
 Informatica 40 (2016) 43–51 43

HTML5-based Mobile Agents for Web-of-Things

Jari-Pekka Voutilainen, Anna-Liisa Mattila, Kari Systä and Tommi Mikkonen

Tampere University of Technology, Korkeakoulunkatu 1, FI-33720 Tampere, Finland

E-mail: first.last@tut.fi

Keywords: web applications, mobile agents, Internet-of-Things, Web-of-Things, HTML5, JavaScript

Received: July 24, 2015

Systems and services utilizing Internet-of-Things can benefit from dynamically updated software in a

significant way. In this paper we show how the most advanced variant of moving code, mobile agents,

can be used for operating and managing Internet-connected systems composed of gadgets, sensors and

actuators. We believe that the use of mobile agents brings several benefits, for example, mobile agents

help to reduce the network load, overcome network latency, and encapsulate protocols. In addition, they

can perform autonomous tasks that would otherwise require extensive configuration. The need for

moving agents is even more significant if the applications and other factors of the overall experience

should follow the user to new contexts. When multiple agents are used to provide the user with services,

some mechanisms to manage the agents are needed. In the context of Internet-of-Things such

management should reflect the physical spaces and other relevant contexts. In this paper we describe

the technical solutions used in the implementation of the mobile agents, describe two proof concepts and

we also compare our solution to related work. We also describe our visions of the future work.

Povzetek: Razvit je sistem mobilnih agentov v HTML5 za splet stvari.

1 Introduction
One of our drivers, the Internet of Things (IoT) refers to

an approach where extensive amount of physical objects

are inter-connected and also connected to the Internet.

When implemented, IoT systems open possibilities for

new applications and services for the users. At the

moment much of the research has been invested in low-

level issues related to addressing the different kinds of

devices, bandwidth used in the communication, and

latency in communications. However, since the main

goal is to enable new applications and services higher-

level protocols are also needed. Due to the diverse needs

of different applications and services and vast number of

different devices the protocols face extensive needs of

adaptability. Design of such protocols upfront would

assume extensive configurability and in extreme cases

extra proxies and other workarounds. If all connected

devices can dynamically accept new executable code, the

risks are significantly reduced.

The other driver, from the human user point of view

is the fact that people use an increasing number of

Internet-connected devices to access services and

applications from the Internet. This leads to a need to

different multi-device experiences and eventually to

concept of Liquid Software [23], where the user can

effortlessly use multiple devices to access their

applications and content from different devices in

different contexts. Liquid Software, as described in [23]

concentrates in systems where end-user devices with

screens interact with Internet services. In this paper we

show how the ideas of Liquid Software and Mobile

Agents, as one building block to implement Liquid

Software, can be applied in the world of Internet of

Things.

Many researchers, for instance [10] separate Web of

Things (WoT) from Internet of Things (IoT), because the

former is based on resource-based APIs, resource-

oriented architecture (ROA) and RESTful paradigm [6],

and the latter is based on approaches that reflect the

remote procedure call (RPC) paradigm. The main

purpose of both approaches is the same: to connect

devices around us to Internet and to use them in

providing value to users. The difference is in the

architectural approach, and because we share the

architectural approach of WoT we use term WoT (Web

of Things) in this paper.

In this paper we present our framework where

HTML5 based mobile agents are used for programming

WoT. The framework contains an agent framework that

enables the usual operations associated with mobile

applications, an application model for creating such

agents, and a management system that is based on

physical spaces and other real-world concepts.

This paper summarizes our earlier work on mobile

agents [11], [12], [14] and [22], but also reports new

work, for example, new way of separating user interface

from the agent logic and for management of the agent

system – including mobility of the agents.

The rest of this paper is structured as follows. After

background and motivation in Section 2, we introduce

our mobile agent framework and its implementation, and

programming framework in Section 3. This description is

based on older publication [22], but significantly

reorganized and updated to reflect our latest design

including new features like Management server and new

declarative way to handle UI. Especially in Subsections

3.5 and 3.6 we discuss how a “thing” can host agents,

44 Informatica 40 (2016) 43–51 J-P. Voutilainen et al.

what operations the agent can perform and how the

system can be organized in Cloud Spaces. In Section 4

we present some experiments we have done with the

system. In Section 5, we briefly address related work. In

Section 6 we discuss current state of our work and our

vision of future work. Finally in Section 7 we draw some

final conclusions.

2 Motivation and background
Mobile Agents are executable entities that can move

from one node to another together with the internal state

of the application. This means that an executing agent

can pause its execution in current location and then

continue in a new location. In fact, mobile agents

represent a special case of moving code combining

remote evaluation with preservation of the internal state.

The mobile agents discussed in this paper can preserve

the internal state if the application needs that

functionality. In some cases, we just need to send the

code for remote evaluation.

Mobile agents have certain benefits that we see

especially useful for Internet of Things. Among the

benefits listed in [13], the following have special

relevance in the scope of IoT:

 Mobile agents reduce the network load. Many

“things” include sensors that monitor physical

environments and thus potentially generate hidden

data flows. If all that data is sent to application on

another end of the network, the network may be

flooded with data. A mobile agent running in the

thing can reduce the network load by pre-processing

the data generated by the sensors.

 Mobile agents overcome network latency. The

latencies of networks, especially in wireless

networks, can make real-time control impossible.

Thus, everything cannot be done in the cloud and

local execution is needed.

 Mobile agents encapsulate protocols. New protocols

get invented frequently and objects in IoT should

adapt to those. Agents are good tools for introducing

new protocols or data formats.

 Mobile agents execute asynchronously and auto-

nomously. This means that there is no need to

generate network traffic for every execution. In case

of wireless networks this also reduces power

consumption.

As already pointed out, we propose using mobile

agents in the context of WoT [12]. Our mobile agents

are based on web technologies. An agent can move

between different devices, and if necessary it is also

possible to clone agents to create more instances. This

enables the creation of increasingly complex

configurations, where device- and context-specific

decisions can also be taken in devices.

The Liquid Software dimension of our research is

related to dynamically moving applications that enable

use of several devices for accessing and controlling the

WoT systems. The idea is that the execution should

dynamically move to a location where it can be done

more efficiently and where the required resources are. On

the other hand, things that matter to the user, like user

interfaces and user content should follow the user

whenever possible and be accessible with device that

user happens to have in her hand at that moment.

Third aspect of this paper is organization of the agent

platform to “spaces” that relate to physical spaces and

other real-world contexts. These Cloud Spaces define

management structure for the WoT systems.

3 Architecture and concepts
Our whole system is based on mobile agents

implemented with HTML5 technologies. This framework

has originally been described in [22], but the design has

evolved since then. Subsections 3.1, 3.2 and 3.3 report

our current design, including new technique to separate

UI from the logic, and framework for external control of

the agents. The mobile agent framework is then in

subsection 3.5 applied to Internet of Things by bringing

agent servers close to various devices [12]. Finally, in

subsection 3.6 we show how the systems are organized to

managing contexts called Cloud Spaces [14].

3.1 Execution of HTML5 agents

In our design, an HTML51 agent is an HTML5

application that can run in two modes, with a user

interface inside a browser and in a headless mode, that is,

without a user interface, in an environment called Agent

Server [22]. For executing the agent headlessly in the

Agent Server, only a JavaScript virtual machine with a

simple runtime environment is required. No full browser

is needed. The state of the agent is saved during the

migration between server and browser and the agent

continues its execution as if there wasn't any change in

the mode.

During its life cycle the agent may visit several

browsers and several Agent Servers. An example life

cycle is presented in Figure 1. The instance of an agent is

created when it is downloaded from the Origin Server.

This server is similar to an ordinary web server, and its

task is simply to host applications. After the download,

the executing agent can move to an Agent Server to

continue its execution and back to a browser again.

The Origin Server maintains and serves all the files,

and when the agent moves between Agent Servers and

Browsers we usually deliver only the URL that point to a

resource in the Origin Server. The receiving entity then

fetches the static content from Origin Server.

The dashed box “Mgmt. server” and the dashed

arrows in Figure 1 depict an optional management

functionality that allows external entities to control

agents.

Our all protocols are Web-friendly and rely on

standard HTTP. Both Origin Server and Agent Server are

1 For the purposes of this paper, the overall goal of HTML5 to

support rich applications is important; we do not refer to any

specific new technology introduced by HTML5.

HTML5-based Mobile Agents for Web-of-Things Informatica 40 (2016) 43–51 45

HTTP servers that can be accessed with HTTP requests.

Agents are fetched for execution with GET and pushed to

server with POST. This means that an agent can also

move from one server to another. In addition, the Agent

Server can provide a list of running agents. Concretely

speaking, the most important parts of the HTTP interface

of the Agent Server are:

 /list (HTTP GET) gets a list of active agents as an

HTML file that can be shown in a browser.

 /upload (HTTP POST) sends URLs to agent code

and user interface together with serialized state.

After receiving the Agent Server instantiates and

starts the agent.

 /<id> (HTTP GET) pauses the agent in server,

serializes the state and sends it to the requesting

browser

Origin
server

Agent
server1

Agent
server2

Browser1 Browser2

1. Start and
initialize

the agent

2. Push to
server

3. Pull from
server

4. Push to
server

5. Pull from
server

7. Exit

6. Managed
 agent

Mgnt
server

Figure 1. Life cycle of an HTML5 agent in the framework.

As usually in today's web applications, the HTML

file of the agent includes references to Cascading Style

Sheets (CSS), to other HTML files, images and other

resources, and JavaScript files. Also, similarly to

standard web applications the agent is first started by

downloading the HTML file from the origin server.

Agents are serialized whenever they are moved

between servers or between a server and a browser. The

implementation of the framework provides mechanism

for serialization of the relevant parts of the state. When

an agent is about to move to a new location its state is

serialized into JavaScript Object Notation (JSON) based

on state variables defined by developer. An example of

serialized agent description is shown below, where state

of this agent includes four variables low, high, count and

history:

{"auri":

 "http://xx.xx.xx.fi:pppp/gmonitor.js",

 "huri":

 http://xx.xx.xx.fi:pppp/gmonitor.html

 "id" : "526636" ,

 "memory": {

 "high" : 0.0253 ,

 "low" : 0.0214 ,

 "count" : 3,

 "history": [0.0253, 0.0234 ,0.0214]}}

This serialization contains URIs for the agent

functionality (JavaScript file) and HTML based UI. In

addition it has a unique identity variable (id) and set

relevant variables in application state encoded in JSON

dictionary “memory”.

When an Agent server receives the serialized agent

description, it fetches the JavaScript code from the

address in auri, in addition, the Agent downloads the

other JavaScript files implementing the framework, it

initializes the agent using the serialized state, and finally

it starts the execution of the Agent.

When a browser requests the agent from the Agent

Server some special arrangements are needed due to

security and other limitations of the browsers. As

response to a request from browser to the Agent Server,

the Agent Server sends the content of HTML-file

identified by ‘huri’ field of agent description. To that

HTML file the Agent Server injects JavaScript to restore

the transferred local state of the agent,

The execution model of the agent also needs to be

suitable for the execution environment. First of all it

needs to be suitable for running in the browser. For

instance it should not block the event loop of the browser

run-time. On the other hand it needs to proceed without

user interface events delivered by the browser.

Furthermore, the agent needs to have safe points in

execution so that a consistent state can be serialized. In

practice this means that all the application logic is

embedded in specific event handlers that are triggered by

timer events. This event-based execution model fits well

to Agent Servers that have been implemented with

Node.js [19].

3.2 Management API

The management protocol is also made compatible with

the overall design. The Management Server implements

a REST interface for both the moving agents and a

control application. The control application may be

operated by a human user, or be an autonomously

running application. The most important part of the API

for agents consists of two kinds of REST calls: “ImHere”

when the agent has arrived to a new location, and

“Status” call is sent to the Management Server on regular

intervals. The response to these REST calls may contain

an instruction to the agent to move to a new location (see

arrow 6 in Figure 1). Our current implementation

includes also instructions for the application to exit and

to change values of variables. Control applications can

browse the agents and their histories. Control

applications can also send instructions to the Agent.

In the following we give a short example. When

control application makes a GET request to /Agents it

gets a list of agent IDs as a response.

GET http://host/Agents => [211, 311]

In this case the Management Server knows about two

agents. Detailed information about a specific agent can

be retrieved with

GET http://host/Agents/211 => {…}

http://xx.xx.xx.fi:pppp/gmonitor.html

46 Informatica 40 (2016) 43–51 J-P. Voutilainen et al.

The response includes information about the location and

status of the agent. The control application can request an

agent to move to a new location by sending payload

[{“goto”: http://server2}] by using a PUT

request

PUT http://host/Agents/211/todo

This request is now waiting in the Management Server

until Agent 211 contacts the Management Server. When

the agent 211 updates its status by sending

{”id”:”211”, ”Status”:”I’m fine”}

with request

PUT http://host/Management/Status

to the Management Server, the request to move to new

location is delivered to agent 211 in the response, and the

Agent framework initiates the move to the requested

location.

This is a lightweight management framework that

assumes the agents co-operate and does not affect agents

that do not participate. The REST API of the

Management Server has been designed both for

automated control and for management user interface

described in Subsection 4.2. On the other hand the

framework relies on basic HTTP protocol and thus does

not require the infrastructure to support any other

protocol. In the current implementation only the agents

that are in server obey all received instructions and

agents that are in browser ignore the requests to move.

3.3 Programming agents

Core parts of the Agent framework have been

encapsulated in a reusable JavaScript class Agent, and

the developer should specialize her own version from

that class. So far we have used the functional inheritance

pattern presented in [3], but the more traditional

prototype inheritance could be used, too. The appli-

cation-specific sub-class of the Agent can override the

following methods:

 Method getRunningStatus() – should return a string

that the management interface of the agent server

context can show.

 Method preupload() is called by upload() just before

serialization as the first the uploading. By overriding

this method the agent can implement application

specific preparations for the uploading.

 Function continueWork() – re-initializes the

execution when the agent has arrived and de-

serialized in a new location and the execution should

be resumed. This function initializes the state of the

agent by recreating the variables.

In addition, the agent has to provide a function that

creates and initializes the agent object.

The framework provides also a set of utility methods

that the above methods and functions can call. The most

important utility methods are:

 registerVar(name) – with this function the

application can state that a variable is part of

relevant local state and will be automatically

serialized.

 setWork(function, interval) – sets the work function

that is periodically executed with the given interval.

The framework assumes that the work function

returns reasonable quickly.

 upload(url) – uploads the agent to an Agent Server

specified by parameter url. This function first stops

execution, then serializes the state and finally sends

the serialized agent to the Agent Server.

As discussed earlier, the agents run in the headless

mode in Agent Server and with the HTML and CSS files

in browser. This means that the JavaScript code of the

agents has to be written to be executable without

presence of the complete Document Object Model

(DOM) tree. Separation of the application logic from the

UI part is not always easy since many Web application

frameworks rely on existence of the DOM-tree. In our

first implementation we assumed that agents are written

for the framework so that user interface is nicely

separated from the application logic. In addition, we

provided a very simple DOM emulation to help writing

of portable applications. We have later experimented

with a different approach to help application developers

in implementation of Agents that can run with and

without DOM. This approach is based of declaration of

the binding between application logic and user interface

with primitives like:

 BindModeltoView([’var’,’elem’]);

 BindModeltoView([’var.func’, ’elem’]);

The first declaration states that if element with id

‘elem’ exists in DOM-tree its value (innerHTML) is

updated with the value of variable ‘var’ whenever value

of var changes. In the latter version function ‘func’ is

used instead of simple assignment to innerHTML of

‘elem’. If the above binding mechanism is used, the

application code does not need include UI-specific code

and thus there is no need to deal with differences

between server and client since the framework includes

conditional code.

3.4 Agent communication

A simple agent-to-agent communication framework has

also been implemented [11]. This framework allows

agent to send messages and to receive their messages

regardless of their current location. Because the web

infrastructure does not support communication between

browsers, the all communication is routed through an

agent server.

With the current API, the sending agent initializes

the communication as follows:
c = new CommComponent(function(msg) {

 …

});

c.setNameSpace("myChannel");

c.initIO();

and a message is sent with:

http://server2/
http://host/Agents/211/todo
http://host/Management/Status

HTML5-based Mobile Agents for Web-of-Things Informatica 40 (2016) 43–51 47

c.sendMessage(obj)

Like in other parts of our framework the content is

sent over the network as a JSON string. The namespace

“myChannel” is kind of channel and the receiving end

can listen the channel with the following code:
c = new CommComponent(function(msg){

 // process incoming msg

});

c.setNameSpace("myChannel");

c.initIO();

We have not used this framework much in our

applications still, because most of our example

applications have assumed that the moving agents bring

the data with them. We have just validated that our

implementation that is based on WebSockets [25] works.

3.5 Agent servers in “things”

As described earlier, the core components of our Agent

Server are the HTTP server and a virtual machine

executing JavaScript. These can be implemented, for

example, with Node.js [19] technology. The agent server

has two main functions: 1) implement execution

environment that is compatible enough with the browser

and 2) simple management function for agents.

As the implementation of the Agent Server only

requires Node.js and a few hundred lines of JavaScript

code and because our Agent Server does not require lot

of computational resources, and it can be included in

many small devices – or “things” – that are connected to

the Internet. In our experiments we have used a low-cost

single board computer Raspberry PI [20], which typically

runs Linux. The infrastructure requirements are equal to

those of WoT, because the devices are accessed with

standard HTTP requests such as GET and POST. With

these requirements the Raspberry PI device goes beyond

the bar with a clear margin.

We assume that most devices that can be nodes in

SOA based IoT or REST-based WoT can also host our

Agent Server. This would bring benefit of mobile agents

described above, but also enable new ways for remote

management and extending the functionality by adding

new code in a form of mobile agents. The possible

application areas include the following:

 Home automation that goes beyond remote control.

An intelligent agent can work on behalf of the user

and implement even complex strategies to optimize

energy consumption and user comfort.

 Support for new communication protocols or

applications. In most cases the applications are in

the Internet, but the “things” need to be accessible.

Sometimes new application will need new

functionality from the devices.

 Compatible extensions to already existing systems.

Interoperability with new devices may be achieved

by adding new intelligence to existing devices.

The proposed approach has obvious benefits over the

solutions that have been more conventionally used. From

the perspective of the “thing” executing the agent, the

agent framework based on managed runtime effectively

creates a sandbox that separates the agent from the rest of

the system. Therefore it is, for instance, possible to run

real-time critical code in the same system, and only

execute the agent when there is leftover execution time, a

partitioning which is supported by many real-time

operating systems. A further benefit over other agent

frameworks is that we are solely relying on web

protocols and technologies. The ecosystem that builds

web applications has presently advanced to a level where

the web is increasingly a platform for all applications.

Allowing this ecosystem to build mobile agents for WoT

creates low-hanging opportunities, because there is no

need to invest in familiarizing yet another platform.

3.6 Structuring of the framework

In [14], we have presented and demonstrated a

structuring concept that incorporates HTML5 agents and

their servers with a data solution to store user’s content.

Each Cloud Space is essentially a private cloud which

hosts user’s data and applications. In the context of WoT,

Cloud Spaces can be seen as ecosystem where each

“thing” provides small functionality for the Cloud Space

as a whole. Data streams between the nodes can be

implemented using agents and when adding a new node

to the system, agents can provide architecture

configuration automatically to the new node. Figure 2

depicts on possible Cloud Space configuration with Web

of Things.

Each “thing” in WoT implements minimum of the

Agent Server architecture and when new device is added

to WoT, agent is sent to the new device to configure it.

For example agent creates new public interfaces to the

new device, which can then be used for data streams. Or

the agent can implement application logic for the device,

which is then executed even without the agent. Even if

the agent does not modify the programming of the new

device, it can provide information about WoT, for

example, location of other servers and devices.

Figure 2. Cloud Space in context of WoT.

4 Proof-of-concept experiments
During our research we have implemented a few proofs

of concept and demonstrators. Here we describe two

demonstrators that relate to devices in WoT and to

management of the agents and Cloud Spaces.

48 Informatica 40 (2016) 43–51 J-P. Voutilainen et al.

4.1 Agents for embedded device

To verify and demonstrate our idea we implemented a

simple agent that collected information from different

sensors hosted by different devices (Figure 3).

Figure 3. A traveling agent in different devices.

The implementation is based on the following

components.

1. Two Agent Servers, one running in Raspberry PI,

and another in a standard Linux server running on a

virtual machine in a cloud. Both servers are based

on Node.js [19] technology, and the implementation

of the agent framework is the same in both servers. It

is also possible to connect external sensors and

actuators to Raspberry PI. In our case, we have

connected a temperature sensor DS18B20 [15] for

our experiments.

2. An agent that travels between servers and browsing

devices. The agent is written in a manner that it can

measure temperature when it is in the Raspberry-

hosted server and if temperature sensor is available.

When in browser the agent receives DOM device

orientation events [24] and measures the orientation

of the device. Based on the orientation events, the

agent also calculates a “restless index” – i.e. how

much the device is rocked or shaken lately. In other

words, the agent collects different data in different

devices but remembers and aggregates all the

collected data to a pre-processed form.

3. Visualization of the collected data when the agent is

in browser. In this visualization we show graphs of

the temperature and restless index over time.

In the scenario depicted in Figure 3 the agent is first

downloaded to a browser running on a Windows laptop.

From there it is pushed to an Agent Server in the cloud.

The graphical display disappears but collected statistics

are preserved and the agent continues its execution.

Unfortunately no sensors were available, so no real data

was collected. Next the agent is downloaded to a browser

running on a smart phone, there the graphical

visualization is generated again and the user can see from

the graph what has been measured and collected. From

mobile browser the agent is uploaded into an Agent

Server in Raspberry PI. From there the agent is finally

downloaded to a desktop browser.

The purpose of this experiment was to validate that

the agent runs in all needed hosts and also to demonstrate

the idea. An example – a different execution from the

one shown in Figure 3 – of the visualization has been

given in Figure 4. The X-axis in Figure 4 represent time

(concrete values not shown in Figure 4) and Y-axis show

the sensor values.

Figure 4. Visualization of the collected sensor data.

Additional text and images have been added to the

picture to improve the presentation in this paper. The

blue vertical lines indicate moves from one location to

another. The history of events in this example run is the

following: the agent was first downloaded to browser in a

smart phone. Since accelerator sensors were available the

restless index gets calculated and recorded, but because

temperature sensor is not accessible, temperature defaults

to -10 degrees C. The agent is next pushed to an Agent

Server in the cloud where neither sensor is available and

both readings default to 0. Then the agent is downloaded

back to a mobile browser and further pushed to a server

in Raspberry PI. In Raspberry PI the agent reads and

collects temperature data until it gets downloaded back to

mobile browser.

4.2 Managing agents in cloud space

For combining concept of agents and Cloud Space we

have also implemented a proof of concept manager for

agents running in Cloud Space [14]. The manager is a

web application with a 3D interface for managing agents

in Cloud Space contexts. By using the manager the user

can access to her Cloud Space context and agent servers

inside the Cloud Space. User can fetch agents from

servers to her web browser and move agents from a

server to another server even between contexts.

As Cloud Space context can represent a physical

place, panoramic photo spheres are used to visualize the

context in the 3D management UI. A real-world image

helps the user in mapping of the concepts of Cloud Space

to the physical space. Agent Servers in a context are

represented as 3D grids and agents running in a server

are shown as cuboids are placed to the grid. User

performs all management actions, e.g. navigating in

contexts, moving agents and fetching agents, via direct

manipulation using mouse and keyboard.

HTML5-based Mobile Agents for Web-of-Things Informatica 40 (2016) 43–51 49

Figure 5 presents the management UI in action. In

the top section of Figure 5 (marked with 1) the user has

dragged the agent on top of the context which she wants

to move the agent. When she releases the agent the

Management View changes to the context she chose.

This is visualized in the middle section of Figure 5.

Finally the user can drag the agent to the server in the

context and the agent is moved there (bottom section in

Figure 5).

Figure 5. Examples of management views [14].

5 Related work
Use of Web and HTML as an agent platform is not very

common. The Radigost system [16] [17] uses Web and

JavaScript as an implementation platform for multi-agent

systems. It has many interesting features like support for

standard agent communication mechanisms and yellow-

pages service for agent directories. However, it does not

support dynamically moving agents or running agents

outside browser. Radigost has later been merged with

JavaEE-based agent framework that allows execution of

agents also in the server side. In contrast to many

benefits of JavaEE-based agent platform, it cannot be

hosted on small devices as required by WoT applications.

Another Web-based agent-framework has been described

in [5]. In that concept the agent platform is based on

concepts of Pneuna that is relatively close to our agent

description and Soma that is the execution environment.

In this approach Soma hides the differences of browser

and server environment and creates a completely new

application platform for mobile agents. In our approach

standard and well-known HTML5 is the agent platform.

In addition, the approach presented in [5] has not been

designed for pushing agents to agent server when user or

browser is not active or when the agent should find a new

browser to run on.

As discussed earlier, Web of Things (WoT) and

Internet of Things (IoT) approaches lead to a bit different

architectures. Because the former leads to resource-

oriented architecture (ROA) and the latter is based on

approaches that reflect the remote procedure call (RPC)

paradigm. While our work could be connected to both

approaches, we propose a third approach that is based in

sending code for execution in or close to a “thing”. In the

categorization of moving code proposed in [1], this is

called Remote Evaluation. The code sent to remote host

can expose new interfaces either in WoT or IoT style. As

our system allows executing code to move with its

internal state and because the code and state can further

move to a yet another location, our system fulfills the

criteria of mobile agents. For many WoT and IoT

applications, the core subset of mobile agent behavior –

remote evaluation – is enough, but moving with state and

ability to move even further are available for those

applications that benefit from it.

There are a few approaches that support uploading

and remote evaluation of code in a “thing”. For example,

MoteLab [27] is a test bed for sensor networks. The

developers using MoteLab can upload executable Java

code with a job description towards a “thing”. The Web

interface is a separate system based on PHP. Somewhat

similar system is Kansei [4] – later refactored to

KanseiGenie – where developers can also create jobs to

execute sensor applications. Our system can also be used

in a similar way and from similar motivations. However,

in our system the uploaded code is Web content and we

can upload an executing agent with its internal state.

Use of web technologies to for IoT or WoT appli-

cations is not new. For example, WebIoT [1] is based on

similarities to our work. Similarities lie especially in the

aim to bring IoT to Web 2.0 and allowing users to

develop, deploy and execute their own applications.

However, WebIoT does not support agent model.

Maybe the most similar approach to us is the mobile

agent framework proposed in [6]. It provides nodes in

heterogeneous device networks with a way to

communicate and co-operate. Furthermore, it provides

means to proactively search for required resources. The

system is based on Java-based AgentSpace [21] mobile

agent platform. At the moment we do not have similar

automatic searching – this is left for future work. On the

other hand we have the unique benefits of using the Web,

which enables leveraging the power of the web

development ecosystem in application development [22].

6 Discussion and future work
The ability to send code for remote evaluation and

especially mobile agents is useful when implementing

new types of IoT applications. This approach increases

flexibility of the system design and evolution of IoT

since the new code can add new functionality and adapt

the device to new requirements. Moving code and

especially agents can also be used to add autonomous

intelligence to systems.

Our example agent collected data that was available

at the particular location of execution and different data

50 Informatica 40 (2016) 43–51 J-P. Voutilainen et al.

was collected in different locations. So, the agent adapts

to its execution environment. One benefit of mobile

agent is reduction of communication. In our case the

sensor data, like temperature measurement, was

continuously collected but sent over network only when

agent moves. Furthermore, calculation of the restless

index is an example of agent that reduces communicated

data by pre-processing the raw data.

We see that use of web technologies as a basis for

our agent framework gives us several benefits. First of all

we gain ecosystem benefits in terms of competencies,

training material and tools. Secondly, any device with a

reasonable recent browser can be used to run and control

the agents. Thirdly, web-based agents can be run both in

“things” and servers in the cloud, and integrate well with

the infrastructure of the Internet.

In the future we would like to study the opportunities

when combining our mobile agents to RESTful or SOA

paradigms more closely. For instance, and an agent that

is located in a “thing” with a temperature sensor can

expose a REST API for applications to ask current

temperature, list of recent measurements, or some other

information, depending on the application needs.

Mapping our framework to agent-related standards is

also a potential future topic. Since our agent-to-agent

communication solution is very generic, we assume that

it can be used as a transport layer to FIPA Agent

Communication language [7] in a similar manner as in

Radigost [17], but the mapping between our management

system and corresponding FIPA standard [8] requires

some analysis.

So far we have tried the framework only in

reasonable small cases, and one of the most important

topics for future work is testing it in a larger context. One

potential case is experience roaming with Liquid

Software [23]. Mobile agents would allow users to bring

their preferences and on-going work to the physical

smart spaces they enter. For instance the user can bring

his lightning, heating and other preferences to hotel

rooms while they travel and they can also use their

favourite user interface in favourite mobile device to

monitor and control devices in the visited environment.

Another possible experimentation would involve a

system that moves agents autonomously. Especially in

sensor network systems, automatic crawling of agents

could allow them autonomously search and collect the

needed data. The recently added management API (see

Subsection 3.2) and its underlying mechanisms provide a

basis for this such experiment. One of the design goals of

the management API was to support such autonomy.

Since this API is still a reasonable new feature our

framework and we need experiment with it by

implementing some example application. Moreover,

some obvious things that require attention are related to

non-functional properties of our agent system, including

scalability and security in particular.

7 Conclusions
In summary, we believe that by the end of this decade

multi-device usage will become so seamless and

ubiquitous that “it will weave itself into the fabric of

everyday life until it is indistinguishable from it” [26]. In

contrast to numerous platform and vendor-specific

systems, our work on HTML5 agents and related

infrastructure demonstrates that such future can be

created with technologies that reflect Open Web

principles laid out in the Mozilla Manifesto [18]. Built

with technologies that are open, accessible and as

interoperable as possible, and run in standards

compatible web browser without plugins, extensions or

additional runtimes, they require no installation or

manual upgrades, and they can be deployed instantly

worldwide, and allow application development and

instant worldwide deployment without middlemen,

distributors, or platform-specific app stores.

We believe that these properties will be key

characteristics for the IoT and WoT devices of the future

as well. When these properties are extended to devices,

the devices can be part of the new and unified computing

infrastructure defined by the Internet.

In particular, we believe that mobile agents can play

a special role of connecting devices to the Internet and in

allowing the most efficient use of them in the world

where everything becomes Internet-connected.

8 References
[1] Carzaniga, A., Picco, G., P., Vigna, G., 1997.

Designing distributed applications with mobile code

paradigms. In Proceeding of the 19th international

conference on Software engineering (ICSE’97), May

17-23, 1997, Boston, Massachusetts, USA. Pages 22-

32.

[2] Castellani, A.P., Dissegna, M., Bui, N., Zorzi, M.,

WebIoT: A Web Application Framework for the

Internet of Things, Wireless Communications and

Networking Conference Workshops (WCNCW),

2012 IEEE, Paris France, 2012, pages 202 – 207.

[3] Crockford, D.: JavaScript: the Good Parts, O'Reilly

Media, Inc. May 8, 2008.

[4] Ertin E., Arora A., Ramnath R., Naik V., Bapat S.,

Kulathumani V., Sridharan M., Zhang H., Cao H.,

and Nesterenko M., “Kansei: a testbedfor sensing at

scale,” in ACM/IEEE IPSN, Nashville, Tennessee,

USA,2006, pp. Pages 399–406.

[5] Feldman, M.: An approach for using the Web as a

Mobile Agent infrastructure, In pro-ceedings of the

International Multiconference on Computer Science

and Information Technology, pp. 39 – 45, 2007.

[6] Fielding R.. Architectural styles and the design of

network-based software architectures. Doctoral

Dissertation. University of California, 2000.

[7] FIPA Agent Communication Language

Specifications,

http://www.fipa.org/repository/aclspecs.html, last

visited 2.2.2015.

[8] FIPA, Agent Management Specifications,

http://www.fipa.org/repository/managementspecs..ht

ml, last visited 2.2.2015.

[9] Godfrey W. W., Jha S. S., B. Nair S. B., On A

Mobile Agent Framework for an Internet of Things,

http://www.fipa.org/repository/managementspecs..html
http://www.fipa.org/repository/managementspecs..html

HTML5-based Mobile Agents for Web-of-Things Informatica 40 (2016) 43–51 51

In proceeding of: International Conference on

Communication System and Technologies, CSNT

2013, 05-08 April 2013, Gwalior, India, At Gwalior,

India. Pages 345 – 350.

[10] Hong Y, A Resource-Oriented Middleware

Framework for Heterogeneous Internet of Things,

International conference on Cloud and Service

Computing (CSC), 2012, Shanghai, China, Pages

12-16.

[11] Järvenpää, L., Development and evaluation of

HTML5 agent framework. Master of Science Thesis,

Tampere University Technology, 2013.

[12] Järvenpää, L., Lintinen, M., Mattila, A-L.,

Mikkonen, T., Systä, K, Voutilainen, J-P. Mobile

Agents for the Internet of Things, In WASA2013,

3rd Workshop on Applications of Software Agents,

Sinaia, Romania, October 11-13, 2013.

[13] Lange, D., B., Oshima, M., 1999. Seven good

reasons for mobile agents, In Communications of the

ACM, Volume 42 Issue 3, March 1999, Pages 88 –

89.

[14] Mattila, A.L., Systä, K., Mikkonen, T. and

Voutilainen, J.-P., Cloud Space – Web-based Smart

Space with Management UI, A short paper in 10th

International Conference on Web Information

Systems and Technologies (WEBIST), Barcelona 3-

5, April, 2014.

[15] Maxim Integrated, DS18B20, Programmable

Resolution 1-Wire Digital Thermometer, Datasheet.

http://datasheets.maximintegrated.com/en/ds/DS18B

20.pdf

[16] Mitrović, D., Ivanović, M., Budimac, Z., Vidaković

M., Radigost: Interoperable web-based multi-agent

platform, The Journal of Systems and Software 90,

2014. Pages 167–178.

[17] Mitrović, D., Ivanović, M., and Bădică, C.,

Delivering the multiagent technology to end-users

through the web. In Proceedings of the 4th

International Conference on Web Intelligence,

Mining and Semantics (WIMS14) (WIMS '14).

ACM, New York, NY, USA, 2014.
[18] MOZILLA-MF Mozilla, Inc., The Mozilla Manifesto.

URL: http://www.mozilla.org/en-US/about/manifesto/.

[19] Node.js. Web page for document and download of

nodejs technology, http://nodejs.org/. Last viewed

03.02.2013.

[20] Raspberry PI web page, http://www.raspberrypi.org,

Last visited 28.6.2013

[21] Silva A., Da Silva M., An Overview of AgentSpace:

A Next-Generation Mobile Agent System, In

Proceedings of the Mobile Agents'98, Springer,

1998. Pages 148 – 159.

[22] Systä, K., Mikkonen, T., Järvenpää, L.,. HTML5

Agents – Mobile Agents for the Web, In the

Proceedings of 9th International Conference on Web

Information Systems and Technologies (WEBIST),

Aachen, Germany, 8-10.5.2013. Pages 37-44.

[23] Taivalsaari, A., Mikkonen, T., Systä, K., Liquid

Software Manifesto: The Era of Multiple Device

Ownership and Its Implications for Software

Architecture. A short paper to appear in 38th Annual

IEEE International Computers, Software, and

Applications Conference (COMPSAC) in Västerås,

Sweden 21–25 July, 2014.

[24] W3C, DeviceOrientation Event Specification, W3C

Working Draft 1 December 2011

http://www.w3.org/TR/orientation-event/

[25] W3C, The WebSocket API, W3C Working Draft, 19

April 2011, http://www.w3.org/TR/2011/WD-

websockets-20110419/

[26] Weiser, M.,, The Computer for the 21st Century.

Scientific American, September 1991, pp. 94-104.

[27] Werner-Allen G., Swieskowski P., and Welsh M.,

“MoteLab: a wireless sensor network testbed,” in

ACM/IEEE IPSN, Apr. 2005, Pages 483–488.

http://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
http://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
http://www.raspberrypi.org/
http://www.w3.org/TR/orientation-event/

