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Abstract

A plane graph is called alternating if all adjacent vertices have different degrees, and all
neighboring faces as well. Alternating plane graphs were introduced in 2008. This paper
presents the previous research on alternating plane graphs.

There are two smallest alternating plane graphs, having 17 vertices and 17 faces each.
There is no alternating plane graph with 18 vertices, but alternating plane graphs exist for
all cardinalities from 19 on. From a small set of initial building blocks, alternating plane
graphs can be constructed for all large cardinalities. Many of the small alternating plane
graphs have been found with extensive computer help.

Theoretical results on alternating plane graphs are included where all degrees have to
be from the set {3, 4, 5}. In addition, several classes of “weak alternating plane graphs”
(with vertices of degree 2) are presented.
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the European Social Fund and the state budget of the Czech republic.
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Figure 1: Karl Scherer: Squaring the square with 21 alternating squares.
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1 Introduction

The concept of alternating plane graphs was introduced by I. Althöfer in January 2008.
Years before, he had seen K. Scherer’s squarings of a square, in particular the nice sym-
metric one where 21 small squares exactly fill a square of side length 16 in such a way that
no two squares with the same side length join an edge or a vertex (see Figure 1). Scherer
called such arrangements “alternating tilings”. The 21-solution is the second smallest such
object. This concept of alternating tilings formed the inspiration for the definition of alter-
nating plane graphs. A large portion of the history of the development of this concept can
be found at [8].

The paper is organized as follows. In Section 2 we give the necessary definitions. In
Section 3 several theorems about different types of alternating plane graphs are proven. In
Section 4 and Section 5 we describe exhaustive and heuristic searches for alternating plane
graphs. Section 6 gives an overview of the alternating plane graphs constructed by hand
and by these searches. Section 7 and Section 8 deal with several techniques to construct
large alternating plane graphs. In Section 9 we describe a relaxation of the definition of
alternating plane graphs.

E-mail addresses: ingo.althoefer@uni-jena.de (Ingo Althöfer), admin@neutreeko.net (Jan Kristian
Haugland), karlscherer3@yahoo.co.nz (Karl Scherer), hobblefrank@t-online.de (Frank Schneider),
nico.vancleemput@gmail.com (Nico Van Cleemput)
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2 Definition
Note that a planar graph is a graph that can be embedded in the plane without crossing
edges. A plane graph is a particular embedding of a planar graph.

Definition 2.1. A plane graph is called an alternating plane graph, when the following
conditions are fulfilled:

• There are no adjacent vertices with the same degree.

• There are no adjacent faces with the same size.

• Each vertex has degree at least 3.

• Each face has size at least 3.

Note that the exterior face is also considered to be a face and also needs to satisfy the
conditions above.

The following lemma follows immediately from the definition.

Lemma 2.2. IfG is a 3-edge-connected alternating plane graph, then the dual ofG is also
an alternating plane graph.

For a 2-edge-connected alternating plane graph that is not 3-edge-connected, the dual
is not a simple graph, and therefore the dual is not an alternating plane graph. Note that
an alternating plane graph is always at least 2-edge-connected, since plane graph with edge
connectivity 1 contains a face that is adjacent to itself.

3 Theoretical results
Definition 3.1. An alternating plane graph is called an (x1, . . . , xn)-alternating plane
graph if all vertices have degree x1, . . . , xn−1 or xn and all faces have x1, . . . , xn−1 or
xn sides.

3.1 Results for (3, 4, 5)-alternating plane graphs

Let vi denote the number of vertices of degree i, and let fj denote the number of faces with
j sides.

Theorem 3.2. If G is a (3, 4, 5)-alternating plane graph, then v3 = f3, v4 = f4 and
v5 = f5.

Proof. Suppose G is a (3, 4, 5)-alternating plane graph.
Summing the edges over the vertices shows that the total number of edges equals

3v3+4v4+5v5
2 , while summing over the faces shows that it is 3f3+4f4+5f5

2 . So we have

3v3 + 4v4 + 5v5
2

=
3f3 + 4f4 + 5f5

2
(3.1)

Euler’s formula gives

2(v3 + v4 + v5) + 2(f3 + f4 + f5) =
3v3 + 4v4 + 5v5

2
+

3f3 + 4f4 + 5f5
2

+ 4

which simplifies to
v3 + f3 = v5 + f5 + 8 (3.2)
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The rest of the proof is based on counting (i, j)-combinations, that is, the number of
instances of a vertex of degree i incident with a face with j sides. For example, each
vertex of degree 3 must be incident with a triangle, a quadrilateral and a pentagon, and
each triangle must be incident with one vertex of each degree (3, 4 and 5). So we see that
the number of (3, 3)-combinations must be equal to v3, but it must also be equal to f3, so
we can deduce that

v3 = f3 (3.3)

Note that (3.1) and (3.3) together implies that v5 − f5 must be divisible by 4.
Due to parity, each pentagon is incident with at least one vertex of each degree too,

while a quadrilateral might have just two values represented.
Counting (3, 5)-combinations shows that

f5 ≤ v3 (3.4)

while a dual argument (counting (5, 3)-combinations) shows that

v5 ≤ f3 (3.5)

Combining (3.1), (3.2), (3.3), (3.4) and (3.5) gives us five possibilities:

v5 = v3 − 8, f5 = v3

v5 = v3 − 6, f5 = v3 − 2

v5 = v3 − 4, f5 = v3 − 4

v5 = v3 − 2, f5 = v3 − 6

v5 = v3, f5 = v3 − 8

Let ai denote the number of vertices of degree 5 incident with exactly one face with i
sides (and two of each of the other two types). Adding these up gives the total number of
vertices of degree 5; i.e., a3 + a4 + a5 = v5. Since a vertex of degree 5 is incident with
either 1 or 2 triangles, the number of (5,3)-combinations is a3 +2a4 +2a5, and since each
triangle is incident with exactly one vertex of degree 5, we have a3+2a4+2a5 = f3 = v3.
Thus, a3 = 2v5 − v3 and a4 + a5 = v3 − v5. It follows that

0 ≤ a5 ≤ v3 − v5 (3.6)

Similarly, with bj denoting the number of pentagons incident with exactly one vertex of
degree j, a dual argument shows that b3 = 2f5 − v3 and b4 + b5 = v3 − f5, and it follows
that

0 ≤ b5 ≤ v3 − f5 (3.7)

The number of (5,5)-combinations is 2a3 + 2a4 + a5 = a5 + 2(v5 − a5) = 2v5 − a5, and
a dual argument shows that it is also equal to 2f5 − b5. So we have

a5 − b5 = 2(v5 − f5) (3.8)

Now let us inspect the possible values of v5 and f5 found earlier in view of (3.6), (3.7) and
(3.8):
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v5 f5 2(v5 − f5)
v3 − 8 v3 b5 = 0 -16
v3 − 6 v3 − 2 b5 ≤ 2 -8
v3 − 4 v3 − 4 0
v3 − 2 v3 − 6 a5 ≤ 2 8
v3 v3 − 8 a5 = 0 16

Since a5 and b5 are both non-negative integers, it is clear that (3.8) is only possible if
v5 = f5 = v3 − 4.

Of course, (3.1) now also gives v4 = f4 and the proof is complete.

We can go a little bit further and show that if p(i, j) denotes the number of (i, j)-
combinations, then p(i, j) = p(j, i) for all i, j in {3, 4, 5}. We have p(3, j) = v3 and
p(i, 3) = f3 for each i, j, and we know that v3 = f3. So it remains to prove that p(4, 5) =
p(5, 4). But p(4, 5) = 2b3 + b4 +2b5 and p(5, 4) = 2a3 + a4 +2a5, so it suffices to verify
that ai = bi for every i, and this is immediate from the proof of the theorem.

Corollary 3.3. There is no (3, 4, 5)-alternating graph with fewer than 17 vertices.

Proof. Let r = v3 = f3. So there are r vertices of degree 3, r − 8 vertices incident
with a triangle, two quadrilaterals and two pentagons, and 4 other vertices of degree 5, and
correspondingly for the dual objects. An immediate consequence is that r is at least 8. The
number of edges incident with a triangle is 3r. In addition, each of the r vertices of degree
3 is incident with an edge that is not incident with any triangles. The r edges thus obtained
are all distinct, since each one is only incident with one vertex of degree 3. Hence, there
are at least 4r ≥ 32 edges, and the result then follows from Euler’s formula.

For larger r, we can get a better estimate for the number of edges than 4r by considering
pentagons instead. There are r − 4 pentagons, contributing 5r − 20 edges, and as above, r
distinct edges incident with a triangle, a quadrilateral, and a vertex of degree 3. This gives
a lower bound of 6r − 20 edges. Any edges not counted so far must be incident with a
triangle, a quadrilateral and two vertices of degrees 4 and 5. The number of such edges is
bounded by the number of triangles, which gives an upper bound of 7r− 20 edges in total.

Furthermore, since we have that the number of edges is

3f3 + 4f4 + 5f5
2

,

it follows that the number of quadrilaterals is in the interval [r − 5, 32r − 5].

3.2 X,Y -alternating plane graphs

Definition 3.4. An alternating plane graph is called an X,Y -alternating plane graph if
there are exactly X different vertex degrees and Y different face sizes.

Let d1, . . . , dX be the different degrees of vertices sorted in ascending order:

3 ≤ d1 < d2 < . . . < dX ,
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and let s1, . . . , sY be the different sizes of faces sorted in ascending order:

3 ≤ s1 < s2 < . . . < sY .

Again let vdi
, resp. fsi , be the number of vertices with degree di, resp. faces with size si.

We denote the total number of vertices, resp. edges and faces, by V , resp. E and F .
This means we have

X∑
i=1

vdi = V

X∑
i=1

divdi = 2E

Y∑
i=1

fsi = F

Y∑
i=1

sifsi = 2E

Substituting this in Euler’s formula gives

4

X∑
i=1

vdi
+ 4

Y∑
i=1

fsi =

X∑
i=1

divdi
+

Y∑
i=1

sifsi + 8

which simplifies to
X∑
i=1

(4− di)vdi +

Y∑
i=1

(4− si)fsi = 8. (3.9)

Since these are all positive numbers and di and si are at least 3, this formula gives us that
at least one of d1 and s1 is equal to 3.

It is immediately clear that X and Y are at least 2. Assume that G is a 2, Y -alternating
plane graph. This means that there are only two different vertex degrees and they form a
2-colouring of the vertices. So G is bipartite and thus contains no odd cycles. This also
implies that all si are even and thus s1 6= 3. This gives us that d1 = 3. Substituting this
information in (3.9) gives

vd1
+ (4− d2)vd2

+

Y∑
i=1

(4− si)fsi︸ ︷︷ ︸
<0

= 8. (3.10)

Note that d1 = 3 also implies that Y is at least 3.
If X = 2, we also have that d1vd1 = d2vd2 = E, since each vertex is only adjacent to

vertices with a different degree. So we have that

3vd1 = d2vd2 . (3.11)

Combining (3.10) and (3.11), we find that

(4− 2

3
d2)vd2 +

Y∑
i=1

(4− si)fsi︸ ︷︷ ︸
<0

= 8.

From this it follows that
4− 2

3
d2 > 0,
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and so d2 = 4 or d2 = 5. This means that all 2, Y -alternating plane graphs have degrees 3
and 4 or degrees 3 and 5.

We can find lower bounds for the number of vertices in 2, Y -alternating plane graphs.
We can rewrite (3.10) as

vd1 + (4− d2)vd2 = 8 +

Y∑
i=1

(si − 4)fsi . (3.12)

Since d1 = 3, there are at least 3 different face sizes and all face sizes are even, since the
graph is bipartite. This means that the left hand side in (3.12) is at least 14 (one face of size
4, one of size 6 and one of size 8). So we find:

vd1
+ (4− d2)vd2

≥ 14. (3.13)

If d2 = 4, then (3.13) implies that n1 ≥ 14 and, combined with (3.11), this also implies
n2 ≥ 11, so we get:

V = vd1
+ vd2

≥ 25.

If d2 = 5, then (3.13) implies that vd1
− vd2

≥ 14. Combined with (3.11), this implies
that vd1 ≥ 35 and vd2 ≥ 21, so we get:

V = vd1
+ vd2

≥ 56.

This shows that the minimum order of 2, Y -alternating plane graphs lies out of reach
of the exhaustive search described in Section 4. However, the restrictions imposed on
the relation between the number and size of faces and the number and degree of vertices
are quite strong, so we conjecture that there exist no 2, Y -alternating plane graphs. The
situation changes if we relax the definition of alternating plane graph to also allow for
vertices of degree 2. This is explained in Section 9.

4 Exhaustive search
In this section we describe the exhaustive search that was used to verify the minimality
of the two alternating plane graphs with 17 vertices. The algorithm described here checks
each plane graph with a given number of vertices for being an alternating plane graph.
The number of plane graphs however increases too fast with increasing number of vertices
to be able to verify all graphs up to 17 vertices in an acceptable time span (see Table 1).
Therefore we apply several bounding criteria which prune the graphs so that not all plane
graphs need to be verified individually.

We use the algorithm described in [2] to generate plane graphs with a given number of
vertices. In this algorithm plane graphs are generated by starting from triangulations and
removing edges of triangles to obtain the other plane graphs. That each plane graph can
be constructed by this algorithm can be realised by looking at the reverse process. We can
recursively add an edge between two vertices at distance 2 in a face of size greater than 3.
This can be done until we end up with a triangulation. In order to avoid isomorphic graphs
the algorithm in [2] uses McKay’s canonical construction path method.

A plane graph G is the parent of a plane graph G′, if in the algorithm described above
G′ is obtained from G by removing an edge. A plane graph G is an ancestor of a plane
graph G′ if there exist plane graphs G1, . . . , Gn such that G is the parent of G1, Gi is the
parent of Gi+1 for 1 ≤ i < n and Gn is the parent of G′.
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n Graphs

4 1
5 2
6 9
7 48
8 429
9 4 794

10 64 968
11 954 362
12 14 791 881
13 237 306 720
14 3 910 739 201
15 65 870 458 907
16 1 130 289 662 773
17 19 709 446 129 094

Table 1: The number of 1-connected plane simple graphs with n vertices. This table was
constructed using plantri.

The next lemmas follow immediately from the fact that a vertex degree can only de-
crease during the process above and that the minimum degree is 3.

Lemma 4.1. A plane graph with two adjacent vertices of degree 3 is never an ancestor of
an alternating plane graph.

Lemma 4.2. A plane graph with a triangle with vertices of degree 3, 4 and 4 is never an
ancestor of an alternating plane graph.

These two lemmas have been used to implement a modification of the program plan-
tri in order to only generate alternating plane graphs. As can be seen in Table 2, Lemma
4.1 gives the most restrictions on the generation process. This motivates our choice to
implement the modifications to generate alternating plane graphs as follows. After an edge
is removed we check whether we can prune the graph based on Lemma 4.1. During an
edge removal only two vertices change their degree. If either of these vertices have degree
3, we need to check whether there are any neighbours with degree 3. Then the algorithm
from [2] continues and checks whether the edge removal was canonical. If this test also
passes, we then check to see whether the graph can be pruned based on Lemma 4.2. When
the algorithm finds a graph that it wants to output, we still need to check it for being an
alternating plane graph. However, the number of graphs that remain to be checked, is
considerably smaller than when just using such a filter on the unmodified algorithm from
[2].

The results of the exhaustive search are shown in Table 3. As can be seen, the run-
ning time increases greatly near the end of the table. To obtain these results the jobs were
split into several parts. These were run on 2.26 GHz Intel Xeon Nehalem processors and
2.6 GHz Intel Xeon Sandy Bridge processors. The time needed per job is not evenly dis-
tributed: some jobs were finished in less than a minute, while other jobs still needed more
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Lemma 4.1 Lemma 4.2 Lemma 4.1 and Lemma 4.2
n Graphs Ratio Graphs Ratio Graphs Ratio

4 1 100.0% 1 100.0% 1 100.0%
5 1 50.0% 1 50.0% 1 50.0%
6 3 33.3% 6 66.7% 3 33.3%
7 14 29.2% 30 62.5% 13 27.1%
8 105 24.5% 273 63.6% 85 19.8%
9 1 039 21.7% 2 901 60.5% 786 16.4%

10 13 073 20.1% 37 549 57.8% 9 164 14.1%
11 179 961 18.9% 533 883 55.9% 119 395 12.5%
12 2 616 640 17.7% 8 034 607 54.3% 1 664 062 11.2%
13 39 229 044 16.5% 125 435 404 52.9% 24 075 368 10.1%
14 601 955 195 15.4% 2 013 603 025 51.5% 358 017 589 9.2%
15 9 410 493 660 14.3% 33 047 399 191 50.2% 5 438 015 472 8.3%
16 149 488 913 702 13.2% 552 519 039 867 48.9% 84 066 660 749 7.4%
17 2 408 166 869 587 12.2% 9 385 351 956 659 47.6% 1 319 262 418 144 6.7%

Table 2: The influence of Lemma 4.1 and Lemma 4.2 on the number of graphs. The ratio
shows what percentage of graphs remain to be checked for being an alternating plane graph
compared to the total number of plane graphs on n vertices.

than a week. This uneven distribution makes it difficult to also obtain the results for 20
vertices even when we split the generation into many jobs.

5 Heuristic searches
This section describes the implementation of the algorithm, which was used to find (3,4,5)-
alternating plane graphs with 17, 20, 21, . . . , 41, 42 vertices and also some other alternating
plane graphs with certain sought properties.

The basic idea of the algorithm is to grow a (3, . . . , x)-alternating plane graph with
exactly N vertices by starting with a smallest face (e.g., a triangle) as the current graph and
then systematically adding one face at at time “at the border” of the current graph, using
backtracking when it becomes obvious that no solution (or no better solution than the best
solution found so far) can be found.

Note that the border of the faces added so far is also a face of the graph, which we call
the exterior face. We call the other faces interior faces.

The degree of already created interior faces never changes during the construction and
adjacent interior faces always have different degree, i.e., fulfill the face constraint. Vertices
adjacent only to interior faces (no longer at the border) are called interior vertices. Their
degree also cannot change and so they always have to have different degree (fulfill the
vertex constraint).

The recursive search takes a graph represented by the faces added so far and the current
border and then recursively tries all possible ways to add a new face at the border. Listing 1
gives an overview.

The recursive search first checks, if any interior vertices violate the vertex constraint.
In that case it backtracks, because the degree of interior vertices does not change by adding
faces at the border and so the vertex constraint cannot be fulfilled. Then a lower bound
on the number of edges needed to fix vertex constraint violations between border vertices
or between border and interior vertices is computed. If the algorithm has already found a
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r e c u r s i v e S e a r c h ( c u r r e n t G r a p h , r e m a i n i n g number o f v e r t i c e s )
{

r e t u r n ,
i f i n t e r i o r v e r t i c e s v i o l a t e t h e v e r t e x−c o n s t r a i n t o r
i f no s o l u t i o n wi th l e s s edges t h a n t h e b e s t s o l u t i o n

found so f a r i s p o s s i b l e .

p robe h a s h t a b l e

check , i f a s o l u t i o n has been found

g e n e r a t e a l l f e a s i b l e b r a n c h e s
s o r t them
f o r b r a n c h e s

add f a c e t o g raph
r e c u r s i v e S e a r c h
remove added f a c e

remember c u r r e n t g raph i n h a s h t a b l e
}

Listing 1: Recursive search

g e n e r a t e B r a n c h e s ( c u r r e n t G r a p h )
{

f o r s = s t a r t −v e r t e x o f t h e new f a c e
f o r e = end−v e r t e x o f t h e new f a c e

f o r n = 0 . . . N−n V e r t i c e s new v e r t i c e s t o add
g e n e r a t e b r an ch n−p a t h between s and e
g e n e r a t e b r an ch n−p a t h between e and s
check i f t h e new b r a n c h e s a r e f e a s i b l e

}

Listing 2: Generating branches
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solution, it does not search for solutions with more edges.
Now, the algorithm probes a hashtable to check if an equivalent graph has been visited

previously by the recursive search. The hash table stores the current border (number of
vertices, degree of each vertex, degree of each (interior) face on border edges) and the
number of vertices and edges used so far. However, it does not store the vertex indices
of the border vertices or any interior vertices/faces of the current graph. So on the one
hand, the hashing only detects some isomorphisms, but on the other hand, it prevents the
algorithm from extending on a current graph, which only differs from a previously searched
graph (with identical border vertex degrees and faces) at irrelevant interior vertices/faces.

Unlike the exhaustives search in Section 4 the algorithm does not generate all alternat-
ing plane graphs but it can be used to find at least one alternating plane graph with sought
properties (e.g., a (3, 4, 5)-alternating plane graph with 17 vertices).

If the current graph is a valid alternating plane graph with the sought properties (e.g.,
a (3, 4, 5)-alternating plane graph with 17 vertices), it is returned. Otherwise the search
continues by generating all feasible branches. Each feasible branch adds one face at the
border of the current graph by adding a single edge or a n-path between two border vertices.

The program can be run to search the whole searchspace or (when just trying to find a
graph) as a beamsearch. In beamsearch mode, successor nodes of the search are ordered
heuristically and only the best X successors are searched. Listing 2 shows how branches
are generated.

For all pairs of border-vertices s and e and each number n of vertices to be added,
generateBranches() tries to generate two branches. The first connects s to e by a n-path
and the second connects e to s by a n-path. A branch is feasible if

• the degree of the new face is valid (e.g., 3 ≤ degree ≤ 5 for a (3, 4, 5)-alternating
plane graph ), and

• the face-constraint between the new face and interior faces is valid.

At the root of the search tree (when adding the second face to the first face), some extra
rules are used to prevent generating (too many) isomorphic graphs.

For n ≤ 17, the number of nodes needed to fully search (3,4,5)-alternating plane graphs
with n vertices is roughly four times that of n − 1. For n = 18 and n = 19 that factor
increases to about 25. This behaviour is caused by the diminishing effect of the hashtable
on the number of nodes searched, when the size of the graph increases.

6 List of constructed alternating plane graphs
As can be seen in Table 3, the exhaustive search shows that the smallest alternating plane
graphs have 17 vertices. Both are (3,4,5)-alternating plane graphs, have 8 triangles, 5
quadrangles and 4 pentagons, and are self-dual. Figure 2 on the left shows the graph found
by Frank Schneider using the heuristic search and on the right the graph found in Ghent
using the exhaustive search. The minimality of the 17-vertex graphs has been confirmed
by an independent implementation.
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n Graphs Time

4 0 0.0 s
5 0 0.0 s
6 0 0.0 s
7 0 0.0 s
8 0 0.0 s
9 0 0.0 s

10 0 0.0 s
11 0 0.2 s
12 0 2.1 s
13 0 31.4 s
14 0 ≈ 7.9 min
15 0 ≈ 2.0 hours
16 0 ≈ 1.3 days
17 2 ≈ 16.4 days
18 0 ≈ 301.3 days
19 5 ≈ 13.1 years

Table 3: The number of 1-connected alternating plane graphs found by the exhaustive
search described in Section 4. For the largest orders, the jobs were split into several parts
and the cumulated running time is given. These were run on 2.26 GHz Intel Xeon Nehalem
processors and 2.6 GHz Intel Xeon Sandy Bridge processors.
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nr V F Γ dual author vertices faces
3 4 5 6 7 8 3 4 5 6 7 8 9 10 11 12

1: 17 17 C2 S FS 8 5 4 8 5 4
2: 17 17 C2 S FS, GG 8 5 4 8 5 4
3: 19 19 C1 6 GG 9 6 3 1 9 5 5
4: 19 19 C3 S GG 9 6 3 1 9 6 3 1
5: 19 19 C1 S GG 9 6 3 1 9 6 3 1
6: 19 19 C1 3 GG 9 5 5 9 6 3 1

7: 19 19 C3 S GG 9 6 3 1 9 6 3 1
8: 20 20 C1 S FS 9 6 5 9 6 5
9: 21 21 C2 S FS 10 5 6 10 5 6
10: 22 22 C1 11 FS 10 6 6 10 6 6
11: 22 22 C1 10 FS 10 6 6 10 6 6
12: 22 22 C2 13 FS 10 6 6 10 6 6

13: 22 22 C2 12 FS 10 6 6 10 6 6
14: 23 23 C1 15 FS 10 7 6 10 7 6
15: 23 23 C1 14 FS 10 7 6 10 7 6
16: 23 23 C2 17 FS 10 7 6 10 7 6
17: 23 23 C2 16 FS 10 7 6 10 7 6
18: 24 24 C1 19 FS 10 8 6 10 8 6

19: 24 24 C1 18 FS 10 8 6 10 8 6
20: 25 25 C1 21 KNLS 12 6 6 1 12 8 2 3
21: 25 25 C1 20 KNLS 12 8 2 3 12 6 6 1
22: 25 25 C3 23 KS 12 6 6 1 12 9 0 4
23: 25 25 C3 22 KS 12 9 0 4 12 6 6 1
24: 25 25 C2 S FS 10 9 6 10 9 6

25: 25 25 C2 26 KS 12 7 4 2 12 7 4 2
26: 25 25 C2 25 KS 12 7 4 2 12 7 4 2
27: 26 26 C1 28 FS 11 8 7 11 8 7
28: 26 26 C1 27 FS 11 8 7 11 8 7
29: 27 27 C1 S FS 11 9 7 11 9 7
30: 28 28 C1 S FS 11 10 7 11 10 7

31: 29 29 C1 32 FS 12 9 8 12 9 8
32: 29 29 C1 31 FS 12 9 8 12 9 8
33: 29 31 C1 37 KS 12 8 6 3 15 9 7
34: 30 30 C1 36 FS 12 10 8 12 10 8
35: 30 33 C1 46 FS 12 9 5 3 1 16 11 6
36: 30 30 C1 34 FS 12 10 8 12 10 8

37: 31 29 C1 33 KS 15 9 7 12 8 6 3
38: 31 31 C1 S FS 12 11 8 12 11 8
39: 32 32 C1 S FS 12 12 8 12 12 8
40: 32 32 C1 41 FS 12 12 8 12 12 8
41: 32 32 C1 40 FS 12 12 8 12 12 8
42: 32 32 C2 43 KS 14 10 6 2 16 8 6 1 0 1

43: 32 32 C2 42 KS 16 8 6 1 0 1 14 10 6 2
44: 33 33 C1 45 FS 13 11 9 13 11 9
45: 33 33 C1 44 FS 13 11 9 13 11 9
46: 33 30 C1 35 FS 16 11 6 12 9 5 3 1
47: 33 33 C2 49 KS 14 10 8 1 16 8 8 0 0 1
48: 33 33 C2 50 KS 16 11 2 2 2 16 8 6 3

49: 33 33 C2 47 KS 16 8 8 0 0 1 14 10 8 1
50: 33 33 C2 48 KS 16 8 6 3 16 11 2 2 2
51: 34 34 C1 52 FS 13 12 9 13 12 9

Continued on next page
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Table 4 – Continued from previous page

nr V F Γ dual author vertices faces
3 4 5 6 7 8 3 4 5 6 7 8 9 10 11 12

52: 34 34 C1 51 FS 13 12 9 13 12 9
53: 34 32 C2 N KS 16 10 8 16 8 6 0 0 1 0 1
54: 34 33 C1 N KS 16 10 6 2 15 8 8 1 1

55: 34 34 C1 N KS 16 10 5 2 1 16 9 8 0 0 1
56: 35 35 C1 S FS 13 13 9 13 13 9
57: 35 35 C2 N KS 16 11 4 4 16 10 8 0 0 1
58: 35 36 C1 59 KS 17 10 4 2 1 1 17 10 8 0 1
59: 36 35 C1 58 KS 17 10 8 0 1 17 10 4 2 1 1
60: 36 36 C1 61 FS 14 12 10 14 12 10

61: 36 36 C1 60 FS 14 12 10 14 12 10
62: 36 34 C1 N KS 17 11 7 1 15 9 7 2 0 1
63: 37 37 C1 S FS 14 13 10 14 13 10
64: 37 37 C2 65 KS 16 11 8 2 16 10 10 1
65: 37 37 C2 64 KS 16 10 10 1 16 11 8 2
66: 37 38 C1 70 KS 17 10 6 3 1 18 10 9 0 1

67: 37 38 C1 77 KS 16 10 8 2 0 1 18 11 10
68: 38 38 C1 S FS 14 14 10 14 14 10
69: 38 36 C2 N KS 18 12 6 2 18 9 6 2 0 0 0 0 0 1
70: 38 37 C1 66 KS 18 10 9 0 1 17 10 6 3 1
71: 38 38 C1 72 KS 18 10 6 4 18 10 7 2 1
72: 38 38 C1 71 KS 18 10 7 2 1 18 10 6 4

73: 38 39 C1 78 KS 17 10 9 1 0 1 18 10 10 1
74: 39 39 C1 75 FS 14 15 10 14 15 10
75: 39 39 C1 74 FS 14 15 10 14 15 10
76: 39 37 C1 N KS 18 11 10 18 8 8 2 0 0 0 1
77: 39 37 C2 67 KS 18 11 10 16 10 8 2 0 1
78: 39 38 C1 73 KS 18 10 10 1 17 10 9 1 0 1

79: 39 39 C2 80 KS 18 9 10 2 18 10 10 0 0 1
80: 39 39 C2 79 KS 18 10 10 0 0 1 18 9 10 2
81: 40 40 C1 82 FS 15 14 11 15 14 11
82: 40 40 C1 81 FS 15 14 11 15 14 11
83: 40 42 D2 85 KS 16 10 12 2 20 10 12
84: 41 41 C1 S FS 15 15 11 15 15 11

85: 42 40 D2 83 KS 20 10 12 16 10 12 2
86: 42 42 C1 87 FS 15 16 11 15 16 11
87: 42 42 C1 86 FS 15 16 11 15 16 11
88: 44 42 C2 N KS 20 12 12 18 10 12 1 0 1

Table 4: An overview of all the alternating plane graphs constructed for this paper. The
first column gives a number for each alternating plane graph. The second column gives the
number of vertices. The third column gives the number of faces. The fourth column gives
the symmetry group Γ. If the graph does not have a simple dual, then the fifth column
contains the letter N. If the graph is selfdual, then the fifth column contains the letter S,
otherwise the fifth column contains the number of the dual of this graph. The sixth column
gives the author of the graph: FS = Frank Schneider, GG = Ghent group, KNLS = Katrin
Nimczick and Lisa Schreiber, KS = Karl Scherer. The remaining columns give the number
of vertices for each degree and the number of faces for each number of sides.
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Figure 3: Glueing alternating plane graphs together by identifying vertices in the exterior
face.

7 Glueing alternating plane graphs together
The idea for this technique is quite simple: take two alternating plane graphs A and B,
place them apart so that they do not intersect, then identify some of the “exterior” vertices
and check whether the result is an alternating plane graph. This is best explained with an
example.

In Figure 3 two copies of a (3, 4, 5)-alternating plane graph with 17 vertices and 17
faces each are displayed. If we identify the vertex of degree 3 at the lower left of the top
alternating plane graph with the vertex of degree 5 at the upper left of the bottom alternating
plane graph, and the vertex of degree 5 at the lower right of the top alternating plane graph
with the vertex of degree 3 at the upper right of the bottom alternating plane graph and
remove the identified edge, we obtain the alternating plane graph shown on the right side
of Figure 3, which has 32 vertices and 32 faces. Note that the new alternating plane graph
is not a (3, 4, 5)-alternating plane graph anymore. Two vertices now have degree 6, one
face has size 6 (the exterior face) and one face has size 8. The degrees of all other vertices
and faces are unchanged.

Let us look at the left of Figure 3 again. If we identify the vertex of degree 3 at the
lower left of the top alternating plane graph with the vertex of degree 3 at the upper right
of the bottom alternating plane graph, we obtain a new alternating plane graph with 33
vertices and 33 faces, as shown in Figure 4.

Note that the new alternating plane graph is not a (3, 4, 5)-alternating plane graph any-
more. One of the vertices now has degree 6 and one face has size 8. The degrees of
all other vertices and faces are unchanged. This new alternating plane graph is also only
1-connected.

Looking at both examples it is clear how we can concatenate an unlimited number
of alternating plane graphs to make larger and large alternating plane graphs. Using the
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Figure 4: An alternating plane graph obtained by identifying two vertices of degree 3 in the
left part of Figure 3

alternating plane graphs that were found by the heuristic and exhaustive search, we obtain
the following result.

Theorem 7.1. For any n ≥ 19 there exists a 3-edge-connected alternating plane graph on
n vertices.

8 Large (3,4,5)-alternating plane graphs
In the previous section we showed that for any n ≥ 19 there exists an alternating plane
graph on n vertices. The size of the faces and the degree of the vertices can however
increase vastly using the construction described there.

In this section we show that for each number n ≥ 111 there exists an (3,4,5)-alternating
plane graph on n vertices.

At the basis of the construction lie the 4 building blocks A, B, C, D shown in Figure 5.
We will first describe how to construct a (3,4,5)-alternating plane graph from these building
blocks.

All black vertices in the building blocks have degrees 3, 4 or 5. No vertex of degree 3,
4 or 5 is adjacent to a vertex with the same degree. The white vertices are only adjacent to
vertices of degree 5. All faces, except the face in the middle and the exterior face, have size
3, 4 or 5. No face of size 3, 4 or 5 is adjacent to a face with the same size. The face in the
middle and the exterior face are only adjacent to faces of size 5. The building blocks have
21, 22, 23 and 24 vertices for A, B, C, D respectively.

To combine two building blocks the three white vertices in the middle face of one block
need to be identified one by one with a white vertex in the exterior face of the other block.
An example is shown in Figure 6. The identified vertices all have degree 4 and are still only
adjacent to vertices of degree 5. The newly created faces have size 4 and are only adjacent
to faces of size 5. The new graph is again a building block with the same properties, but if
the two original building blocks had n1 and n2 vertices, then this new building block has
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A: B:

C: D:

Figure 5: The four building blocks that are used to construct a (3,4,5)-alternating plane
graph on n vertices for any n ≥ 111.
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Figure 6: The combination of the A-block (inner level) and the D-block (outer level). The
identified vertices are shown in gray. The new faces are also highlighted in gray.
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n1 + n2 − 3 vertices. If you combine a copies of the building block with 21 vertices, b
copies of the one with 22 vertices, c copies of the one with 23 vertices and d copies of the
one with 24 vertices, then the number of vertices in the new block will be

21a+ 22b+ 23c+ 24d− 3(a+ b+ c+ d− 1),

which can be rewritten as
18a+ 19b+ 20c+ 21d+ 3.

Once you have a building block of the desired size, you still need to turn it into a (3,4,5)-
alternating plane graph. This can be done by connecting one white vertex in the hexagon
to the other two in the same hexagon. This replaces the hexagon by two triangles and a
quadrangle. The two triangles are not adjacent and the hexagon itself was only adjacent to
pentagons. The white vertices now have degrees 3, 3 and 4. The two vertices of degree 3
are not adjacent, and the white vertices were only adjacent to vertices of degree 5. So the
graph is still an alternating plane graph. After doing this for both hexagons (the central and
the outside one), the graph will be a (3,4,5)-alternating plane graph.

Theorem 8.1. For any n ≥ 111 there exists a (3,4,5)-alternating plane graph on n vertices

Proof. By taking a copies of building blockA, b copies ofB, c copies of C and d copies of
D, you get a (3,4,5)-alternating plane graph with 18a+19b+20c+21d+3 vertices. The
Frobenius number[1] of 18, 19, 20 and 21 is equal to 107, so we can write each number
larger than 110 in the form 18a+ 19b+ 20c+ 21d+ 3.

For a (3,4,5)-alternating plane graph constructed by the technique above, if we colour
each vertex with its degree in the (3,4,5)-alternating plane graph, then the subgraphs iso-
morphic to the subgraph that corresponds to the gray faces in Figure 6 can only appear
between two blocks. This shows that any isomorphism between two (3,4,5)-alternating
plane graphs constructed by the technique above will always map building blocks to build-
ing blocks. Together with the freedom we have in rotating and mirroring building blocks A
through D and interchanging building block D with building block D′ (see Figure 7), we
get the following corollary.

Corollary 8.2. The number of (3,4,5)-alternating plane graphs on n vertices grows expo-
nentially with n.

9 Weak alternating plane graphs
One way we can relax the conditions for alternating plane graphs, is by allowing vertices
of degree 2. These graphs are called weak alternating plane graphs.

Definition 9.1. A plane graph is called a weak alternating plane graph, when the following
conditions are fulfilled:

• There are no adjacent vertices with the same degree.

• There are no adjacent faces with the same size.

• Each vertex has degree at least 2.

• Each face has size at least 3.

A weak alternating plane graph is called an X,Y -weak alternating plane graph if there
are exactly X different vertex degrees and Y different face sizes.
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D′:

Figure 7: A second building block with 24 vertices.

9.1 Non-existence for vertex degrees 2 and k with k ≥ 11

For weak alternating plane graphs it is clear that 2, Y -weak alternating plane graphs do
exist, e.g., take a 3-regular plane graph, substitute each edge by a digon and then subdivide
each edge by a vertex.

A first result we can prove is that there exists no weak alternating plane graph with
degrees 2 and k for k ≥ 11. We do this in two steps.

Lemma 9.2. There exists no weak alternating plane graph with vertex degrees 2 and k for
k ≥ 12.

Proof. Let G be a weak alternating plane graph with degrees 2 and k. Let v, e, f respec-
tively denote the number of vertices, the number of edges and the number of faces. Euler’s
Formula says:

v + f = e+ 2. (9.1)

Let fj denote the number of faces with j sides. Since the graph is bipartite, all fj for j
odd are 0. Due to the definition of weak alternating plane graph, f2 is also equal to 0.

Let er,s denote the number of edges between r-faces and s-faces.
It is

rfr =
∑
s>2

er,s. (9.2)

We denote this sum by Sr, so (9.2) is equivalent to

fr =
Sr

r
.

If we look at all the sums, then we see that er,s occurs two times for each pair (r, s):
namely in fr and in fs, so we have:

f =
∑
r>2

fr =
∑

4<s,2<r<s

(er,s
r

+
er,s
s

)
. (9.3)

For each such pair (r, s), we have

er,s
r

+
er,s
s
≤
(
1

4
+

1

6

)
er,s =

5

12
er,s. (9.4)



358 Ars Math. Contemp. 8 (2015) 337–363

Combining (9.3) and (9.4), we find

f ≤ 5

12

∑
4<s,2<r<s

er,s =
5

12
e. (9.5)

If we denote the number of vertices with degree i by vi, then we have

v = v2 + vk, (9.6)

and,
v2 =

e

2
, vk =

e

k
. (9.7)

Combining (9.6) and (9.7), we find

v =

(
1

2
+

1

k

)
e. (9.8)

Putting v- and f -values together gives via (9.5) and (9.8)

v + f ≤
(
1

2
+

1

k

)
e+

5

12
e =

(
1

k
+

11

12

)
e. (9.9)

If we combine (9.1) and (9.9), we get

e+ 2 ≤
(
1

k
+

11

12

)
e,

which is equivalent to

2 +
1

12
e ≤ 1

k
e. (9.10)

For all k ≥ 12, inequality (9.10) does not hold.

In order to show that there exist no weak alternating plane graph with vertex degrees 2
and 11, we first need the following lemma.

Lemma 9.3. A plane multigraph containing no faces of size 2 has a vertex of degree at
most 5.

Proof. Let G be a plane multigraph containing no faces of size 2. Each face contains at
least three edges, and each edge is contained in two faces. If we combine this with Euler’s
Formula, we get

e ≤ 3v − 6. (9.11)

Let δ be the minimum degree of G. Each vertex is incident to at least δ edges. Each
edge contains 2 vertices. This gives

δv ≤ 2e.

Combining this with (9.11), we find

12 ≤ (6− δ)v.

Since v is positive, this means that δ is at most 5.
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Lemma 9.4. There exists no weak alternating plane graph with vertex degrees 2 and 11.

Proof. LetG be a weak alternating plane graph with vertex degrees 2 and 11. LetG′ be the
graph obtained fromG by smoothing out the vertices of degree 2, i.e., removing each vertex
v of degree 2 and connecting the vertices that were neighbours of v. This graph G′ can be
a multigraph, but since G was a weak alternating plane graph, there are no neighbouring
faces of size 2 in G′. All vertices in G′ have degree 11. Let G′′ be the graph obtained
from G′ by replacing each face of size 2 by a single edge. This means that G′′ is a plane
multigraph containing no faces of size 2 and all vertices have degree at least 6. This is a
contradiction with Lemma 9.3.

Theorem 9.5. There exists no weak alternating plane graph with vertex degrees 2 and k
for k ≥ 11.

Proof. This follows immediately from Lemma 9.2 and Lemma 9.4.

9.2 Existence for vertex degrees 2 and k with k ≤ 10

If a 2, Y -weak alternating plane graph exists with degrees 2 and k, then we can show the
following result.

Lemma 9.6. Let G(V,E) be a 2, Y -weak alternating plane graph with degrees 2 and k.
The number of vertices |V | is a multiple of k+2

2 . So if k is even, then |V | is a multiple of
k+2
2 and if k is odd, then |V | is a multiple of k + 2.

Proof. Denote by V2 the set of vertices with degree 2 and by Vk the set of vertices with
degree k. Since each edge is incident to exactly one vertex of each degree, we have that
|E| = 2|V2| = k|Vk|. So we find that |V | = |V2|+ |Vk| = k

2 |Vk|+ |Vk| =
k+2
2 |Vk|.

There is a bijection between the weak alternating plane graphs with degrees 2 and k and
the vertex-alternating k-angulations with minimum degree 2. Take any weak alternating
plane graph with degrees 2 and k. First we smooth out the vertices of degree 2, i.e., we
remove the vertex and the two incident edges and connect the two remaining endpoints by
a new edge which replaces the two removed edges in the cyclic order for each of the two
endpoints. This operations gives a k-regular, plane multigraph that is face-alternating. If we
take the dual of this, then we get a vertex-alternating k-angulations with minimum degree 2.
The other way around, it is clear to see that applying the inverse of this process to a vertex-
alternating k-angulations with minimum degree 2 always leads to a weak alternating plane
graph with degrees 2 and k.

We used this bijection to generate weak alternating plane graphs with degrees 2 and
k. For k = 3 and k = 4, we generated k-angulations using the program plantri and
filtered out those k-angulations that are vertex-alternating. For 5 ≤ k ≤ 10, we used the
data obtained in [4] and filtered out those k-angulations that are vertex-alternating. For
k = 9 and k = 10, the available data was not sufficient to find any weak alternating plane
graphs with degrees 2 and k. The results are shown in Table 5.

Although no weak alternating plane graphs with degrees 2 and 10 were found using the
exhaustive method described in the previous paragraphs, it is clear that they exist due to
the following construction for weak alternating plane graphs with degrees 2 and k from k

2 -
regular plane graphs for k even. Take a k

2 -regular plane graph. Replace each of its edges by
a digon. This results in a k-regular, face-alternating, plane multigraph. Finally subdivide
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Figure 8: An infinite family of 5-regular plane graphs that can be used to construct weak
alternating plane graphs with degrees 2 and 10.

Figure 9: The first two members of an infinite family of 5-regular plane graphs that can be
used to construct weak alternating plane graphs with degrees 2 and 9. A face-alternating
matching is shown in bold in each graph.

each edge with a vertex to obtain a weak alternating plane graph with degrees 2 and k.
Since there exist infinite families of 2-regular plane graphs (the cycles), 3-regular plane
graphs (e.g., the prisms), 4-regular plane graphs (e.g., the anti-prisms) and 5-regular plane
graphs (e.g., the family shown in Figure 8), this implies that there are infinitely many weak
alternating plane graphs with degrees 2 and 4 (respectively 2 and 6, 2 and 8, and 2 and 10).

A similar construction can also be used to find weak alternating plane graphs with
degrees 2 and 9. A face-alternating matching is a matching in a plane graph that has the
property that for each edge e in the matching, e is incident with two faces with distinct
sizes. Take a k+1

2 -regular plane graph together with a face-alternating matching. Replace
each of its edges that is not in the matching by a digon. This results in a k-regular, face-
alternating, plane multigraph. Finally subdivide each edge with a vertex to obtain a weak
alternating plane graph with degrees 2 and k. Since there exist infinite families of 3-regular
plane graphs with face-alternating matchings (e.g., the prisms on 4n vertices with n ≥ 3),
4-regular plane graphs with face-alternating matchings (e.g., the anti-prisms on 4n vertices
with n ≥ 2) and 5-regular plane graphs with face-alternating matchings (e.g., the family
shown in Figure 9), this implies that there are infinitely many weak alternating plane graphs
with degrees 2 and 5, respectively 2 and 7, and 2 and 9.
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n\k 3 4 5 6 7 8

9 1
12 1
15 2
16 1
18 4
20 1 0
21 7
24 19 1
25 6
27 43
28 7 1
30 43 125 1
32 11
33 368
35 316 139 0
36 1 264 10 1
39 4 744
40 2 420 83 1
42 18 723 4 731
45 19 648 78 657 1
48 338 945
50 165 724
51 1 518 480
55 1 437 049

Table 5: The number of weak alternating plane graphs with degrees 2 and k on n vertices
found using the technique described in Section 9. Due to Lemma 9.6 the orders are always
integers and multiples of k+2

2 .
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10 Conjectures and open problems
• As was explained in Section 3, one conjecture which our intuition suggests is the

following.

Conjecture 10.1. There are no 2, Y -alternating plane graphs and no X, 2-alternat-
ing plane graphs.

• What the typical parameters are for large alternating plane graphs is still an open
problem. E.g., if we let r be the number of vertices of degree 3 in a (3,4,5)-alternating
plane graph, then we know from Theorem 3.2 that the number of vertices of degree
4 is in the interval [r − 5, 32r − 5]. The question is, given this interval, how are
the alternating plane graphs distributed. Is there a density function on the interval
[1, 1.5] which gives the asymptotic fractions of (3,4,5)-alternating plane graphs for
large vertex numbers n? If so, what does the density function look like?

• The exhaustive search showed that there are no (3,4,5)-alternating plane graphs on
less than 17 vertices and on 18 and 19 vertices. The heuristic search found (3,4,5)-
alternating plane graphs on all numbers of vertices from 20 to 42. In Section 8
we showed that (3,4,5)-alternating plane graphs exist on all numbers of vertices
starting from 111, but the same construction can also construct (3,4,5)-alternating
plane graphs on n vertices for n ∈ [21, . . . , 24] ∪ [39, . . . , 45] ∪ [57, . . . , 66] ∪
[75, . . . , 87] ∪ [93, . . . , 108]. This means that we do not know whether there exists
a (3,4,5)-alternating plane graph on n vertices for n ∈ [46, . . . , 56] ∪ [67, . . . , 74] ∪
[88, . . . , 92] ∪ {109, 110}.

Conjecture 10.2. For all n ≥ 20 there exist (3,4,5)-alternating plane graphs on n
vertices.

• In Section 7 we proved that there exist alternating plane graphs on n vertices for
any n ≥ 19. The alternating plane graphs that were constructed in that section
are not 3-connected, and some are not 2-connected. The (3,4,5)-alternating plane
graphs constructed in Section 8 and most of the alternating plane graphs mentioned
in Section 6 are 3-connected. That is why we also pose the following conjecture.

Conjecture 10.3. For any n ≥ 19 there exists a 3-connected alternating plane graph
on n vertices.

11 Concluding remarks
One central experience of our investigations is that without computer help we would never
have come this far. Only the union of machine power and human creativity together let us
achieve the findings in this paper.

All the graphs in this paper are also available through the website [8] and can be down-
loaded from House of Graphs [3] by searching for the keyword apg.
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