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Abstract

The classification of the dihedral folding tessellations of the sphere and the plane whose
prototiles are a kite and an equilateral triangle were obtained in [1]. Recently, this classi-
fication was extended to isosceles triangles so that the classification of spherical folding
tesselations by kites and isosceles triangles in three cases of adjacency was presented in
[2, 3, 4]. In this paper we finalize this classification presenting all the dihedral folding
tessellations of the sphere by kites and isosceles triangles in the remaining three cases of
adjacency, that consists of five sporadic isolated tilings. A list containing these tilings in-
cluding its combinatorial structure is presented in Table 1.
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1 Introduction
By a folding tessellation or folding tiling of the Euclidean sphere S2 we mean an edge-to-
edge pattern of spherical geodesic polygons that fills the whole sphere with no gaps and no
overlaps, and such that the “underlying graph” has even valency at any vertex and the sums
of alternate angles around each vertex are π.

Folding tilings (f-tiling, for short) are strongly related to the theory of isometric fol-
dings on Riemannian manifolds. In fact, the set of singularities of any isometric folding
corresponds to a folding tiling, see [13] for the foundations of this subject.

The study of this special class of tessellations was initiated in [5] with a complete
classification of all spherical monohedral folding tilings. Ten years latter Ueno and Agaoka
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[14] have established the complete classification of all triangular spherical monohedral
tilings (without any restriction on angles).

Dawson has also been interested in special classes of spherical tilings, see [10], [11]
and [12], for instance.

The complete classification of all spherical folding tilings by rhombi and triangles was
obtained in 2005 [8]. A detailed study of the triangular spherical folding tilings by equilat-
eral and isosceles triangles is presented in [9].

Spherical f-filings by two noncongruent classes of isosceles triangles in a particular
case of adjacency were recently obtained [6].

Here we discuss dihedral folding tessellations by spherical kites and isosceles spherical
triangles.

A spherical kite K (Figure 1(a)) is a spherical quadrangle with two congruent pairs of
adjacent sides, but distinct from each other. Let us denote by (α1, α2, α1, α3), α2 > α3,
the internal angles of K in cyclic order. The length sides are denoted by a and b, with
a < b. From now on T denotes a spherical isosceles triangle with internal angles β and γ
(γ 6= β), and length sides c and d, see Figure 1(b).

We shall denote by Ω(K,T ) the set, up to isomorphism, of all dihedral folding tilings
of S2 whose prototiles are K and T .
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Figure 1: A spherical kite and a spherical isosceles triangle

Taking into account the area of the prototiles K and T we have

2α1 + α2 + α3 > 2π and β + 2γ > π.

As α2 > α3 we also have
α1 + α2 > π.

We begin by pointing out that any element of Ω (K,T ) has at least two cells congruent
to K and T , respectively, such that they are in adjacent positions and in one and only one
of the situations illustrated in Figure 2.

After certain initial assumptions are made, it is usually possible to deduce sequentially
the nature and orientation of most of the other tiles. Eventually, either a complete tiling or
an impossible configuration proving that the hypothetical tiling fails to exist is reached. In
the diagrams that follow, the order in which these deductions can be made is indicated by
the numbering of the tiles. For j ≥ 2, the location of tiling j can be deduced directly from
the configurations of tiles (1, 2, . . . , j − 1) and from the hypothesis that the configuration
is part of a complete tiling, except where otherwise indicated.
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Figure 2: Distinct cases of adjacency of K and T

The cases of adjacency I , II and III have already been analyzed in [2, 3, 4]. In this
paper we consider the remaining cases of adjacency IV , V and VI .

2 Case of Adjacency IV

Suppose that any element of Ω (K,T ) has at least two cells congruent, respectively, to K
and T , such that they are in adjacent positions as illustrated in Figure 2–IV . As b = d,
using trigonometric formulas, we obtain

cos γ(1 + cosβ)

sin γ sinβ
=

cos α2

2 + cosα1 cos α3

2

sinα1 sin α3

2

. (2.1)

Concerning the angles of the triangle T we have necessarily one of the following situ-
ations:

γ > β or γ < β.

In the following subsections we consider separately each one of these cases.

2.1 γ > β

In this case we have γ > π
3 and a, c < b = d.

Proposition 2.1. Under the conditions assumed in this section, there is a single folding
tiling, L, such that α2 = π

2 , α1 + γ = π and α3 = β = π
3 . Planar and 3D representations

of L are given in Figure 9.

Proof. Suppose that any element of Ω (K,T ) has at least two cells congruent, respectively,
to K and T , such that they are in adjacent positions as illustrated in Figure 2−IV .
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Observing Figure 3(a), tile 3 cannot be a kite – this case was already analyzed in [4]
(case 2.1) and, under the current conditions, give rise to no f-tilings. Consequently, a side
of length c of each triangle must be adjacent to a side of length c of another triangle.
Moreover, we have α1 ≥ α2 > α3. In fact, if α2 > α1 and
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Figure 3: Local configurations

(i) α1 + γ = π (Figure 3(b)), we reach a contradiction at vertex v2, as α2 + ρ > π, for
all ρ ∈ {α1, α2};

(ii) α1 +γ < π (Figure 4(a)), at vertex v1 we have necessarily α2 +γ+kα3 = π, k ≥ 1.
But (α1 +α1 + γ) + (α2 + γ+α3) > (2α1 +α2 +α3) > 2π, which is impossible.
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Figure 4: Local configurations

At vertex v1 we have α1 + γ = π or α1 + γ < π.

1. Suppose firstly that α1 + γ = π (Figure 4(b)). At vertex v3 we have kα2 = π, with
k ≥ 2. As (α1 + γ) + (α2 + α2 + α2) > (α1 + α2) + (γ + β + β) > 2π, it follows that
k = 2

(
α2 = π

2

)
. With the labeling of Figure 4(b), if

(i) θ1 = α3 (Figure 5(a)), then at vertex v3 we have necessarily α1 + kβ = π, k ≥ 2,
and so α1 >

π
2 = α2 > γ ≥ α3 > β (note that α1 + β + α3 > π). But then tile 9

must be a triangle, which is impossible;

(ii) θ1 = β (Figure 5(b)), then at vertex v2 it follows that α1 + kβ = π, k ≥ 2 (note that
we must have α3 > β). But at vertex v3 we have γ + γ < π and γ + γ + ρ > π, for
all ρ.

(iii) θ1 = γ, we get the configuration illustrated in Figure 6(a). Now, if
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Figure 5: Local configurations
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Figure 6: Local configurations

(a) θ2 = α1 (Figure 6(b)), we have necessarily α1 + kα3 = π, with k ≥ 2, and
α1 >

π
2 = α2 > γ > β > α3 (α1 + β + α3 > π). But then, the other sum

of alternate angles at vertex v3 must be greater or equal than α1 + β + β > π,
which is a contradiction (3π ≥ (α1 + γ) + (α2 + α2) + (α1 + β + β) >
(2α1 + α2 + α3) + (β + γ + γ) > 3π).

(b) θ2 = β (Figure 7(a)), at vertex v3 we have γ + γ + kα3 = π, k ≥ 1, and a
contradiction arises at vertex v4 as α1 + ρ > π, for all ρ ∈ {α1, α2}.

(c) θ2 = γ, at vertex v3 we have θ3 ∈ {β, α3}. In the first case, illustrated in
Figure 7(b), we reach a contradiction at vertex v5. On the other hand, if θ3 =
α3, due to the angles involved in the sums of alternate angles at vertex v3, we
must have α3 = β. Taking into account the triangle and the kite’s areas, it
follows that γ + β + β = γ + α3 + α3 = π (Figure 8). At vertex v6 we have
α1 + β < π and α1 + β + ρ > π, for all ρ ∈ {α1, α2, α3, β, γ}.

(d) θ2 = α3, taking into account the analysis of the previous cases, at vertex v3
we have kα3 = kβ = π, k ≥ 3. Due to the kite’s area, it follows that γ −
π
4 < β

2 and consequently cos β2 < cos
(
γ − π

4

)
. Using equation (2.1), we

conclude that β > π
4 , and so k = 3. The last configuration is then extended

to the one illustrated in Figure 9(a). We shall denote this f-tiling by L. Its 3D
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Figure 7: Local configurations
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Figure 8: Local configuration occurring in case 1(iii)(c)

representation is given in Figure 9(b).

2. Suppose now that α1 + γ < π (Figure 3(a)). Again, due to the analysis made in [4]
(case 2.1), we use the fact that a side of length c of each triangle must be adjacent to a side
of length c of other triangle. At vertex v1 we must have α1 + γ + kα3 = π, with k ≥ 1.
Nevertheless, we reach a contradiction at vertex v2 (Figure 10) since there is no way to
satisfy the angle-folding relation around this vertex.

2.2 γ < β

In this case we have β > π
3 and a < b = d < c.

Proposition 2.2. Under the conditions assumed in this section, there is a single folding
tiling, J , such that α2 = π

2 , α1 + γ = π, γ = π
3 and β + β + α3 = π. Planar and 3D

representations of J are given in Figure 12.
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(a) planar representation (b) 3D representation

Figure 9: f-tiling L
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Proof. Suppose that any element of Ω (K,T ) has at least two cells congruent, respectively,
to K and T , such that they are in adjacent positions as illustrated in Figure 2−IV . As
a 6= c, we get the configuration illustrated in Figure 11(a), and, at vertex v1, we have
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Figure 11: Local configurations



66 Ars Math. Contemp. 11 (2016) 59–78

α1 + γ = π or α1 + γ < π.

1. Suppose firstly that α1 + γ = π (Figure 11(b)).

Note that the conditions α2 > α1 ≥ α3 and α2 > α3 > α1 lead to a contradiction at vertex
v2, as α2 + ρ > π, for all ρ ∈ {α1, α2}. Therefore α1 ≥ α2 > α3. Now, if

(i) α2 + α2 = π, then β + β + kα3 = π, k ≥ 1, and so α1 > α2 = π
2 > β > γ > α3.

Consequently, γ = π
3 (as β < π

2 , we have γ > π
4 ). Then, the last configuration is

extended to the one illustrated in Figure 12(a). We shall denote this f-tiling by J . Its
3D representation is given in Figure 12(b).
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Figure 12: f-tiling J

(ii) α2 + α2 < π, then kα2 = π, k ≥ 3, β + β + kα3 = π, k ≥ 1, and so α1 >
π
2 >

β > α2 > γ > α3. As γ > π
4 , we have necessarily k = 3 (Figure 13(a)). Now, if at

vertex v2 we have k > 1 (Figure 13(b)), one of the angles θ2, θ3 or θ4 must be α3.
But then we reach a contradiction at vertex v3, v4 or v5, respectively, as α1 + ρ > π,
for all ρ ∈ {α1, α2}. On the other hand, if k = 1, we get the configuration illustrated
in Figure 14(a) (note that at vertex v3 we cannot have γ+γ+γ = π, as π3 = α2 > γ).
At vertex v4 we reach a similar contradiction as in the case k > 1.

2. Suppose now that α1 + γ < π (Figure 11(a)).

If α2 > α1 ≥ α3 or α2 > α3 > α1, at vertex v1 we must have α2 + kγ = π, with k ≥ 2,
and consequently at vertex v2 it follows that α1+α1 ≤ π, and so α1 ≤ π

2 and α2+α3 > π.
But then an incompatibility on the sides arises at vertex v1.

If α1 ≥ α2 > α3, and

(i) θ1 = α3 (Figure 14(b)), then θ2 must be β, otherwise we get, at vertex v3, θ3 = α1

and α1 + ρ > π, for all ρ ∈ {α1, α2}. Nevertheless, an impossibility cannot be
avoided at vertex v1 since we obtain β + γ + ρ > π, for all ρ ∈ {α1, α2}.
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Figure 13: Local configurations occurring in case 1(ii)
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Figure 14: Local configurations

(ii) θ1 = γ and

(a) θ2 = β (Figure 15(a)), then γ < π
4 and β > π

2 . At vertex v4 we must have
β+α2 ≤ π, however 2π ≥ (α1+γ+γ)+(β+α2) = (β+γ+γ)+(α1+α2) >
2π is impossible.

(b) θ2 = γ, it follows that α1 + kγ = π, k ≥ 2, as illustrated in Figure 15(b). But
any choices for θ3 and θ4 lead to a contradiction.

3 Case of Adjacency V

Proposition 3.1. Ω(K,T ) is composed by a single folding tiling,M, such that α2 = π
2 ,

α1 + β = π and γ = α3 = π
3 . For a planar representation see Figure 20(b). Its 3D

representation is given in Figure 21.
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Figure 15: Local configurations occurring in case 2(ii)

Proof. Suppose that any element of Ω (K,T ) has at least two cells congruent, respectively,
to K and T , such that they are in adjacent positions as illustrated in Figure 2–V .

The case analyzed in [4] (case 2.1) give rise to no f-tilings including two cells in these
adjacent positions, and so a side of length c of each triangle must be adjacent to a side of
length c of another triangle.

1. If α2 > α1, then α2 >
π
2 and we get the configuration of Figure 16(a).

If α2 + β = π (Figure 16(b)), we have α1 = π
2 (vertex v1), and so α2 + α3 > π,

justifying the choice for θ1. But at vertex v2 we obtain a contradiction as α3 + γ + γ > π
((α1 + α1) + (α2 + β) + (α3 + γ + γ) = (2α1 + α2 + α3) + (β + γ + γ) > 3π).
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Figure 16: Local configurations occurring in case 1

If α2 + β < π, then α2 + kβ = π, with k ≥ 2 (note that α2 + α3 > π). Consequently,
γ > β and α3 > β. Observing Figure 17(a), we conclude that there is no way to satisfy
the angle-folding relation around vertex v2 (α2 + α2 > α2 + α1 > π, α2 + α3 > π,
α2 + γ + ρ > π, for all ρ, and θ1 = β implies θ2 = γ and γ + γ + ρ > π, for all ρ).

2. Suppose now that α1 ≥ α2 (Figure 17(b)). It follows that α1 >
π
2 ≥ α2 > β and

γ > π
4 .

2.1 If β > γ, then at vertex v1 we must have α1+β+kα3 = π, with k ≥ 1, or α1+β = π.
In the first case we have α1 >

π
2 ≥ α2 > β > γ > α3 (Figure 18(a)). As θ1 or θ2 must

be α3, we get an impossibility at vertex v2 or v3, respectively.
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Figure 17: Local configurations

3

1 2

�

�

�
3

�
2

�1

�

�1

�

�

�

v
1

4

�
1

�
1

�
2

�3

5

�
1

�
1

�
2

�3

�1

�1
�

3

�
2

6

v
3

v
2

�
1

�
2

(a)

3

1 2

�

�

�
3

�
2

�1

�

�1

�

�

v
1

4

�
1

�
1

�
2

�3

5

�
1

�
1

�
2

�3

6

�
2

�
1

�
1

�3

10

�

7

8
�

2

�
1

�
1

�3

10

�
2

�
1

�
1

�3

�
2

�
1

�3

�
2

�
1

�
1

�
2

�
1

9

�
3

�
3

�
3

�1

v
3

�1

�1

�1

�
2

�
2

�
2

�
2

v
2

(b)

Figure 18: Local configurations occurring in case 2.1

Therefore α1+β = π. At vertex v1 we cannot have α1+β = π = α1+α3, as illustrated
in Figure 18(b), otherwise at vertex v2 we get α1+γ+kα3 = π, k ≥ 1, and a contradiction
arises at vertex v3. Consequently, we get the configuration illustrated in Figure 19(a). Note
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Figure 19: Local configurations occurring in case 2.1

that at vertex v2 we cannot have γ+γ+kα3 = π, k ≥ 1, nor γ+γ+γ+kα3 = π, k ≥ 1,
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otherwise we obtain a similar contradiction as before (in fact we cannot have two angles
α3 adjacent). Observe also that we have necessarily α2 + α2 = π, as α2 + α2 + α2 > π.

Now, θ1 = α3, θ1 = γ or θ1 = β.

2.1.1 If θ1 = α3 (Figure 19(b)), at vertex v3 we must have α1 + α3 = π, which implies
α3 = β. Nevertheless, a contradiction arises at vertex v4 since we get α1 + γ + kα3 > π,
for all k ≥ 1.

2.1.2 If θ1 = γ (Figure 20(a)), at vertex v4 we obtain β+γ+kα3 = π. But at vertex v3 we
get α1+γ+kα3 = π, which is not possible as 3π ≥ (α1+γ+α3)+(α1+β)+(α2+α2) >
(2α1 + α2 + α3) + (β + γ + γ) > 3π.
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Figure 20: Local configurations occurring in case 2.1

2.1.3 If θ1 = β, the last configuration is extended to the one illustrated in Figure 20(b). We
shall denote this f-tiling byM. Its 3D representation is given in Figure 21.

Figure 21: f-tilingM
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2.2 Suppose now that β < γ (Figure 22(a)). In this case we have γ > π
3 and θ1 = β or

θ1 = α3.
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Figure 22: Local configurations occurring in case 2.2

If θ1 = β (α1 + β ≤ π, see Figure 22(b)), then at vertex we must have γ + γ +
kα3 = π, with k ≥ 0. As we seen before, as two angles α3 in adjacent positions lead to a
contradiction, we must have γ + γ = π. Moreover, θ2 cannot be α3, otherwise we would
obtain θ3 = α1 and, at vertex v3, α1+γ > π. The case θ2 = β also leads to a contradiction
as γ + γ = π and vertex v3 cannot have valency four.

Finally, if θ1 = α3, we obtain the configuration illustrated in Figure 23. At vertex v1
we reach a contradiction as (α1 + β +α3) + (α1 + γ) + (α2 +α2) > (2α1 +α2 +α3) +
(β + γ + γ) > 3π.
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Figure 23: Local configuration occurring in case 2.2

4 Case of Adjacency V I

Suppose that any element of Ω (K,T ) has at least two cells congruent, respectively, to K
and T , such that they are in adjacent positions as illustrated in Figure 2–V I . As b = c,
using trigonometric formulas, we obtain

cosβ + cos2 γ

sin2 γ
=

cos α2

2 + cosα1 cos α3

2

sinα1 sin α3

2

. (4.1)
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Remark 4.1. The cases analyzed in [2] and [3] give rise to no f-tilings including two cells
in these adjacent positions, and so a side of length c of each triangle must be adjacent to a
side of length c of another triangle.

Proposition 4.2. Ω(K,T ) 6= ∅ iff

(i) α1 + γ = π, α2 = π
2 , γ + γ + α3 = π and β = π

3 , or

(ii) α1 + γ = π, α2 = β = π
2 and γ + γ + α3 = π.

In the first case, there is a single f-tiling denoted byN . A planar representation is given in
Figure 26(b) and a 3D representation is given in Figure 27.

In the second case, there is a single f-tiling, P . The corresponding planar and 3D
representations are given in Figure 29(b) and Figure 30, respectively.

Proof. Concerning the angles of the triangle T we have necessarily one of the following
situations:

γ > β or γ < β.

We consider separately each one of these cases.

1. Suppose firstly that γ > β.
If α2 > α1, then α2 >

π
2 and we get the configuration of Figure 24(a). Due to the edge

1 2

�

�

�
3

�
2

�1

�1

�

v
1

3

�
3

�
2

�
1

�1

4

�
2

�
3

�1

�1

v
2

(a)

1 2

�

�

�
3

�
2

�1

�1

�

v
1

3

�
1

�
1

�
2

�3

4

�
1

�
1

�2

�3

�
1

(b)

Figure 24: Local configurations occurring in case 1

lengths and also Remark 4.1, v1 cannot have valency four and so α2 +γ+kα3 = π, k ≥ 1.
Therefore, analyzing vertices v1 and v2 we conclude that α2 +α3 < π and α1 ≤ π

2 , which
is impossible taking into account the kite’s area.

Thus, α1 ≥ α2 > α3 (Figure 24(b)) and θ1 = β or θ1 = γ. In the first case, v1
cannot have valency four and there is no way to satisfy the angle-folding relation around
this vertex. Consequently, θ1 = γ and

(i) if α1 + γ < π, then α1 + γ + kα3 = π, k ≥ 1 (Figure 25(a)). At vertex v2 we reach
a contradiction as α1 + ρ > π, for all ρ ∈ {α1, α2}.

(ii) if α1 + γ = π, then the last configuration extends to the one illustrated in Fig-
ure 25(b). Now, if θ2 = β (Figure 26(a)), we obtain a contradiction at vertex v2. On
the other hand, if θ2 = γ a global planar representation is achieved as illustrated in
Figure 26(b). We denote such f-tiling byN . The corresponding 3D representation is
given in Figure 27.
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Figure 25: Local configurations occurring in case 1
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Figure 26: Local configurations occurring in case 1(ii)

2. Suppose now that γ < β.

If α2 > α1, then α2 >
π
2 and we get the configuration of Figure 28(a). Due to the

edge lengths and also Remark 4.1, v1 cannot have valency four and so α1 + α1 + kγ = π,
k ≥ 1. But then the other sum of alternate angles must contain α2 + α3 > π, which is not
possible.
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Figure 27: f-tiling N
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Figure 28: Local configurations occurring in case 2

Therefore, α1 ≥ α2 > α3 and kα2 = π, k ≥ 2, and we have α1+γ = π or α1+γ < π.

2.1 If α1 + γ = π, with the labeling of Figure 28(b), we have θ1 = γ or θ1 = β.

2.1.1 If θ1 = γ, the last configuration is extended to the one illustrated in Figure 29(a).
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Figure 29: Local configurations occurring in case 2.1
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2.1.1.1 If θ2 = γ, at vertex v2 we have α3 + γ + γ = π or α3 + γ + γ + γ = π. Note that
we cannot have more angles α3 around v2, as two angles of this type in adjacent positions
lead to an impossibility, as seen before.

The condition α3 + γ + γ = π implies α2 + α2 = π
2 , and we get the configuration

illustrated in Figure 29(b). We denote this f-tiling by P , whose 3D representation is given
in Figure 30.

Figure 30: f-tiling P

On the other hand, if α3 +γ+γ+γ = π (Figure 31(a)), the angles θ3 and θ4 cannot be
α3 otherwise we reach a contradiction at vertices v3 and v4, respectively. But this implies
that at vertex v5 we have two angles α3 in adjacent positions, which is not also possible.
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Figure 31: Local configurations occurring in case 2.1

2.1.1.2 If θ2 = β, then at vertex v3 we have β + γ + kα3 = π, k ≥ 1, which leads to a
contradiction as illustrated in Figure 31(b) (see vertex v4).

2.1.2 If θ1 = β, we obtain a similar impossibility as in the previous case.

2.2 If α1 + γ < π (Figure 32(a)), then θ1 ∈ {β, γ}.
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Figure 32: Local configurations occurring in case 2.2

If θ1 = β (Figure 32(b)), then α1 + β + kα3 = π, k ≥ 1. It follows that the other sum
of alternate angles at vertex v1 must be greater or equal to α1 + γ + γ > π, which is an
impossibility.

If θ1 = γ and

(i) θ2 = γ (Figure 33(a)), then β > α1 >
π
2 , which implies tile 6. At vertex v2 we

obtain β + γ + kα3 = π, k ≥ 1, giving rise to two angles α3 in adjacent positions,
which leads to a contradiction, as seen previously.
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Figure 33: Local configurations occurring in case 2.2

(ii) θ2 = α3 (Figure 33(b)), vertex v1 has valency six or greater than six. In the first case,
we obtain two angles α3 in adjacent positions, which is not possible. In the last case,
we have necessarily θ3 = γ, and so β > α1 >

π
2 . Consequently, a contradiction

arises at vertex v2 or v3.
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Concerning to the combinatorial structure of each tiling obtained, we have that

(i) the symmetries of the f-tilings L, J , M and N that fix a vertex v of valency four
and surrounded by (α2, α2, α2, α2) are generated by a reflection and by the rotation
through an angle π

2 around the axis by±v. On the other hand, for any vertices v1 and
v2 of this type, there is a symmetry sending v1 into v2. It follows that the symmetry
group has exactly 48 = 6 × 8 elements and it forms the group of all symmetries of
the cube - the octahedral group, sometimes referred as C2 × S4.

(ii) the f-tiling P has only two vertices surrounded by (α2, α2, α2, α2), say the north
and south poles. The symmetries of P that fix the north pole are generated by a
reflection and by the rotation through an angle π

2 around the zz axis, giving rise to a
subgroup isomorphic to D4 (the dihedral group of order 8). Now, the reflection on
the equator is also a symmetry of P , and so it follows that the symmetry group of P
is isomorphic to C2 ×D4.

5 Summary
In Table 1 is shown a list of the spherical dihedral f-tilings whose prototiles are a spherical
kite and an isosceles spherical triangle, K and T , of internal angles (α1, α2, α1, α3), and
(β, γ, γ), respectively, in cases of adjacency IV , V and V I . Our notation is as follows:

• γ1 is the solution of equation (2.1), with α2 = π
2 , α1 = π− γ1 and α3 = β = π

3 ; β1
is the solution of equation (2.1), with α2 = π

2 , α1 = π − γ and α3 = π − 2β1; β2 is
the solution of equation (2.1), with α2 = π

2 , α1 = π−β2 and α3 = γ = π
3 ; γ2 is the

solution of equation (4.1), with α2 = π
2 , β = π

3 , α1 = π − γ2 and α3 = π − 2γ2;
γ3 is the solution of equation (4.1), with α2 = β = π

2 , α1 = π−γ3 and α3 = π−2γ3.
• |V | is the number of distinct classes of congruent vertices;
• N1 is the number of triangles congruent T and N2 is the number of kites congruent

to K (used in the dihedral f-tilings);
• G(τ) is the symmetry group of each tiling τ ∈ Ω (K,T ).

f-tiling α1 α2 α3 β γ |V | N1 N2 G(τ)

L π − γ1 π
2

π
3

π
2 γ1 3 24 24 C2 × S4

J 2π
3

π
2 π − 2β β1

π
3 4 48 24 C2 × S4

M π − β2
π
2

π
3 β2

π
3 4 48 24 C2 × S4

N π − γ2 π
2 π − 2γ2

π
3 γ2 3 48 24 C2 × S4

P π − γ3 π
2 π − 2γ3

π
2 γ3 3 16 8 C2 ×D4

Table 1: Combinatorial structure of dihedral f–tilings of S2 by spherical kites and isosceles
triangles in cases of adjacency IV , V and V I
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