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Abstract. The so far observed three families of quarks and leptons, the vector gauge fields
of the fermions charges and the scalar Higgs responsible for masses of fermions and weak
bosons, all these confirming the standard model, make most of physicists to declare that the
Higgs was the last missing particle to be confirmed. But can this at all be true? Is it not self
evident that there must be additional scalar fields which manifest effectively the appearance
of the Yukawa couplings and that the Yukawa couplings can only be understood if we
understand the origin of families? The spin-charge-family theory [1–4] is offering a possible
explanation for the origin of families and also for several scalar fields, which are responsible
for masses of fermions and weak vector boson fields. The theory is offering the explanation
also for other assumptions of the standard model. The theory predicts at the observable
regime two decoupled groups of four families. The fourth family, coupled to the measured
three, will be observed at the LHC. The fifth family is the candidate for the dark matter.
Masses of each group of the four families and of each of the two corresponding vector
bosons are triggered by a different group of condensates. The theory explains why the scalar
fields are doublets with respect to the weak charge, while they are triplets with respect
to the family groups. The accuracy with which the fourth family masses can be predicted
in this theory depends strongly on the accuracy with which the two mixing matrices will
be measured. Correspondingly might the properties of the scalar fields (the low energy
effective representation of which is the observed Higgs) be estimated also from the mass
matrices of quarks and leptons. The main progress this year in the spin-charge-family theory
is that I can ”pedagogically” explain: i. Why the scalar fields are doublets with respect
to the weak charge, carrying in addition the appropriate hyper charge. ii. Why the two
groups of four families have so different masses although both groups of the scalar fields
contributing to masses of the upper and lower four families, contribute also to masses of
the weak bosons, while the second (not yet observed) SU(2) gauge vector field have much
higher masses. iii. The numerical calculations have improved so that we shall hopefully
soon be able to say more about the intervals of masses of the fourth to the so far observed
three families.

Povzetek. Doslej smo izmerili tri družine kvarkov in leptonov, tri vrste vektorskih polj, s
katerimi so kvarki in leptoni sklopljeni ter skalarni Higgsov delec, ki je odgovoren za mase
fermionov in šibkih bozonov. Vsa ta fermionska in bozonska polja so v skladu s standardnim
modelom. Večina fizikov meni, da je Higgs zadnji delec, ki ga je bilo treba potrditi. Ali je to
sploh lahko res? Ali ni očitno, da je skalarnih polj več, ki se efektivno kažejo kot Yukawine
sklopitve in da lahko Yukawine sklopitve razumemo le, če razumemo izvor družin? Teorija
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spinov-nabojev-družin [1–4] ponuja razlago za izvor družin in napoveduje, da določajo mase
fermionov in šibkih vektorskih bozonov dva tripleta skalarnih polj, ki nosijo družinska
kvantna števila in trije singleti, ki se sklapljajo z vsakim družinskim članom drugače. Teorija
pojasni, zakaj so vsa skalarna polja šibki dubleti in zakaj nosijo tudi hyper naboj. Teorija
razloži tudi ostale predpostavke standardnega modela. Teorija napove dve skupini štirih
družin, ki nista sklopljeni in se razlikujeta po masah, ker sodelujejo pri nastanku mas
vsake od skupin drugačna skalarna polja in pri eni od obeh tudi kondenzat desnoročnih
nevtrinov. Četrto družino, sklopljeno s prvimi tremi že izmerjenimi, bodo opazili na LHC.
Peta družina pojasni temno snov.

Natančnost, s katero lahko v tej teoriji izračunamo masne matrike in napovemo mase
četrte družine, je odvisna od natačnosti meritev mas in matričnih elementov mešalnih
matrik za tri poznane družine. Iz masnih matrik pa lahko sklepamo tudi na nekatere
lastnosti skalarnih polj, ki smo jih doslej opazili kot Higgsovo skalarno polje in Yukavine
sklopitve. Od lanskega zbornika je napredek teorije spinov-nabojev-družin predvsem v tem:
i. Da lahko “pedagoško” razložim: i. Zakaj so skalarna polja dubleti glede na šibki naboj,
in nosijo hipernaboj, da ,,obleȩjo” desnoročne družinske člane v prava kvantna števila? ii.
Zakaj imata dve skupini štirih družin tako različne mase, in zakaj sta tako zelo različnih mas
tudi obe umeritveni polji, vsaka s svojo grupo SU(2) (šibke bozone poznamo, druge vrste pa
še ne), čeprav obe skupini skalarnih polj, ki sicer prispevata vsaka k masam svoje skupine
štirih družin, prispevata k masi šibkih bozonov? II. Numerični izračuni so napredovali,
tako da bo kmalu lahko podrobneje določiti intervale za mase četrte družine in njihove
sklopitve s poznanimi tremi.

10.1 Introduction

The (extremely) efficient standard model is built on several assumptions, chosen
to be in agreement with the data: i. There exist before the electroweak break
massless coloured quarks and colourless leptons, left handed weak charged and
right handed weak chargeless. ii. There exist families of fermions. iii. There exist
the gauge fields to the observed charges of the family members. iv. There exists
the boson – the scalar field and the anti-scalar field with the non zero vacuum
expectation values after the elecroweak break and the properties to successfully
”dress” the right handed fermions, giving them properties of the left handed ones
and manifesting as doublets when interacting with the weak bosons. v. There exist
the Yukawa couplings, distinguishing among the family members, to ensure right
properties of families of fermions.

The questions are: a. Where do the families originate from and how many of
them might be observable at the low energy regime? b. Where do the scalar fields
and the Yukawa couplings originate from? c. Why is the Higgs a scalar boson
manifesting as a doublet in the weak charge, while all the other bosons are in the
vector representations with respect to all the charges, if they are not singlets [4]? d.
Do we understand the appearance of the charges?

There are many other open questions, but the most urgent ones are to my
understanding the first two, if we want to make a step towards understanding the
standard model assumptions.

We should be able to predict what will the extremely expensive experiments
measure in the near future.
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There are several inventive proposals in the literature [6–14] extending the
standard model. No one explains, to my knowledge, the origin of families. There are
several proposals in the literature trying to explain the mass spectrum and mixing
matrices of quarks and leptons [15] and properties of the scalar fields [16–19]. All
of them just assuming on one or another way the number of families.

I am proposing the spin-charge-family theory [1–3,20–23], which does offer the
explanation for the assumptions of the standard model:

• For the origin of massless families, explaining also the appearance of the family
members with their charges.

• For the origin of the vector gauge fields.
• For the origin of several scalar fields which manifest effectively in the low

energy regime as the Higgs and Yukawa couplings, explaining, why do the
scalar fields and consequently the Higgs manifest as doublets with respect
to the weak charge and carry the appropriate hyper charge and why do the
family members manifest so different properties.

The theory is consequently able to make the prediction for the number of families
and their properties and for the number of scalar fields and their properties, measurable
in the today experiments. It is explaining also the appearance of the dark matter.

My starting assumption is a simple action in d > (3+ 1) which leads to:

1. The Weyl equation for massless fermions couple to vielbeins and the spin
connections of two kinds: The ones which are the gauge fields of Sab =
i
4
(γaγb −γbγa), where γa are the Dirac γa’s defined in any d, and the ones

which are the gauge fields of S̃ab = i
4
(γ̃aγ̃b −γ̃bγ̃a), where γ̃a are the second

kind of the Clifford algebra objects, anti-commuting with the Dirac ones, again
defined in any d.

2. The first kind of the Clifford algebra objects, γa, describes the spin in any d
and after the break of the starting symmetry the spin in d = (3+ 1) and all the
so far observed charges, conserved and non-conserved.

3. The second kind of the Clifford algebra objects, since defining the equivalent
representations with respect to the Dirac one, while there are only two kinds
of the Clifford algebra objects (connected with the left - the Dirac one - and
the right - my γ̃a - multiplication of any Clifford algebra object, which is
a polynomial of powers of γa), the second kind must be used to describe
families, which form the equivalent representations with respect to spin and
charges.

4. The equations for boson fields, the vielbeins and spin connections of both
kinds, are linear in the curvature.

5. d is chosen to be (13 + 1) since one massless Weyl representation in d =

(13 + 1) contains, if analysed with respect to the standard model spin and
charge groups, all the members of one family and their antiparticles: The left
handed weak charged and the right handed weak chargeless coloured quarks
of by the standard model required hyper charges and the left handed weak
charged and the right handed weak chargeless colourless leptons - neutrinos
and electrons - with by the standard model required hyper charges and their
antiparticles according to the requirements of the ref. [5]. There are 2

d
2
−1/2
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of massless particle plus antiparticle states if we pay attention to states of
particular handedness and helicity only once.

6. The break of the starting SO(13+ 1) symmetry first to i. SO(7, 1)×U(1)II ×
SU(3), when (still massless) left handed weak charged and right handed weak-
less fermions and left handed weakless and right handed weak charged an-
tifermions, differ further in the baryon quantum number (U(1)II (±1

6
, for

quarks (+) and for antiquarks (−) and ∓1
2

, for leptons (−) and antilep-
tons (+)) while quarks and leptons differ further in the colour (quarks are
triplets, antiquarks antitriplets, leptons are colourless singlets and antilep-
tons anticolourless singlets), leaves these family members in 2

7
2
−1 = 8mass-

less families, which stay massless also in the further breaks to ii. SO(3, 1)×
SU(2)I × SU(2)II×U(1)II ×SU(3).

7. At the further two breaks, to SO(3, 1)× SU(2)I ×U(1)I ×SU(3), when a weak-
less and hyper chargeless condensate of the right handed neutrinos carrying
the quantum numbers of the upper four families brings masses to the SU(2)II
gauge vector bosons, and to the electroweak break to SO(3, 1)× U(1) ×SU(3),
fermions, coupled to particular gauge scalar fields, which are vielbeins and
spin connections with the scalar index with respect to (3+1) and gain nonzero
vacuum expectation values, become massive.

8. At the breaks some of the gauge fields stay massless (the colour vector bosons)
and the final (U(1)) vector gauge field - the electromagnetic field - while the
two SU(2) vector gauge bosons become massive when the corresponding
symmetry is broken.

9. The standard model can be interpreted as a low energy manifestation of the
spin-charge-family theory.

In this talk I briefly present the spin-charge-family theory (already presented
in several talks and papers): The fermions and gauge bosons starting action and
the action after breaks, sect. 10.2, the fermion representations, sect. 10.2.1, and the
scalar and vector representations, sect. 10.2.2. I answer the question why do scalar
gauge bosons, carrying the family quantum numbers, manifest as weak (fermion)
doublets, while they behave as triplets with respect to the family groups 10.2.2. I
discuss a possible answer to the question: Why do the two gauge fields appearing
in this theory, the gauge fields of the two kinds of the charges, SU(2)II and SU(2)I,
distinguish so much in their masses (the SU(2)II gauge vector boson has not yet
been observed), although the two groups of the scalar fields, one responsible for
the masses of the upper four families and another for the masses of the lower four
families, are all weak (SU(2)I) doublets and the hyper charge singlets 10.2.3.

I discuss predictions of the spin-charge-family theory: The properties of the
fourth family coupled to the observed three [21,25], of the stable fifth family, of
the scalar fields and of the accuracy of measurements needed that predictions will
be more accurate, sect. 10.3, 10.2.2. To predict the fourth family properties (masses
of the family members and the mixing matrix elements coupling the fourth family
members to the observed three ones) accurately enough the two 3 × 3 mixing
(sub)matrices should be measured pretty much more accurately. Properties of
several scalar fields, leading effectively in the low energy regime to the scalar
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Higgs and the Yukawa couplings, manifest in the mass matrices and can therefore
some of their properties be evaluated by analysing properties of mass matrices.

The spin-charge-family theory opens several questions like: How many di-
mensions does the space have? Are there non-observable dimensions curled into
compact or non-compact spaces? And many others.

10.2 Brief presentation of the spin-charge-family theory

In this section the spin-charge-family theory is briefly presented, first the simple
starting action for massless fermions and massless gauge fields, with which I start
and which includes families of fermions. I follow in this part to high extent the
ref. [4]. In subsect. 10.2.1 the fermion representations are discussed, leading to
mass matrices of family members.

The explanation is presented for why does the starting action manifest ef-
fectively, after several breaks up to the electroweak one, two decoupled groups
of massive four families of quarks and leptons, three of the lower four already
observed, and to the known gauge fields, the scalar Higgs and the Yukawa cou-
plings. Each group of four families are coupled to their own kind of the scalar
fields, the gauge fields with the scalar index with respect to d = (3+ 1) of the two
kinds of the Clifford algebra objects. Both groups of scalar fields gain nonzero
vacuum expectation values. There is also the condensate, ref. 10.2.3, of the right
handed neutrinos with the family quantum numbers of the upper four families,
with the SU(2)II charge equal to 1, weakless and with the hyper charge equal to
zero, bringing mass to the SU(2)II vector gauge fields. The scalars interacting with
the lower four families determine, in loop corrections in all orders together with
other fields, mass matrices of quarks and leptons, the three of which are the known
ones. Mass matrices of all the family members, quarks and leptons, belonging
to the lower four families, manifest the same symmetry 10.2.2. All these scalars
are doublets with respect to the weak charge, while they carry appropriate hyper
charge Y, 10.2.2, and manifest effectively at low energies as the Higgs and the
Yukawa couplings.

The theory assumes that the spinor carries in d(= (13+1))-dimensional space
two kinds of the spin, no charges [1,2,4,3]: i. The Dirac spin, described by γa’s,
defines the spinor representations in d = (13+1) (SO(13, 1)), and correspondingly
in the low energy regime, after several breaks of symmetries and before the
electroweak break, the spin (SO(3, 1)) and all the charges (the colour SU(3), the
weak SU(2), the hyper charge Y and the non conserved hyper charge Y ′) of quarks
and leptons. There are the left handed weak charged and the right handed weak
chargeless quarks and leptons. Handedness is determined by the spin properties
in d = (3+ 1), in agreement with the standard model. ii. The second kind of the
spin [27,28,26], described by γ̃a’s ({γ̃a, γ̃b}+ = 2 ηab) and anticommuting with the
Dirac γa ({γa, γ̃b}+ = 0), defines the families of spinors, which at the symmetries
of SO(3, 1) × SU(2)I × SU(2)II × U(1)II × SU(3) manifests two groups of four
massless families, each belonging to different SU(2)× SU(2) symmetry, namely:
( ˜SU(2)R × ˜SU(2)II) ×( ˜SU(2)L × ˜SU(2)I), the first one determines the symmetries
of one of the four families and the second one of the second one of four families.
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One can understand the appearance of the (only) two kinds of the Clifford
algebra objects as follows: If the Dirac one corresponds to the multiplication of
any spinor object B (any product of the Dirac γa’s, which represents a spinor state
when being applied on a spinor vacuum state |ψ0 >) from the left hand side, can
the second kind of the Clifford objects be understood (up to a factor, determining
the Clifford evenness (nB = 2k) or oddness (nB = 2k + 1) of the object B) as the
multiplication of the object from the right hand side

γ̃aB |ψ0 >:= i(−)nBBγa |ψ0 >fam, (10.1)

with |ψ0 >fam determining the vacuum state on which B applies. Accordingly we
have

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+, {γa, γ̃b}+ = 0,

Sab := (i/4)(γaγb − γbγa), S̃ab := (i/4)(γ̃aγ̃b − γ̃bγ̃a), {Sab, S̃cd}− = 0.

(10.2)

More detailed explanation can be found, for example in appendix of the ref. [4]
and in the refs [3,28,27].

The spin-charge-family theory proposes in d = (13 + 1) a simple action for a
Weyl spinor and for the corresponding gauge fields

S =

∫
ddx E Lf +∫
ddx E (αR+ α̃ R̃), (10.3)

Lf =
1

2
(ψ̄ γap0aψ) + h.c.,

p0a = fαap0α +
1

2E
{pα, Ef

α
a}−,

p0α = pα −
1

2
Sabωabα −

1

2
S̃abω̃abα,

R =
1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c. ,

R̃ =
1

2
fα[afβb] (ω̃abα,β − ω̃caαω̃

c
bβ) + h.c. . (10.4)

Here 1 fα[afβb] = fαafβb − fαbfβa. To see that the action (Eq.(10.3)) manifests
after the breaks of symmetries [2,4,3] all the known gauge fields and the scalar

1 fαa are inverted vielbeins to eaα with the properties eaαfαb = δab, e
a
αf
β
a = δβα. Latin

indices a, b, ..,m, n, .., s, t, .. denote a tangent space (a flat index), while Greek indices
α, β, .., µ, ν, ..σ, τ.. denote an Einstein index (a curved index). Letters from the beginning
of both the alphabets indicate a general index (a, b, c, .. and α, β, γ, .. ), from the middle
of both the alphabets the observed dimensions 0, 1, 2, 3 (m,n, .. and µ, ν, ..), indices from
the bottom of the alphabets indicate the compactified dimensions (s, t, .. and σ, τ, ..). We
assume the signature ηab = diag{1,−1,−1, · · · ,−1}.
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fields and the mass matrices of the observed families, let us rewrite formally the
action for a Weyl spinor of (Eq.(10.3)) as follows

Lf = ψ̄γn(pn −
∑
A,i

gAτAiAAin )ψ+

{
∑
s=7,8

ψ̄γsp0s ψ}+ the rest ,

p0s = ps −
1

2
Stt

′
ωtt ′s −

1

2
S̃abω̃abs, (10.5)

where n = 0, 1, 2, 3 with

τAi =
∑
a,b

cAiab S
ab,

{τAi, τBj}− = iδABfAijkτAk. (10.6)

All the charges (τAi, Eqs. (10.6), (10.8), (10.9)) and the spin (Eq. (10.7)) operators
are expressible with Sab, which determine all the internal degrees of freedom of
one family: the spin and the charges.

~N±(= ~N(L,R)) : =
1

2
(S23 ± iS01, S31 ± iS02, S12 ± iS03) , (10.7)

determine representations of the two SU(2) subgroups of SO(3, 1), while

~τ1 : =
1

2
(S58 − S67, S57 + S68, S56 − S78) ,

~τ2 : =
1

2
(S58 + S67, S57 − S68, S56 + S78) ,

(10.8)

determine representations of SU(2)I× SU(2)II of SO(4), which is the subgroup of
SO(7, 1) and

~τ3 :=
1

2
{S9 12 − S10 11 , S9 11 + S10 12, S9 10 − S11 12,

S9 14 − S10 13, S9 13 + S10 14 , S11 14 − S12 13 ,

S11 13 + S12 14,
1√
3
(S9 10 + S11 12 − 2S13 14)} ,

τ4 := −
1

3
(S9 10 + S11 12 + S13 14) , (10.9)

determine representations of SU(3)×U(1), originating in SO(6).
Family quantum numbers, expressible with S̃ab,

~̃N±(=
~̃N(L,R)) : =

1

2
(S̃23 ± iS̃01, S̃31 ± iS̃02, S̃12 ± iS̃03) , (10.10)

determine representations of the two SU(2) subgroups of SO(3, 1) in the S̃ab sector,
while

~̃τ1 : =
1

2
(S̃58 − S̃67, S̃57 + S̃68, S̃56 − S̃78) ,

~̃τ2 : =
1

2
(S̃58 + S̃67, S̃57 − S̃68, S̃56 + S̃78), (10.11)
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determine representations of SU(2)I× SU(2)II of SO(4), which is the subgroup of
SO(7, 1) again in the S̃ab sector.

Families gain masses through the interaction with the scalar fields 1
2
S̃abω̃abs,

the gauge fields of the family charges ( ˜SU(2)R × ˜SU(2)II the upper four families
and ˜SU(2)L × ˜SU(2)I the lower four families), where we assume that after the
breaks we end up with (a, b) ∈ {n, s}, n = (0, 1, 2, 3) and s = (7, 8). The upper four
families and the vector gauge fields of the group SU(2)II gain masses also through
the interaction with the right handed neutrinos condensate (sect. 10.2.3, Table 10.6),
which is weakless, hyper chargeless and the electromagnetic chargeless, belonging
to the SU(2)II triplet, carrying τ23 equal 1 and τ4 = −1.

At the electroweak break the scalar fields which are the gauge fields of
˜SU(2)L × ˜SU(2)I contribute to masses of the lower four families, while the scalars,

the gauge fields of Q,Q ′ and Y ′ contribute to masses of all the eight families,
distinguishing among the family members (sect. 10.2.2, 10.2.2). All these scalar
gauge fields, since they are doublets with respect to the weak charge, carrying also
the hyper charge, contribute to the masses of the weak bosons.

Correspondingly index A in Eq. (10.6) enumerates all possible spinor charges
and gA is the coupling constant to a particular gauge vector fieldAAin . τ3i describe
the colour charge (SU(3)), τ1i the weak charge (SU(2)I), τ2i the second SU(2)II
charge, τ4 determines the U(1)II charge and τ23 = Y describes also the hyper
charge, Q = Y + τ13 = S56 + τ4 is the electromagnetic charge, Q ′ = τ13− Y tan2 θ
and τ± = τ11 ± iτ12.

The theory starts with one (massless, left handed) Weyl representation of
SO(13, 1) spinors in 2d/2−1 families. In the breaks of the starting symmetry to
the symmetry of SO(7, 1)× SU(3) × U(1)II only eight (2(7+1)/2−1) of them stay
massless 2. Families stay massless also after breaks to SO(3, 1)×SU(2)I×SU(2)II×
U(1)II × SU(3).

In the further two breaks, the first to SO(3, 1) × SU(2)I × U(1)I × SU(3),
triggered by the right handed neutrino condensate, carrying the family quantum
numbers of ~̃NR and ~̃τ2, and belonging to the SU(2)II triplet with τ23 = 1 and
τ4 = −1, and correspondingly with zero electromagnetic, weak and hyper charges,
and the electroweak break caused by the scalar fields which gain nonzero vacuum
expectation values, all the fermions become massive. All the scalar fields, which
contribute in the breaks, are doublets with respect to the weak charge carrying
also the hyper charge Y(sect. 10.2.2).

In Eq. (10.12) the effective action for fermions at the electroweak is presented.
The second line manifests the covariant momentum for fermions as seen by the
standard model in agreement with the so far observed fermion and vector boson
fields. The third line presents the contribution to the covariant momentum of the
massive SU(2)II gauge fields, coupled through Y ′ and τ2± to fermions. To masses
of these vector gauge bosons mostly the condensate of the right handed neutrinos
contributes. The fourth line determines the mass term for both groups of four

2 We proved that it is possible to have massless fermions after a break if one starts with
massless fermions and assume particular boundary conditions or particular vielbeins
and spin connections causing the breaks [23,24] and taking care of massless and mass
protected families after the break.
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families on the tree level. It is assumed that the symmetries in the S̃ab ω̃abc and
Sabωabc part break in a correlated way. The generators S̃ab (Eqs. (10.10), (10.11))
transform each member of one family into the same family member of another
family, due to the fact that {Sab, S̃cd}− = 0. The generators Sab transform the
family member into another one, keeping family quantum number unchanged.

Lf = ψ̄ (γm p0m − M)ψ ,

p0m = pm − {eQAm + gQ
′
Q ′ ZQ

′

m +
g1√
2
(τ1+W1+

m + τ1−W1−
m ) +

+ gY
′
Y ′AY

′

m +
g2√
2
(τ2+A2+m + τ2−A2−m ) ,

ψ̄Mψ = ψ̄ γs p0sψ

p0s = ps − {g̃ÑR ~̃NR
~̃AÑRs + g̃Ỹ

′
Ỹ ′ ÃỸ

′

s +
g̃2√
2
(τ̃2+ Ã2+s + τ̃2− Ã2−s )

+ g̃ÑL ~̃NL
~̃AÑLs + g̃Q̃

′
Q̃ ′ ÃQ̃

′

s +
g̃1√
2
(τ̃1+ Ã1+s + τ̃1− Ã1−s )

+ eQAQs + gQ
′
Q ′ ZQ

′

s + gY
′
Y ′AY

′

s } , s ∈ {7, 8} . (10.12)

The term ψ̄Mψ determines the tree level mass matrices of quarks and leptons.
The two groups of four families are decoupled due to different family quantum
numbers: One group carries the quantum numbers of ~̃NR and ~̃τ2, the other of ~̃NL
and ~̃τ1. Since the condensate contributes in loop corrections only to one of the two
groups, the first one, the mass matrices are expected to appear at two different
energy scales. Also the scalar fields couple to either the upper or to the lower four
families.

Since all the scalar fields, which gain nonzero vacuum expectation values -
those with the quantum numbers of ~̃NR and ~̃τ2, with ~̃NL and ~̃τ1, and those with
Q,Q ′, Y ′ - are doublets with respect to the weak charge carrying also the hyper
charge (10.2.2), all contribute to masses of the vector bosonsW and Z. It is, namely,
−2iS0s, s = 7, 8, which transform the right handed weak chargeless quarks and
leptons into the corresponding left handed weak charged partners, transforming
at the same time the hyper charge Y. The gauge scalar fields have correspondingly
the weak and hyper charges.

10.2.1 Fermions through breaks

I discuss properties of quarks, u and d, and leptons, ν and e, all left and right
handed, for two decoupled groups of four families, before and after they gain
masses, triggered by the vacuum expectation values of the scalar fields with which
each of the two groups couples.

At the stage of the symmetry

SO(3, 1)γ × SO(3, 1)γ̃ × SU(2)I γ × SU(2)I γ̃
×SU(2)II γ × SU(2)II γ̃ ×U(1)II γ ×U(1)II γ̃

×SU(3)γ, (10.13)
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the eight families are assumed to be massless. The two indices γ and γ̃ are to
point out that there are two kinds of subgroups of SO(7, 1), those defined by Sab

responsible for properties (spin and charges) of family members and those defined
by S̃ab responsible for the appearance of families.

To manifest how do the operators presented in Eqs. (10.7, 10.8, 10.9) transform
one family member into another one of the same family, in Table 10.1 quarks
of a particular colour charge are presented in the spinor technique [28]. A brief
introduction into the technique can be found also in Appendix of this talk. Spinor

states are defined as products of nilpotents ([
ab

(k)]2 = 0) and projectors ( [
ab

[k]]2 =
ab

[k])
(Eq. (10.37) in Appendix 10.4)

ab

(±i): = 1

2
(γa ∓ γb),

ab

[±i]:= 1

2
(1± γaγb), for ηaaηbb = −1,

ab

(±): = 1

2
(γa ± iγb),

ab

[±]:= 1

2
(1± iγaγb), for ηaaηbb = 1 , (10.14)

chosen to be eigen states of Sab. They are at the same time also the eigenstates of
S̃ab (Eq. (10.38) in Appendix 10.4).

Sab
ab

(k)=
k

2

ab

(k), Sab
ab

[k]=
k

2

ab

[k], S̃ab
ab

(k)=
k

2

ab

(k), S̃ab
ab

[k]= −
k

2

ab

[k] .(10.15)

The choice of the Cartan subalgebra of the commuting operators is made as
follows:

S03, S12, S56, S78, S9 10, S11 12, S13 14 ,

S̃03, S̃12, S̃56, S̃78, S̃9 10, S̃11 12, S̃13 14 . (10.16)

Let the reader note that γa transform
ab

(k) into
ab

[−k], while γ̃a transform
ab

(k) into
ab

[k]

(Eq. (10.39) in Appendix 10.4)

γa
ab

(k)= ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k], γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k), ;(10.17)

γ̃a
ab

(k)= −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k], γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) .(10.18)

The nilpotents and projectors of Table 10.1 operate on a vacuum state, not pre-
sented in the table. The states solve the Weyl equation Eq.(10.19)

γ0 γapaψ = 0 = γ0 (γmpm +
∑
s=7,8

ψ̄γs ps )ψ

= γ0 (
78

(−) p−+
78

(+) p+)ψ ,
78

(±) = 1

2
(γ7 ± i γ8) ,

p± = (p7 ∓ i p8) , (10.19)

for free massless spinors in the coordinate system where pa = (p0, 0, 0, p3,~0), ~0
stays for all the components in d > 4.
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There are 2
d
2
−1 = 64 basic spinor states of one family representation in d =

(13+1), defining the spinors (colour triplets quarks and antitriplets antiquarks and
colourless leptons and anticolourless antileptons). Family members of a particular
colour or the colourless ones form 2(7+1)/2=8 states and so do anticoloured and

colourless spinors. One easily sees that the operator γ0
78

(±) I~x3 , I~x3 reflecting
(x1, x2, x3) into (−x1,−x2,−x3), transforms the state u1R from the first line into
the state u1L from the seventh line, while ~τ3 transforms any of the quark states
of the starting colour charge into otherwise the same states but in general of of
another colour charges.

S9 10, for example, transforms the u1R quark from the first line into the ν1R
lepton from the first line in Table 10.2. Such transformations are after the breaks not
allowed. Following the proposal from the ref. [5] for the definition of the discrete
symmetries in cases of the Kaluza-Klein kind for d even

CN ψ(x0,~x) = Γ (3+1) γ2 Kψ(x0, x1, x2, x3, x5,−x6, x7,−x8, . . . , xd−1,−xd)
= Γ (3+1) γ2 K I6,8,··· ,dψ(x

0,~x) ,

TN ψ(x0,~x) = Γ (3+1) γ1 γ3 Kψ(−x0, x1, x2, x3,−x5, x6,−x7, . . . ,−xd−1, xd)
= Γ (3+1) γ1 γ3 K Ix0 I5,7,··· ,d−1ψ(x

0,~x) ,

Pd−1N ψ(x0,~x) = γ0 Γ (3+1) Γ (d)ψ(x0,−x1,−x2,−x3, x5, x6, . . . , xd−1, xd)

= γ0 Γ (3+1) Γ (d) I~x3 ψ(x
0,~x) , (10.20)

where I~x3 reflects (x1, x2, x3), I6,8,··· ,d reflects (x6, x8, · · · , xd), Ix0 reflects the time
component x0 and I5,7,··· ,d−1 reflects (x5, x7, · · · , xd−1), it is CN · Pd−1N , which
transforms the positive energy states into the corresponding negative energy
states, staying within the same Weyl, while either CN or Pd−1N jumps out of the
starting Weyl representation.

Emptying the negative energy state obtained by the application of the CN ·
Pd−1N on the single particle state put on the top of the Dirac sea, one creates the
corresponding antiparticle state with the positive energy and put on the top of the
Dirac sea, carrying all the properties of the starting particle, except the S03 value
and the charges [5].

The above requirements can be expressed as follows.
Statement: The antiparticle state put on the top of the corresponding Dirac sea follows
from the particle state put on the top of this Dirac sea by applying on the particle state the
operator ON

{ON = emptying× CN PN
= γ0

∏
γa∈=,a6=2

γa Γ (3+1) I~x3I6,8,...,dΓ
(d) } particle state. (10.21)

The corresponding antiparticle state on the top of the Dirac sea also solves the
Weyl equation (10.19).

Using Eq. (10.21) it is easy to find the antiparticle state of positive energy
(which are put on the top of the Dirac sea) to the particle states (which are put on
the top of the Dirac sea), presented in Tables (10.1, 10.2). The corresponding two
tables are presented in Tables (10.3, 10.4).
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Let us find now, according to Eq. (10.21), the antilepton states (to be put on
the top of the Dirac sea) to the states, presented in Table 10.2. One finds the states
(to be put on the top of the Dirac sea), presented in Table 10.4

One can easily check that γ0
78

(+) I~x3 transforms the weakless antiparticle
state put on the top of the Dirac sea ūL with the hyper charge Y = −2

3
from the

first line in Table 10.3 into the weak charged antiparticle state ūR, put on the top
of the Dirac sea from the seventh line in the same table. ūR has Y = − 1

6.
. Similarly

does γ0
78

(+) I~x3 transform the weakless ē1L from the third line in Table 10.4 with
Y = 1 into the weak charged ēR from the fifth line in the same table, with Y = 1

2
,

both antiparticle states put on the top of the Dirac sea.
One sees that the term γ0

∑
s=7,8 γ

s p0s determines the mass term as soon
as a superposition of the fields ω̃abs or of the fieldsωabs, or both superposition,
gain nonzero vacuum expectation values. I shall demonstrate this in the next
subsection.

Families of fermions Here I again follow a lot the ref.[4]. The generators Ñ±R,L
and τ̃(2,1)± (Appendix 10.4, Eq. (10.50)), which are superposition of S̃ab, transform
each member of one family into the same member of another family, due to the
fact that {Sab, S̃cd}− = 0 (Eq.(10.2)).

The eight families of the first member of the eight-plet of quarks from Ta-
ble 10.1, for example, that is of the right handed u1R quark, are presented in the
left column of Table 10.5 [4]. In the right column of the same table the equivalent
eight-plet of the right handed neutrinos ν1R are presented. All the other mem-
bers of any of the eight families of quarks or leptons follow from any member of
a particular family by the application of the operators N±R,L and τ(2,1)± on this
particular member.

The eight-plets separate into two group of four families: One group contains
doublets with respect to ~̃NR and ~̃τ2, these families are singlets with respect to ~̃NL

and ~̃τ1. Another group of families contains doublets with respect to ~̃NL and ~̃τ1,
these families are singlets with respect to ~̃NR and ~̃τ2.

The scalar fields which are the gauge scalars of ~̃NR and ~̃τ2 couple only to the
four families which are doublets with respect to these two groups. The scalar fields
which are the gauge scalars of ~̃NL and ~̃τ1 couple only to the four families which
are doublets with respect to these last two groups.

Masses of fermions We saw in subsect. 10.2.1 that the termψ†γ0Mψ in Eq. (10.12)
causes the appearance of masses of fermions as soon as the corresponding scalar
fields, presented in the covariant momentum in the fifth, sixth and seventh line of
the same equation gain nonzero expectation values.
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ē
1
L

0
3

[−
i]
1
2

(+
)
|
5
6

(+
)
7
8

(+
)
||
9
1
0

[−
]
1
1
1
2

(−
)
1
3
1
4

(−
)
e
−
i|
p
0
|x
0
−
i|
p
3
|x
3

+
1

−
1

−
1

−
1

0
+
1 2
+
1 2
+
1
+
1

ē
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ē
1
R

0
3

(+
i)

1
2

(+
)
|
5
6

(+
)
7
8

[−
]
||
9
1
0

[−
]
1
1
1
2

(−
)
1
3
1
4

(−
)
e
−
i|
p
0
|x
0
+
i|
p
3
|x
3

+
1

+
1

+
1

+
1

+
1 2
0

+
1 2
+
1 2
+
1

ē
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Table 10.5. Eight families of the right handed u1R (10.1) quark with spin 1
2

, the colour
charge (τ33 = 1/2, τ38 = 1/(2

√
3), and of the colourless right handed neutrino ν1R of

spin 1
2

(10.2) are presented in the left and in the right column, respectively. They belong

to two groups of four families, one (I) is a doublet with respect to ( ~̃NR and ~̃τ(2)) and a

singlet with respect to ( ~̃NL and ~̃τ(1)), the other (II) is a singlet with respect to ( ~̃NR and ~̃τ(2))

and a doublet with with respect to ( ~̃NL and ~̃τ(1)). All the families follow from the starting
one by the application of the operators (Ñ±R,L, τ̃(2,1)±), Eq. (10.50). The generators (N±R,L,
τ(2,1)±) (Eq. (10.50)) transform u1R to all the members of one family of the same colour. The
same generators transform equivalently the right handed neutrino ν1R to all the colourless
members of the same family.

If the operators γ7 and γ8 in Eq. (10.12) are expressed in terms of the nilpotents
78

(±), the mass term can be rewritten as follows

ψ̄Mψ =
∑
s=7,8

ψ̄γs p0sψ = ψ† γ0 (
78

(−) p0−+
78

(+) p0+)ψ ,

78

(±) = 1

2
(γ7 ± i γ8) ,

p0± = (p07 ∓ i p08) = (p7 ∓ i p8) − (ΦAi7 ∓ iΦAi8 ) ,

ΦAi∓ = {~̃AÑR∓ , ~̃A2∓,
~̃AÑL∓ , ~̃A1∓, A

Q
∓ , Z

Q ′

∓ , A
Y ′

∓ } . (10.22)

We clearly see that all the scalarsΦAi∓ are doublets with respect to the weak charge,
carrying also the hyper charge, (τ13 , Y)ΦAi− = (1

2
,−1

2
) ΦAi− , (τ13 , Y)ΦAi+ =

(−1
2
, 1
2
) ΦAi+ , since they obviously bring the right quantum numbers to the right

handed partners, to (uR, νR) the scalars ΦAi− , and to (dR, eR) the scalars ΦAi+ , as

we have checked in Tables 10.1 and 10.2, manifesting that γ0
78

(−) transforms (uR,
νR) into (uL, νL), and equivalently for other quarks and leptons. We shall discuss
properties of scalar fields also in subsect. 10.2.2, 10.2.2.

To masses of one of the two groups of four families only the scalar fields,
which are the gauge fields of ~̃NR and ~̃τ2 contribute, to masses of the other group
of four families only the gauge fields of ~̃NL and ~̃τ1 contribute.
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The scalars AQs , ZQ
′

s and AY
′

s from the last line in Eq. (10.12) contribute to
all eight families, distinguishing among the family members and not among the
families.

In loop corrections also all the gauge fields which couple to fermions con-
tribute. To the upper four families contributes in addition the (assumed to be)
condensate of the right handed neutrinos (10.2.3), carrying the spin equal zero,
Q = 0 = Y, τ13 = 0, τ23 = 1 and τ4 = −1. It also carries the τ̃23 = 1 and Ñ3R = 1

charges.
The mass matrix of any family member belonging to any of the two groups of

four families manifests, due to the ˜SU(2)(R,L) × ˜SU(2)(II,I) (either (R, II) or (L, I))
structure of the quantum numbers of the scalar fields which are the gauge fields
of the ~̃NR,L and ~̃τ2,1, the symmetry presented in Eq. (10.23)

Mα =


−a1 − a e d b

e −a2 − a b d

d b a2 − a e

b d e a1 − a


α

, (10.23)

the same for all the family members α ∈ {u, d, ν, e}. The properties of the mass
matrices and the procedure how to extract from the observed properties of the
lower three families of the lower group of four families the masses and mixing
matrix elements is discussed in the contribution to this proceedings [25] and in
the refs. [3,4]. All the parameters of the mass matrix are determined by the tree
level contributions and the loop corrections in all orders of all the fields, which
couple to particular family member of one of the two groups of four families.

If assuming that the mass matrix elements are real then there are 6 free
parameters for each family member. The mixing matrix for quarks has then 6 free
parameters and so has the corresponding one for leptons. Since any (n−1)×(n−1)
sub-matrix of the n× n unitary matrix determines for n ≥ 4 the unitary matrix
uniquely, we would be able to calculate from two times three masses and the
mixing matrix elements of the 3× 3 sub-matrix the fourth family members masses
for the accurately enough experimental data.

We have not yet started to study the CP violation.
Let us learn [4,3] how do fermions interact with the scalar fields. Let ψα(L,R)

denote massless and Ψα(L,R) massive four vectors for each family member α =

(uL,R, dL,R, νL,R, eL,R) after taking into account loop corrections in all orders [3,22],
for any of the two groups of four families. ψα(L,R) = V

α
(L,R) Ψ

α
(L,R) ,

ψα(L,R) = V
α Ψα(L,R) ,

Vα = Vα(o) V
α
(1) · · ·V

α
(k) · · · . (10.24)

It then follows

< ψαL |γ
0Mα |ψαR > = < ΨαL |γ

0 (Vα)†Mα Vα |ΨαR >=

< ΨαL |γ
0 diag(mα1 , · · · ,mα4 )|ΨαR > . (10.25)

It follows then that Vα†Mα Vα = ΦαΨ determines the superposition of the scalar
dynamical fields which couple with the coupling constantsmαk (in some units) to
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the family member belonging to the kth family

(ΦαΨ)kk ′ Ψ
αk ′ = δkk ′m

α
k Ψ

αk . (10.26)

Let us repeat that to loop corrections two kinds of scalar dynamical fields
contribute, those originating in ω̃abs ( g̃ÑR ~̃NR

~̃AÑRs , g̃2 ~̃τ2 ~̃A2s to the upper four
families and g̃ÑL ~̃NL ~̃AÑLs to the lower four families) those originating in ωabs
(eQAQs , g1Q ′ Z

Q ′

s and gY
′
Y ′AY

′

s to all eight families), the vector gauge fields
from Eq.(10.12), the fermion fields and to the upper four families also the conden-
sate.

Even if we are able to reproduce the mass matrices, as we are trying in the
ref. [25], it is not easy to extract some properties of the scalar fields from the known
mass matrices.

10.2.2 Scalars and gauge fields through breaks

In the spin-charge-family theory there are the vielbeins esσ

eaα =

(
δmµ 0

0 esσ

)
in a strong correlation with the spin connection fields of both kinds, ω̃abσ ((a, b) ∈
{0, . . . , 3, 5, . . . , 8} , σ ∈ {7, 8} ) and with ωstσ ((s, t) ∈ {5, 6, 7, 8} , σ ∈ {5, 6, 7, 8} ),
which manifest in d = (3+ 1)-dimensional space as scalar fields after particular
breaks of the starting symmetry. Phase transitions are (assumed to be) triggered by
nonzero vacuum expectation values of the fields fαs ω̃abα and fαsωabα [4] and
the fermion (the right handed neutrinos from the upper four families) condensate.

The gauge fields then correspondingly appear as

eaα =

(
δmµ 0

esµ = esσE
σ
AiA

Ai
µ esσ

)
,

with EσAi = τAi xσ,whereAAiµ are the gauge fields, corresponding to (all possible)
Kaluza-Klein charges τAi, manifesting in d = (3+ 1). Since the space symmetries
include only Sab (Mab = Lab + Sab) and not S̃ab, there are no vector gauge fields
of the type esσẼσAiÃAiµ , with ẼσAi = τ̃Ai xσ. The gauge fields of S̃ab manifest in
d = (3+ 1) only as scalar fields.

There occurs two successive breaks from SO(3, 1)×SU(2)I×SU(2)II×U(1)II×
SU(3) to SO(3, 1)×U(1)× SU(3).

I assume that the first break, that is to SO(3, 1) × SU(2)I × U(1)I × SU(3),
is triggered by the right handed neutrinos belonging of the upper four families
forming a condensate, 10.2.3, with the quantum numbers (spin equal zero, Q =

0 = Y, τ13 = 0, τ23 = 1, τ4 = −1, τ̃23 = 1, Ñ3R = 1, or any other τ̃23 and Ñ3R
values). It couples correspondingly to the gauge fields ~A2m, bringing them masses
(leaving the weak bosons massless). The condensate, carrying the family quantum
numbers τ̃23 = 1, Ñ3R = 1 of the upper four families, couples also to the upper
four families.
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At the electroweak break, when all the scalar fields gain nonzero vacuum
expectation values, all the family members of both groups of four families become
massive. Since all the scalar fields are doublets with respect to the weak charge and
carry also the hyper charge, their nonzero vacuum expectation values contribute
on the tree level to the masses of Zm andW±m according to

(
1

2
)2 (g1)2 v2I (

1

(cos θ1)2
ZQ

′

m Z
Q ′m + 2W+

mW
−m) , (10.27)

where vI are the contribution to the vacuum expectation value of all the scalar
fieldsΦIAi∓ . Eq. (10.27) is in agreement with the standard model.

To know the properties of the scalar fields one should study in details breaks,
in which the condensate of the right handed neutrinos, and the scalar fields
carrying the weak and hyper charges and the family quantum numbers participate,
which is not an easy job.

However, from the mass matrices and the interactions of the scalar fields with
fermions we can still learn something about properties of the scalar fields.

I demonstrate in subsect. 10.2.2 that all the scalar fields are doublets with
respect to the weak charge and that they carry a hyper charge. I comment in
subsect. 10.2.2 that the symmetry of mass matrices are the same for all the family
members and that loop corrections keep this symmetry. I demonstrate the proper-
ties of the condensate in subsect. 10.2.3 and comment on why do the two groups
of four families differ in masses, and why do the two gauge vector fields, carrying
the SU2II and SU(2)I quantum numbers, respectively, differ in masses.

Scalar fields - doublets with respect to weak charge and carrying hyper charge

We saw in sect. 10.2.1, Eqs. (10.12, 10.22) that the operators
78

(−) ΦAi− and
78

(+) ΦAi+

transform the right handed uR-quarks and νR-leptons and the right handed dR-
quarks and eR-leptons, respectively, into the corresponding left handed partners
for all the scalar fields, independent of the family quantum numbers. Scalar fields
ΦAi∓ (ΦAi∓ stay for {~̃AÑR∓ , ~̃A2∓,

~̃AÑL∓ , ~̃A1∓, A
Q
∓ , Z

Q ′

∓ , A
Y ′

∓ } (Eq. (10.22)) with nonzero
vacuum expectation values must accordingly carry the appropriate quantum
numbers. All these scalar fields appear in Eqs. (10.12, 10.22) as follows

ψ† γ0
∑
Ai

(
78

(−) Φ− +
78

(+) Φ+)ψ ,

Φ∓ = Φ7 ± iΦ7 . (10.28)

Let us analyse their properties. Eqs. (10.8, 10.9) and Table 10.1 require [4] that

~τ1 =
1

2
(S58 − S67, S57 + S6,8, S56 − S7,8) ,

~τ2 =
1

2
(S58 + S6,7, S57 − S6,8, S56 + S7,8) ,

Y = τ23 + τ4 , τ4 = −
1

3
(S9 10 + S11 12 + S13 14) . (10.29)
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Any vector Ad has the transformation property

(Sab)cdA
d = i(ηac δbd − ηbc δad)A

d . (10.30)

Correspondingly one finds the following properties of the fields

τ4 (Φ7 ± iΦ8) = 0 , Y (Φ7 ± iΦ8) = ∓1
2
(Φ7 ± iΦ8) ,

τ13 (Φ7 ± iΦ8) = ±1
2
(Φ7 ± iΦ8) ,

τ1+ (Φ7 + iΦ8) = −(Φ5 + iΦ6) , τ1− (Φ7 + iΦ8) = 0 ,

τ1− (Φ7 − iΦ8) = (Φ5 − iΦ6) , τ1+ (Φ7 − iΦ8) = 0 ,

τ1+ (Φ5 + iΦ6) = 0 , τ1− (Φ5 + iΦ6) = −(Φ7 + iΦ8) ,

τ1+ (Φ5 − iΦ6) = (Φ7 − iΦ8) , τ1− (Φ5 − iΦ6) = 0 ,

τ4 (Φ5 ± iΦ6) = 0 , τ13 (Φ5 ± iΦ6) = ∓1
2
(Φ5 ± iΦ6) ,

Y(Φ5 ± iΦ6) = ∓1
2
(Φ7 ± iΦ8) . (10.31)

In Eq. (10.31) the fields (Φ7 ± iΦ8) =Φ∓ stay for all ΦAi∓ .
It is, therefore, just proved that the scalar fields ΦAi∓ with nonzero vacuum

expectation values contribute on the tree level to the mass term of fermions with
which they interact, ”dressing” at the same time the right handed uR-quarks and
νR-leptons with the weak charge τ13 = 1

2
and the hyper charge Y = −1

2
, while

they ”dress” the right handed dR-quarks and eR-leptons with the weak charge
τ13 = −1

2
and the hyper charge Y = 1

2
.

Why are symmetries of mass matrices kept in all orders of loop corrections? I
have checked, together with the coauthor [31], that the symmetry of the mass
matrix, Eq. 10.23, suggested by the spin-charge-family theory, stays unchanged in all
orders of loop corrections, for several types of loop contributions. The evaluations
were done in the massless basis. The final proof is under investigations and looks
promising.

10.2.3 Do we understand why do two groups of four families distinguish
in masses and why do two vector boson SU(2) fields distinguish in
masses?

All the scalar fields, which gain nonzero vacuum expectation values, are doublets
with respect to the weak charge carrying also the hyper charge, as we have seen
in the above discussions. This is true independently of what family quantum
numbers the scalar fields carry. Correspondingly all the scalar fields contribute to
the masses of Zm andW±m vector bosons. Each of the two groups of four families
carry different family charges, coupling correspondingly only to those scalars,
which are the gauge fields of their family groups.

How can then the two groups of families have so different masses? And why
are the masses of the vector gauge fields of the group SU(2)II so much larger than
those of the vector bosons Zm andW±m?
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The right handed neutrinos with the family quantum numbers of the upper
group of four families are solving this problem, provided that they form a con-
densate with quantum numbers Q = 0 = Y, τ13 = 0, τ23 = 1, τ4 = −1, τ̃23 = 1,
Ñ3R = 1, different values of τ̃23, Ñ3R are also acceptable. Such a condensate couples
to the gauge fields ~A2m and, in loop corrections, to the upper four families. It does
not couple to the lower four families and also not to the vector bosons Zm and
W±m. The condensate causes a non conservation of the fermion quantum number,
keeping (3× quark minus lepton) quantum number unbroken, as long as Y is a
conserved quantity.

In Table 10.6 a triplet of the group SU(2)II with the generators τ2i is presented:
The condensate of the right handed neutrinos and the two partners, all carrying
τ4 equal to −1. The family quantum numbers τ̃23 = 1 and Ñ3R are chosen. Any of
the rest possibilities for these two family quantum numbers values, or all of them
are acceptable as well.

state S03 S12 τ13 τ23 τ4 Y Q τ̃23 Ñ3R
(|ν1R >1 |ν2R >2)A 0 0 0 1 −1 0 0 1 1

(|ν1R >1 |e2R >2)A 0 0 0 0 −1 −1 −1 1 1

(|e1R >1 |e2R >2)A 0 0 0 −1 −1 −2 −2 1 1

Table 10.6. The condensate of two right handed neutrinos νR, coupled to spin zero and
belonging to a triplet with respect to the generators τ2i, together with its two partners, is
presented. The condensate has Q = 0 = Y. The triplet carries τ4 = −1, τ̃23 = 1 and Ñ3R = 1

(All belong to the family IVR of the group II from Table 10.5). The family quantum numbers
IVR are not noted on the states. Index A stays for anti symmetrization.

There could be condensates also from the anti-neutrinos, right handed and
belonging to the upper four families with the same family quantum numbers,
or with other possible family quantum numbers of the same group. The corre-
sponding condensate of two anti-neutrinos to the neutrinos presented in Table 10.6
would carry τ23 = −1 and τ4 = −1.

It stays an open question, what does make the right handed neutrinos (or
antineutrinos), belonging to the upper four families, to form such a condensate.

10.3 Conclusions and predictions of spin-charge-family theory

I demonstrate in this talk that the spin-charge-family theory is offering the explana-
tion for the appearance of families, explaining as well the appearance of several
scalar fields and of so far observed charges of fermions and the corresponding
gauge fields. I demonstrate why are these scalar fields doublets with respect to the
weak charge and singlets with respect to the hyper charge. I also offers predictions
of the theory.

The theory predicts that there are two decoupled massless four families at
some low energy scale, which stay massless also after they become massive, since
each of the two groups carries different family quantum numbers.
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There are two kinds of triggers responsible for the appearance of fermion
masses: i. The condensate of the right handed neutrinos, carrying the family
quantum numbers of the upper four families. Carrying the quantum numbers
of the SU(2)II gauge vector field, the condensate makes this gauge field massive.
Carrying the family quantum numbers of only one of the two groups, the conden-
sate contribute to masses of the upper four families. ii. The scalar fields after they
gain nonzero vacuum expectation values. The scalar fields belong to three groups:
ii.a. The two scalar triplets with respect to the family quantum numbers of the
upper four families bring masses to the upper four families. ii.b. The two scalar
triplets with respect to the family quantum numbers of the lower four families
bring masses to the lower four families. These two kinds of scalar fields do not
distinguish among family members. ii.c. The third kind of the scalars are singlets
which carry the quantum numbers (Q, Q ′, Y ′) of the family members, distinguish-
ing correspondingly among the family members and not among families. They
contribute to masses of all the eight families.

I demonstrate that all the scalar fields are doublets with respect to the weak
charge carrying also the hyper charge, just as the so far observed Higgs is. They
”dress” correspondingly the right handed uR-quark and νR- lepton with the weak
τ13 = 1

2
and the hyper charge Y = −1

2
, while they ”dress” the right handed

dR-quark and eR- lepton with the weak τ13 = −1
2

and the hyper charge Y = 1
2

.
Correspondingly all the scalar fields contribute to masses of Zm andW±m.

I demonstrate properties of one representation of the SO(13, 1), which in-
cludes all the family members, left and right handed, coloured and colourless, as
well as their antiparticles, and the properties of families of all these quarks and
leptons and the antiquarks and antileptons, using our spinor technique.

The appearance of several scalar fields manifest at the low energy regime as
the Higgs, explaining the Yukawa couplings.

I offer the answer to the question: Why are the two SU(2) gauge fields, SU(2)II,
which is not yet observed, and the weak SU(2)I so different in masses and why
are also the two groups of four families so different in masses. The condensate of
the right handed neutrinos with the family quantum numbers of the upper four
families resolves this problem, since it couple only to the SU(2)II gauge bosons
and to the upper four families.

The theory predicts that there are two times decoupled four families at the
low energy.

The lowest of the upper four families is stable and is the candidate to form the
dark matter [21]. The fourth of the lower four families will be observed at the LHC.
Accurately enough measured mixing 3 × 3 sub matrices of quarks and leptons
will enable to determine the masses of the fourth family members accurately. The
ref. [25] is reporting on this calculations.

The spin-charge-family theory is treating all the family members, quarks and
leptons, equivalently. I report on the trial to prove that the symmetry of mass
matrices predicted by the theory, the same one for all the family members, is kept
in all loop corrections. Loop corrections in all orders are needed to understand
why are mass matrices so different in values for different family members, while
they all demonstrate the same symmetry.
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10.4 APPENDIX: Short presentation of technique [27,28]

I make in this appendix a short review of the technique [28], initiated and devel-
oped by me when proposing the spin-charge-family theory [1–4,20,21] assuming
that all the internal degrees of freedom of spinors, with family quantum number
included, are describable in the space of d-anti-commuting (Grassmann) coor-
dinates [27], if the dimension of ordinary space is also d. There are two kinds
of operators in the Grassmann space, fulfilling the Clifford algebra which anti-
commute with one another. The technique was further developed in the present
shape together with H.B. Nielsen [28] by identifying one kind of the Clifford
objects with γs’s and another kind with γ̃a’s. In this last stage we constructed a
spinor basis as products of nilpotents and projections formed as odd and even
objects of γa’s, respectively, and chosen to be eigenstates of a Cartan subalgebra
of the Lorentz groups defined by γa’s and γ̃a’s. The technique can be used to
construct a spinor basis for any dimension d and any signature in an easy and
transparent way. Equipped with the graphic presentation of basic states, the tech-
nique offers an elegant way to see all the quantum numbers of states with respect
to the two Lorentz groups, as well as transformation properties of the states under
any Clifford algebra object.

The objects γa and γ̃a have properties

{γa, γb}+ = 2ηab , {γ̃a, γ̃b}+ = 2ηab , , {γa, γ̃b}+ = 0 , (10.32)

for any d, even or odd. I is the unit element in the Clifford algebra.
The Clifford algebra objects Sab and S̃ab close the algebra of the Lorentz

group

Sab : = (i/4)(γaγb − γbγa) ,

S̃ab : = (i/4)(γ̃aγ̃b − γ̃bγ̃a) ,

{Sab, S̃cd}− = 0 ,

{Sab, Scd}− = i(ηadSbc + ηbcSad − ηacSbd − ηbdSac) ,

{S̃ab, S̃cd}− = i(ηadS̃bc + ηbcS̃ad − ηacS̃bd − ηbdS̃ac) , (10.33)

We assume the “Hermiticity” property for γa’s and γ̃a’s

γa† = ηaaγa , γ̃a† = ηaaγ̃a , (10.34)

in order that γa and γ̃a are compatible with (10.32) and formally unitary, i.e.
γa † γa = I and γ̃a †γ̃a = I.

One finds from Eq.(10.34) that (Sab)† = ηaaηbbSab.
Recognizing from Eq.(10.33) that two Clifford algebra objects Sab, Scd with

all indices different commute, and equivalently for S̃ab, S̃cd, we select the Cartan
subalgebra of the algebra of the two groups, which form equivalent representations
with respect to one another

S03, S12, S56, · · · , Sd−1 d, if d = 2n ≥ 4,
S03, S12, · · · , Sd−2 d−1, if d = (2n+ 1) > 4 ,

S̃03, S̃12, S̃56, · · · , S̃d−1 d, if d = 2n ≥ 4 ,
S̃03, S̃12, · · · , S̃d−2 d−1, if d = (2n+ 1) > 4 . (10.35)
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The choice for the Cartan subalgebra in d < 4 is straightforward. It is useful to
define one of the Casimirs of the Lorentz group - the handedness Γ ({Γ, Sab}− = 0)
in any d

Γ (d) : = (i)d/2
∏
a

(
√
ηaaγa), if d = 2n,

Γ (d) : = (i)(d−1)/2
∏
a

(
√
ηaaγa), if d = 2n+ 1 . (10.36)

One can proceed equivalently for γ̃a’s. We understand the product of γa’s in the
ascending order with respect to the index a: γ0γ1 · · ·γd. It follows from Eq.(10.34)
for any choice of the signature ηaa that Γ † = Γ, Γ2 = I.We also find that for d even
the handedness anticommutes with the Clifford algebra objects γa ({γa, Γ }+ = 0) ,
while for d odd it commutes with γa ({γa, Γ }− = 0).

To make the technique simple we introduce the graphic presentation as fol-
lows (Eq. (10.14))

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

[k]:=
1

2
(1+

i

k
γaγb) ,

+◦: = 1

2
(1+ Γ) ,

−•:= 1

2
(1− Γ), (10.37)

where k2 = ηaaηbb. One can easily check by taking into account the Clifford
algebra relation (Eq.10.32) and the definition of Sab and S̃ab (Eq.10.33) that if one

multiplies from the left hand side by Sab or S̃ab the Clifford algebra objects
ab

(k)

and
ab

[k], it follows that

Sab
ab

(k)=
1

2
k
ab

(k) , Sab
ab

[k]=
1

2
k
ab

[k] ,

S̃ab
ab

(k)=
1

2
k
ab

(k) , S̃ab
ab

[k]= −
1

2
k
ab

[k] , (10.38)

which means that we get the same objects back multiplied by the constant 1
2
k in the

case of Sab, while S̃ab multiply
ab

(k) by k and
ab

[k] by (−k) rather than (k). This also

means that when
ab

(k) and
ab

[k] act from the left hand side on a vacuum state |ψ0〉 the
obtained states are the eigenvectors of Sab. We further recognize (Eq. 10.17,10.18)

that γa transform
ab

(k) into
ab

[−k], never to
ab

[k], while γ̃a transform
ab

(k) into
ab

[k], never

to
ab

[−k]

γa
ab

(k)= ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k], γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) ,

γ̃a
ab

(k)= −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k], γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) .(10.39)
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From Eq.(10.39) it follows

Sac
ab

(k)
cd

(k) = −
i

2
ηaaηcc

ab

[−k]
cd

[−k] , S̃ac
ab

(k)
cd

(k)=
i

2
ηaaηcc

ab

[k]
cd

[k] ,

Sac
ab

[k]
cd

[k] =
i

2

ab

(−k)
cd

(−k) , S̃ac
ab

[k]
cd

[k]= −
i

2

ab

(k)
cd

(k) ,

Sac
ab

(k)
cd

[k] = −
i

2
ηaa

ab

[−k]
cd

(−k) , S̃ac
ab

(k)
cd

[k]= −
i

2
ηaa

ab

[k]
cd

(k) ,

Sac
ab

[k]
cd

(k) =
i

2
ηcc

ab

(−k)
cd

[−k] , S̃ac
ab

[k]
cd

(k)=
i

2
ηcc

ab

(k)
cd

[k] . (10.40)

From Eqs. (10.40) we conclude that S̃ab generate the equivalent representations
with respect to Sab and opposite.

Let us deduce some useful relations

ab

(k)
ab

(k) = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,
ab

(−k)
ab

(k)= ηaa
ab

[−k] ,
ab

(−k)
ab

(−k)= 0 ,
ab

[k]
ab

[k] =
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,
ab

[−k]
ab

[k]= 0 ,
ab

[−k]
ab

[−k]=
ab

[−k] ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(−k)
ab

[k]=
ab

(−k) ,
ab

(−k)
ab

[−k]= 0 ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

[k]
ab

(−k)= 0,
ab

[−k]
ab

(k)= 0 ,
ab

[−k]
ab

(−k)=
ab

(−k) .

(10.41)

We recognize in the first equation of the first line and the first and the second
equation of the second line the demonstration of the nilpotent and the projector

character of the Clifford algebra objects
ab

(k) and
ab

[k], respectively. Defining

ab
˜(±i)= 1

2
(γ̃a ∓ γ̃b) ,

ab
˜(±1)= 1

2
(γ̃a ± iγ̃b) , (10.42)

one recognizes that

ab
˜(k)
ab

(k) = 0 ,
ab
˜(−k)

ab

(k)= −iηaa
ab

[k] ,
ab
˜(k)
ab

[k]= i
ab

(k) ,
ab
˜(k)

ab

[−k]= 0 .(10.43)

Recognizing that

ab

(k)

†

= ηaa
ab

(−k) ,
ab

[k]

†

=
ab

[k] , (10.44)

we define a vacuum state |ψ0 > so that one finds

<
ab

(k)

†
ab

(k) >= 1 ,

<
ab

[k]

†
ab

[k] >= 1 . (10.45)

Taking into account the above equations it is easy to find a Weyl spinor
irreducible representation for d-dimensional space, with d even or odd.
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For d even we simply make a starting state as a product of d/2, let us say, only

nilpotents
ab

(k), one for each Sab of the Cartan subalgebra elements (Eq.(10.35)),
applying it on an (unimportant) vacuum state. For d odd the basic states are
products of (d − 1)/2 nilpotents and a factor (1 ± Γ). Then the generators Sab,
which do not belong to the Cartan subalgebra, being applied on the starting state
from the left, generate all the members of one Weyl spinor.

0d

(k0d)
12

(k12)
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) ψ0
0d

[−k0d]
12

[−k12]
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) ψ0
0d

[−k0d]
12

(k12)
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) ψ0
...

0d

[−k0d]
12

(k12)
35

(k35) · · ·
d−1 d−2

[−kd−1 d−2] ψ0
od

(k0d)
12

[−k12]
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) ψ0
... (10.46)

All the states have the handedness Γ , since {Γ, Sab} = 0. States, belonging to
one multiplet with respect to the group SO(q, d − q), that is to one irreducible
representation of spinors (one Weyl spinor), can have any phase. We made a choice
of the simplest one, taking all phases equal to one.

The above graphic representation demonstrate that for d even all the states
of one irreducible Weyl representation of a definite handedness follow from a

starting state, which is, for example, a product of nilpotents
ab

(kab), by transforming

all possible pairs of
ab

(kab)
mn

(kmn) into
ab

[−kab]
mn

[−kmn]. There are Sam, San, Sbm, Sbn,
which do this. The procedure gives 2(d/2−1) states. A Clifford algebra object γa

being applied from the left hand side, transforms a Weyl spinor of one handedness
into a Weyl spinor of the opposite handedness. Both Weyl spinors form a Dirac
spinor.

For d odd a Weyl spinor has besides a product of (d − 1)/2 nilpotents or

projectors also either the factor
+◦:= 1

2
(1+ Γ) or the factor

−•:= 1
2
(1− Γ). As in the

case of d even, all the states of one irreducible Weyl representation of a definite
handedness follow from a starting state, which is, for example, a product of (1+ Γ)

and (d− 1)/2 nilpotents
ab

(kab), by transforming all possible pairs of
ab

(kab)
mn

(kmn)

into
ab

[−kab]
mn

[−kmn]. But γa’s, being applied from the left hand side, do not change
the handedness of the Weyl spinor, since {Γ, γa}− = 0 for d odd. A Dirac and
a Weyl spinor are for d odd identical and a ”family” has accordingly 2(d−1)/2

members of basic states of a definite handedness.
We shall speak about left handedness when Γ = −1 and about right handed-

ness when Γ = 1 for either d even or odd.
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While Sab which do not belong to the Cartan subalgebra (Eq. (10.35)) generate
all the states of one representation, generate S̃ab which do not belong to the Cartan
subalgebra(Eq. (10.35)) the states of 2d/2−1 equivalent representations.

Making a choice of the Cartan subalgebra set of the algebra Sab and S̃ab

S03, S12, S56, S78, S9 10, S11 12, S13 14 ,

S̃03, S̃12, S̃56, S̃78, S̃9 10, S̃11 12, S̃13 14 , (10.47)

a left handed (Γ (13,1) = −1) eigen state of all the members of the Cartan subalgebra,
representing a weak chargeless uR-quark with spin up, hyper charge (2/3) and
colour (1/2 , 1/(2

√
3)), for example, can be written as

03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

(−)
13 14

(−) |ψ〉 =
1

27
(γ0 − γ3)(γ1 + iγ2)|(γ5 + iγ6)(γ7 + iγ8)||

(γ9 + iγ10)(γ11 − iγ12)(γ13 − iγ14)|ψ〉 . (10.48)

This state is an eigen state of all Sab and S̃ab which are members of the Cartan
subalgebra (Eq. (10.16)).

The operators S̃ab, which do not belong to the Cartan subalgebra (Eq. (10.16)),
generate families from the startinguR quark, transforminguR quark from Eq. (10.48)
to the uR of another family, keeping all the properties with respect to Sab un-
changed. In particular S̃01 applied on a right handed uR-quark, weak charge-
less, with spin up, hyper charge (2/3) and the colour charge (1/2 , 1/(2

√
3)) from

Eq. (10.48) generates a state which is again a right handed uR-quark, weak charge-
less, with spin up, hyper charge (2/3) and the colour charge (1/2 , 1/(2

√
3))

S̃01
03

(+i)
12

(+) |
56

(+)
78

(+) ||
910

(+)
1112

(−)
1314

(−)= −
i

2

03

[ +i]
12

[ + ] |
56

(+)
78

(+) ||
910

(+)
1112

(−)
1314

(−) .

(10.49)

Below some useful relations [2] are presented

N±+ = N1+ ± iN2+ = −
03

(∓i)
12

(±) , N±− = N1− ± iN2− =
03

(±i)
12

(±) ,

Ñ±+ = −
03
˜(∓i)

12
˜(±) , Ñ±− =

03
˜(±i)

12
˜(±) ,

τ1± = (∓)
56

(±)
78

(∓) , τ2∓ = (∓)
56

(∓)
78

(∓) ,

τ̃1± = (∓)
56
˜(±)

78
˜(∓) , τ̃2∓ = (∓)

56
˜(∓)

78
˜(∓) . (10.50)
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27. N.S. Mankoč Borštnik, J. of Math. Phys. 34 (1993) 3731.
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