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Abstract. Some recent research of quantum corrections inN = 1 supersymmetric theories
is briefly reviewed. The most attention is paid to the theories regularized by higher covariant
derivatives. In particular, we discuss, how the NSVZ and NSVZ-like relations appear with
this regularization and how one can construct the NSVZ scheme in all orders.

Povzetek. Avtor na kratko poroča o nedavnih raziskavah kvantnih popravkov v super-
simetričnih teorijah tipaN = 1 s posebnim poudarkom na teorijah regulariziranih z višjimi
kovariantnimi odvodi. Predstavi, kaj se zgodi z relacijami tipa NSVZ in tej podobnimi v tej
regularizaciji in kako poteka konstrukcija NSVZ sheme v vseh redih.

Keywords: Supersymmetric theories, Quantum corrections, Regularization,N = 1

sypersymmetric extensions of the Standard Model

12.1 Introduction

N = 1 sypersymmetric extensions of the Standard Model (SM) are very inter-
esting candidates for describing physics beyond it [1]. In these theories there are
no quadratically divergent quantum corrections to the Higgs mass, the running
of coupling constants agrees with the predictions of the Grand Unified Theories,
and the proton lifetime (proportional to M4

X) is much larger than in the non-
supersymmetric case. This makes them very attractive from the phenomenological
point of view. However, the supersymmetric extensions of SM predict a lot of
new particles, which are superpartners of quarks, leptons, gauge bosons and
Higgs bosons. Supersymmetry also requires two Higgs doublets, which produces
2× 2× 2− 3 = 5Higgs bosons. To make masses of superpartners sufficiently large,
it is necessary to break supersymmetry. Although it is highly desirable to break su-
persymmetry spontaneously, the simplest models (like MSSM) include soft terms,
which explicitly break supersymmetry, but do not produce quadratic divergences.
Investigation of quantum corrections in supersymmetric theories and theories
with softly broken sypersymmetry and comparing them with experimental data
can provide information about physics beyond SM.
? E-mail: stepan@m9com.ru
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198 K.V. Stepanyantz

It is convenient to describe N = 1 supersymmetric theories in N = 1 su-
perspace, because in this case supersymmetry is a manifest symmetry. In this
language, the renormalizable N = 1 SYM theory (with a simple gauge group G,
for simplicity) is described by the action

S =
1

2e20
Re tr

∫
d4xd2θWaWa +

1

4

∫
d4xd4θφ∗i(e2V)i

jφj

+
{ ∫

d4xd2θ
(1
4
mij0 φiφj +

1

6
λijk0 φiφjφk

)
+ c.c.

}
,

where θ denotes auxiliary Grassmannian coordinates. The real superfield V(x, θ, θ̄)
is the gauge superfield, and the supersymmetric gauge field strength is defined as
Wa = D̄2

(
e−2VDae

2V
)
/8. The matter superfields φi are chiral, D̄ȧφi = 0, where

in our notation Da and D̄ȧ denote the right and left supersymmetric covariant
derivatives, respectively. In terms of superfields the gauge transformations can be
written as

φ→ eAφ; e2V → e−A
+

e2Ve−A, (12.1)

and are parameterized by a chiral superfield A = ie0A
BTB.

Quantum behaviour of sypersymmetric theories is better than in the non-
supersymmetric case. For example, in the most interesting for phenomenology
case of N = 1 supersymmetry, there are no divergent quantum corrections to
the superpotential [2]. Consequently, the renormalization of masses and Yukawa
couplings in such theories is related to the renormalization of the chiral matter
superfields. As a non-renormalization theorem one can also consider a relation
between the β-function and the anomalous dimensions of the chiral matter super-
fields which takes place in N = 1 supersymmetric theories [3–6],

β(α, λ) = −
α2
(
3C2 − T(R) + C(R)i

jγj
i(α, λ)/r

)
2π(1− C2α/2π)

. (12.2)

In our notation r = dimG, and TA are the generators of the representation R
to which the chiral matter superfields belong, such that tr (TATB) = T(R) δAB

and (TATA)i
j ≡ C(R)i

j. For the adjoint representation T(Adj) = C2, where
fACDfBCD ≡ C2δ

AB. The relation (12.2) is usually called the exact NSVZ β-
function, because for the pure N = 1 SYM theory it gives the exact expression for
the β-function. In this paper (following Ref. [7]) we will also discuss the relation
between the NSVZ β-function and the non-renormalization theorem for the triple
gauge-ghost vertices. This theorem claims that in N = 1 SYM theories three-point
vertices with two ghost legs and one leg of the quantum gauge superfield are
finite.

Although a lot of general arguments can be used for obtaining Eq. (12.2),
see, e.g., [8–10], it is not so trivial to establish how the NSVZ relation appears in
perturbative calculations. Certainly, for doing such calculations the theory should
be properly regularized, and the way of removing divergences should be specified.
By other words, it is necessary to fix a subtraction scheme. The calculations done
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12 Structure of Quantum Corrections inN = 1. . . 199

with the dimensional reduction [11] in the DR-scheme in the three- and four-loop
approximations [12–14,16] demonstrated that Eq. (12.2) does not take place starting
from the three-loop approximation. However, one can explain the disagreement
by the scheme dependence of the NSVZ relation [17,18]. A possibility of this
explanation is non-trivial due to some scheme-independent consequences of the
NSVZ relation [18,19]. Thus, with the dimensional reduction the NSVZ equation
should be obtained by a special tuning of the subtraction scheme in every order,
while the general all-order prescription giving the NSVZ scheme is absent.

Also it should be noted that the dimensional reduction is not mathematically
consistent [20], and can break supersymmetry in higher orders [21,22]. That is why
the use of other regularizations is also reasonable and interesting. In this paper we
will mostly discuss various application of the Slavnov higher covariant derivative
regularization [23,24] to calculating quantum corrections inN = 1 supersymmetric
theories. Unlike the dimensional reduction, this regularization is consistent and
can be formulated in a manifestly N = 1 supersymmetric way [25,26]. It is also
applicable to theories with N = 2 supersymmetry [27–29]. The main idea of
this regularization is to add a term with higher degrees of covariant derivatives
to the action of a theory. Then divergences beyond the one-loop approximation
disappear, while the remaining one-loop divergences are regularized by inserting
the Pauli–Villars determinants into the generating functional [30]. In this paper we
will demonstrate that this regularization allows to reveal some interesting features
of quantum corrections in supersymmetric theories which are missed in the case
of using the dimensional technique.

12.2 NSVZ relation inN = 1 SQED

12.2.1 Higher derivative regularization in the Abelian case

We will start with the simplest N = 1 supersymmetric gauge theory, namely,
the N = 1 supersymmetric electrodynamics (SQED) with Nf flavors. In the mass-
less case this theory is described by the action

S =
1

4e20
Re
∫
d4xd2θWaWa +

Nf∑
f=1

1

4

∫
d4xd4θ

(
φ∗fe

2Vφf + φ̃
∗
fe

−2V φ̃f

)
, (12.3)

which is written in terms of N = 1 superfields. In this formalism supersymmetry
is a manifest symmetry of the theory. The usual gauge field is now a component of
the real gauge superfield V . The terms containing the chiral matter superfields φf
and φ̃f produce Dirac fermions and the other terms needed for supersymmetry in-
variance. In the Abelian case the supersymmetric gauge field strength is described
by the chiral spinor superfield Wa = D̄2DaV/4. For the theory (12.3) the NSVZ
β-function (12.2) takes the form [31,32]

β(α) =
α2Nf

π

(
1− γ(α)

)
. (12.4)
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200 K.V. Stepanyantz

To regularize the theory (12.3) by the Slavnov higher derivatives method, we
add the term

SΛ =
1

4e20
Re
∫
d4xd2θWa

(
R(∂2/Λ2) − 1

)
Wa (12.5)

to the classical action, where the function R(∂2/Λ2) contains higher degrees of
derivatives. Note that for Abelian theories one should use the usual deriva-
tives (instead of the covariant ones). In the simplest case it is possible to choose
R = 1 + ∂2n/Λ2n. Due to the presence of the higher derivative term, the propa-
gator of the gauge superfield contains higher degrees of the momentum in the
denominator, and all diagrams beyond the one-loop approximation become finite.
For removing the remaining one-loop divergences, following Ref. [30], we insert
into the generating functional the Pauli–Villars determinants,

Z =

∫
Dµ
∏
I

(
detPV(V,MI)

)NfcI
exp
{
iSreg + iSgf + iSSources

}
, (12.6)

with the constants cI satisfying the conditions
∑
I cI = 1;

∑
I cIM

2
I = 0. Here

MI = aIΛ (where aI are constants independent of α0) are masses of the Pauli–
Villars superfields proportional to the parameter Λ which enters the regulator
function R.

Below we will see that the NSVZ equation follows from the underlying
relation between the two-point Green functions. In N = 1 SQED these two-point
Green functions are related to the corresponding part of the effective action by the
equation

Γ (2) =

∫
d4p

(2π)4
d4θ

(
−

1

16π
V(−p)∂2Π1/2V(p)d

−1(α0, Λ/p)

+
1

4

Nf∑
f=1

(
φ∗f(−p, θ)φf(p, θ) + φ̃

∗
f(−p, θ)φ̃f(p, θ)

)
G(α0, Λ/p)

)
. (12.7)

Here ∂2Π1/2 ≡ −DaD̄2Da/8 is a supersymmetric transversal projection operator,
and the transversality of the gauge superfield two-point function follows from the
Slavnov–Taylor identities.

The function d−1 expressed in terms of the renormalized coupling constant
α(α0, Λ/µ) should be finite in the limit Λ→∞. The charge renormalization con-
stant Z3 is then defined as Z3(α,Λ/µ) ≡ α/α0. To construct the renormalization
constant Z for the chiral matter superfields, we require finiteness of the function
Z(α,Λ/µ)G(α0, Λ/p) in the limit Λ→∞.

According to [33], it is important to distinguish the renormalization group
functions (RGF) defined in terms of the bare coupling constant and the ones
defined in terms of the renormalized coupling constant. In terms of the bare
coupling constant RGF are defined by the equations

β(α0) ≡
dα0

d lnΛ

∣∣∣
α=const

; γ(α0) ≡ −
d lnZ
d lnΛ

∣∣∣
α=const

. (12.8)
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12 Structure of Quantum Corrections inN = 1. . . 201

They are independent of a renormalization prescription for a fixed regularization,
see, e.g., [33], but depend on the regularization. Below we will see that for the
theory (12.3) these RGF satisfy the NSVZ relation in all loops in the case of using
the above described version of the higher derivative regularization.

12.2.2 Charge renormalization in the lowest loops

Explicit calculations in the lowest loops made with the higher covariant
derivative regularization demonstrated that loop integrals giving a β-function
defined in terms of the bare coupling constant are integrals of total derivatives
[34]. They can be also presented as integrals of double total derivatives [35]. The
β-function of N = 1 SQED with Nf flavours, regularized by higher derivatives, is
calculated by the help of the equation

β(α0)

α20
=

d

d lnΛ

(
d−1(α0, Λ/p) − α

−1
0

)∣∣∣
p=0

. (12.9)

By other words, we calculate the two-point Green function of the gauge superfield
and differentiate it with respect to lnΛ in the limit of the vanishing external
momentum. For example, the two-loop result for the β-function written as the
integral of double total derivatives has the form

β(α0)

α20
= 2πNf

d

d lnΛ

∫
d4q

(2π)4
∂

∂qµ
∂

∂qµ

{∑
I

cI
ln(q2 +M2

I )

q2
+

∫
d4k

(2π)4

× 2e2

k2Rk

( 1

q2(k+ q)2
−
∑
I

cI
1

(q2 +M2
I )((k+ q)

2 +M2
I )

)}
+O(e4). (12.10)

The (essentially larger) three-loop expression can be found, e.g., in [36]. Note that
the β-function does not vanish because of integrand singularities. This can be
illustrated by a simple example: consider a nonsingular function f(q2) rapidly
decreasing at infinity. Then∫

d4q

(2π)4
∂

∂qµ

(qµ
q4
f(q2)

)
= −

1

8π2
f(0). (12.11)

Doing similar calculations it is possible to decrease the number of integrations in
Eq. (12.10) and reduce this expression to the integral giving the one-loop anoma-
lous dimension of the matter superfield (also defined in terms of the bare coupling
constant),

β(α0)

α20
=
Nf

π

(
1−

d

d lnΛ
lnG(α0, Λ/q)

∣∣∣
q=0

)
=
Nf

π

(
1− γ(α0)

)
. (12.12)
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12.2.3 NSVZ relation in all loops

The all-loop derivation of the NSVZ relation for RGF defined in terms of the
bare coupling constant by the direct summing of supergraphs for N = 1 SQED
regularized by higher derivatives has been made in [37,38] and verified at the
three-loop level in [39]. Here we briefly explain the main ideas of the method of
Ref. [37].

First, it is necessary to prove that all loop integrals for the β-function defined
in terms of the bare coupling constant are integrals of double total derivatives. For
this purpose it is convenient to use the background field method which (in the
Abelian case) is introduced by making the replacement V → V +V, where V is the
background gauge superfield, in the action. Then we make the formal substitution
V → θ4, after which

d∆Γ
(2)
V

d lnΛ

∣∣∣
V=θ4

=
1

2π
V4 ·

d

d lnΛ

(
d−1(α0, Λ/p) − α

−1
0

)
=
1

2π
V4 ·

β(α0)

α20
, (12.13)

where V4 is the (properly regularized) volume of the space-time.
For N = 1 SQED the functional integrals over the matter superfield are Gaus-

sian and can be calculated exactly. This allows operating with some expressions
valid in all loops. In particular, it is possible to find the formal expression for the
two-point function of the background gauge superfield. Then after the substitution
V → θ4 we try to present the result as an integral of double total derivatives. In
the coordinate representation an integral of a total derivative is written as

Tr
(
[xµ, Something]

)
− Singularities = −Singularities. (12.14)

After some non-trivial transformations the result for the expression (12.13) can
be presented as a trace of double commutator, i.e. as an integral of a double total
derivative. The details of this calculation are described in Ref. [37]. The result
does not vanish due to singularities of the integrand, which can be summed in all
orders. This gives

d∆Γ (2)

d lnΛ

∣∣∣
V=θ4

=
Nf

2π2
V4
(
1−

d lnG
d lnΛ

∣∣∣
q=0

)
=
Nf

2π2
V4
(
1− γ(α0)

)
, (12.15)

and we obtain the exact all-order result

β(α0)

α20
=
Nf

π

(
1− γ(α0)

)
. (12.16)

Note that this equation is valid for an arbitrary renormalization prescription in
the case of using the higher derivative regularization, because RGF entering it are
defined in terms of the bare coupling constant.

In graphical language, this result can be explained as follows [35] (see also
[40]): If we have a supergraph without external lines, then a contribution to the
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β-function can be constructed by attaching two external lines of the background
gauge superfield V to it, while a contribution to the anomalous dimension is
obtained by cutting matter lines in the considered supergraph. The equation
(12.16) relates both these contributions.

12.2.4 How to construct the NSVZ scheme inN = 1 SQED

Eq. (12.16) is valid for RGF defined in terms of the bare coupling constant.
However, RGF are standardly defined by a different way, in terms of the renormal-
ized coupling constant,

β̃(α) ≡ dα

d lnµ

∣∣∣
α0=const

; γ̃(α) ≡ d lnZ
d lnµ

∣∣∣
α0=const

, (12.17)

and are scheme-dependent. However, both definitions of RGF give the same
functions, if the conditions

Z3(α, x0) = 1; Z(α, x0) = 1 (12.18)

are imposed on the renormalization constants, in which x0 is a fixed value of
x = lnΛ/µ [18,19,33]: β̃(α0) = β(α0); γ̃(α0) = γ(α0).

β̃ and γ̃ are scheme-dependent and satisfy the NSVZ equation only in a
certain (NSVZ) scheme. Now, from Eq. (12.16) and the above arguments it is
evident that for the theory regularized by higher derivatives this NSVZ scheme is
fixed in all loops by the boundary conditions (12.18).

The general statements discussed above can be verified by explicit calculations
in the lowest loops. They are non-trivial starting from the three-loop approxima-
tion, because the β-function and the anomalous dimension are scheme-dependent
starting from the three- and two-loop order, respectively.

For the higher derivative regulator Rk = 1+ k2n/Λ2n

1

α0
=
1

α
−
Nf

π

(
ln
Λ

µ
+ b1

)
−
αNf

π2

(
ln
Λ

µ
+ b2

)
−
α2Nf

π3

(Nf
2

ln2
Λ

µ

− ln
Λ

µ

(
Nf
∑
I

cI lnaI +Nf +
1

2
−Nfb1

)
+ b3

)
+O(α3); (12.19)

Z = 1+
α

π

(
ln
Λ

µ
+ g1

)
+
α2(Nf + 1)

2π2
ln2

Λ

µ
−
α2

π2
ln
Λ

µ

×
(
Nf
∑
I

cI lnaI −Nfb1 +Nf +
1

2
− g1

)
+
α2g2

π2
+O(α3), (12.20)

where bi and gi are arbitrary finite constants, which fix a subtraction scheme.
Differentiating Eqs. (12.19) and (12.20) with respect to lnΛ we construct RGF
defined in terms of the bare coupling constant,
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β(α0)

α20
=
Nf

π
+
α0Nf

π2
−
α20Nf

π3

(
Nf
∑
I

cI lnaI +Nf +
1

2

)
+O(α30); (12.21)

γ(α0) = −
α0

π
+
α20
π2

(
Nf
∑
I

cI lnaI +Nf +
1

2

)
+O(α30), (12.22)

which appear to be independent of the constants bi and gi and to satisfy the NSVZ
relation. However, RGF defined in terms of the renormalized coupling constant,

β̃(α)

α2
=
Nf

π
+
αNf

π2
−
α2Nf

π3

(
Nf
∑
I

cI lnaI +Nf +
1

2
+Nf(b2 − b1)

)
+O(α3); (12.23)

γ̃(α) = −
α

π
+
α2

π2

(
Nf +

1

2
+Nf

∑
I

cI lnaI −Nfb1 +Nfg1
)
+O(α3) (12.24)

depend on these constants and, therefore, on a subtraction scheme. This sub-
traction scheme can be fixing, e.g., by imposing the conditions (12.18). Choosing
x0 = 0, from these equations we obtain g2 = b1 = b2 = b3 = 0. Therefore, in this
scheme only powers of lnΛ/µ are included into the renormalization constants,
while all finite constants vanish. Thus, the considered scheme looks very similar
to the minimal subtractions. However, now we use the higher derivative regu-
larization, so that it is reasonable to call this scheme HD + MSL, where MSL is
the abbreviation for Minimal Subtraction of Logarithms. Substituting the above
values of the finite constants into Eqs. (12.23) and (12.24), it is easy to see that in
this scheme these RGF satisfy the NSVZ relation.

12.2.5 Quantum corrections with the dimensional reduction

It is well known [12–14] that in the DR-scheme the NSVZ relation is not
valid starting from the three-loop approximation. However, to obtain it, one
can specially tune a subtraction scheme in each order. It is also possible to try
making calculations similarly to the higher derivative case [41,42]. However, the
corresponding relation between the functions d−1 and G (which is at present
obtained only in the lowest orders) has a more complicated form, than for the
higher derivative case. The boundary conditions analogous to (12.18) can also be
written, but the right hand side of one of them is a series in α. It was demonstrated
that such a structure agrees with the results obtained in [13,14].

12.2.6 NSVZ-like relation in softly broken N = 1 SQED regularized by
higher derivatives
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NSVZ-like relations [43–45] also exist in theories with softly broken super-
symmetry for renormalization of the gaugino mass. Their origin is the same as in
the case of rigid theories. For example, the exact equation describing the renormal-
ization of the photino mass in softly broken N = 1 SQED, regularized by higher
derivatives,

γm(α0) =
α0Nf

π

[
1−

d

dα0

(
α0γ(α0)

)]
, (12.25)

is obtained by exactly the same method as the NSVZ β-function in the case of
rigid N = 1 SQED [46]. For RGF defined in terms of the renormalized coupling
constant this relation is also valid in the HD + MSL scheme [47].

12.3 AdlerD-function inN = 1 SQCD

NSVZ-like expression can be also written for the Adler D-function [48] in
(massless) N = 1 SQCD interacting with the Abelian gauge field [49,50],

S =
1

2g20
tr Re

∫
d4xd2θWaWa +

1

4e20
Re
∫
d4xd2θWaWa

+

Nf∑
f=1

1

4

∫
d4xd4θ

(
φ+
f e
2qfV+2Vφf + φ̃

+
f e

−2qfV−2Vtφ̃f

)
. (12.26)

This theory is invariant under the SU(Nc) × U(1) gauge transformations. The
chiral matter superfields φf and φ̃f belong to the fundamental representation
of SU(Nc) and have the charges qfe and −qfe with respect to the group U(1),
respectively. In our notation V is the non-Abelian SU(Nc) gauge superfield and V
is the Abelian U(1) gauge superfield. Evidently, the theory contains two coupling
constants, αs = g2/4π and α = e2/4π.

The D-function encodes quantum corrections to the electromagnetic coupling
constant αwhich appear due to the strong interaction. In the supersymmetric case
this implies that the electromagnetic gauge superfield V is treated as an external
field. Due to the Ward identity the two-point Green function of this superfield is
transversal,

∆Γ (2) = −
1

16π

∫
d4p

(2π)4
d4θV ∂2Π1/2V

(
d−1(α0, α0s, Λ/p) − α

−1
0

)
. (12.27)

The Adler function can be defined in terms of the bare coupling constant by the
equation

D(α0s) =
3π

2

d

d lnΛ

(
d−1(α0, α0s, Λ/p) − α

−1
0

)∣∣∣
p=0

=
3π

2α20

dα0

d lnΛ
. (12.28)
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Again, this function depends on regularization, but is independent of a renormal-
ization prescription for a fixed regularization.

According to [49,50], in the case of using the higher covariant derivative
regularization1 the exact expression for the Adler function for the considered
theory can be written in the NSVZ-like form

D(α0s) =
3

2

∑
f

q2f ·Nc
(
1− γ(α0s)

)
. (12.29)

It looks very similar to the NSVZ β-function in N = 1 SQED and is derived in all
loops by exactly the same method. However, Eq. (12.29) contains the anomalous
dimension of the non-Abelian theory, and this is a very essential difference from
the N = 1 SQED case. Recently this expression has been confirmed by an explicit
three-loop calculation in Ref. [51].

12.4 Non-AbelianN = 1 supersymmetric theories

12.4.1 Regularization and renormalization

Let us consider the theory described by the action (12.1) in the massless limit.
It is convenient to do calculations using the background field method introduced
by replacement e2V → eΩ

+

e2VeΩ. The background gauge superfield V is then
related toΩ andΩ+ by the equation e2V = eΩ

+

eΩ. The higher derivative term
in this case can be written in the form

SΛ =
1

2e20
Re tr

∫
d4xd2θ eΩeΩWae−Ωe−Ω

[
R
(
−
∇̄2∇2

16Λ2

)
− 1
]
Adj

eΩeΩ

×Wae−Ωe−Ω +
1

4

∫
d4xd4θφ+eΩ

+

eΩ
+
[
F
(
−
∇̄2∇2

16Λ2

)
− 1
]
eΩeΩφ, (12.30)

where the functions R(x) and F(x) rapidly increase at infinity and satisfy the
condition R(0) = F(0) = 1. It is convenient to fix a gauge without breaking the
background gauge invariance. For this purpose it is possible to use the gauge
fixing term

Sgf = −
1

16ξ0e
2
0

tr
∫
d4xd4θ∇2VK

(
−
∇̄2∇2

16Λ2

)
Adj
∇̄2V, (12.31)

where K(0) = 1 and K(x) also rapidly grows at infinity. The corresponding actions
for ghosts and the Pauli–Villars determinants can be found in Ref. [52], where they
are discussed in all details. The renormalization constants are introduced by the
equations

1 The higher derivative term for the considered theory should contain covariant derivatives
∇a = e−Ω

+

Dae
Ω+

; ∇̄ȧ = eΩD̄ȧe
−Ω, where e2V = eΩ

+

eΩ.
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1

α0
=
Zα

α
; V = ZVZ

−1/2
α VR; c̄c = ZcZ

−1
α c̄RcR; φi = (

√
Zφ)i

j(φR)j,

(12.32)
where c̄ and c are the chiral Faddeev–Popov ghost superfields.

12.4.2 Finiteness of the triple gauge-ghost vertices

InN = 1 gauge supersymmetric theories the three-point gauge-ghost vertices
(c̄ Vc, c̄+Vc, c̄ Vc+, and c̄+Vc+) with two ghost legs and a single leg of the quantum
gauge superfield are finite [7], so that

d

d lnΛ
(Z−1/2
α ZcZV) = 0. (12.33)

(At the one-loop level it was found in [52].) This theorem is derived by the help of
the Slavnov–Taylor identities, which can be obtained using the standard methods
[53,54]. To write the identity for the considered three-point functions, we introduce
the chiral source J and the source term

−
e0

2

∫
d4xd2θ fABCJAcBcC + c.c. (12.34)

Then using the superspace Feynman rules it is possible to prove that the effective
vertex

δ3Γ

δcCz δc
D
wδJ By

=
e0

4
fBCD

∫
d4p

(2π)4
d4q

(2π)4
H(p, q)D̄2zδ

8
zy(q+ p)D̄2wδ

8
yw(q) (12.35)

is finite in all orders. Really, we can present the corresponding superdiagrams as
integrals over the total superspace, which include integration over

∫
d4θ = −

1

2

∫
d2θD̄2 + total derivatives in the coordinate space. (12.36)

Consequently, due to chirality of all external legs the non-vanishing result can be
obtained only if two right spinor derivatives also act to the external legs. Thus,
commuting supersymmetric covariant derivatives, we see that the result should
be proportional to, at least, second degree of the external momenta and is finite in
the ultraviolet region.

From dimensional and chirality considerations one can write the following
expression for the one of triple gauge-ghost Green functions,

δ3Γ

δc̄∗Ax δVBy δc
C
z

= −
ie0

16
fABC

∫
d4p

(2π)4
d4q

(2π)4

(
f(p, q)∂2Π1/2

−Fµ(p, q)(γ
µ)ȧ

bD̄ȧDb + F(p, q)
)
y

(
D2xδ

8
xy(q+ p) D̄2zδ

8
yz(q)

)
, (12.37)
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where δ8xy(p) ≡ δ4(θx − θy)eipα(x
α−yα). Then the Slavnov–Taylor identity can be

written in the form

Gc(q)F(q, p) +Gc(p)F(p, q) = 2Gc(q+ p)H(−q− p, q), (12.38)

where Gc(q) is the two-point Green function for the Faddeev–Popov ghosts. Mul-
tiplying this equation to Zc, differentiating the result with respect to lnΛ and
setting p = −qwe obtain finiteness of the function F(−q, q), which follows from
the finiteness of (Gc)R and H in the limit Λ→∞. This means that the correspond-
ing renormalization constant is finite, see Eq. (12.33). Consequently, all three-point
ghost-gauge vertices are also finite.

12.4.3 Vc̄c-vertices in the one-loop approximation

In the one-loop approximation (after the Wick rotation)

F(p, q) = 1+
e20C2

4

∫
d4k

(2π)4

{
−

(q+ p)2

Rkk2(k+ p)2(k− q)2
−

ξ0 p
2

Kkk2(k+ q)2

× 1

(k+ q+ p)2
+

ξ0 q
2

Kkk2(k+ p)2(k+ q+ p)2
+
( ξ0
Kk

−
1

Rk

)(
−

1

k2(k+ q)2

−
1

k2(k+ p)2
+

2

k2(k+ q+ p)2
−

2(q+ p)2

k4(k+ q+ p)2

)}
+O(α20, α0λ

2
0). (12.39)

It is easy to see that this expression is finite in the UV region. The other functions
in Eq. (12.37) are also finite, see [7]. The finiteness of the function H, defined in Eq.
(12.35), at the one-loop level has also been demonstrated,

H(p, q) = 1−
e20C2

4

∫
d4k

(2π)4

{
p2

Rkk2(k+ q)2(k+ q+ p)2
+

(q+ p)2

k4(k+ q+ p)2

×
( ξ0
Kk

−
1

Rk

)
+

q2

k4(k+ q)2

( ξ0
Kk

−
1

Rk

)}
+O(e40, e

2
0λ
2
0). (12.40)

12.4.4 New form of the NSVZ relation

Let write the NSVZ relation (12.2) for RGF defined in terms of the bare
couplings (see the definitions in Ref. [7]) in the form

β(α0, λ0)

α20
= −

3C2 − T(R) + C(R)i
j(γφ)j

i(α0, λ0)/r

2π
+
C2

2π
· β(α0, λ0)

α0
(12.41)

and take into account that the β-function can be related to the renormalization
constant Zα,
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β(α0, λ0) =
dα0(α, λ,Λ/µ)

d lnΛ

∣∣∣
α,λ=const

= −α0
d lnZα
d lnΛ

∣∣∣
α,λ=const

. (12.42)

Then the right hand side of Eq. (12.41) can be expressed in terms of γc and γV by
the help of Eq. (12.33),

β(α0, λ0) = −2α0
d ln(ZcZV)
d lnΛ

∣∣∣
α,λ=const

= 2α0

(
γc(α0, λ0) + γV(α0, λ0)

)
. (12.43)

Substituting this identity into Eq. (12.41) we rewrite the exact NSVZ β-function in
a different form,

β(α0, λ0)

α20
= −

1

2π

(
3C2 − T(R) − 2C2γc(α0, λ0) − 2C2γV(α0, λ0)

+C(R)i
j(γφ)j

i(α0, λ0)/r
)
. (12.44)

Eq. (12.44) admits a simple graphical interpretation similar to the Abelian case.
Consider a supergraph without external lines. By attaching two external legs
of the superfield V we obtain a set of diagrams contributing to the β-function.
From the other side, cutting internal lines gives superdiagrams contributing to
the anomalous dimensions of the Faddeev–Popov ghosts, of the quantum gauge
superfield, and of the matter superfields. Eq. (12.44) relates these two sets of
superdiagrams.

12.4.5 The NSVZ scheme for non-Abelian gauge theories

The RGF standardly defined in terms of the renormalized couplings (we
again denote them by tildes) are scheme-dependent and satisfy the NSVZ relation
only in a certain (NSVZ) subtraction scheme. Let us suggest that, similar to the
Abelian case, RGF defined in terms of the bare couplings satisfy the NSVZ relation
(12.44) in the case of using the higher covariant derivative regularization. Really,
the qualitative way of its derivation looks exactly as in N = 1 SQED and the
factorization into total derivatives [55,56] and double total derivatives [57] also
takes place at least in the lowest orders. Then, repeating the argumentation of Ref.
[33], one can prove that in the non-Abelian case both definitions of RGF give the
same result (for coinciding arguments) if the renormalization constants satisfy the
conditions

Zα(α, λ, x0) = 1; (Zφ)i
j(α, λ, x0) = δi

j; Zc(α, λ, x0) = 1. (12.45)

Thus, under the assumption that the NSVZ relation is valid for RGF defined in
terms of the bare couplings with the higher derivative regularization, the NSVZ
scheme is given by the boundary conditions (12.45). Again, it is easy to see that for
x0 = 0 in this scheme only powers of lnΛ/µ are included into the renormalization
constants, so that the NSVZ scheme coincides with HD + MSL. Certainly, it is also
assumed that ZV = Z

1/2
α Z−1

c due to the non-renormalization of the Vc̄c-vertices.
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12.4.6 Checking the new form of the NSVZ relation by explicit calculations

To check the above results, we consider terms quartic in the Yukawa couplings
[58] corresponding to the graphs presented in Fig. 12.1.

Fig. 12.1. The terms in the NSVZ relation which are investigated here are obtained from
these two graphs.

Attaching two external lines of the background gauge superfield gives a
large number of two- and three-loop diagrams contributing to the β-function. The
corresponding diagrams for the anomalous dimension are obtained by cutting
internal lines in the considered graphs. The result for the considered part of the
β-function defined in terms of the bare couplings can be presented as an integral
of double total derivatives,

∆β(α0, λ0)

α20
= −

2π

r
C(R)i

j d

d lnΛ

∫
d4k

(2π)4
d4q

(2π)4
λimn0 λ∗0jmn

∂

∂qµ

∂

∂qµ

×
( 1

k2Fk q2Fq (q+ k)2Fq+k

)
+
4π

r
C(R)i

j d

d lnΛ

∫
d4k

(2π)4
d4l

(2π)4
d4q

(2π)4

×

(
λiab0 λ∗0kabλ

kcd
0 λ∗0jcd

( ∂

∂kµ

∂

∂kµ
−

∂

∂qµ

∂

∂qµ

)
+ 2λiab0 λ∗0jacλ

cde
0 λ∗0bde

× ∂

∂qµ

∂

∂qµ

)
1

k2F2k q
2Fq (q+ k)2Fq+k l2Fl (l+ k)2Fl+k

. (12.46)

Taking one of loop integrals it is possible to relate this expression to the correspond-
ing contribution to the anomalous dimension of the matter superfield (defined in
terms of the bare couplings),

∆β(α0, λ0)

α20
= −

1

2πr
C(R)i

j∆γφ(λ0)j
i. (12.47)

This equation completely agrees with Eq. (12.44), so that the NSVZ relation is
satisfied for terms of the considered structure.

For F(k2/Λ2) = 1+ k2/Λ2 all loop integrals can be calculated,

∆γφ(α0, λ0)j
i =

1

4π2
λiab0 λ∗0jab −

1

16π4
λiab0 λ∗0jacλ

cde
0 λ∗0bde. (12.48)
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Scheme-dependent RGF defined in terms of the renormalized couplings have been
calculated in Ref. [58]. The contribution to the β-function depends on some finite
constants g1 and b2, which appear due to arbitrariness of choosing a subtraction
scheme,

γ̃φ(α, λ)j
i =

1

4π2
λiabλ∗jab −

1

16π4
λiabλ∗jacλ

cdeλ∗bde +O(α) +O(λ
6); (12.49)

β̃(α, λ)

α2
= −

1

2π

(
3C2 − T(R)

)
+

1

2πr
C(R)i

j
[
−

1

4π2
λiabλ∗jab +

1

16π4

×λiabλ∗kabλkcdλ∗jcd
(
b2 − g1

)
+

1

16π4
λiabλ∗jacλ

cdeλ∗bde

(
1+ 2b2 − 2g1

)]
+O(α) +O(λ6). (12.50)

We see that for an arbitrary values of g1 and b2 the NSVZ relation is not valid.
However, the values of g1 and b2 can be fixed by imposing the conditions (12.45).
In this case g1 = b2 = −x0, so that b2 − g1 = 0. Therefore, in this scheme

β̃(α, λ)

α2
= −

1

2π

(
3C2 − T(R)

)
−

1

2πr
C(R)i

jγ̃φ(α, λ)i
j +O(α) +O(λ6). (12.51)

This confirms the guess that Eq. (12.45) gives the NSVZ scheme in the non-Abelian
case.

Note that recently [59] the identity (12.44) has been completely checked in
the two-loop approximation in the case of using the non-invariant version of the
higher covariant derivative regularization supplemented by a special subtraction
procedure which restores the Slavnov–Taylor identities [60].

12.5 Conclusion

The β-function defined in terms of the bare coupling constant for N = 1

supersymmetric gauge theories regularized by higher derivatives is given by
integrals of double total derivatives. In some cases it has been proved in all
loops, but for general non-Abelian SYM theories at present there are only strong
evidences in favour of this. Such a structure of quantum corrections naturally
leads to the NSVZ relation for RGF defined in terms of the bare coupling constant,
which is obtained after taking the integral of the total derivative and is valid
independently of the subtraction scheme. Note that in the non-Abelian case an
important ingredient of the derivation is the finiteness of the three-point ghost-
gauge vertices, which allows rewriting the NSVZ equation in a different form.

The RGF defined in terms of the renormalized couplings satisfy the NSVZ
relation only in a certain (NSVZ) scheme, which is obtained with the higher
derivative regularization by minimal subtraction of logarithms. This means that
only powers of lnΛ/µ are included into various renormalization constants. This
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prescription can be also reformulated by imposing simple boundary conditions on
the renormalization constants.

All general statements considered here are confirmed by explicit perturbative
calculations. Note that some of them are made in the three-loop approximation
and are highly non-trivial.
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