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Improvements in neural network calibration models by a novel approach using neural network ensemble (NNE) 
for the simultaneous Spectrophotometric multicomponent analysis is suggested, with a study on the estimation 
of the components of an analgesic combination, namely, Mefenamic acid and Paracetamol. Several principal 
component neural networks were trained with the Levenberg-Marquardt algorithm by varying conditions such 
as inputs, hidden neurons, initialization and training sets. Genetic algorithm (GA) has been used to develop the 
NNE from the trained pool of neural networks. Subsets of neural networks selected from the pool by decoding 
the chromosomes were combined to form an ensemble. Several such ensembles formed the population which 
was evolved to generate the fittest ensemble. Ensembling the networks was done with weighted average decided 
on the basis of the mean square error of the individual nets on the validation data while the ensemble fitness in 
the GA optimization was based on the relative prediction error on unseen data. The use of computed calibration 
spectral dataset derived from three spectra of each component has been described. The calibration models were 
thoroughly evaluated at several concentration levels using 104 spectra obtained for 52 synthetic binary mixtures 
prepared using orthogonal designs. The Ensemble models showed better generalization and performance 
compared to any of individual neural networks trained. Although the components showed significant spectral 
overlap, the model could accurately estimate the drugs, with satisfactory precision and accuracy, in tablet dosage 
with no interference from excipients as indicated by the recovery study results. The GA optimization guarantees 
the selection of best combination of neural networks for NNE and eliminates the arbitrariness in the manual 
selection of any single neural network model of a specific configuration, thus maximizing the knowledge utilization 

without risk of memorization or over-fitting.

Key words: neural network ensemble, genetic algorithm, principal components, UV spectrophotometry, mefenamic 
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Introduction 

Neural Networks (NNs) of appropriate architecture 
have the ability to approximate any function to any 
desired degree. However, it has been shown that the 
transfer function must be continuous, bounded and 
non-constant for a NN to approximate any function.1 
Fundamental background information on NNs can be 
found elsewhere.2–5 Research into the theoretical and 
practical aspects of the use of NNs for calibration and 
pattern recognition in analytical chemistry has increased 
rapidly in the last decade. Several papers employing 
neural networks have been published since then, in 
practically all areas of chemical research.6–11 There 
are some recent reports on the application of NNs for 
mixture analysis12–16 though most of them employ a 
separate network for estimation of each component and 
involves synthetic binary mixtures for calibration. 

In NN based modeling, there are many degrees 
of freedom in selecting the network topology, training 
algorithm and training parameters. At the end of the 
training process, a number of trained networks are 
produced, and then typically one of them is chosen 
as best, based on some optimality criterion, while the 
rest are discarded.17 The present work, attempts to use 
the pool of trained networks (with potentially useful 
knowledge) to build an effective neural ensemble, which 
in consortium may be effective than single network 
models in terms of generalization and accuracy. 

Neural Ensemble: Neural network modeling 
essentially involves an optimization process by training 
a number of neural networks. Training the same model 
with the same training data set but with different initial 
environment, such as the initial weights, would end up 
in a slight different final sets of weights and hence the 
final performance. 
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Therefore, one has to consider the intrinsic 
variance the NN models exhibit. An effective way of 
reducing the variance of the networks is to combine a 
number of networks to form an ensemble network.18 
Neural network ensemble (NNE), shown in Figure 1, 
is a learning paradigm where a collection of a finite 
number of NNs is trained for the same task.19 

It originates from Hansen and Salamon’s work20 
which shows that the generalization ability of a 
neural network system can be significantly improved 
through ensemble of a number of neural networks, i.e. 
training many neural networks and then combining 
their predictions. The motivation for combining nets 
in redundant ensembles is that of improving their 
generalization ability. Combining a set of imperfect 
estimators can be thought of as a way of managing the 
recognized limitations of the individual estimators; each 
component net is known to make errors, but they are 
combined in such a way as to minimize the effect of 
these errors. Since this technology behaves remarkably 
well, recently it has become a very hot topic in both 
neural networks and machine learning communities.21 

Genetic algorithms: Genetic Algorithms22 (GA) 
modeled on biological genetics and law of natural 
selection, operates by maintaining and modifying the 
characteristics of a population of solutions (individuals) 
over a large number of generations. This process is 
designed to produce successive populations having 
an increasing number of individuals with desirable 
characteristics. Like nature’s solution, the process is 
probabilistic but not completely random. The rules of 
genetics retain desirable characteristics by maximizing 
the probability of proliferation of those solutions 
(individuals) that exhibit them. GA operates on a 
coding of the parameters, rather than the parameters 
themselves. Just as the strands of DNA encode all 
of the characteristics of a human in chains of amino 
acids, so the parameters of problem must be encoded 
in finite length strings which might be a sequence of 
any symbols, though the binary symbols “0” and “1” 

Figure 1. Graphical depiction of Neural Network Ensemble.

are often used. Optimization is performed on a set of 
strings, where each string is composed of a sequence 
of characteristics. 

Figure 2. Typical GA.
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Given an initial population of strings, a genetic 
algorithm produces a new population of strings 
according to a set of genetic rules. This constitutes 
one generation. The rules are devised so that the new 
generation tends to have strings that are superior to 
those in the previous generation, measured by some 
objective function. Successive generation of strings are 
produced, each of which tends to produce a superior 
population. Optimizing a population rather than a 
single individual contributes to the robustness of these 
algorithms. Any problem for which an objective function 
can be defined is a candidate for genetic optimization. 
A typical implementation of genetic algorithm is shown 
in Figure 2. For fundamental information on GA, one 
may refer to Goldberg.22 

Scope of work: Given the wide-ranging applicability 
and uses of neural networks in the field of chemistry, 
improvements to the NN modeling process are highly 
desirable. In the process of NN modeling optimization 
several neural networks are trained with random 
initialization or with varying calibration data sets. 
Most of the knowledge of such network is discarded 
by employing only one network as calibration model. 
According to Chan et al.23 the generalization error of 
the ensemble network is generally smaller than that 
obtained by a single network while at the same time, 
the variance of the ensemble network is lesser than 
a single network, thus becomes a very effective way 
to improve the prediction ability. Motivated by these 
characteristics of NNE, and the earlier findings of the 
authors,24 the present study attempts to utilize a range 
of trained neural networks of varying configuration  
(in the number of hidden neurons) to form an effective 
ensemble employing the technique of Genetic 
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Algorithms for the analysis of Mefenamic acid (MNA) 
and Paracetamol (PCM) combined tablet dosage used 
in the management of pain. 

Experimental

Chemicals and reagents: Analytical reagent grade 
NaOH was used to prepare 0.1M NaOH solution 
in distilled water which then served as a solvent for 
making the stock solutions and all further dilutions of 
MNA, PCM, their standard combinations and the tablet 
powder. Class A volumetric glassware such as pipettes 
and volumetric flasks were used for the purpose of 
making dilutions.

Instruments and software:  UV absorption 
measurements were carried out on PerkinElmer 
Lambda 25 double beam spectrophotometer controlled 
by UVWINLAB software version 2.85.04, using matched 
1.00 cm quartz cells. All weights were measured on an 
electronic balance with 0.01 mg sensitivity. Spectra 
of all the solutions were recorded against a blank 
solution containing no analytes, between 200 to 400 nm 
and saved in ASCII format. Matlab® version 6.1 was 
employed for building Principal component Levenberg-
Marquardt neural networks (PCLMNN) and neural 
network ensembles. All computations were carried 
out on a desktop computer with a Pentium 4, 1.6 GHz 
processor and 256 MB RAM.

Preparation of standard solutions: Standard 
solutions of pure MNA and PCM were made at different 
concentration levels ranging from 5 to 19 mg L–1 and 
5 to 17 mg L–1 respectively for the purpose of linearity 
determination and to design the calibration data matrix 
from their spectra. The analytical levels of 10 mg L–1 and 
9 mg L–1 respectively for MNA and PCM were chosen. 
The absorbance spectra, about the analytical level 
chosen for the two standards, are shown in Figure 3.

Figure 3. UV Spectra of Mefenamic acid and Paracetamol. 
Overlain spectra of MNA at concentration of 11.052 mg/L and 
PCM at concentration of 9.962 mg/L in 0.1M NaOH.
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Calibration data: Since the absorbances were 
additive linearly in the desired range and no serious 
baseline problems or interactions were found in our trial 
studies in the desired range of concentration, the process 
described below was adopted in the design of calibration 
data set for training the PCLMNN. Three spectra 
of each component at three different concentration 
(low, medium and high) levels were employed in all 
possible combinations to provide a fair computation of 
calibration data set with some degree of experimental 
variation. A full factorial design was employed to obtain 
49 training pairs from each spectral pair resulting in 
a total of 441 training pairs (49×9) representing the 
mixture space evenly with target concentrations that are 
orthogonal. A total of 441 training pairs thus obtained, 
constituting the complete calibration set, were used to 
train the PCLMNN model. All the target concentrations 
in the calibration set were then standardized (to a 
mean of 0 and standard deviation of 1). Spectral region 
between 220 and 340 nm was chosen on the basis of 
visual inspection of the spectra.

Validation data: Randomized validation data sets 
were used for the internal validation and terminating 
the training of the PCLMNN at an optimum point to 
prevent over-fitting and retain generalization ability 
of the network. Validation data set of the same size 
was also designed from three different pairs of spectra 
of MNA and PCM standard out of which at least two 
pairs were different from that used in the calibration 
dataset.

Synthetic binary mixtures for model evaluation: The 
synthetic binary mixtures were prepared on different 
days from fresh stock solutions of pure MNA and 
PCM, each day by separate weighing, in distilled water. 
Standard mixtures of the components were prepared 
with the concentrations lying within the known linear 
absorbance-concentration range by dissolving varying 
proportions of MNA and PCM stock solutions; the 
concentration of MNA varied between 50 to 175% of 
the test level concentration while that of PCM varied 
between 45 to 175% of its analytical level concentration. 
The concentrations of components were selected to 
span the mixture space fairly evenly, as show in Figure 4.

Analysis of tablet dosage form: For the analysis of the 
active components of the analgesic tablet (Meftal Forte, 
MNA 500 mg and PCM 450 mg, Blue Cross Ltd., India, 
Batch No: HKF 333), twenty tablets were accurately 
weighed, carefully powdered and mixed. Tablet powder 
corresponding to the equivalent of 100 mg of MNA 
was dissolved in distilled water solution by sonication 
for 5 min and made up to 100 mL. The solution was 
centrifuged and 10 mL of supernatant was diluted to 
100 mL to make a work dilution. 10 mL of work dilution 
was diluted to 100 mL to make the final solution. The 
final dilutions were made in two replicates from each 
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Figure 4. Synthetic binary mixture design for testing the neural 
networks. Each point represents a mixture at the respective 
concentration of the components. The mixtures have been split in 
two groups T1 (ж) and T2 (◊). The design ensures that the model 
is thoroughly validated in a well distributed concentration space 
especially with regard to chosen analytical level. T1+T2=T.
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work dilution, repeating the entire process for a total 
of 5 weights of the tablet powder. Each dilution was 
scanned in triplicate, each time for a fresh filling.

For accuracy studies, by recovery, the same tablet 
powder was used in amounts corresponding to the 
equivalent of 55 mg of MNA (in order to enable spiking 
up to desired levels). The powder was then spiked with 
a known quantity of pure MNA and PCM and dissolved 
in 0.1M NaOH by sonication and the same dilutions as 
applied to tablet powder was done as explained above. 
A total of five powder samples were spiked to different 
levels in the range of 60 to 150%, each in two dilution 
replicates.

PCLMNN model: Several PCLMNN models 
were built with varying number of input neurons 
(corresponding to the number of principal components 
chosen, viz. 2 to 4) and the number of hidden neurons. 
Principal component analysis was carried out by 
employing custom developed functions in MATLAB 
using the inbuilt Eigen value decomposition function 
(‘eig’) to obtain the latent (Eigen) vectors and the 
corresponding Eigen values. The scores obtained by 
projecting the standardized absorbance values on to 
these Eigen vectors were used as inputs. The PCLMNN 
had two neurons in the output layer corresponding to 
the two components of interest. The number of neurons 
in the hidden layer was varied from 2 to 5 neurons for 
each level of the input neurons chosen. The input layer 
and output layer nodes had identity and linear transfer 
functions respectively while the hidden layer nodes had 
sigmoid transfer functions for the PCLMNN, decided 
on the basis of earlier studies on neural calibration 
models.16,25,26 All the PCLMNN models were trained 
according to Levenberg-Marquardt27 algorithm available 

in the neural network toolbox for MATLAB through 
the ‘trainlm’ function. The training was terminated when 
the validation performance as estimated by the mean 
square error (MSE), for a validation dataset, increased 
continually for more than 10 epochs since the last time 
it decreased. Three different calibration datasets were 
used for each given configuration and five replicate 
models obtained each with different initialization of 
weights by Nguyen-Widrow28 method.

Neural Ensemble Model: A total of sixty PCLMNN 
models of selective configuration were used to build 
the Genetic Algorithm Optimized Neural Network 
Ensemble (GAONE). Three such models were 
developed by replicate runs of GA for each of the 
fitness dataset used. Weighted average based on the 
Mean Square Error (MSE) for the validation dataset 
of the respective PCLMNN model for each component 
formed the basis of combining the networks into an 
ensemble. 

Genetic Algorithm Implementation: Standard GA 
was employed using the Genetic Algorithm Toolbox29 
for Matlab for the purpose of building the GAONE 
models. Binary coded chromosomes were employed 
with an initial population of 100. Fitness of the GAONE 
was estimated by determining the mean percentage 
relative prediction error (%RPE) of the GAONE for 
a fitness dataset (which was one of the test datasets 
from the spectra of binary synthetic mixtures) employed 
in the process. Roulette Wheel Selection schema 
was employed in determining the opportunities for 
individuals to reproduce and recombine to produce 
offspring. The rate of mutation was kept at the default 
level (0.7) provided by the GA Toolbox. Several 
GAONE models were developed from the base pool of 
60 PCLMNN models by varying the fitness determining 
dataset (viz. test datasets T1 or T2) derived from the 
spectra of binary synthetic mixtures by repeating the 
GA process.

Tablet analysis: Spectra recorded from the tablet 
solutions were analyzed by the GAONE calibration 
models and the concentrations predicted for each 
solution were used for calculation of the tablet content. 
Similarly MNA and PCM concentrations in the 
solutions prepared for recovery study were also obtained 
from the respective spectra and percentage recovery was 
calculated to determine the accuracy of the method.

Results and discussion

The overlain absorption spectra in Figure 3 show 
extensive spectral overlap, which complicates the 
determination of the individual drug concentrations 
from a spectrum of a mixture. When considered 
separately, concentrations between 5 to 19 mg L–1 for 
MNA and 5 to 17 mg L–1 for PCM were studied and 
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found to be linear over the space of 9 concentration 
levels (absorbances at 285 nm for MNA and 257 nm 
for PCM) with r2 of 0.9994 and 1.0 for each, slopes of 
0.0408 and 0.0715, intercepts of 0.0049 and –0.0016 and 
residual standard deviation about the regression line 
being 0.0043 and 0.0018 respectively.

There are many pitfalls in the use of calibration 
models, perhaps the most serious being variability in 
instrument performance over time. Each instrument 
has different characteristics and on each day and even 
hour the response may vary. Therefore it is necessary 
to reform the calibration model on a regular basis, 
by running a standard set of samples.30 Like other 
regression methods, there are constraints concerning 
the number of samples, which at times may be limiting 
the development of an ANN model. The number 
of adjustable parameters (synaptic weights) is such 
that the calibration set is rapidly over-fitted if too 
few training pairs are available leading to loss of 
generalization ability. Therefore, calibration sets of 
several hundred training pairs may often be necessary 
to get a representative distribution of the concentration 
across their range. This makes it expensive in time and 
resources to develop calibration mixtures physically 
in such large numbers which is rarely possible in 
routine laboratory studies and justifies our attempt to 
use mathematically constructed calibration data set 
from individual spectra of components. However, this 
approach cannot be applied in cases where significant 
non-linearity is exhibited.

In general, a NNE is constructed in two steps, 
i.e. training a number of component neural networks 
and then combining the component predictions.31 
For combining the predictions of component neural 
networks, the most prevailing approaches are plurality 
voting or majority voting20 for classification tasks 
and simple averaging, weighted averaging17,32,33 that 
takes account of the relative accuracies of the nets 
to be combined or generalized ensemble method18 
for regression tasks. Other possible methods such as 
correlation ensemble as suggested by Chan et al.23 
where, the weighting of the ensemble was determined by 
the correlation of the output of the ensemble networks 
(Y) to the target output (X) as given by w=XTY, the 
more correlated is the network output, the higher the 
weighting value it has. In the present study weighted 
averaging was used.

Several PCLMNN models in replicates were built 
as described in the experimental section by varying the 
calibration datasets, validation datasets, number of 
principal components and number of hidden neurons. 
The PCLMNN trained rapidly taking less than one 
minute and fewer than 300 epochs. PCLMNNs with an 
input of 3 neurons, an output of 2 neurons, both having 
linear transfer function and a hidden layer with 2 to 5 

neurons with sigmoid transfer function were chosen for 
building the GAONE models since they exhibited better 
performance in terms of the mean %RPE as shown in 
Table 1 and Figure 5. 

Table 1. Optimization of PCLMNN models.

a Principal components used for the input.  b Average of 15 
PCLMNN Models.

)(1 2
1)( CC

m predact
mMSEErrorSquareMean −Σ=

C
MSERPE ×= 100%

Cact is the desired target, Cpred is the output 
produced by the network for each input vector, C  is 
the mean concentration of the component and m is the 
number of input vectors or samples. Twenty PCLMNNs 
were available for each of the calibration dataset from 5 
replicate training for each configuration thus resulting 
in a base pool of 60 PCLMNNs from which ensembles 
could be built.

Indices PCsa Hidden
Neurons Mean %RPEb Standard

Deviation 
1 2 2 2.2738 0.2473 
2 2 3 2.2705 0.2463 
3 2 4 2.2731 0.2475 
4 2 5 2.2862 0.2432 
5 3 2 1.5964 0.1396 
6 3 3 1.7092 0.1448 
7 3 4 1.9127 0.5135 
8 3 5 2.0719 0.3300 
9 4 2 2.5854 0.9591 

10 4 3 2.5912 0.9143 
11 4 4 2.9886 1.0360 
12 4 5 3.0780 1.2718 

Though most ensemble approaches in engineering 
applications had been to employ all of networks 
available to constitute an ensemble, recently it has been 
reported that, ensemble of many of them may be better 
than ensemble of all the available neural networks.31 
However, excluding those “bad” neural networks 
from the ensembles is not an easy task as we may have 
imagined. It is not as simple as combining few selected 
best performing networks, but combining networks that 
make error diversely, which as an ensemble perform 
better than any single NN in the population. Selection 
of nets for effective combination is to reduce the number 
of shared failures that a set of nets will produce. The 
extent to which they exhibit coincident failures can 
be determined only through a process of testing the 
performance of the selected ensembles.34 If there are N 
trained networks, the number of possible combinations 
would be 2N–1 which would be enormous as the value 
for N increases.
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It was reported that varying the data on which 
NNs are trained is more likely to result in a set of nets 
that can be combined more effectively than varying for 
instance the set of initial conditions from which they 
are trained, or topology.34 However, all approaches 
have been adopted in the present study as explained 
in section ‘Neural Ensemble Model’ using 60 PCLMNN 
models which formed the base pool. The possible 
combinations of NNs into ensemble equal 260–1 and 
hence the task of selecting the best one may be very 
intensive computationally. Hence GA approach was 
considered since they have been shown as a powerful 
optimization tool22 to pick the best ensemble from a pool 
of NNs with the use of a selection criterion. Genetic 
algorithms actively create a population of ensembles 
and search for the best ensemble which generalizes well. 

Figure 5. Box-plot of the mean %RPE of 15 PCLMNN models for 12 neural network configurations. Refer to Table 1 for the respective 
configuration for each model index. The box has lines at the lower quartile, median, and upper quartile values. The whiskers are lines extend-
ing fro�

The standard genetic operators, crossover and mutation, 
were used to create new individuals from an initial set. 
The fit members then form the next generation, and 
the process was repeated until a stopping criterion was 
reached. 

Genetic Algorithm Optimized Neural network 
Ensemble (GAONE) model development here was 
realized by utilizing the standard genetic algorithm22 
with a binary coding scheme that represents each 
ensemble of neural networks. The process of coding 
and decoding the NNs that combine to form ensembles 
in the GA implementation is illustrated in Figure 6 
using a single chromosome and for an assumed case 
of 20 models subset. An initial population 100 neural 
network ensembles were evolved by GA to build the 
GAONE model.

Figure 6. Coding and Decoding of Chromosome in building the GAONE Model.
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In building ensembles the weighted average 
approach was preferred over the simple averaging 
because of the fact that one should believe accurate 
models than inaccurate ones. In this approach the 
predictions of the networks by taking a weighted sum 
of the output of each network, where each weight was 
based on the validation-set accuracy of the network. 
The present one being a multi-output case, an optimal 
combination of weights vector for each output were 
computed separately. The weights for combining 
the network in the ensemble was defined as follows  
(N equals the number of networks, ô be the ensemble 
output, wi, oi be the weight and output for the ith 
network):

�
=

=
N

i
ii owo

1
.ˆ  with the constraint that�

=

=
N

i
iw

1
1

Mean square error (MSE) was chosen as the 
criteria for determining the weights in combining the 
NNs in to an ensemble since it is a measure of both 
the accuracy and variance. The exact mechanism of 
determination of weights in the present study is given 
below:

NEs in the N of All NNSum of MSE
MSEach NN MSE for eNormalized =

ach NN MSE for eNormalizedh NNSE for eacAdjusted M −=1

 in NNEof all NNsusted MSE Sum of Adj
h NNSE for eacAdjusted Mn WeightsCombinatio =

The selected NN models forming an individual 
(NNE) in the population were then combined on the 
basis of their MSE on their respective validation dataset 
employed while training as illustrated above. All the 
ensembles (individuals) thus formed were evaluated for 
their fitness using mean %RPE obtained for an unseen 
fitness dataset (T1, or T2). The individual having the 
lowest mean %RPE was considered the fittest individual 
and fitness ranking was assigned in the ascending 
order of mean %RPE. The parents were selected 
according to a probabilistic function (Roulette Wheel 
Selection) based on relative fitness. In other words, 
those individuals with higher relative fitness are more 
likely to be selected as parents. N children were created 
via recombination from the N parents. The N children 
were mutated and survive, replacing the N parents in 
the population. Mutation flips bits with some small 
probability (here it was 0.7), and is often considered to 
be a background operator. Recombination, on the other 
hand, was emphasized as the primary search operator. 
The GA was terminated when the highest ranking 

individual’s fitness had reached a plateau such that 10 
successive iterations were not producing better results 
(individuals) anymore. 

The process of building the GAONE models 
was repeated three times for each fitness datasets 
(T1 or T2). Many a times the GA found the same 
GAONE model (having the same constituent NNs) 
for a given fitness dataset in the replicate runs of GA. 
The performance was almost identical even when the 
constituent members varied. NNs with 2 to 5 hidden 
neurons were found in the ensemble working together 
in contrast to a single configuration chosen manually 
in NN models. The performance characteristics of the 
GAONE model are summarized in Table 2 and 3 for 
MNA and PCM respectively and the residual plots 
for the test dataset obtained from the binary synthetic 
mixtures (T, See Figure 4) are shown in figures 7a 
and 7b. Further GAONE model was employed in the 
analysis of tablets and the accuracy studies thereafter. 

Spectra obtained from 30 tablet solutions 
(including replicates) prepared from 5 different 
weightings as described in the experimental section 
were analyzed by the GAONE model (built from the 
entire pool of 60 PCLMNN models) and the average 
content was calculated. The results are summarized 
in Table 4. The accuracy of the method for analysis 
of tablets was further investigated using the recovery 
studies as described in the experimental section. The 
mean percentage recovery and its relative standard 
deviation obtained by the GAONE models for both 
MNA and PCM were found to be excellent as indicated 
in Table 5.

Table 2. Mefenamic acid Prediction characteristicsa of GAONE 
calibration models.

a Regression of the actual versus predicted concentrations.  b % 
Residual Standard Deviation.

Fitness
Dataset 

Test Data 
Set %RPE Slope Intercept Res.SDb R2

T1 T (T1+T2) 1.530 0.990 0.139 0.175 0.998 
T2 T (T1+T2) 1.525 0.991 0.127 0.174 0.998 
T1 T2 1.129 0.989 0.131 0.132 0.999 
T2 T1 1.872 0.993 0.132 0.210 0.997 

Table 3. Paracetamol Prediction characteristicsa of GAONE 
calibration models.

a Regression of the actual versus predicted concentrations.  b % 
Residual Standard Deviation.

Fitness
Dataset 

Test Data 
Set %RPE Slope Intercept Res.SDb R2

T1 T (T1+T2) 1.371 0.998 0.051 0.141 0.999 
T2 T (T1+T2) 1.399 0.993 0.127 0.138 0.999 
T1 T2 1.415 1.006 –0.045 0.147 0.998 
T2 T1 1.418 0.986 0.207 0.138 0.999 
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Figure 7a. Residual plot obtained in the prediction of MNA from the synthetic binary mixtures (T) by GAONE model.

Table 4. Analysis of tablet samples by GAONE models.

a GAONE models obtained using different fitness datasets (T1 or T2).

MNA PCM 
GAONE-1a GAONE-2a GAONE-1a GAONE-2a

Sample 1 (mg) 503.68 503.67 430.63 433.84 
Sample 2 (mg) 501.09 501.03 435.86 438.54 
Sample 3 (mg) 500.19 500.05 437.67 439.43 
Sample 4 (mg) 502.84 502.64 438.43 439.57 
Sample 5 (mg) 496.75 496.58 441.74 443.02 
     
Mean Tablet 
content (mg) 500.91 500.79 436.87 438.88 

Standard
Deviation 2.705 2.741 4.085 3.295 

Relative Std 
Deviation 0.540 0.547 0.935 0.751 

     
Amount on the 
label (mg) 500.00 500.00 450.00 450.00 

% of the reported 
content 100.18 100.16 97.08 97.53 

Conclusions

In developing neural network models for 
multivariate calibration, several networks are usually 

Table 5. Recovery studies of MNA and PCM in tablets using 
the GAONE model.

Mefenamic acid (MNA) Paracetamol (PCM) 
Spiked
Sample Actual 

(mg)
Found
(mg)

%
Recovery

Actual 
(mg)

Found
(mg)

%
Recovery

1 70.42 72.92 103.55 62.28 62.33 100.08 
2 80.03 82.36 102.91 71.24 71.70 100.65 
3 106.31 107.31 100.94 95.60 94.77 99.13 
4 132.03 132.48 100.34 119.48 118.18 98.91 
5 155.86 155.06 99.49 141.70 139.18 98.22 
       
Mean   101.45   99.40 
RSD   1.701   0.970 

Figure 7b.  Residual plot obtained in the prediction of PCM from the synthetic binary mixtures (T) by GAONE model.

trained since it is known that they exhibit intrinsic 
variance. Hence, retaining only one neural network 
model and rejecting others may not be good idea since 
many workers have found ensembles of neural networks 
as an effective way of reducing the variance, improving 
generalization and accuracy. Based on the reports that 
‘many may be better than all’,31 the authors have earlier 
demonstrated that GAONE models were always better 
than any given single best neural network model or 
ensembles of all neural network models.24 The GAONE 
models developed in this study performed well in 
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estimating MNA and PCM simultaneously when tested 
with spectra recorded on different days and exhibited 
ruggedness even when different sets of constructed 
calibration data were used in the model development 
as indicated by the prediction results. The accuracy of 
the GAONE model was also established in the analysis 
of the combined tablet dosage. The study indicates 
that in neural network calibration modeling, it may be 
worthwhile to build neural network ensembles having 
diversely configured neural networks than rely on an 
independent neural network model. May be, ‘working 
together works’, provided one is careful about who are 
working together. 
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Povzetek 
Predlagamo izboljšave v umeritvenem modelu z uporabo ansamblov nevronskih mrež za multikomponentno 
spektrofotomoetrično analizo. Kot primer podajamo določitev analitov v mešanici mefenaminske kisline in 
paracetamola. Učenje nevronskih mrež smo dosegli z Levenberg-Marquardtovim algoritmom z različnimi začetnimi 
parametri, kot so začetni podatki, skriti nevroni, inicializacija in seti za učenje. Uporabili smo genetski algoritem za 
razvoj ansambla nevronskih mrež. Podsete nevronskih mrež, ki smo jih izbrali z dekodiranjem kromosomov, smo 
zbrali v ansamble. Več ansamblov je predstavljalo populacijo, iz katere se je razvil najboljši ansambel, optimizacijo 
pa smo izvedli  na osnovi relativne napake napovedi. 
Opisujemo uporabo izračunanih umeritvenih setov spektrov iz treh spektrov posamezne komponente. Umeritvene 
modele smo evaluirali s pomočjo 104 spektrov 52 sintetičnih binarnih mešanic pripravljenih z uporabo 
ortogonalnega načrta. Modeli ansamblov kažejo boljše lastnosti kot katerakoli individualna nevronska mreža. 
Čeprav imajo analiti izrazito podobne absorpcijske spektre, jih lahko z zadovoljivo točnostjo in natančnostjo 
določimo v mešanicah v farmacevtskih pripravkih. Z uporabo genetskega algoritma omogočimo izbiro najboljše 
kombinacije nevronskih mrež in izključimo arbitrarnost ročne izbire.


