that it considers different zenith angles and includes fairly large areas. The direct method of litterfall collection is the most demanding in terms of time and work input, but it also produces the most accurate results. ACKNOWLEDGEMENTS I thank Ms. Mojca Vilfan for the translation into English, and I greatly acknowledge the financial support of the Slovenian National Committee for the IHP UNESCO and the Ministry of Education, Science and Sport of the Republic of Slovenia. VIRI – REFERENCES Aboal, J. R., Jimenez, M. S., Morales, D., Hernandez, J. M. (1999). Rainfall interception in laurel forest in the Canary Islands. Agricultural and Forest Meteorology 97, 73–86. Bartelink, H. H. (1998). Radiation interception by forest trees: a simulation study on effects of stand density and foliage clustering on absorption and transmission. Ecological Modelling 105, 213– 225. Birky, A. K. (2001). NDVI and a simple model of decidious forest seasonal dynamics. Ecological Modelling 143, 43–58. Brilly, M., Šraj, M. (2000). Osnove hidrologije (Principles of Hydrology). University Textbook, University of Ljubljana, Faculty of Civil and Geodetic Engineering, 234 p. (in Slovenian) Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 125 Bruijnzeel, L. A., Wiersum, K. F. (1987). Rainfall interception by a young acacia auriculiformis (a. cunn) plantation forest in West Java, Indonesia: application of Gash's analytical model. Hydrological Processes 1, 309–319. Chason, W. J., Baldocchi, D. D., Huston, M. A. (1991). A comparation of direct and indirect methods for estimating forest canopy leaf area. Agricultural and Forest Meteorology 57, 107– 128. Chen, J. M. (1995). Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agricultural and Forest Meteorology 80, 135–163. Chen, J. M., Black, T. A., Adams, R. S. (1991). Evaluation of hemispherical photography for determing plant area index and geometry of a forest stand. Agricultural and Forest Meteorology 56, 129–143. Chen, J. M., Rich, P. M., Gower, R. T., Norman, J. M., Plummer, S. (1997). Leaf area index of boreal forests: Theory, Tehniques and measurements. Journal of Geophysical Research 102(D24), 29429–29443. Chow, V. T. (1964). Handbook of applied hydrology. McGraw-Hill, New York. Clough, B., Tan, D. T., Phoung D. X., Buu, D. C. (2000). Canopy leaf area index and litter fall in stands of the mangrove Rhizophora apiculata of different age in the Mekong Delta, Vietnam. Aquatic Botany 66, 311–320. Diaci, J. (1999). Meritve son čnega sevanja v gozdu – I. Presoja metod in instrumentov (Measurements of Solar Radiation in Forests – I. Analysis of Methods and Instruments). Zbornik gozdarstva in lesarstva 58, 105–138 (in Slovenian). Diaci, J., Thormann, J. J., Kolar, U. (1999). Meritve son čnega sevanja v gozdu – II. Metode na osnovi projekcij hemisfere neba in krošenj (Measurements of Solar Radiation in Forests – II. Hemispherical and Canopy Methods). Zbornik gozdarstva in lesarstva 60, 177–210. (in Slovenian). van Dijk, A. I. J. M., Bruijnzeel, L. A. (2001a). Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 1: Model description. Journal of Hydrology 247, 230–238. van Dijk, A. I. J. M., Bruijnzeel, L. A. (2001b). Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 2: Model validation for a tropical upland mixed cropping system. Journal of Hydrology 247, 239–262. FAO (2002). Leaf area index, Terrestrial Ecosystem Monitoring sites (19.10.2002). (http://www.fao.org/gtos/tems/index.jsp – 23.10.2002). Fassnacht, K. S., Gower, S. T., Mackenzie, M. D., Nordheim, E. V., Lillesand, T. M. (1997). Estimating the leaf area index of north central Wisconsin forests using the Landsat thematic mapper. Remote Sensing Environment 61, 229–245. Frazer, G. W., Fournier, R. A., Trofymow, J. A., Hall, R. J. (2001). A comparation of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission. Agricultural and Forest Meteorology 109, 249–263. van Gardingen P. R., Jackson, G. E., Hernandez-Daumas, S., Russell, G., Sharp, L. (1999). Leaf area index estimates obtained for clumped canopies using hemispherical photography. Agricultural and Forest Meteorology 94, 243–257. Gash, J. H. C., Lloyd, C. R., Lachaud, G. (1995). Estimating sparse forest rainfall interception with an analytical model. Journal of Hydrology 170, 79–86. Geiger, R., Aron, R. H., Todhunter, P. (1995). The Climate near the Ground. Friedr. Vieweg & Sohn, Braunschweig/Wiesbaden, 528 p. Gomez, J. A., Giraldez, J. V., Fereres, E. (2001). Rainfall interception by olive trees in relation to leaf area. Agricultural Water Management 49, 65–76. Hale, S. E., Edwards, C. (2002). Comparation of film and digital hemispherical photography across a wide range of canopy densities. Agricultural and Forest Meteorology 112, 51–56. Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 126 Interaktivni atlas Slovenije (1998). Založba Mladinska knjiga, CD izdaja, profesionalna razli čica 2.0. (in Slovenian) Jackson, N. A. (2000). Measured and modeled rainfall interception loss from an agroforestry system in Kenya. Agricultural and Forest Meteorology 100, 323–336. Karlik, J. F., Mckay, A. H. (2002). Leaf area index, leaf mass density, and allometric relationships derived from harvest of blue oaks in a California oak savanna, USDA forest Service Gen. Tech. Report PSW-GTR-184, 719–729 (http://danr.ucop.edu/ihrmp/proceed/karlik.pdf). Kodani, E., Awaya, Y., Tanaka, K., Matsumura, N. (2002). Seasonal patterns of canopy structure, biochemistry and spectral reflectance in a broad-leaved deciduous Fagus crenata canopy. Forest Ecology and Management 167, 233–249. Lang, A. R. G., Yueqin, X. (1986). Estimation of leaf area index from transmission of direct sunlight in discontinuous canopies. Agricultural and Forest Meteorology 37, 229–243. Lankreijer, H. J. M., Hendriks, M. J., Klassen, W. (1993). A comparation of models simulating rainfall interception of forests. Agricultural and Forest Meteorology 64, 187–199. Law, B. E., van Tuyl, S., Cescatti, A., Baldocchi, D. D. (2001). Estimation of leaf area index in open-canopy ponderosa pine forests at different successional stages and management regimes in Oregon. Agricultural and Forest Meteorology 108, 1–14. Le Dantec, V. Dufrene, E., Saugier, B. (2000). Interannual and spatial variation in maximum leaf area index of temperate deciduous stands. Forest Ecology and Management 134, 71–81. Leuning, R., Condon, A. G., Dunin, F. X., Zegelin, S., Denmead, O. T. (1994). Rainfall interception and evaporation from soil below a wheat canopy. Agricultural and Forest Meteorology 67, 221– 238. Levy, P.E., Jarvis, P.G. (1999). Direct and indirect measurements of LAI in millet and fallow vegetation in HAPEX-Sahel. Agricultural and Forest Meteorology 97, 199–212. Li-Cor (1990). LAI-2000 Plant Canopy Analyzer. Li-Cor Inc., Lincoln, Nebraska. te Linde, A.H. (2001). Modelling rainfall interception by two deciduous forests of contrasting stature in the upper Dragonja catchment, southwestern Slovenia. Dragonja project working paper No.3, Vrije Universiteit, Amsterdam, 42 p. Loustau, D., Berbiger, P., Granier, A., El Hadj Moussa F. (1992a). Interception loss, throughfall and stemflow in a maritime oine stand. I. Variability of throughfall and stemflow beneath the pine canopy. Journal of Hydrology 138, 449–467. Loustau, D., Berbiger, P., Granier, A. (1992b). Interception loss, throughfall and stemflow in a maritime oine stand. II. An application of Gash's analytical model of interception. Journal of Hydrology 138, 469–485. Maass, J. M., Vose, J. M., Swank, W. T., Martinez-Yrizar, A. (1995). Seasonal changes of leaf area index (LAI) in a tropical decidious forest in west Mexico. Forest Ecology and Management 74, 171–180. Martens, S. N., Ustin, S. L., Rousseau, R. A. (1993). Estimation of tree canopy leaf area index by gap fraction analysis. Forest Ecology and Management 61, 91–108. McPherson, E. G., Peper, P. J. (1998). Comparation of five methods for estimating leaf area index of open-grown deciduous trees. Journal of Arboriculture 24(2), 98–111. Mikoš, M., Kranjc A., Mati či č, B., Müller, J., Rakovec, J., Roš, M., Brilly, M. (2002). Hidrološko izrazje – Terminology in hydrology. Acta hydrotechnica 20/32, 3–324. Miller, J. B. (1967). A formula for average foliage density. Australian Journal of Botany 15, 141– 144. Myneni, R. B., Running, S. W. (1999). Leaf area index (LAI) & fraction of photosynthetically active radiation (FPAR) – moderate resolution (http://www.forestry.umt.edu/ntsg/ Remotesensing/leafarea/leafarea.pdf). Nebel, G., Dragsted, J., Salazar Vega, A. (2001). Litter fall, biomass and net primary production in flood plain forests in the Peruvian Amazon. Forest Ecology and Management 150, 93–102. Šraj, M.: Dolo čanje indeksa listne površine listnatega gozda na povodju Dragonje – 1.del: Metode in meritve – Estimating Leaf Area Index of the Deciduous Forest in the Dragonja Watershed – Part I: Methods and Measuring © Acta hydrotechnica 21/35 (2003), 105–127, Ljubljana 127 Nilson, T. (1971). A theoretical analysis of the frequency of gaps in plant stands. Agricultural Meteorology 8, 25–38. Nowak, D.J . (1996). Estimating leaf area and leaf biomass of open-grown deciduous urban trees. Forest Science 42(4), 504–507. Ovington, J. D. (1954). A comparation of rainfall in different woodlands. Forestry London 27, 41– 53. Pierce, L. L., Running, S. W. (1988). Rapid estimation of coniferous forest leaf area index using a portable integrating radiometer. Journal of Ecology 69, 1762–1767. Roberts, J. (2000). The influence of physical and physiological characteristics of vegetation on their hydrological response, Hydrological Processes 14, 2885–2901. Schellekens, J. (2000). Hydrological processes in a humid tropical rain forest: a combined experimental and modelling approach. Vrije University, Amsterdam, 158 p. Scurlock, J. M. O., Asner, G. P., Gower, S. T. (2001). Worldwide historical estimates of leaf area index, 1932–2000. Oak Ridge National Laboratory, Tennessee, U.S.A. (http://www.daac.ornl. gov – 24.10.2002). Silbernagel, J., Moeur, M. (2001). Modeling canopy openness and understory gap patterns based on image analysis and mapped tree data. Forest Ecology and Management 149, 217–233. Smolej, I. (1988). Gozdna hidrologija (Forest hydrology). In: Rejic, M., Smolej, I., Sladkovodni ekosistemi, varstvo voda in gozdna hidrologija (Freshwater ecosystems, water conservation, and forest hydrology). University of Ljubljana, Biotechnical Faculty, Forestry Departement, 187–225 (in Slovenian). Šraj, M. (2003). Modeliranje in merjenje prestreženih padavin (Modeling and measuring of rainfall interception). Unpublished PhD thesis, University of Ljubljana, Faculty of Civil and Geodetic Engineering, 236 p. (in Slovenian) Thomas, S. C., Winner, W. E. (2000). Leaf area index of an old-growth Douglas-fir forest estimated from direct structural measurements in the canopy. Canadian Journal of Forest Hydrology 30, 1922–1930. Valente, F., David, J.S., Gash, J. H. C. (1997). Modelling interception loss for two sparce eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models. Journal of Hydrology 190, 141–162. Walter, J. M. N., Torquebiau, E. F. (2000). The computation of forest leaf area index on slope using fish-eye sensors. Sciences de la vie/Life Sciences 323, 801–813. Watson, D. J. (1947). Comparative physiological studies on the growth of field crops. Annals of Botany 11, 41–76. Whitford, K. R., Colquhoun I. J., Lang, A. R. G., Harper, B. M. (1995). Measuring leaf area index in a sparce eucalypt forest: a comparation of estimates from direct measurements, hemispherical photography, sunlight transmittance and allometric regression. Agricultural and Forest Meteorology 74, 237–249. Naslov avtorja – Author's Address dr. Mojca ŠRAJ Univerza v Ljubljani – University of Ljubljana Fakulteta za gradbeništvo in geodezijo – Faculty of Civil and Geodetic Engineering Katedra za splošno hidrotehniko – Chair of Hydrology and Hydraulic Engineering Jamova 2, SI-1000 Ljubljana, Slovenia E-mail: msraj@fgg.uni-lj.si