

ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 21 (2021) #P1.04 / 45–55

https://doi.org/10.26493/1855-3974.2358.3c9

(Also available at http://amc-journal.eu)

On Hermitian varieties in $PG(6, q^2)$

Angela Aguglia *

Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, I-70125 Bari, Italy

Luca Giuzzi † D

DICATAM, University of Brescia, Via Branze 53, I-25123 Brescia, Italy

Masaaki Homma

Department of Mathematics and Physics, Kanagawa University, Hiratsuka 259-1293, Japan

Received 8 June 2020, accepted 15 February 2021, published online 10 August 2021

Abstract

In this paper we characterize the non-singular Hermitian variety $\mathcal{H}(6,q^2)$ of $PG(6,q^2)$, $q \neq 2$ among the irreducible hypersurfaces of degree q+1 in $PG(6,q^2)$ not containing solids by the number of its points and the existence of a solid S meeting it in q^4+q^2+1 points.

Keywords: Unital, Hermitian variety, algebraic hypersurface.

Math. Subj. Class. (2020): 51E21, 51E15, 51E20

1 Introduction

The set of all absolute points of a non-degenerate unitary polarity in $PG(r,q^2)$ determines the Hermitian variety $\mathcal{H}(r,q^2)$. This is a non-singular algebraic hypersurface of degree q+1 in $PG(r,q^2)$ with a number of remarkable properties, both from the geometrical and the combinatorial point of view; see [6, 16]. In particular, $\mathcal{H}(r,q^2)$ is a 2-character set with respect to the hyperplanes of $PG(r,q^2)$ and 3-character blocking set with respect to the

^{*}Corresponding author. The author was supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM).

[†]The author was supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM).

E-mail addresses: angela.aguglia@poliba.it (Angela Aguglia), luca.giuzzi@unibs.it (Luca Giuzzi), homma@kanagawa-u.ac.jp (Masaaki Homma)

lines of $PG(r, q^2)$ for r > 2. An interesting and widely investigated problem is to provide combinatorial descriptions of $\mathcal{H}(r, q^2)$.

First, we observe that a condition on the number of points and the intersection numbers with hyperplanes is not in general sufficient to characterize Hermitian varieties; see [1, 2]. On the other hand, it is enough to consider in addition the intersection numbers with codimension 2 subspaces in order to get a complete description; see [7].

In general, a hypersurface \mathcal{H} of $\mathrm{PG}(r,q)$ is viewed as a hypersurface over the algebraic closure of $\mathrm{GF}(q)$ and a point of $\mathrm{PG}(r,q^i)$ in \mathcal{H} is called a $\mathrm{GF}(q^i)$ -point. A $\mathrm{GF}(q)$ -point of \mathcal{H} is also said to be a rational point of \mathcal{H} . Throughout this paper, the number of $\mathrm{GF}(q^i)$ -points of \mathcal{H} will be denoted by $N_{q^i}(\mathcal{H})$. For simplicity, we shall also use the convention $|\mathcal{H}| = N_q(\mathcal{H})$.

In the present paper, we shall investigate a combinatorial characterization of the Hermitian hypersurface $\mathcal{H}(6,q^2)$ in $PG(6,q^2)$ among all hypersurfaces of the same degree having also the same number of $GF(q^2)$ -rational points.

More in detail, in [12, 13] it has been proved that if \mathcal{X} is a hypersurface of degree q+1 in $\mathrm{PG}(r,q^2), \, r \geq 3$ odd, with $|\mathcal{X}| = |\mathcal{H}(r,q^2)| = (q^{r+1} + (-1)^r)(q^r - (-1)^r)/(q^2 - 1)$ $\mathrm{GF}(q^2)$ -rational points, not containing linear subspaces of dimension greater than $\frac{r-1}{2}$, then \mathcal{X} is a non-singular Hermitian variety of $\mathrm{PG}(r,q^2)$. This result generalizes the characterization of [8] for the Hermitian curve of $\mathrm{PG}(2,q^2), \, q \neq 2$.

The case where r>4 is even is, in general, currently open. A starting point for a characterization in arbitrary even dimension can be found in [3] where the case of a hypersurface $\mathcal X$ of degree q+1 in $\operatorname{PG}(4,q^2),\,q>3$ is considered. There, it is shown that when $\mathcal X$ has the same number of rational points as $\mathcal H(4,q^2)$, does not contain any subspaces of dimension greater than 1 and meets at least one plane π in q^2+1 GF (q^2) -rational points, then $\mathcal X$ is a Hermitian variety.

In this article we deal with hypersurfaces of degree q+1 in $PG(6,q^2)$ and we prove that a characterization similar to that of [3] holds also in dimension 6. We conjecture that this can be extended to arbitrary even dimension.

Theorem 1.1. Let S be a hypersurface of $PG(6, q^2)$, q > 2, defined over $GF(q^2)$, not containing solids. If the degree of S is q + 1 and the number of its rational points is $q^{11} + q^9 + q^7 + q^4 + q^2 + 1$, then every solid of $PG(6, q^2)$ meets S in at least $q^4 + q^2 + 1$ rational points. If there is at least a solid Σ_3 such that $|\Sigma_3 \cap S| = q^4 + q^2 + 1$, then S is a non-singular Hermitian variety of $PG(6, q^2)$.

Furthermore, we also extend the result of [3] to the case q=3.

2 Preliminaries and notation

In this section we collect some useful information and results that will be crucial to our proof.

A Hermitian variety in $PG(r,q^2)$ is the algebraic variety of $PG(r,q^2)$ whose points $\langle v \rangle$ satisfy the equation $\eta(v,v)=0$ where η is a sesquilinear form $GF(q^2)^{r+1} \times GF(q^2)^{r+1} \to GF(q^2)$. The *radical* of the form η is the vector subspace of $GF(q^2)^{r+1}$ given by

$$Rad(\eta) := \{ w \in GF(q^2)^{r+1} : \forall v \in GF(q^2)^{r+1}, \eta(v, w) = 0 \}.$$

The form η is non-degenerate if $\operatorname{Rad}(\eta) = \{0\}$. If the form η is non-degenerate, then the corresponding Hermitian variety is denoted by $\mathcal{H}(r,q^2)$ and it is a non-singular algebraic

variety, of degree q + 1 containing

$$(q^{r+1} + (-1)^r)(q^r - (-1)^r)/(q^2 - 1)$$

 $\operatorname{GF}(q^2)$ -rational points. When η is degenerate we shall call $\operatorname{vertex} R_t$ of the degenerate Hermitian variety associated to η the projective subspace $R_t := \operatorname{PG}(\operatorname{Rad}(\eta)) := \{\langle w \rangle \colon w \in \operatorname{Rad}(\eta)\}$ of $\operatorname{PG}(r,q^2)$. A degenerate Hermitian variety can always be described as a cone of vertex R_t and basis a non-degenerate Hermitian variety $\mathcal{H}(r-t,q^2)$ disjoint from R_t where $t = \dim(\operatorname{Rad}(\eta))$ is the vector dimension of the radical of η . In this case we shall write the corresponding variety as $R_t\mathcal{H}(r-t,q^2)$. Indeed,

$$R_t \mathcal{H}(r-t, q^2) := \{ X \in \langle P, Q \rangle \colon P \in R_t, Q \in \mathcal{H}(r-t, q^2) \}.$$

Any line of $\operatorname{PG}(r,q^2)$ meets a Hermitian variety (either degenerate or not) in either 1,q+1 or q^2+1 points (the latter value only for r>2). The maximal dimension of projective subspaces contained in the non-degenerate Hermitian variety $\mathcal{H}(r,q^2)$ is (r-2)/2, if r is even, or (r-1)/2, if r is odd. These subspaces of maximal dimension are called *generators* of $\mathcal{H}(r,q^2)$ and the generators of $\mathcal{H}(r,q^2)$ through a point P of $\mathcal{H}(r,q^2)$ span a hyperplane P^\perp of $\operatorname{PG}(r,q^2)$, the *tangent hyperplane* at P.

It is well known that this hyperplane meets $\mathcal{H}(r,q^2)$ in a degenerate Hermitian variety $P\mathcal{H}(r-2,q^2)$, that is in a Hermitian cone having as vertex the point P and as base a non-singular Hermitian variety of $\Theta \cong PG(r-2,q^2)$ contained in P^{\perp} with $P \notin \Theta$.

Every hyperplane of $PG(r,q^2)$ that is not tangent meets $\mathcal{H}(r,q^2)$ in a non-singular Hermitian variety $\mathcal{H}(r-1,q^2)$, and is called a *secant hyperplane* of $\mathcal{H}(r,q^2)$. In particular, a tangent hyperplane contains

$$1 + q^2(q^{r-1} + (-1)^r)(q^{r-2} - (-1)^r)/(q^2 - 1)$$

 $GF(q^2)$ -rational points of $\mathcal{H}(r,q^2)$, whereas a secant hyperplane contains

$$(q^r + (-1)^{r-1})(q^{r-1} - (-1)^{r-1})/(q^2 - 1)$$

 $\mathrm{GF}(q^2)$ -rational points of $\mathcal{H}(r,q^2)$.

We now recall several results which shall be used in the course of this paper.

Lemma 2.1 ([15]). Let d be an integer with $1 \le d \le q+1$ and let \mathcal{C} be a curve of degree d in $\mathrm{PG}(2,q)$ defined over $\mathrm{GF}(q)$, which may have $\mathrm{GF}(q)$ -linear components. Then the number of its rational points is at most dq+1 and $N_q(\mathcal{C})=dq+1$ if and only if \mathcal{C} is a pencil of d lines of $\mathrm{PG}(2,q)$.

Lemma 2.2 ([10]). Let d be an integer with $2 \le d \le q + 2$, and \mathcal{C} a curve of degree d in $\mathrm{PG}(2,q)$ defined over $\mathrm{GF}(q)$ without any $\mathrm{GF}(q)$ -linear components. Then $N_q(\mathcal{C}) \le (d-1)q+1$, except for a class of plane curves of degree 4 over $\mathrm{GF}(4)$ having 14 rational points.

Lemma 2.3 ([11]). Let S be a surface of degree d in PG(3, q) over GF(q). Then

$$N_q(\mathcal{S}) \le dq^2 + q + 1$$

Lemma 2.4 ([8]). Suppose $q \neq 2$. Let C be a plane curve over $GF(q^2)$ of degree q+1 without $GF(q^2)$ -linear components. If C has q^3+1 rational points, then C is a Hermitian curve.

Lemma 2.5 ([7]). A subset of points of $PG(r, q^2)$ having the same intersection numbers with respect to hyperplanes and spaces of codimension 2 as non-singular Hermitian varieties is a non-singular Hermitian variety of $PG(r, q^2)$.

From [9, Theorem 23.5.1, Theorem 23.5.3] we have the following.

Lemma 2.6. If W is a set of $q^7 + q^4 + q^2 + 1$ points of $PG(4, q^2)$, q > 2 such that every line of $PG(4, q^2)$ meets W in 1, q + 1 or $q^2 + 1$ points, then W is a Hermitian cone with vertex a line and base a unital.

Finally, we recall that a *blocking set with respect to lines* of PG(r,q) is a point set which blocks all the lines, i.e., intersects each line of PG(r,q) in at least one point.

3 Proof of Theorem 1.1

We first provide an estimate on the number of points of a curve of degree q+1 in $PG(2, q^2)$, where q is any prime power.

Lemma 3.1. Let C be a plane curve over $GF(q^2)$, without $GF(q^2)$ -lines as components and of degree q + 1. If the number of $GF(q^2)$ -rational points of C is $N < q^3 + 1$, then

$$N \le \begin{cases} q^3 - (q^2 - 2) & \text{if } q > 3\\ 24 & \text{if } q = 3\\ 8 & \text{if } q = 2. \end{cases}$$
(3.1)

Proof. We distinguish the following three cases:

- (a) C has two or more $GF(q^2)$ -components;
- (b) $\mathcal C$ is irreducible over $\mathrm{GF}(q^2)$, but not absolutely irreducible;
- (c) C is absolutely irreducible.

Suppose first $q \neq 2$.

Case (a) Suppose $C = C_1 \cup C_2$. Let d_i be the degree of C_i , for each i = 1, 2. Hence $d_1 + d_2 = q + 1$. By Lemma 2.2,

$$N \le N_{q^2}(\mathcal{C}_1) + N_{q^2}(\mathcal{C}_2) \le [(q+1)-2]q^2 + 2 = q^3 - (q^2 - 2)$$

Case (b) Let \mathcal{C}' be an irreducible component of \mathcal{C} over the algebraic closure of $\mathrm{GF}(q^2)$. Let $\mathrm{GF}(q^{2t})$ be the minimum defining field of \mathcal{C}' and σ be the Frobenius morphism of $\mathrm{GF}(q^{2t})$ over $\mathrm{GF}(q^2)$. Then

$$C = C' \cup C'^{\sigma} \cup C'^{\sigma^2} \cup \ldots \cup C'^{\sigma^{t-1}}.$$

and the degree of \mathcal{C}' , say e, satisfies q+1=te with e>1. Hence any $\mathrm{GF}(q^2)$ -rational point of \mathcal{C} is contained in $\bigcap_{i=0}^{t-1}\mathcal{C}'^{\sigma^i}$. In particular, $N\leq e^2\leq (\frac{q+1}{2})^2$ by Bezout's Theorem and $(\frac{q+1}{2})^2< q^3-(q^2-2)$.

Case (c) Let C be an absolutely irreducible curve over $GF(q^2)$ of degree q+1. Either C has a singular point or not.

In general, an absolutely irreducible plane curve $\mathcal M$ over $\mathrm{GF}(q^2)$ is q^2 -Frobenius non-classical if for a general point $P(x_0,x_1,x_2)$ of $\mathcal M$ the point $P^{q^2}=P^{q^2}(x_0^{q^2},x_1^{q^2},x_2^{q^2})$ is

on the tangent line to \mathcal{M} at the point P. Otherwise, the curve \mathcal{M} is said to be Frobenius classical. A lower bound of the number of $\mathrm{GF}(q^2)$ -points for q^2 -Frobenius non-classical curves is given by [4, Corollary 1.4]: for a q^2 -Frobenius non-classical curve \mathcal{C}' of degree d, we have $N_{q^2}(\mathcal{C}') \geq d(q^2-d+2)$. In particular, if d=q+1, the lower bound is just q^3+1 .

Going back to our original curve \mathcal{C} , we know that \mathcal{C} is Frobenius classical because $N < q^3 + 1$. Let F(x,y,z) = 0 be an equation of \mathcal{C} over $\mathrm{GF}(q^2)$. We consider the curve \mathcal{D} defined by $\frac{\partial F}{\partial x} x^{q^2} + \frac{\partial F}{\partial y} y^{q^2} + \frac{\partial F}{\partial z} z^{q^2} = 0$. Then \mathcal{C} is not a component of \mathcal{D} because \mathcal{C} is Frobenius classical. Furthermore, any $\mathrm{GF}(q^2)$ -point P lies on $\mathcal{C} \cap \mathcal{D}$ and the intersection multiplicity of \mathcal{C} and \mathcal{D} at P is at least 2 by Euler's theorem for homogeneous polynomials. Hence by Bézout's theorem, $2N \leq (q+1)(q^2+q)$. Hence

$$N \le \frac{1}{2}q(q+1)^2.$$

This argument is due to Stöhr and Voloch [18, Theorem 1.1]. This Stöhr and Voloch's bound is lower than the estimate for N in case (a) for q>4 and it is the same for q=4. When q=3 the bound in case (a) is smaller than the Stöhr and Voloch's bound.

Finally, we consider the case q=2. Under this assumption, $\mathcal C$ is a cubic curve and neither case (a) nor case (b) might occur. For a degree 3 curve over $\mathrm{GF}(q^2)$ the Stöhr and Voloch's bound is loose, thus we need to change our argument. If $\mathcal C$ has a singular point, then $\mathcal C$ is a rational curve with a unique singular point. Since the degree of $\mathcal C$ is 3, singular points are either cusps or ordinary double points. Hence $N \in \{4,5,6\}$. If $\mathcal C$ is nonsingular, then it is an elliptic curve and, by the Hasse-Weil bound, see [19], $N \in I$ where $I = \{1,2,\ldots,9\}$ and for each number N belonging to I there is an elliptic curve over $\mathrm{GF}(4)$ with N points, from [14, Theorem 4.2]. This completes the proof.

Henceforth, we shall always suppose q > 2 and we denote by S an algebraic hypersurface of $PG(6, q^2)$ satisfying the following hypotheses of Theorem 1.1:

(S1) S is an algebraic hypersurface of degree q+1 defined over $\mathrm{GF}(q^2)$;

(S2)
$$|\mathcal{S}| = q^{11} + q^9 + q^7 + q^4 + q^2 + 1;$$

- (S3) S does not contain projective 3-spaces (solids);
- (S4) there exists a solid Σ_3 such that $|S \cap \Sigma_3| = q^4 + q^2 + 1$.

We first consider the behavior of S with respect to the lines.

Lemma 3.2. An algebraic hypersurface \mathcal{T} of degree q+1 in $\mathrm{PG}(r,q^2)$, $q\neq 2$, with $|\mathcal{T}|=|\mathcal{H}(r,q^2)|$ is a blocking set with respect to lines of $\mathrm{PG}(r,q^2)$

Proof. Suppose on the contrary that there is a line ℓ of $\operatorname{PG}(r,q^2)$ which is disjoint from $\mathcal T$. Let α be a plane containing ℓ . The algebraic plane curve $\mathcal C=\alpha\cap\mathcal T$ of degree q+1 cannot have $\operatorname{GF}(q^2)$ -linear components and hence it has at most q^3+1 points because of Lemma 2.2. If $\mathcal C$ had q^3+1 rational points, then from Lemma 2.4, $\mathcal C$ would be a Hermitian curve with an external line, a contradiction since Hermitian curves are blocking sets. Thus $N_{q^2}(\mathcal C) \leq q^3$. Since q>2, by Lemma 3.1, $N_{q^2}(\mathcal C) < q^3-1$ and hence every plane through r meets $\mathcal T$ in at most q^3-1 rational points. Consequently, by considering all planes through r, we can bound the number of rational points of $\mathcal T$ by $N_{q^2}(\mathcal T) \leq (q^3-1)^{\frac{q^{2r-4}-1}{q^2-1}}=$

 $q^{2r-3}+\cdots<|\mathcal{H}(r,q^2)|$, which is a contradiction. Therefore there are no external lines to \mathcal{T} and so \mathcal{T} is a blocking set w.r.t. lines of $\mathrm{PG}(r,q^2)$.

Remark 3.3. The proof of [3, Lemma 3.1] would work perfectly well here under the assumption q > 3. The alternative argument of Lemma 3.2 is simpler and also holds for q = 3.

By the previous Lemma and assumptions (S1) and (S2), $\mathcal S$ is a blocking set for the lines of $\operatorname{PG}(6,q^2)$ In particular, the intersection of $\mathcal S$ with any 3-dimensional subspace Σ of $\operatorname{PG}(6,q^2)$ is also a blocking set with respect to lines of Σ and hence it contains at least q^4+q^2+1 GF (q^2) -rational points; see [5].

Lemma 3.4. Let Σ_3 be a solid of $PG(6, q^2)$ satisfying condition (S4), that is Σ_3 meets S in exactly $q^4 + q^2 + 1$ points. Then, $\Pi := S \cap \Sigma_3$ is a plane.

Proof. $S \cap \Sigma_3$ must be a blocking set for the lines of $PG(3, q^2)$; also it has size $q^4 + q^2 + 1$. It follows from [5] that $\Pi := S \cap \Sigma_3$ is a plane.

Lemma 3.5. Let Σ_3 be a solid of satisfying condition (S4). Then, any 4-dimensional projective space Σ_4 through Σ_3 meets S in a Hermitian cone with vertex a line and basis a Hermitian curve.

Proof. Consider all of the $q^6 + q^4 + q^2 + 1$ subspaces $\overline{\Sigma}_3$ of dimension 3 in $PG(6, q^2)$ containing $\Pi = \mathcal{S} \cap \Sigma_3$.

From Lemma 2.3 and condition (S3) we have $|\overline{\Sigma}_3 \cap \mathcal{S}| \leq q^5 + q^4 + q^2 + 1$. Hence,

$$|\mathcal{S}| = (q^7 + 1)(q^4 + q^2 + 1) \le (q^6 + q^4 + q^2)q^5 + q^4 + q^2 + 1 = |\mathcal{S}|.$$

Consequently, $|\overline{\Sigma}_3 \cap \mathcal{S}| = q^5 + q^4 + q^2 + 1$ for all $\overline{\Sigma}_3 \neq \Sigma_3$ such that $\Pi \subset \overline{\Sigma}_3$.

Let $C:=\Sigma_4\cap\mathcal{S}$. Counting the number of rational points of C by considering the intersections with the q^2+1 subspaces Σ_3' of dimension 3 in Σ_4 containing the plane Π we get

$$|C| = q^2 \cdot q^5 + q^4 + q^2 + 1 = q^7 + q^4 + q^2 + 1.$$

In particular, $C \cap \Sigma_3'$ is a maximal surface of degree q+1; so it must split in q+1 distinct planes through a line of Π ; see [17]. So C consists of q^3+1 distinct planes belonging to distinct q^2 pencils, all containing Π ; denote by $\mathcal L$ the family of these planes. Also for each $\Sigma_3' \neq \Sigma_3$, there is a line ℓ' such that all the planes of $\mathcal L$ in Σ_3' pass through ℓ' . It is now straightforward to see that any line contained in C must necessarily belong to one of the planes of $\mathcal L$ and no plane not in $\mathcal L$ is contained in C.

In order to get the result it is now enough to show that a line of Σ_4 meets C in either 1, q+1 or q^2+1 points. To this purpose, let ℓ be a line of Σ_4 and suppose $\ell \not\subseteq C$. Then, by Bezout's theorem,

$$1 \leq |\ell \cap C| \leq q+1.$$

Assume $|\ell \cap C| > 1$. Then we can distinguish two cases:

1. $\ell \cap \Pi \neq \emptyset$. If ℓ and Π are incident, then we can consider the 3-dimensional subspace $\Sigma_3' := \langle \ell, \Pi \rangle$. Then ℓ must meet each plane of $\mathcal L$ in Σ_3' in different points (otherwise ℓ passes through the intersection of these planes and then $|\ell \cap C| = 1$). As there are q+1 planes of $\mathcal L$ in Σ_3' , we have $|\ell \cap C| = q+1$.

2. $\ell \cap \Pi = \emptyset$. Consider the plane Λ generated by a point $P \in \Pi$ and ℓ . Clearly $\Lambda \not\in \mathcal{L}$. The curve $\Lambda \cap S$ has degree q+1 by construction, does not contain lines (for otherwise $\Lambda \in \mathcal{L}$) and has q^3+1 GF (q^2) -rational points (by a counting argument). So from Lemma 2.4 it is a Hermitian curve . It follows that ℓ is a q+1 secant.

We can now apply Lemma 2.6 to see that C is a Hermitian cone with vertex a line. \Box

Lemma 3.6. Let Σ_3 be a space satisfying condition (S4) and take Σ_5 to be a 5-dimensional projective space with $\Sigma_3 \subseteq \Sigma_5$. Then $S \cap \Sigma_5$ is a Hermitian cone with vertex a point and basis a Hermitian hypersurface $\mathcal{H}(4, q^2)$.

Proof. Let

$$\Sigma_4 := \Sigma_4^1, \Sigma_4^2, \dots, \Sigma_4^{q^2+1}$$

be the 4-spaces through Σ_3 contained in Σ_5 . Put $C_i:=\Sigma_4^i\cap\mathcal{S}$, for all $i\in\{1,\ldots,q^2+1\}$ and $\Pi=\Sigma_3\cap C_1$. From Lemma 3.5 C_i is a Hermitian cone with vertex a line, say ℓ_i . Furthermore $\Pi\subseteq\Sigma_3\subseteq\Sigma_4^i$ where Π is a plane. Choose a plane $\Pi'\subseteq\Sigma_4^1$ such that $m:=\Pi'\cap C_1$ is a line m incident with Π but not contained in it. Let $P_1:=m\cap\Pi$. It is straightforward to see that in Σ_4^1 there are exactly 1 plane through m which is a (q^4+q^2+1) -secant, q^4 planes which are (q^3+q^2+1) -secant and q^2 planes which are (q^2+1) -secant. Also P_1 belongs to the line ℓ_1 . There are now two cases to consider:

(a) There is a plane $\Pi'' \neq \Pi'$ not contained in Σ_4^i for all $i = 1, \ldots, q^2 + 1$ with $m \subseteq \Pi'' \subseteq S \cap \Sigma_5$.

We first show that the vertices of the cones C_i are all concurrent. Consider $m_i := \Pi'' \cap \Sigma_4^i$. Then $\{m_i : i = 1, \ldots, q^2 + 1\}$ consists of $q^2 + 1$ lines (including m) all through P_1 . Observe that for all i, the line m_i meets the vertex ℓ_i of the cone C_i in $P_i \in \Pi$. This forces $P_1 = P_2 = \cdots = P_{q^2 + 1}$. So $P_1 \in \ell_1, \ldots, \ell_{q^2 + 1}$.

Now let $\overline{\Sigma}_4$ be a 4-dimensional space in Σ_5 with $P_1 \not\in \overline{\Sigma}_4$; in particular $\Pi \not\subseteq \overline{\Sigma}_4$. Put also $\overline{\Sigma}_3 := \Sigma_4^1 \cap \overline{\Sigma}_4$. Clearly, $r := \overline{\Sigma}_3 \cap \Pi$ is a line and $P_1 \not\in r$. So $\overline{\Sigma}_3 \cap \mathcal{S}$ cannot be the union of q+1 planes, since if this were to be the case, these planes would have to pass through the vertex ℓ_1 . It follows that $\overline{\Sigma}_3 \cap \mathcal{S}$ must be a Hermitian cone with vertex a point and basis a Hermitian curve. Let $\mathcal{W} := \overline{\Sigma}_4 \cap \mathcal{S}$. The intersection $\mathcal{W} \cap \Sigma_4^i$, as i varies, is a Hermitian cone with basis a Hermitian curve, so, the points of \mathcal{W} are

$$|\mathcal{W}| = (q^2 + 1)q^5 + q^2 + 1 = (q^2 + 1)(q^5 + 1);$$

in particular, $\mathcal W$ is a hypersurface of $\overline{\Sigma}_4$ of degree q+1 such that there exists a plane of $\overline{\Sigma}_4$ meeting $\mathcal W$ in just one line (such planes exist in $\overline{\Sigma}_3$). Also suppose $\mathcal W$ to contain planes and let $\Pi'''\subseteq \mathcal W$ be such a plane. Since $\Sigma_4^i\cap \mathcal W$ does not contain planes, all Σ_4^i meet Π''' in a line t_i . Also Π''' must be contained in $\bigcup_{i=1}^{q^2+1} t_i$. This implies that the set $\{t_i\}_{i=1,\dots,q^2+1}$ consists of q^2+1 lines through a point $P\in \Pi\setminus\{P_1\}$.

Furthermore each line t_i passing through P must meet the radical line ℓ_i of the Hermitian cone $S \cap \Sigma_4^i$ and this forces P to coincide with P_1 , a contradiction. It follows that W does not contain planes.

So by the characterization of $\mathcal{H}(4,q^2)$ of [3] we have that \mathcal{W} is a Hermitian variety $\mathcal{H}(4,q^2)$.

We also have that $|\mathcal{S} \cap \Sigma_5| = |P_1 \mathcal{H}(4, q^2)|$. Let now r be any line of $\mathcal{H}(4, q^2) = \mathcal{S} \cap \overline{\Sigma}_4$ and let Θ be the plane $\langle r, P_1 \rangle$. The plane Θ meets Σ_4^i in a line $q_i \subseteq \mathcal{S}$ for each $i=1,\ldots,q^2+1$ and these lines are concurrent in P_1 . It follows that all the points of Θ are in S. This completes the proof for the current case and shows that $\mathcal{S} \cap \Sigma_5$ is a Hermitian cone $P_1 \mathcal{H}(4,q^2)$.

(b) All planes Π'' with $m\subseteq\Pi''\subseteq\mathcal{S}\cap\Sigma_5$ are contained in Σ_4^i for some $i=1,\ldots,q^2+1$. We claim that this case cannot happen. We can suppose without loss of generality $m\cap\ell_1=P_1$ and $P_1\not\in\ell_i$ for all $i=2,\ldots,q^2+1$. Since the intersection of the subspaces Σ_4^i is Σ_3 , there is exactly one plane through m in Σ_5 which is (q^4+q^2+1) -secant, namely the plane $\langle\ell_1,m\rangle$. Furthermore, in Σ_4^1 there are q^4 planes through m which are (q^3+q^2+1) -secant and q^2 planes which are (q^2+1) -secant. We can provide an upper bound to the points of $\mathcal{S}\cap\Sigma_5$ by counting the number of points of $\mathcal{S}\cap\Sigma_5$ on planes in Σ_5 through m and observing that a plane through m not in Σ_5 and not contained in \mathcal{S} has at most q^3+q^2+1 points in common with $\mathcal{S}\cap\Sigma_5$. So

$$|S \cap \Sigma_5| \le q^6 \cdot q^3 + q^7 + q^4 + q^2 + 1.$$

As $|S \cap \Sigma_5| = q^9 + q^7 + q^4 + q^2 + 1$, all planes through m which are neither $(q^4 + q^2 + 1)$ -secant nor $(q^2 + 1)$ -secant are $(q^3 + q^2 + 1)$ -secant. That is to say that all of these planes meet S in a curve of degree q + 1 which must split into q + 1 lines through a point because of Lemma 2.1.

Take now $P_2 \in \Sigma_4^2 \cap \mathcal{S}$ and consider the plane $\Xi := \langle m, P_2 \rangle$. The line $\langle P_1, P_2 \rangle$ is contained in Σ_4^2 ; so it must be a (q+1)-secant, as it does not meet the vertex line ℓ_2 of C_2 in Σ_4^2 . Now, Ξ meets every of Σ_4^i for $i=2,\ldots,q^2+1$ in a line through P_1 which is either a 1-secant or a q+1-secant; so

$$|S \cap \Xi| \le q^2(q) + q^2 + 1 = q^3 + q^2 + 1.$$

It follows that $|S \cap \Xi| = q^3 + q^2 + 1$ and $S \cap \Xi$ is a set of q+1 lines all through the point P_1 . This contradicts our previous construction.

Lemma 3.7. Every hyperplane of $PG(6, q^2)$ meets S either in a non-singular Hermitian variety $\mathcal{H}(5, q^2)$ or in a cone with vertex a point over a Hermitian hypersurface $\mathcal{H}(4, q^2)$.

Proof. Let Σ_3 be a solid satisfying condition (S4). Denote by Λ a hyperplane of $PG(6, q^2)$. If Λ contains Σ_3 then, from Lemma 3.6 it follows that $\Lambda \cap \mathcal{S}$ is a Hermitian cone $P\mathcal{H}(4, q^2)$.

Now assume that Λ does not contain Σ_3 . Denote by S_5^j , with $j=1,\ldots,q^2+1$ the q^2+1 hyperplanes through Σ_4^1 , where as before, Σ_4^1 is a 4-space containing Σ_3 . By Lemma 3.6 again we get that $S_5^j \cap \mathcal{S} = P^j \mathcal{H}(4,q^2)$. We count the number of rational points of $\Lambda \cap \mathcal{S}$ by studying the intersections of $S_5^j \cap \mathcal{S}$ with Λ for all $j \in \{1,\ldots,q^2+1\}$. Setting $\mathcal{W}_j := S_5^j \cap \mathcal{S} \cap \Lambda$, $\Omega := \Sigma_4^1 \cap \mathcal{S} \cap \Lambda$ then

$$|\mathcal{S} \cap \Lambda| = \sum_{j} |\mathcal{W}_{j} \setminus \Omega| + |\Omega|.$$

If Π is a plane of Λ then Ω consists of q+1 planes of a pencil. Otherwise let m be the line in which Λ meets the plane Π . Then Ω is either a Hermitian cone $P_0\mathcal{H}(2,q^2)$, or q+1

planes of a pencil, according as the vertex $P^j \in \Pi$ is an external point with respect to m or not.

In the former case \mathcal{W}_j is a non singular Hermitian variety $\mathcal{H}(4,q^2)$ and thus $|\mathcal{S} \cap \Lambda| = (q^2+1)(q^7)+q^5+q^2+1=q^9+q^7+q^5+q^2+1$.

In the case in which Ω consists of q+1 planes of a pencil then W_j is either a $P_0\mathcal{H}(3,q^2)$ or a Hermitian cone with vertex a line ℓ and basis a Hermitian curve $\mathcal{H}(2,q^2)$.

If there is at least one index j such that $W_j = \ell \mathcal{H}(2, q^2)$, then there must be a 3-dimensional space Σ_3' of $S_5^j \cap \Lambda$ meeting S in a generator. Hence, from Lemma 3.6 we get that $S \cap \Lambda$ is a Hermitian cone $P'\mathcal{H}(4, q^2)$.

Assume that for all $j \in \{1, \dots, q^2 + 1\}$, W_j is a $P_0\mathcal{H}(3, q^2)$. In this case

$$|\mathcal{S} \cap \Lambda| = (q^2 + 1)q^7 + (q + 1)q^4 + q^2 + 1 = q^9 + q^7 + q^5 + q^4 + q^2 + 1 = |\mathcal{H}(5, q^2)|.$$

We are going to prove that the intersection numbers of S with hyperplanes are only two that is $q^9 + q^7 + q^5 + q^4 + q^2 + 1$ or $q^9 + q^7 + q^4 + q^2 + 1$.

Denote by x_i the number of hyperplanes meeting S in i rational points with $i \in \{q^9 + q^7 + q^4 + q^2 + 1, q^9 + q^7 + q^5 + q^2 + 1, q^9 + q^7 + q^5 + q^4 + q^2 + 1\}$. Double counting arguments give the following equations for the integers x_i :

$$\begin{cases}
\sum_{i} x_{i} = q^{12} + q^{10} + q^{8} + q^{6} + q^{4} + q^{2} + 1 \\
\sum_{i} i x_{i} = |\mathcal{S}|(q^{10} + q^{8} + q^{6} + q^{4} + q^{2} + 1) \\
\sum_{i=1} i (i-1)x_{i} = |\mathcal{S}|(|\mathcal{S}| - 1)(q^{8} + q^{6} + q^{4} + q^{2} + 1).
\end{cases} (3.2)$$

Solving (3.2) we obtain $x_{q^9+q^7+q^5+q^2+1}=0$. In the case in which $|\mathcal{S}\cap\Lambda|=|\mathcal{H}(5,q^2)|$, since $\mathcal{S}\cap\Lambda$ is an algebraic hypersurface of degree q+1 not containing 3-spaces, from [19, Theorem 4.1] we get that $\mathcal{S}\cap\Lambda$ is a Hermitian variety $\mathcal{H}(5,q^2)$ and this completes the proof.

Proof of Theorem 1.1. The first part of Theorem 1.1 follows from Lemma 3.4. From Lemma 3.7, $\mathcal S$ has the same intersection numbers with respect to hyperplanes and 4-spaces as a non-singular Hermitian variety of $\mathrm{PG}(6,q^2)$, hence Lemma 2.5 applies and $\mathcal S$ turns out to be a $\mathcal H(6,q^2)$.

Remark 3.8. The characterization of the non-singular Hermitian variety $\mathcal{H}(4,q^2)$ given in [3] is based on the property that a given hypersurface is a blocking set with respect to lines of $PG(4,q^2)$, see [3, Lemma 3.1]. This lemma holds when q>3. Since Lemma 3.2 extends the same property to the case q=3 it follows that the result stated in [3] is also valid in $PG(4,3^2)$.

4 Conjecture

We propose a conjecture for the general 2n-dimensional case.

Let S be a hypersurface of $PG(2d, q^2)$, q > 2, defined over $GF(q^2)$, not containing d-dimensional projective subspaces. If the degree of S is q+1 and the number of its rational points is $|\mathcal{H}(2d, q^2)|$, then every d-dimensional subspace of $PG(2d, q^2)$ meets S in at least $\theta_{q^2}(d-1) := (q^{2d-2}-1)/(q^2-1)$ rational points. If there is at least a d-dimensional

subspace Σ_d such that $|\Sigma_d \cap \mathcal{S}| = |PG(d-1, q^2)|$, then \mathcal{S} is a non-singular Hermitian variety of $PG(2d, q^2)$.

Lemma 3.1 and Lemma 3.2 can be a starting point for the proof of this conjecture since from them we get that S is a blocking set with respect to lines of $PG(2d, q^2)$.

ORCID iDs

Angela Aguglia https://orcid.org/0000-0001-6854-8679 Luca Giuzzi https://orcid.org/0000-0003-3975-7281 Masaaki Homma https://orcid.org/0000-0003-4568-6408

References

- [1] A. Aguglia, Quasi-Hermitian varieties in $PG(r, q^2)$, q even, Contrib. Discrete Math. 8 (2013), 31–37.
- [2] A. Aguglia, A. Cossidente and G. Korchmáros, On quasi-Hermitian varieties, *J. Combin. Des.* 20 (2012), 433–447, doi:10.1002/jcd.21317.
- [3] A. Aguglia and F. Pavese, On non-singular Hermitian varieties of $PG(4, q^2)$, *Discrete Math.* **343** (2020), 111634, 5, doi:10.1016/j.disc.2019.111634.
- [4] H. Borges and M. Homma, Points on singular Frobenius nonclassical curves, *Bull. Braz. Math. Soc.* (*N.S.*) **48** (2017), 93–101, doi:10.1007/s00574-016-0008-6.
- [5] R. C. Bose and R. C. Burton, A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes, *J. Combinatorial Theory* 1 (1966), 96–104.
- [6] R. C. Bose and I. M. Chakravarti, Hermitian varieties in a finite projective space $PG(N, q^2)$, *Canadian J. Math.* **18** (1966), 1161–1182, doi:10.4153/CJM-1966-116-0.
- [7] S. De Winter and J. Schillewaert, Characterizations of finite classical polar spaces by intersection numbers with hyperplanes and spaces of codimension 2, *Combinatorica* 30 (2010), 25–45, doi:10.1007/s00493-010-2441-2.
- [8] J. W. P. Hirschfeld, L. Storme, J. A. Thas and J. F. Voloch, A characterization of Hermitian curves, J. Geom. 41 (1991), 72–78, doi:10.1007/BF01258509.
- [9] J. W. P. Hirschfeld and J. A. Thas, *General Galois geometries*, Springer Monographs in Mathematics, Springer, London, 2016, doi:10.1007/978-1-4471-6790-7.
- [10] M. Homma and S. J. Kim, Around Sziklai's conjecture on the number of points of a plane curve over a finite field, *Finite Fields Appl.* 15 (2009), 468–474, doi:10.1016/j.ffa.2009.02.008.
- [11] M. Homma and S. J. Kim, An elementary bound for the number of points of a hypersurface over a finite field, *Finite Fields Appl.* **20** (2013), 76–83, doi:10.1016/j.ffa.2012.11.002.
- [12] M. Homma and S. J. Kim, The characterization of Hermitian surfaces by the number of points, J. Geom. 107 (2016), 509–521, doi:10.1007/s00022-015-0283-1.
- [13] M. Homma and S. J. Kim, Number of points of a nonsingular hypersurface in an odd-dimensional projective space, *Finite Fields Appl.* 48 (2017), 395–419, doi:10.1016/j.ffa.2017. 08.011.
- [14] R. Schoof, Nonsingular plane cubic curves over finite fields, J. Combin. Theory Ser. A 46 (1987), 183–211, doi:10.1016/0097-3165(87)90003-3.
- [15] B. Segre, Le geometrie di Galois, Ann. Mat. Pura Appl. (4) 48 (1959), 1–96, doi:10.1007/ BF02410658.

- [16] B. Segre, Forme e geometrie hermitiane, con particolare riguardo al caso finito, *Ann. Mat. Pura Appl.* (4) **70** (1965), 1–201, doi:10.1007/BF02410088.
- [17] J.-P. Serre, Lettre à M. Tsfasman, Astérisque (1991), 11, 351–353 (1992), journées Arithmétiques, 1989 (Luminy, 1989).
- [18] K.-O. Stöhr and J. F. Voloch, Weierstrass points and curves over finite fields, *Proc. London Math. Soc.* (3) 52 (1986), 1–19, doi:10.1112/plms/s3-52.1.1.
- [19] A. Weil, Sur les courbes algébriques et les variétés qui s'en déduisent, volume 7 of Publ. Inst. Math. Univ. Strasbourg, Hermann et Cie., Paris, 1948.