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Abstract

Omega polynomial was proposed by Diudea (Omega Polynomial, Carpath. J. Math., 2006, 22, 43—47) to count the op-
posite topologically parallel edges in graphs, particularly to describe the polyhedral nanostructures. In this paper, the
main definitions are re-analyzed and clear relations with other three related polynomials are established. These relations
are supported by close formulas and appropriate examples.
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1. Introduction

Recently several graph polynomials were introdu-
ced in mathematical chemistry to give further insights in-
to the structure and properties of chemical graphs. In par-
ticular, the first derivative of such polynomials computed
at a given value returns a corresponding topological index
of interest.

A graph polynomial, also called a counting polyno-
mial, can be written as

P(G,x) = X,m(G,k) - x*, with the exponents showing
the extent of partitions p(G), U p(G) = P(G) of a graph
property P(G) while the coefficients m(G,k) are related to
the number of partitions of extent k.

Counting polynomials have been introduced, in the
Mathematical Chemistry literature, by Hosoya,'*to count
independent edge sets (the Z-polynomial) and the distan-
ces in the graph (the Wiener polynomial, latter called the
Hosoya polynomial and denoted H(G,x).>* The same aut-
hor also proposed the sextet polynomial®® to count the re-
sonant rings in a benzenoid molecule. Other counting
polynomials are the independence polynomial,”” domi-
no,'" star,"" and clique'? polynomials. More about polyno-
mials the reader can find in ref ."*

Some distance-related properties can be expressed

in polynomial form, with coefficients calculable from the
layer and shell matrices.'*'” These matrices are built up
according to the vertex distance partitions of a graph, as
provided by the TOPOCLUJ software package.'® The
most important, in this respect, is the evaluation of the
coefficients of Hosoya H(G,x) polynomial from the layer
of counting (LC) matrix. The aim of this paper is to give a
unified approach to these polynomials and invariants and
to give links to the existing concepts in pure mathematics.

2. Relation co and Its Relatives

Let G=(V(G),E(G)) be a connected graph, with the
vertex set V(G) and edge set E(G). Two edges e = uv and f
= xy of G are called codistant (briefly: e co f) if the nota-
tion can be selected such that'”

dv,x)=d(v,y)+1=du,x)+1=d(u,y), (1)

where d is the usual shortest-path distance function.
Cleary, relation co is reflexive, that is, e co e holds for any
edge e of G. Relation co is also symmetric: if e co f then
also f co e. On the other hand, co is in general non-transi-
tive, a small example demonstrating this fact is the com-
plete bipartite graph K, , (Figure 3, with only three points
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of degree 2 or with a single bent line inside the square). A
graph is called a co-graph if the relation co is transitive
and thus an equivalence relation. The cubic net in Figure
1, bis a co-graph.

For an edge e € E(G), let C(e): = {fe E(G); fco e}
be the set of edges in G that are codistant to e. For instan-
ce, if e is an arbitrary edge of the complete bipartite graph
K, . then C(e) consists of all the edges that are not adja-
cent to e. The set C(e) is called an orthogonal cut (oc for
short) of G (with respect to e). If G is a co-graph then its
orthogonal cuts C,,C,,...,C, form a partition of E(G):
EG)=C,uCu..uC, CNC,=0,i#].

Let us first turn the attention to bipartite graphs. To
state several characterizations of bipartite co-graphs, furt-
her definitions are needed.

A subgraph H C G is called isometric, if d,(u,v) =
d(u,v), for any (u,v) € H; it is convex if any shortest path
in G between vertices of H belongs to H. The n-cube Q, is
the graph whose vertices are all binary strings of length n,
two strings being adjacent if they differ in exactly one po-
sition.?’ (Note that the distance function in the n-cube is
just the Hamming distance: the distance between two ver-
tices of Q, is equal to the number of positions in which
they differ.) A graph G is called a partial cube if there ex-
ists an integer n such that G is an isometric subgraph of Q.

For any edge ab of a connected graph G let W, de-
note the set of vertices lying closer to a than to b: W, =
{w € V(G)|d(w,a) <d(w,b)}. It follows from the definition
that W, = {w € V(G)|d(w,b) = dw,a) + 1}. We will use
W, also to denote a subgraph induced by these vertices.
Then the sets (and subgraphs) W, are called semicubes of
G. The semicubes W, and W, are opposite semicubes.
Clearly, two opposite semicubes are disjoint. Moreover, a
graph G is bipartite if and only if, for any edge of G, the
opposite semicubes form a partition of V(G).

Finally, let G be a connected graph and e = uv and f
= xy edges of G. Then eOf if d(u,x) + d(vy) # d(u,y) +
d(v,x). Now everything is defined for the following result.

THEOREM 1. The following statements are equivalent
for a bipartite graph G:

(1) G is a co graph;

(ii) G is a partial cube;

(iii) All semicubes of G are convex;

(iv) Relation O is transitive.

Equivalence between (i) and (ii) was observed by
Klavzar,”' equivalence between (ii) and (iii) is due to Djo-
kovi¢ ,** while the equivalence between (ii) and (iv) was
proved by Winkler.”

Let us return to arbitrary (that is, not necessary bi-
partite) connected graphs. Let e = uv and f = xy be two
edges of a connected graph G. Then Djokovi¢** defined
relation ~ on E(G) by setting e ~ fif f joins a vertex in W |
with a vertex in W, For more information on the relation
~see refs.*®

LEMMA 1. In any connected graph, co = ~.

Proof. Let e = uv and f = xy be edges of a connected
graph G. Suppose first e co f, that is, dv,x) = d(vy) + 1 =
d(u,x) + 1 = d(u,y). Since d(x,u) < d(x,v), x € W, and sin-
ce d(y,v) <d(@,v),ye W, _.Thus, e~ f. Suppose e ~ f, with
xe W, andye W, . Thend(x)=dvu) + d(u,x) = d(u,x)
+ 1 and d(u,y) = d(u,v) + d(v,y) = 1 + d(v,y). Since d(u,x) =
d(v,y) we conclude that e co f. Q.E.D.

In general ~ € © and in bipartite graphs ~ = ©. Hence
the above discussion can be briefly summarized as follows:

PROPOSITION 1. Let G be a connected graph; then
co = ~. If G is also bipartite, then co = ~ = 0.

3. Four Counting Polynomials

Relation co is a particular case of the edge equidi-
stance (eqd) relation. The equidistance of two edges e =
uv and f = xy in a connected graph G is described in part
by relation (1), (accounting for topologically parallel
edges), to which the condition for topologically perpen-
dicular edges (in tetrahedron and its extensions) must be
added:

du,x)=du,y)=d(v,x)=d(v,y), for Ledges (2)

Notice that Ashrafi defined the equidistance of ed-
ges by considering the distance from a vertex z to an edge
e = uv as the minimum distance between the given point
and the two endpoints of that edge:***’ d(ze) =
min{d(z,u),d(z,v)}. Then, the edges e = uv and f = xy are
equidistant if

d(x,e)=d(y,e)and d(u, f)=d(v, [) 3)

In tetrahedron and its extensions, relation (3) is still
true but in general it is not.

Recall that a graph is planar if it allows an embed-
ding into the plane such that no two edges cross. A planar
graph together with its fixed embedding into the plane is
called a plane graph. In chemistry, not only the structure
of a chemical graph but also its geometry is important.
Most of the chemical graphs are by their nature planar
(and most often also equipped with an embedding into the
plane). Moreover, the natural embeddings of these graphs
are such that all the inner faces are isometric cycles which
we will assume in the following. Hence the following de-
finitions are relevant in this context.

We say that edges e and f of a plane graph G are in
relation opposite, e op f, if they are opposite edges of an
inner face of G. Then e co f holds by the assumption that
faces are isometric. Notice that the relation co is defined
in the whole graph while op is defined only in faces. We
mention that John et al.'”*® implicitly used the “op” rela-
tion in defining the Cluj-Ilmenau index CI (see below).
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Using the relation op we can partition the edge set of
G into opposite edge strips (ops) for short, as follows.
1. Any two subsequent edges of an ops are in op re-
lation.
2. Any three subsequent edges of such a strip belong
to adjacent faces.
3. An ops starts/ends in either (i) one even face/ring
or (ii) two odd faces/rings; in case (i), the ops is a
cycle while in case (ii) it is a path. In case of open
structures, the open (or infinite) faces are equiva-
lent to the odd faces. There are cases in which the
two odd faces/rings superimpose and ops is a
pseudo cycle, because the op relation is lastly vio-
lated.*¥
The ops is taken as maximum possible, irrespective
of the starting edge. The choice is about the maximum si-
ze of face/ring, and mode of face/ring counting, which
will decide the length of the strip.
Let G be an arbitrary connected graph and s,,5,,...,5,
be the op-strips of G. Then ops form a partition of E(G)
and the Q-polynomial®' of G is defined as

k
Q(G,x) = “)

i=1

Let now the set of edges codistant to edge e of G be
C(e). A ®-polynomial®’ of G, counting the edges equidi-
stant to the all reference edges e, is written as

OG,x)=), , X (5)

cE(G)

Suppose now G is a co-graph; then

k
A [Cle) _ [Cle)
OG.N)=2 " _-Z. Z(,Esfx
=

- k ’
= | Cle) W =3 |,

i=1

(6)

If the polynomial counts the edges non-equidistant
to the all reference edges e, it is called the IT-polynomial®?
and is defined as

k

I1(G,x) = ZUEE(G)“..ﬁ'tf?]|~|f-"(t‘ll a ZI S,- lrlE(G}i—lsxl e

i=1

A fourth polynomial also related to the ops in G, but
counting the non-opposite edges is the Sadhana Sd poly-
nomial* defined as

k
E(G)|-|S;
S4(G,x) =) DSl ®)
i=1
The first derivative (computed at x = 1) of these

counting polynomials give interesting inter-relations and
valuable information on the graph

k

QG =) |S;|=|E@G) ©
i=l
: 2

@G, =Y (IS 1) =0(G) (10)

i=1

k
G, =D IS || E(G) |-, ) =TIG) (1)

i=l
k
Sd'(G,)) =Y (| EG)|-|S;)=Sd(G) (12)
i=l

On Q(G x) an index, called Cluj-Ilmenau' CI(G), is
defined

CI(G) ={[Q(G, D] -[Q(G,)+Q"(G,)]} (13)

The sum of the first derivative (in x = 1) of the poly-
nomials counting equidistant eqd and non-equidistant
neqd edges in G is square of the number of edges in G or

O'(G,)+IT'(G,1) = (Q(G,1))* = (| EG) )" (14)

while the value of these polynomials in x =1 is

O(G,1) =TI(G,1) =Q'(G,1) = E(G) | (15)

The first derivative (in x = 1) of Sadhana polynomi-
al equals the Sadhana index™ and is a multiple of |E(G)|:

k
Sd'(G1) =Y (E@)|-|s; )=
Z] (16)

= E(G)|(|ops(G)|=1)

Since |ops(G)| = Q(G,1) = Sd(G,1), and considering
(9), the relation® of Sadhana index with Omega polyno-
mial, out of the basic definition, is

Sd'(G,1) = Q'(G,1)(QG,1)~1) (17

PROPOSITION 2. In bipartite co-graphs, CI(G) = I1(G).
Proof. By the definition of CI,

Cf(c){ﬂ S, |] —[D S1+2S108, |—n]

: . ) . (18)
HE@F -2 (|S,I) =(G.H=TIG)

Only in bipartite co-graphs, I1(G) equals the value
of PI (Padmakar-Ivan) index,*® proposed by Khadikar to
account for the sum of non-equidistant edges in G. In ge-
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neral, CI(G) #I1(G) # PI(G), because the edge equidistan-
ce eqd relation includes, besides the parallel edges condi-
tion (co and op relations), also the condition for perpendi-
cular edges (tetrahedron condition).

From the above relations (9), (10) and (18), one can
reformulate (11) as

(G = E(G) [ -).(S,]) = )
i=1

={[Q(G,)) -0'(G,1)}

Relation (19) is just the formula proposed by John e?
al.*® to calculate the Khadikar’s PI index.

4. Examples

(a) There exist plane bipartite graphs, which are co-
graphs and for which CI(G) = II(G). It is the case of ace-
nes and phenacenes, which are polyhex molecular structu-
res. For these classes of structures, analytical formulas
were presented in ref.*” Formulas for other classes of
polyhex plane graphs, such as phenylenes, spiranes, pyre-
nes and coronenes were given in ref.?’

(b) There exist planar 3D bipartite graphs, which are
non co-graphs and for which CI(G) # I1(G). An example
is the cage in Figure 1a: the red edges are non-equidistant

a)

Q(G,x) =6x%; CT =1920 (£3)

O(G,x)=24x% +24x'0: ©(G)=432
I1(G,x) =24x"% +24x* ; 11(G)=1872
Sd(G,x)=6x"8 =6x*; Sd(G)=240

to each other although they both belong to the same ops.
Conversely, the pcu cubic lattice in Figure 1b is precisely
a partial cube (also a co-graph) and their ops represent
orthogonal cuts oc; thus CI(G) = T1(G) (shaded values).

To the list of non co-graphs which are 3D bipartite
graphs, we add the toroidal lattices of even faces. Only ex-
ceptional tori show CI(G) = I1(G) values (Table 1).

The tori of entries 1 and 2 of Table 1 are 3D biparti-
te graphs and show CI(G) = I1(G) values, although they
do not follow the relations (6) and (7) for Il(G,x) and
O(G,x).*® The structure in entry 3 is a non-bipartite
graph® as the whole; however, it represents a union of
three strips, each of them being a bipartite, co-graph (Fi-
gure 2). As a consequence, the relations (6) and (7) are
obeyed. Note that, in Ref.’” TI(G,x) was denoted by
NQ(G,x). The polynomial calculations were done by the
software programs developed at TOPO Group Cluj: Ome-
ga Counter® and Nano Studio.*’

(c) In tree graphs, Omega polynomial simply counts
the non-equidistant edges as self-equidistant ones, being
included in the term of exponent s = 1. In such graphs,
CI(G) =TI(G) = (v = 1)(v — 2) (a result known from Kha-
dikar*') and the Omega and Theta polynomials show the
same expression.

(d) Finally, there are graphs with a single ops, which
is precisely a cycle (called a Hamiltonian ops in ref.”).

b)

Q(G,x)=6x"; CI =2430 ; (Rmax[4])
O(G,x)=54x"; O(G)=486
(G, x) = 54x* ; TI(G) = 2430
Sd(G,x) = 6x>*" =6x* ; 8d(G)=270

Figure 1. 3D bipartite graphs; (a) non-co-graph and (b) co-graph (gray marked CI(G) = I(G) values)

Table 1. Polynomials in toroidal structures, for which CI(G) = I1(G).

Torus Q(G,x) CI I1(G,x) I1(G) O(G,x)
1 TH(6,3)[8,12] 12x* + 4x% 18240 96x'2? + 48x'3° 18240 48x® + 96x>
2 TH((4,8)3)[20,8]  10x® + 8x'% + 2x* 52960 80x>'® + 80x%2 + 80x** 52960  80x'® + 80x*° + 80x*
3 TWV3(4,4)[6,10] 10x° + 3x%° 12840 60x'% + 60x'14 12840 60x° + 60x%°
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a)

b)

Figure 2. Twisted torus TWV3[6,10](4,4); non-bipartite (a); union of 3 co-graphs, one of them is shown, alternating white-red colors (b).

For such graphs, one calculates: (G,x) = 1x; CI(G) = §2—
(s +s(s — 1)) = 0. An example is given in Figure 3.

Q(G,x) = x" (all rings)
Q(G,1)=e=2n
Q"(G,1)=2n(2n-1)
CI(G)=0
O(G,x)=2nx"
0'(G,1)=0(G)=2n"
(G, x)=2nx"" =2nx""" = 2nx"
IT'(G,1) =TI(G) = 2»°
Sd(G,x)=x"""=x""" =1
Sd(G)=0
Ex. For n=5, CI, ©®, I1, Sd: 0; 50; 50; 0.

Figure 3. A complete bipartite graph K, ,; n = 8; non-co-graph; Ha-
miltonian ops

5. One More Question

It is natural to ask whether there is a simple crite-
rion/condition to be used in order to decide if a given bi-
partite graph is a co-graph (or a partial cube). More preci-
sely, one would like to have a criterion that can be applied
fast either by hand or by computer. Unfortunately, no such
condition is known and, in fact, such a condition would be
a big breakthrough in the area of metric graph theory. In
the papers,*** two algorithms of the complexity O(mn)

for recognizing co-graphs have been developed, where n
is the order and m the size of a given graph. (Note that in a
co graph, m = O(n log n).) Recently Eppstein,** using so-
me sophisticated computational tricks, reduced the com-
plexity to O(n?) thus removing the factor log n. In some
special cases the complexity can be further reduced, see
ref.* but in general a (close to) linear criterion does not
seem realistic.
sk

Omega polynomial found application in the topolo-
gical description of complex nanostructures showing
polyhedral covering.***® In tubular/toroidal structures this
polynomial accounts for the spirality and ring distribu-
tion.*=! The coefficient of the first power term, called n
has found to have good ability in predicting the heat of
formation and strain energy in small fullerenes or the re-
sonance energy in planar benzenoids.*’*

6. Conclusions.

Omega polynomial was designed to count the oppo-
site topologically parallel edges in graphs, particularly to
describe the polyhedral nanostructures. In four years, 43
papers have been published or sent for publication by
TOPO Group Cluj and further papers by other scientists,
Omega polynomial already getting a scientific success.

In this paper, the main definitions were re-analyzed
and clear relations with other three related polynomials
were established. These relations were supported by close
formulas and appropriate examples.
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Omega polinom je predlagal Diudea (ref.: Omega Polynomial, Carpath. J. Math., 22 43—-47) za $tetje nasprotnih topo-
losko vzporednih povezav v grafih, Se posebej za opis poliedri¢nih nanostruktur. V tem ¢lanku so ponovno analizirane
glavne definicije in vzpostavljene jasne povezave z ostalimi tremi sorodnimi polinomi. Te povezave so podprte z izpe-

ljanimi formulami in ustreznimi primeri.
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