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Abstract

Given m ∈ N, a numerical semigroup with multiplicity m is called a packed numerical
semigroup if its minimal generating set is included in {m,m + 1, . . . , 2m − 1}. In this
work, packed numerical semigroups are used to build the set of numerical semigroups
with a given multiplicity and embedding dimension, and to create a partition of this set.
Wilf’s conjecture is verified in the tree associated to some packed numerical semigroups.
Furthermore, given two positive integers m and e, some algorithms for computing the
minimal Frobenius number and minimal genus of the set of numerical semigroups with
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multiplicity m and embedding dimension e are provided. We also compute the semigroups
where these minimal values are achieved.

Keywords: Embedding dimension, Frobenius number, genus, multiplicity, numerical semigroup.

Math. Subj. Class.: 20M14, 20M05

1 Introduction
Let N = {0, 1, 2, . . .} be the set of non-negative integers. A numerical semigroup is a
subset S of N which is closed under addition, such that 0 ∈ S and N \ S is finite. If S is
a numerical semigroup, we define the multiplicity of S, denoted by m(S), to be the least
positive integer in S, the Frobenius number (F (S)) to be the greatest integer that is not in
S, and the genus, g(S), to be the cardinality of N \ S.

Given a non-empty subsetA of N we denote by 〈A〉 the submonoid of (N,+) generated
by A, that is,

〈A〉 = {λ1a1 + · · ·+ λnan | n ∈ N, a1, . . . , an ∈ A, λ1, . . . , λn ∈ N}.

It is well known (for example, see Lemma 2.1 from [11]) that 〈A〉 is a numerical semigroup
if and only if gcd(A) = 1. If S is a numerical semigroup and S = 〈A〉, we say that A is a
system of generators of S. Moreover, A is a minimal system of generators of S if S 6= 〈B〉
for everyB ( A. In Theorem 2.7 from [11] it is shown that every numerical semigroup has
a unique minimal system of generator and this system is finite. We denote by msg(S) and
e(S) the minimal system of generators of S and its cardinality, also called the embedding
dimension of S.

If m and e are positive integers we use the following notation:

L(m, e) = {S | S is a numerical semigroup, m(S) = m, e(S) = e}.

In this work, one of our aims is to present a procedure that allows us to recursively construct
the set L(m, e).

We say that a numerical semigroup S is a packed numerical semigroup if

msg(S) ⊆ {m(S),m(S) + 1, . . . , 2m(S)− 1}.

The set of all packed numerical semigroups with multiplicity m and embedding dimension
e is denoted by C(m, e).

In Section 2, an equivalence relation R in the set L(m, e) is defined. For each S ∈
L(m, e) we denote by [S], the equivalence class of S. We show that if S ∈ L(m, e) then
[S]∩C(m, e) has cardinality 1, so {[S] | S ∈ C(m, e)} is a partition of L(m, e). Hence, for
computing all the elements of the set L(m, e) it is only necessary to perform the following
steps:

1. Compute C(m, e).

2. For every S ∈ C(m, e) compute [S].
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We see that it is possible to compute C(m, e), since this problem is equivalent to
computing all the subsets A of {1, 2, . . . ,m − 1} such that A has cardinality e − 1 and
gcd(A∪{m}) = 1. For computing [S], we order its elements by making a tree whose root
is S, and describing the children of each of the vertices. In this way, we can recursively
build the elements of [S] by adding in at each step the children of the vertices that were
obtained in the previous step. This procedure is not algorithmic because [S] is infinite so
we can not build it in a finite number of steps.

The Frobenius number and genus have been widely studied (see [7]) and they, together
with the embedding dimension, are the background of one the most important problems
in this theory: Wilf’s conjecture which asserts that if S is a numerical semigroup then
e(S)g(S) ≤ (e(S)− 1)(F (S) + 1) (see [15]). At present, it is still open.

In this work, we show that if we go along through a branch of the tree associated to [S],
the numerical semigroups have a greater Frobenius number and genus. These facts enable
us to give an algorithm for building all the elements of L(m, e) with a fixed Frobenius
number and/or genus. Finally, in order to compute the Frobenius number and the genus
of the numerical semigroups of [S], we give an algorithm based on [3]. We would like to
note that these new algorithms enable us to study the tree of numerical semigroups with
a given multiplicity and embedding dimension and with Frobenius number and/or genus
up to any given bound. In some works, there appear algorithms for the computation of
the tree of numerical semigroups up to a certain genus (see for example [4]). In our work,
there can also be a bound on the Frobenius number. In addition, the computation of the
complete tree of numerical semigroups up to a certain genus is not a practical method to
obtain the numerical semigroups with a fixed multiplicity and embedding dimension, since
it performs unnecessary calculations and does not obtain as large a genus as we can get
with our algorithms. We are also interested in giving algorithms for computing

g(m, e) = min{g(S) | S ∈ L(m, e)},
F (m, e) = min{F (S) | S ∈ L(m, e)},
{S ∈ L(m, e) | g(S) = g(m, e)},

and
{S ∈ L(m, e) | F (S) = F (m, e)}.

These methods are illustrated with several examples. To accomplish this, we have used the
library FrobeniusNumberAndGenus developed by the authors in Mathematica ([16]).
This library is freely available online at [5].

The content of this work is organized as follows. In Section 2, a partition of the set
L(m, e) is studied and we construct a map φ : L(m, e)→ C(m, e) such that [S] ∩ C(m, e)
is equal to {φ(S)} for every S ∈ L(m, e). Theorem 3.3, in Section 3, is used to recur-
sively compute the elements of [S]. In Section 4, we give some algorithms for computing
the elements of [S] with Frobenius number and/or genus less than fixed integer bounds.
In Section 5, we show how the Apéry set of the elements of [S] is used to compute their
Frobenius number and genus. We also check that Wilf’s conjecture is satisfied for some
elements of [S]. Section 6 illustrates the preceding section and Section 7 contains some
known results on Frobenius pseudo-varieties which allow us to construct the tree of all nu-
merical semigroups with any given multiplicity. In Section 8 and Section 9, the minimal
genus and minimal Frobenius number of the set of numerical semigroups with fixed multi-
plicity and embedding dimension are studied, giving some algorithms for computing them
and obtaining the semigroups with these minimal values.
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2 A partition of L(m, e)

If A and B are subsets of N we denote by A+B = {a+ b | a ∈ A and b ∈ B}. It is well
known (for example see Proposition 2.10 from [11]) that if S is a numerical semigroup then
e(S) ≤ m(S). Note that if e(S) = 1 then S = N. Therefore, in the sequel, we assume that
e and m are integers such that 2 ≤ e ≤ m.

Given S ∈ L(m, e) we denote by φ(S) the numerical semigroup generated by {m} +
{x mod m | x ∈ msg(S)}. Clearly, φ(S) is a packed numerical semigroup and therefore
we have the following result.

Lemma 2.1. With the previous assumptions, φ defines a surjective map from L(m, e) to
C(m, e).

We define in L(m, e) the following equivalence relation: S R T if φ(S) = φ(T ).
Given S ∈ L(m, e), [S] denotes the set {T ∈ L(m, e) | S R T}. Therefore, the quotient
set L(m, e)/R = {[S] | S ∈ L(m, e)} is a partition of L(m, e).

Lemma 2.2. If S ∈ L(m, e), then [S] ∩ C(m, e) = {φ(S)}.

Proof. By Lemma 2.1, we know that φ(S) ∈ C(m, e). Moreover, it is clear that φ(φ(S)) =
φ(S). Therefore, S R φ(S) and φ(S) ∈ [S] ∩ C(m, e).

If T ∈ [S] ∩ C(m, e), then φ(T ) = φ(S) and φ(T ) = T , so T = φ(S).

The following result is a consequence of the previous lemmas.

Theorem 2.3. Let m and e be integers such that 2 ≤ e ≤ m. Then {[S] | S ∈ C(m, e)} is
a partition of L(m, e). Moreover, if {S, T} ⊆ C(m, e) and S 6= T then [S] ∩ [T ] = ∅.

Therefore, as a consequence of Theorem 2.3, for computing all the elements of the set
L(m, e) it is only necessary to do the following steps:

1. Compute C(m, e).

2. For every S ∈ C(m, e) compute [S].

C(m, e) is easy to compute using the following result.

Proposition 2.4. Let m and e be integers such that 2 ≤ e ≤ m, and let A be a subset of
{1, . . . ,m− 1} with cardinality e− 1 such that gcd(A ∪ {m}) = 1. Then

S = 〈{m}+ (A ∪ {0})〉 ∈ C(m, e).

Moreover, every element of C(m, e) has this form.

Proof. The set S is a numerical semigroup because

gcd({m}+ (A ∪ {0})) = gcd(A ∪ {m}) = 1.

It is straightforward to prove that msg(S) = {m}+ (A ∪ {0}), so S ∈ C(m, e).
If S ∈ C(m, e) then msg(S) = {m,m + r1, . . . ,m + re−1} with {r1, . . . , re−1} ⊆

{1 . . . ,m− 1}. Moreover, since gcd{m,m+ r1, . . . ,m+ re−1} = 1,

gcd{m, r1, . . . , re−1} = 1.
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We illustrate the content of the previous proposition with an example.

Example 2.5. We are going to compute the set C(6, 3) formed by all the packed numerical
semigroups of multiplicity 6 and embedding dimension 3. For this purpose, and using
Proposition 2.4, it is enough computing the subsets A of {1, 2, 3, 4, 5} of cardinality 2 such
that gcd(A ∪ {6}) = 1. This set is equal to

{{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 5}, {3, 4}, {3, 5}, {4, 5}}.

Therefore,

C(6, 3) = {〈6, 7, 8〉, 〈6, 7, 9〉, 〈6, 7, 10〉, 〈6, 7, 11〉,
〈6, 8, 9〉, 〈6, 8, 11〉, 〈6, 9, 10〉, 〈6, 9, 11〉, 〈6, 10, 11〉}.

Note that ifm is a prime number then every subsetA of {1, . . . ,m−1}with cardinality
e− 1 verifies that gcd(A ∪ {m}) = 1. Therefore, we have the following result.

Proposition 2.6. If m is a prime number and e is an integer number such that 2 ≤ e ≤ m
then C(m, e) has cardinality

(
m−1
e−1
)
.

Our next goal in this work is to show a recursive procedure to compute [S] for every
S ∈ C(m, e). In order to achieve it, in the next section, we set the elements of [S] in a tree.

3 The tree associated to [S]

A graph G is pair (V,E) where V is a set (with elements called vertices) and E is a
subset of {(v, w) ∈ V × V | v 6= w} (with elements called edges). A path which
connects the vertices x and y of G is a sequence of different edges of the form (v0, v1),
(v1, v2), . . . , (vn−1, vn) such that v0 = x and vn = y. A graph G is a tree if there exists a
vertex r (known as the root ofG) such that for any other vertex x ofG there exists a unique
path connecting x and r. If (x, y) is an edge of a tree, we say that x is a child of y.

Lemma 3.1. If {n1 < n2 < · · · < ne} is a minimal system of generators of a numerical
semigroup and ne − n1 > n1 then {n1, . . . , ne−1, ne − n1} is also a minimal system of
generators of a numerical semigroup.

Proof. In other case, there exists k ∈ {1, . . . , e− 1} such that

nk ∈ {ne − n1}+ 〈n1, . . . , nk−1, nk+1, . . . , , ne−1, ne − n1〉.

But it is not possible because ne − n1 + n1 = ne > nk.

Let S be a numerical semigroup. We denote by M(S) the maximum of msg(S). If
S ∈ L(m, e), we define the following sequence of elements of L(m, e):

• S0 = S,

• Sn+1 = 〈(msg(Sn) \ {M(Sn)}) ∪ {M(Sn)−m}〉 if M(Sn)−m > m.

Because of Lemma 3.1, there exists a sequence:

S = S0 ( S1 ( · · · ( Sk = φ(S) ∈ C(m, e).
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Example 3.2. Let S ∈ L(5, 3) be the semigroup minimally generated by {5, 13, 21}. Then,
we have the following sequence of elements of L(5, 3):

S0 = 〈5, 13, 21〉 ( S1 = 〈5, 13, 16〉 ( S2 = 〈5, 11, 13〉
( S3 = 〈5, 8, 11〉 ( S4 = 〈5, 6, 8〉 = φ(S) ∈ C(5, 3).

Let S be in C(m, e). We define the graph G([S]) as follows: [S] is the set of vertices
and (A,B) ∈ [S]× [S] is an edge if msg(B) = (msg(A) \ {M(A)}) ∪ {M(A)−m}.

Theorem 3.3. If S ∈ C(m, e) then G([S]) is a tree with root S. Moreover, if P ∈ [S] and
msg(P ) = {n1 < n2 < · · · < ne} then the children of P in G([S]) are the numerical
semigroups of the form 〈({n1, . . . , ne} \ {nk}) ∪ {nk + n1}〉 such that k ∈ {2, . . . , e},
nk + n1 > ne and nk + n1 /∈ 〈{n1, . . . , ne} \ {nk}〉.

Proof. From the definition and the comment after Lemma 3.1, we have thatG([S]) is a tree
with root S.

Let k be in {2, . . . , e} such that nk + n1 > ne and nk + n1 /∈ 〈{n1, . . . , ne} \ {nk}〉.
If H = 〈({n1, . . . , ne} \ {nk}) ∪ {nk + n1}〉 is clear that

msg(H) = ({n1, . . . , ne} \ {nk}) ∪ {nk + n1} and
msg(P ) = (msg(H) \ {M(H)}) ∪ {M(H)−m}.

Therefore H is a child of P .
Conversely, if H is a child of P then (H,P ) is an edge of G([S]) and we obtain that H

is as the theorem describes.

The previous theorem provides us with a method to recursively build the elements of
[S] as it is shown in the next example.

Example 3.4. Figure 1 shows some levels of the tree G([〈5, 6, 8〉]).

Note that the cardinality of [S] is infinity, so it is impossible to compute all the elements
of [S]. However, in the next section, we show that it is possible to compute all the elements
of [S] with a fixed Frobenius number or genus.

4 Frobenius number and genus
Let P be a numerical semigroup with minimal generating set {n1 < n2 < · · · < ne},
k ∈ {2, . . . , e} and H be the numerical semigroup generated by ({n1, . . . , ne} \ {nk}) ∪
{nk + n1}. Then H ⊂ P , F (P ) ≤ F (H) and g(P ) < g(H). We can formulate the
following result.

Proposition 4.1. If S ∈ C(m, e), P ∈ [S] and (H,P ) is an edge of G([S]) then F (P ) ≤
F (H) and g(P ) < g(H).

As a consequence of the previous proposition, we have that if we go along through the
branches of the tree G([S]), the numerical semigroups that we are finding have greater or
equal Frobenius number, and also a greater genus. This fact enables us to formulate the
Algorithms 1 and 3 in order to compute all the elements in [S] with Frobenius number
less than or equal to a given integer, and genus less than or equal to another given integer,
respectively.
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〈5, 6, 8〉aa==

〈5, 8, 11〉OO 〈5, 6, 13〉

〈5, 11, 13〉aa==

〈5, 13, 16〉aa== 〈5, 11, 18〉OO

〈5, 16, 18〉aa== 〈5, 13, 21〉 〈5, 11, 23〉OO

〈5, 18, 21〉aa== 〈5, 16, 23〉aa 〈5, 11, 28〉

〈5, 21, 23〉aa== 〈5, 18, 26〉aa 〈5, 16, 28〉aa

〈5, 23, 26〉 〈5, 21, 28〉 〈5, 18, 31〉 〈5, 16, 33〉

Figure 1: Seven levels of the tree of the packed numerical semigroup 〈5, 6, 8〉.

Algorithm 1 An algorithm to determinate the elements T ∈ [S] such that F (T ) ≤ F for a
fixed integer F .
INPUT: (S, F ) where S is a packed numerical semigroup and F is a positive integer.
OUTPUT: {T ∈ [S] | F (T ) ≤ F}.

1: if F (S) > F then
2: return ∅
3: while true do
4: A = {S} and B = {S}.
5: C = {H | H is a child of an element of B, F (H) ≤ F}.
6: if C = ∅ then
7: return A
8: A = A ∪ C, B = C.

The following example illustrates how the previous algorithm works.

Example 4.2. We compute all the elements of [〈5, 6, 8〉] with Frobenius number less than
or equal to 25.

• A = {〈5, 6, 8〉}, B = {〈5, 6, 8〉} and C = {〈5, 8, 11〉, 〈5, 6, 13〉}.
• A = {〈5, 6, 8〉, 〈5, 8, 11〉, 〈5, 6, 13〉}, B = {〈5, 8, 11〉, 〈5, 6, 13〉} and
C = {〈5, 11, 13〉}.
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• A = {〈5, 6, 8〉, 〈5, 8, 11〉, 〈5, 6, 13〉, 〈5, 11, 13〉}, B = {〈5, 11, 13〉} and
C = {〈5, 11, 18〉}.

• A = {〈5, 6, 8〉, 〈5, 8, 11〉, 〈5, 6, 13〉, 〈5, 11, 13〉, 〈5, 11, 18〉}, B = {〈5, 11, 18〉} and
C = ∅.

Therefore, the set {T ∈ [〈5, 6, 8〉] | F (T ) ≤ 25} is equal to {〈5, 6, 8〉, 〈5, 8, 11〉, 〈5, 6, 13〉,
〈5, 11, 13〉, 〈5, 11, 18〉}.

The next algorithm allows us to compute all the numerical semigroups with multiplicity
m, embedding dimension e and Frobenius number less than or equal to F . Note that if S is
a numerical semigroup, such that S 6= N then m(S)− 1 /∈ S and then m(S)− 1 ≤ F (S).

Algorithm 2 An algorithm to determinate the numerical semigroups with a fixed embed-
ding dimension and multiplicity, and bounded Frobenius number.
INPUT: m, e, and F positive integers such that 2 ≤ e ≤ m ≤ F + 1.
OUTPUT: {S | S numerical semigroup, m(S) = m, e(S) = e and F (S) ≤ F}.

1: compute C(m, e), using Proposition 2.4.
2: for all S ∈ C(m, e) do
3: compute A(S) = {T ∈ [S] | F (T ) ≤ F}, using Algorithm 1.
4: return ∪S∈C(m,e)A(S).

Now, we change Frobenius number by the genus in Algorithm 1 and Algorithm 2.

Algorithm 3 An algorithm to determinate the elements T ∈ [S] such that g(T ) ≤ g for a
fixed integer g.
INPUT: (S, g) where S is a packed numerical semigroup and g is a positive integer.
OUTPUT: {T ∈ [S] | g(T ) ≤ g}.

1: if g(S) > g then
2: return ∅
3: A = {S} and B = {S}.
4: while true do
5: C = {H | H is a child of an element of B, g(H) ≤ g}.
6: if C = ∅ then
7: return A
8: A = A ∪ C, B = C.

We illustrate now the above algorithm.

Example 4.3. We compute all the elements of [〈5, 6, 8〉] with genus less than or equal
to 15.

• A = {〈5, 6, 8〉}, B = {〈5, 6, 8〉} and C = {〈5, 8, 11〉, 〈5, 6, 13〉}.
• A = {〈5, 6, 8〉, 〈5, 8, 11〉, 〈5, 6, 13〉}, B = {〈5, 8, 11〉, 〈5, 6, 13〉} and
C = {〈5, 11, 13〉}.
• A = {〈5, 6, 8〉, 〈5, 8, 11〉, 〈5, 6, 13〉, 〈5, 11, 13〉}, B = {〈5, 11, 13〉} and
C = {〈5, 11, 18〉}.
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• A = {〈5, 6, 8〉, 〈5, 8, 11〉, 〈5, 6, 13〉, 〈5, 11, 13〉, 〈5, 11, 18〉}, B = {〈5, 11, 18〉} and
C = ∅.

Algorithm 3 returns {〈5, 6, 8〉, 〈5, 8, 11〉, 〈5, 6, 13〉, 〈5, 11, 13〉, 〈5, 11, 18〉}.

Note that if S is a numerical semigroup such that S 6= N then {1, . . . ,m(S) − 1} ⊆
N \ S and then m(S)− 1 ≤ g(S).

Combining the above results, we obtain Algorithm 4.

Algorithm 4 An algorithm to compute numerical semigroups with fixed multiplicity, em-
bedding dimension and bounded genus.
INPUT: m, e, and g positive integers such that 2 ≤ e ≤ m ≤ g + 1.
OUTPUT: {S | S numerical semigroup, m(S) = m, e(S) = e and g(S) ≤ g}.

1: compute C(m, e), using Proposition 2.4.
2: for all S ∈ C(m, e) do
3: compute A(S) = {T ∈ [S] | g(T ) ≤ g}, using Algorithm 3.
4: return ∪S∈C(m,e)A(S).

Note that applying Algorithms 1 and 2 we have to compute the Frobenius number and
the genus, respectively, of the numerical semigroups we recursively obtain when we build
[S]. Results of the next section enable us to easily compute the Frobenius number and the
genus of every semigroup of [S].

5 The Apéry set of the elements of [S]
Let S be a numerical semigroup and n ∈ S \ {0}. The Apéry set (named by [1]) of n in
S is Ap(S, n) = {s ∈ S | s − n /∈ S}. The next result is a consequence of Lemma 2.4
from [11].

Lemma 5.1. Let S be a numerical semigroup and n ∈ S \ {0}. Then Ap(S, n) has
cardinality n. Moreover, Ap(S, n) = {w(0) = 0, w(1), . . . , w(n − 1)} where w(i) is the
least element in S congruent with i modulo n.

The set Ap(S, n) gives us a lot of information of S. The following result is found
in [13].

Lemma 5.2. Let S be a numerical semigroup and n ∈ S \ {0}. Then:

• F (S) = max(Ap(S, n))− n.

• g(S) = 1
n (
∑

w∈Ap(S,n) w)− n−1
2 .

The following result is a consequence of Lemma 5.1.

Lemma 5.3. Let S be a numerical semigroup with minimal system of generators {n1, n2,
. . . , ne} and Ap(S, n1) = {0, w(1), . . . , w(n1 − 1)}. Then

w(i) = min{a2n2 + · · ·+ aene | (a2, . . . , ae) ∈ Ne−1 and

a2n2 + · · ·+ aene ≡ i (mod n1)}.
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Note that the set {(a2, . . . , ae) ∈ Ne−1 | a2n2+ · · ·+aene ≡ i (mod n1)} has a finite
number of minimal elements (using the usual ordering in Ne−1) by Dickson’s Lemma (The-
orem 5.1 from [10]). We denote the set of these minimal elements byM((n1, . . . , ne), i).
The following result is obtained from Lemma 5.3.

Proposition 5.4. Let S be a numerical semigroup with minimal system of generators
{n1, n2, . . . , ne} and Ap(S, n1) = {0, w(1), . . . , w(n1 − 1)}. Then

w(i) = min{a2n2 + · · ·+ aene | (a2, . . . , ae) ∈M((n1, . . . , ne), i)}.

We illustrate the above proposition with an example.

Example 5.5. In this example we try to compute the Apéry set of the numerical semigroups
of [〈5, 6, 8〉] that we obtained in Example 3.4.

For every i ∈ {1, 2, 3, 4} let A(i) be the set

{(a2, a3) ∈ N2 | a2 · 1 + a3 · 3 ≡ i (mod 5)},

and letM(i) be the set of the minimal elements of A(i). Then,

M(1) = {(1, 0), (0, 2)},
M(2) = {(2, 0), (0, 4), (1, 2)},
M(3) = {(3, 0), (0, 1)} and
M(4) = {(4, 0), (0, 3), (1, 1)}.

Now, if we take an element from [〈5, 6, 8〉], for example S = 〈5, 21, 13〉, and we want
to compute Ap(S, 5) = {0, w(1), w(2), w(3), w(4)}, by applying Proposition 5.4 we have
that w(1) = min{21, 26} = 21, w(2) = min{42, 52, 47} = 42, w(3) = min{63, 13} =
13 and w(4) = min{84, 39, 34} = 34.

Note that in the previous example it was easy to computeM(i) for every i ∈ {1, 2, 3, 4}.
Now, our next goal is to give an algorithm for computingM((n1, . . . , ne), i). In order to
do it, we introduce the following sets:

C(1) = {(x2, . . . , xe) ∈ Ne−1 | n2x2 + · · ·+ nexe ≡ i (mod n1)},
C(2) = {(x1, x2, . . . , xe) ∈ Ne | (−n1)x1 + n2x2 + · · ·+ nexe = i},
C(3) = {(x1, x2, . . . , xe, xe+1) ∈ Ne+1 |

(−n1)x1 + n2x2 + · · ·+ nexe + (−i)xe+1 = 0}.

Lemma 5.6. If (a2, . . . , ae) ∈ C(1) then there exists a1 ∈ N such that (a1, a2, . . . , ae) ∈
C(2).

Proof. It is enough to note that if n2a2+· · ·+neae ≡ i (mod n1) then, there exist a1 ∈ N
such that n2a2 + · · ·+ neae = i+ a1n1.

Thanks to [12] we know that C(3) is a finitely generated submonoid of Ne+1. The next
result can be deduced from Lemma 2 of [12].

Lemma 5.7. Let A be the set {α1, . . . , αt} with αi = (αi1, αi2, . . . , αie, αi e+1) a system
of generators of C(3). If we suppose that α1, . . . , αd are the elements in A with the last
coordinate equal to zero and αd+1, . . . , αq are the elements of S with the last coordinate
equal to 1, then C(2) = {ᾱd+1, . . . ᾱq}+ 〈ᾱ1, . . . , ᾱd〉 where ᾱi = (αi1, αi2, . . . , αie).
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Note thatM((n1, . . . , ne), i) are the minimal elements of C(1). Hence, the following
result allows us to compute it.

Proposition 5.8. The minimal elements of C(1) are the same that the minimal elements of
the set {(αd+1,2, . . . , αd+1,e), . . . , (αq2, . . . , αqe)}.

Proof. Let k be in {d + 1, . . . , q}. We check if (αk2, . . . , αke) ∈ C(1). Since (αk1, . . . ,
αke, 1) ∈ C(3), then (−n1)αk1 +n2αk2 + · · ·+neαke− i = 0. Therefore n2αk2 + · · ·+
neαke ≡ i (mod n1) so (αk2, . . . , αke) ∈ C(1).

We finish the proof checking that if (a2, . . . , ae) ∈ C(1) then there exists k ∈ {d+ 1,
. . . , q} such that (αk2, . . . , αke) ≤ (a2, . . . , ae). By Lemma 5.6, there exists a1 ∈ N such
that (a1, a2, . . . , ae) ∈ C(2). Hence by Lemma 5.7, there exists k ∈ {d + 1, . . . , q} such
that (αk1, αk2, . . . , αke) ≤ (a1, a2, . . . , ae). Therefore, we have that (αk2, . . . , αke) ≤
(a2, . . . , ae).

An efficient algorithm for computing a finite system of generators of C(3) is given in
[3]. So, applying the previous result we have an algorithm which allows us to compute
the minimal elements of C(1). Therefore, using Proposition 5.4 and the idea exposed in
Example 5.5, we have an algorithm for computing easily Ap(T,m) for every T ∈ [S].
Finally, thanks to Lemma 5.2 we can compute F (T ) and g(T ) for every T ∈ [S].

6 Examples
We devote this section to illustrate the previous results with several examples. They show
all the semigroups with a fixed multiplicity, embedding dimension, and Frobenius number
or genus. Besides, we check Wilf’s conjecture for many semigroups in the tree associated
to [S] for several packed numerical semigroups. The computations have been done in an
Intel i7 with 32 GB of RAM, and using Mathematica ([16]).

Example 6.1. In this example we compute all the numerical semigroups with multiplicity
6, embedding dimension 3, and Frobenius number equal to 23.

With these fixed conditions, the set C(m, e) is

{〈6, 7, 8〉, 〈6, 7, 9〉, 〈6, 7, 10〉, 〈6, 7, 11〉, 〈6, 8, 9〉,
〈6, 8, 11〉, 〈6, 9, 10〉, 〈6, 9, 11〉, 〈6, 10, 11〉}.

The Frobenius number of these semigroups are 17, 17, 15, 16, 19, 21, 23, 25 and 25, re-
spectively. So, by Proposition 4.1, for computing the semigroups with Frobenius number
23, we only consider the packed numerical semigroups L = {〈6, 7, 8〉, 〈6, 7, 9〉, 〈6, 7, 10〉,
〈6, 7, 11〉, 〈6, 8, 9〉, 〈6, 8, 11〉, 〈6, 9, 10〉}. Applying Algorithm 2, we compute the elements
in G([S]) with the fixed Frobenius number. For example, from the first packed numerical
semigroups in L only one numerical semigroup with Frobenius number equal to 23 is ob-
tained (see Figure 2), but there is no numerical semigroups with Frobenius number equal to
23 in G[〈6, 8, 9〉] (see Figure 3). Hence, the set of numerical semigroups with multiplicity
6, embedding dimension 3, and Frobenius number equal to 23 is

{〈6, 8, 13〉, 〈6, 7, 15〉, 〈6, 7, 22〉, 〈6, 7, 29〉, 〈6, 9, 10〉}.
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〈6, 7, 8〉, Frob. no. = 17
OO

〈6, 8, 13〉, Frob. no. = 23
ii55

〈6, 13, 14〉, Frob. no. = 35 〈6, 8, 19〉, Frob. no. = 29

Figure 2: Two levels of the tree associated to the semigroup 〈6, 7, 8〉.

〈6, 8, 9〉, Frob. no. = 19
ii55

〈6, 9, 14〉, Frob. no. = 31 〈6, 8, 15〉, Frob. no. = 25

Figure 3: One level of the tree associated to the semigroup 〈6, 8, 9〉.

Example 6.2. In this example, all the numerical semigroups with multiplicity 6, embed-
ding dimension 3, and genus equal to 16 are computed. From Example 6.1, the set C(6, 3)
is

{〈6, 7, 8〉, 〈6, 7, 9〉, 〈6, 7, 10〉, 〈6, 7, 11〉,
〈6, 8, 9〉, 〈6, 8, 11〉, 〈6, 9, 10〉, 〈6, 9, 11〉, 〈6, 10, 11〉}.

The genus of these semigroups are 9, 9, 9, 10, 10, 11, 12, 13 and 13, respectively. So, by
Proposition 4.1, for computing the semigroups with genus 16, we apply Algorithm 3 to all
elements in C(6, 3). For example, for the semigroups 〈6, 7, 8〉 and 〈6, 8, 9〉 we obtain the
trees showed in Figures 4 and 5, respectively. Thus, the set of numerical semigroups with
multiplicity 6, embedding dimension 3, and genus 16 is

{〈6, 14, 9〉, 〈6, 8, 21〉, 〈6, 15, 11〉, 〈6, 10, 17〉}.

〈6, 7, 8〉, genus = 9
OO

〈6, 8, 13〉, genus = 12
hh55

〈6, 13, 14〉, genus = 18 〈6, 8, 19〉, genus = 15
OO

〈6, 8, 25〉, genus = 18

Figure 4: Three levels of the tree associated to the semigroup 〈6, 7, 8〉.
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〈6, 8, 9〉, genus = 10
hh66

〈6, 9, 14〉, genus = 16 〈6, 8, 15〉, genus = 13
OO

〈6, 8, 21〉, genus = 16

Figure 5: Two levels of the tree associated to the semigroup 〈6, 8, 9〉.

Example 6.3. Now, we check Wilf’s conjecture for several elements in the tree associated
to some packed numerical semigroups. In this example, the elements are showed as a set
with three entries {A, f, g} where A is the minimal generating set of a numerical semi-
group, and f and g are its Frobenius number and genus, respectively. Figure 6 illustrates
two levels of the tree associated to the semigroup S = 〈110, 216, 217, 218, 219〉. Note that
for all its elements the inequality e(S)

e(S)−1 = 5
4 ≤

F (S)+1
g(S) is held, and therefore they all

satisfy Wilf’s conjecture.

{{110, 216, 217, 218, 219}, 5941, 2971}

{{110, 217, 218, 219, 326}, 7811, 3925}

{{110, 218, 219, 326, 327}, 8911, 4456}

{{110, 217, 219, 326, 328}, 7811, 3927}

{{110, 217, 218, 326, 329}, 7811, 3926}

{{110, 216, 218, 219, 327}, 5941, 2972}

{{110, 216, 219, 327, 328}, 5941, 3025}

{{110, 216, 218, 327, 329}, 6051, 3026}

{{110, 216, 218, 219, 327}, 5941, 2972}

{{110, 216, 217, 328, 329}, 5941, 2974}

{{110, 216, 218, 219, 327}, 5941, 2972}

{{110, 216, 217, 218, 439}, 5941, 2973}

Figure 6: Tree for checking Wilf’s conjecture.

In Table 1 we show some packed numerical semigroups and the minimum and maxi-
mum of the quotients (F (T ) + 1)/g(T ) of the semigroups T in their associated trees until
a fixed level. Note that all tested semigroups (more than 71 000) satisfy Wilf’s conjecture.

7 Frobenius pseudo-variety of numerical semigroups with a fixed mul-
tiplicity

According to the notation of [8], a Frobenius pseudo-variety is a non-empty family P of
numerical semigroups which verifies the following conditions:

1. P has a maximum (according to the inclusion order).
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Table 1: Checking Wilf’s conjecture (up to level 15).

Semigroup Number min
{F (•)+1

g(•)
}

max
{F (•)+1

g(•)
}

{{97, 111, 142, 159, 171}, 958, 525} 3 694 1496/981 2705/1357

{{110, 216, 217, 218, 219}, 5941, 2971} 425 2055/1081 2

{{115, 151, 172, 189, 201}, 1282, 724} 2 656 1937/1224 670/339

{{111, 115, 122, 171, 181, 200, 201}, 702, 445} 35 735 1488/1027 2012/1041

{{117, 125, 142, 173, 191, 203, 213}, 794, 476} 28 688 382/261 899/458

2. If {S, T} ⊆ P then S ∩ T ∈ P .

3. If S ∈ P and S 6= max(P) then S ∪ {F (S)} ∈ P .

If P is a Frobenius pseudo-variety we define the graph G(P) as follows: P is its set of
vertices and (S, T ) ∈ P × P is an edge if T = S ∪ {F (S)}.

The following result is a direct consequence from Lemma 12 and Theorem 3 of [8].

Proposition 7.1. If P is a Frobenius pseudo-variety, thenG(P) is a tree with root max(P).
Moreover, the set of children of a vertex S ∈ P is

{S \ {x} ∈ P | x ∈ msg(S), x > F (S)}.

Let m be a positive integer. We denote by L(m) the set

{S | S is a numerical semigroup with m(S) = m}.

Clearly L(m) is a Frobenius pseudo-variety and max(L(m)) = {0,m,→} = 〈m,m+ 1,
. . . , 2m− 1〉. So, as a consequence of Proposition 7.1, we have the following result which
is fundamental in this work.

Theorem 7.2. The graph G(L(m)) is a tree rooted in 〈m,m+ 1, . . . , 2m− 1〉. Moreover,
the set formed by the children of a vertex S ∈ L(m) is

{S \ {x} | x ∈ msg(S), x > F (S) and x 6= m}.

The previous theorem allows us to recursively construct L(m) from its root by recur-
sively adding its children to the computed vertices. We illustrate this with an example.

Example 7.3. We show some levels of the tree G(L(4)) giving its vertices and edges, and
the minimal removed generators for obtaining the children.

〈4, 5, 6, 7〉cc

7

44

5

OO

6

〈4, 6, 7, 9〉hh

9

66

6

OO

7

〈4, 5, 7〉OO

7

〈4, 5, 6〉

〈4, 7, 9, 10〉bb

10

::

7

OO

9

〈4, 6, 9, 11〉OO

9

bb

11

〈4, 6, 7〉 〈4, 5, 11〉OO

11

〈4, 9, 10, 11〉 〈4, 7, 10, 13〉 〈4, 7, 9〉 〈4, 6, 11, 13〉 〈4, 6, 9〉 〈4, 5〉
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If G is a tree with root r, the level of a vertex x is the length of the only path which
connect x and r. The height of a tree is the value of its maximum level. If k ∈ N, we
denote by N(k,G) = {v ∈ G | v has level k}. So in Example 7.3 we have:

N(0,L(4)) = {〈4, 5, 6, 7〉},
N(1,L(4)) = {〈4, 6, 7, 9〉, 〈4, 5, 7〉, 〈4, 5, 6〉},
N(2,L(4)) = {〈4, 7, 9, 10〉, 〈4, 6, 9, 11〉, 〈4, 6, 7〉, 〈4, 5, 11〉},
N(3,L(4)) = {〈4, 9, 10, 11〉, 〈4, 7, 10, 13〉, 〈4, 7, 9〉, 〈4, 6, 11, 13〉, 〈4, 6, 9〉, 〈4, 5〉}.

8 Elements of L(m, e) with minimum genus
Our aim in this section is to give an algorithm that allows us to compute g(m, e) and {S |
S ∈ L(m, e) and g(S) = g(m, e)}. The following result is a consequence of Theorem 7.2.

Proposition 8.1. If m is a positive integer and (S, T ) an edge of G(L(m)), then

g(S) = g(T ) + 1.

As a direct consequence of the previous proposition we have the following result.

Corollary 8.2. Let us fix m, e ∈ N. If

P = min{k ∈ N | N(k,G(L(m))) ∩ L(m, e) 6= ∅}

then
{S ∈ L(m, e) | g(S) = g(m, e)} = N(P,G(L(m))) ∩ L(m, e).

Moreover, g(m, e) = m− 1 + P .

It is clear that if m ≥ e ≥ 2 then 〈m,m + 1, . . . ,m + e − 1〉 ∈ L(m, e). In this way,
we have the following result.

Proposition 8.3. Let m and e be positive integers.

1. If m < e then L(m, e) = ∅.
2. If e = 1 and L(m, e) 6= ∅ then m = 1 and L(m, e) = {N}.
3. If m ≥ e ≥ 2 then L(m, e) 6= ∅.

We now give an algorithm to compute g(m, e) and {S ∈ L(m, e) | g(S) = g(m, e)}.

Algorithm 5 An algorithm to compute g(m, e) and the set of semigroups with a fixed
multiplicity and embedding dimension such that its genus is g(m, e).
INPUT: m and e positive integers such that m ≥ e ≥ 2.
OUTPUT: g(m, e) and {S | S ∈ L(m, e) and g(S) = g(m, e)}.

1: Set k = 0 and A = {〈m,m+ 1, . . . , 2m− 1〉}.
2: while True do
3: if A ∩ L(m, e) 6= ∅ then
4: return m− 1 + k and A ∩ L(m, e)

5: for S ∈ A do
6: C(S) = {T | T is a child of S}.
7: A =

⋃
S∈A C(S), k = k + 1.
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We illustrate the above algorithm in the following example.

Example 8.4. We compute g(5, 3) and {S ∈ L(5, 3) | g(S) = g(5, 3)} using Algorithm 5.

• k = 0 and A = {〈5, 6, 7, 8, 9〉}.
• k = 1 and A = {〈5, 7, 8, 9, 11〉, 〈5, 6, 8, 9〉, 〈5, 6, 7, 9〉, 〈5, 6, 7, 8〉}.
• k = 2 and

A = {〈5, 8, 9, 11, 12〉, 〈5, 7, 9, 11, 13〉, 〈5, 7, 8, 11〉,
〈5, 7, 8, 9〉, 〈5, 6, 9, 13〉, 〈5, 6, 8〉, 〈5, 6, 7〉}.

It returns g(5, 3) = 6 and {S ∈ L(5, 3) | g(S) = 6} = {〈5, 6, 8〉, 〈5, 6, 7〉}.
In the package FrobeniusNumberAndGenus ([5]), we can run the command

ComputeMinimumGenusLme[5,3] to obtain this result.

If S is a numerical semigroup, n ∈ S \ {0} and Ap(S, n) = {w(0) = 0, w(1), . . . ,
w(n − 1)} (see [11, Lemma 2.4, Lemma 2.6]), then w(i) = kin + i for some ki ∈ N and
kn+ i ∈ S if and only if k ≥ ki. Therefore, using Lemma 5.2, we have the following (see
the proof of [11, Proposition 2.12]).

Lemma 8.5. Let S be a numerical semigroup, n ∈ S \ {0} and Ap(S, n) = {0, k1n+ 1,
. . . , kn−1n+ n− 1}. Then g(S) = k1 + · · ·+ kn−1.

The next result is easily deduced from Corollary 4 of [6].

Lemma 8.6. Letm, e, q, r be integers such thatm ≥ e ≥ 2, S = 〈m,m+1, . . . ,m+e−1〉,
and m− 1 = q(e− 1) + r, with q, r ∈ N and r ≤ e− 2. Then

Ap(S,m) = {0,m+ 1, . . . ,m+ e− 1, 2m+ (e− 1) + 1, . . . ,

2m+ 2(e− 1), . . . , qm+ (q − 1)(e− 1) + 1, . . . , qm+ q(e− 1),

(q + 1)m+ q(e− 1) + 1, . . . , (q + 1)m+ q(e− 1) + r}.

If a, b ∈ N and b 6= 0 we denote by a mod b the remainder of dividing a by b. If
q is a rational number we denote by bqc = max{z ∈ Z | z ≤ q}. Note that a =
bab cb+ (a mod b). From Lemma 8.5 and Lemma 8.6 we have the following result.

Proposition 8.7. Let m and e be integers such that m ≥ e ≥ 2 and S = 〈m,m + 1,
. . . ,m+ e− 1〉. Then,

g(S) =

(⌊
m− 1

e− 1
+ 1

⌋)
⌊
m−1
e−1

⌋
(e− 1)

2
+ (m− 1) mod (e− 1)

 .

Clearly 〈m,m + 1, . . . ,m + e − 1〉 ∈ L(m, e) and therefore we have the following
result.

Corollary 8.8. If m and e are integers such that m ≥ e ≥ 2 then

g(m, e) ≤
(⌊

m− 1

e− 1
+ 1

⌋)
⌊
m−1
e−1

⌋
(e− 1)

2
+ (m− 1) mod (e− 1)

 .
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For many examples the equality holds. However, there are some cases where the semi-
group 〈m,m+ 1, . . . ,m+ e− 1〉 does not have minimum genus in the set L(m, e) as we
show in the next example.

Example 8.9. S = 〈8, 9, 10〉 is a numerical semigroup and g(S) = 16. S̄ = 〈8, 9, 11〉 is a
numerical semigroup and g(S̄) = 14. Therefore, in this case g(〈8, 9, 10〉) 6= g(8, 3).

The following result is a consequence from Proposition 2.4.

Proposition 8.10. If S ∈ L(m, e) then

S̄ = 〈{m}+ {x mod m | x ∈ msg(S)}〉 ∈ C(m, e) and g(S̄) ≤ g(S).

Moreover, if S 6∈ C(m, e) then g(S̄) < g(S).

We illustrate the previous proposition with an example.

Example 8.11. If S = 〈5, 11, 17〉 ∈ L(5, 3) then S̄ = 〈{5} + {0, 1, 2}〉 = 〈5, 6, 7〉 ∈
C(5, 3). Therefore, g(S̄) ≤ g(S). Moreover, S 6∈ C(5, 3), so g(S̄) < g(S).

The next result is a consequence of Proposition 8.10.

Corollary 8.12. Let m and e be integers such that m ≥ e ≥ 2. Then

1. g(m, e) = min{g(S) | S ∈ C(m, e)}.
2. {S ∈ L(m, e) | g(S) = g(m, e)} = {S ∈ C(m, e) | g(S) = g(m, e)}.

Note that C(m, e) is finite and therefore the previous corollary gives us another algo-
rithm for computing g(m, e) and {S ∈ L | g(S) = g(m, e)}. We give more details about
this method using Proposition 2.4 and the calculations which appear in Example 2.5.

Example 8.13. From the calculations of Example 2.5, we have

C(6, 3) = {〈6, 7, 8〉, 〈6, 7, 9〉, 〈6, 7, 10〉, 〈6, 7, 11〉,
〈6, 8, 9〉, 〈6, 8, 11〉, 〈6, 9, 10〉, 〈6, 9, 11〉, 〈6, 10, 11〉}.

A simple computation shows us

g(〈6, 7, 8〉) = 9, g(〈6, 7, 9〉) = 9, g(〈6, 7, 10〉) = 9,

g(〈6, 7, 11〉) = 10, g(〈6, 8, 9〉) = 10, g(〈6, 8, 11〉) = 11,

g(〈6, 9, 10〉) = 12, g(〈6, 9, 11〉) = 13 and g(〈6, 10, 11〉) = 13.

Therefore, g(6, 3) = 9 and the set {S ∈ L(6, 3) | g(S) = 9} is equal to {〈6, 7, 8〉, 〈6, 7, 9〉,
〈6, 7, 10〉}.

9 Elements of L(m, e) with minimum Frobenius number
Our aim in this section is to obtain algorithmic methods for computing F (m, e) and {S ∈
L(m, e) | F (S) = F (m, e)}. The next result is a consequence of Theorem 7.2.

Proposition 9.1. If m is a positive integer and (S, T ) is an edge of G(L(m)), then
F (T ) < F (S).
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The following result can be deduced from [9].

Proposition 9.2. If m is a positive integer and (S, T ) is an edge of G(L(m)), then
e(S) ≤ e(T ).

Clearly F (m,m) = m− 1 and

{S ∈ L(m,m) | F (S) = m− 1} = {〈m,m+ 1, . . . , 2m− 1〉}.

It is well known (see [14] for example) that if S = 〈n1, n2〉 is a numerical semigroup, then
F (S) = n1n2 − n1 − n2. Therefore, we obtain the following result.

Proposition 9.3. Let m be an integer such that m ≥ 2.

1. F (m,m) = m − 1 and {S ∈ L(m,m) | F (S) = m − 1} = {〈m,m + 1, . . . ,
2m− 1〉}.

2. F (m, 2) = m2−m−1 and {S ∈ L(m, 2) | F (S) = m2−m−1} = {〈m,m+1〉}.
If q is a rational number we denote by dqe = min{z ∈ Z | q ≤ z}. The next result is

deduced from Corollary 5 of [6].

Proposition 9.4. If m and e are integers such that m ≥ e ≥ 2, then

F (〈m,m+ 1, . . . ,m+ e− 1〉) =

⌈
m− 1

e− 1

⌉
m− 1.

As a consequence of the previous proposition we get the following result.

Corollary 9.5. If m and e are integers such that m ≥ e ≥ 2, then

F (m, e) ≤
⌈
m− 1

e− 1

⌉
m− 1.

In the previous corollary, equality often holds, but in some cases

F (〈m,m+ 1, . . . ,m+ e− 1〉) 6= min{F (S) | S ∈ L(m, e)}.

For example, F (〈4, 5, 6〉) = 7 and F (〈4, 5, 7〉) = 6.
From the above results, we obtain the following algorithm where the projections from

the cartesian product L(m)× N are denoted by π1 and π2.

Algorithm 6 An algorithm to compute F (m, e) and the set of semigroups with a fixed
multiplicity and embedding dimension such that its Frobenius number is F (m, e).
INPUT: m and e integers such that m ≥ e ≥ 2.
OUTPUT: F (m, e) and {S ∈ L(m, e) | F (S) = F (m, e)}.

1: A = {〈m,m+ 1, . . . , 2m− 1〉}, I = ∅ and α = dm−1e−1 em− 1.
2: while True do
3: C = {(S, F (S)) | S is child of some element of A and F (S) ≤ α}.
4: K = {S ∈ π1(C) | e(S) ≥ e}.
5: if K = ∅ then
6: return F (m, e) = π2(I) and {S ∈ L(m, e) | F (S) = F (m, e)} = π1(I)

7: A = K, B = {(S, F (S)) | S ∈ K and e(S) = e}.
8: α = min(π2(B) ∪ {α}), I = {(S, F (S)) ∈ I ∪B | F (S) = α}.

We illustrate how this algorithm works with an example.
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Example 9.6. We compute F (4, 3) and {S ∈ L(4, 3) | F (S) = F (4, 3)} using Algo-
rithm 6.

• A = {〈4, 5, 6, 7〉}, I = ∅ and α = d 32e4− 1 = 7.

• C = {(〈4, 6, 7, 9〉, 5), (〈4, 5, 7〉, 6), (〈4, 5, 6〉, 7)} and
K = {〈4, 6, 7, 9〉, 〈4, 5, 7〉, 〈4, 5, 6〉}.

• A = {〈4, 6, 7, 9〉, 〈4, 5, 7〉, 〈4, 5, 6〉}, B = {(〈4, 5, 7〉, 6), (〈4, 5, 6〉, 7)},
α = min{6, 7} = 6 and I = {(〈4, 5, 7〉, 6)}.

• C = {(〈4, 7, 9, 10〉, 6)} and K = {〈4, 7, 9, 10〉}.
• A = {〈4, 7, 9, 10〉}, B = ∅, α = 6 and I = {(〈4, 5, 7〉, 6)}.
• C = ∅ and K = ∅.

Therefore, F (4, 3) = 6 and {S ∈ L(4, 3) | F (S) = 6} = {〈4, 5, 7〉}. Using the Math-
ematica package [5], we obtain 6 and 〈4, 5, 7〉, running the commands MinFrob[4,3]
and FrobeniusEmbeddingDimensionMultiplicity[6,3,4], respectively.

Our next goal is to give an alternative algorithm for computing F (m, e) and {S ∈
L(m, e) | F (S) = F (m, e)}. The next result is deduced from Proposition 2.4.

Proposition 9.7. If S ∈ L(m, e) then S̄ = 〈{m}+{x mod m | x ∈ msg(S)}〉 ∈ C(m, e)
and F (S̄) ≤ F (S).

As a consequence of the previous proposition we get the following result.

Corollary 9.8. If m and e are integers such that m ≥ e ≥ 2, then F (m, e) = min{F (S) |
S ∈ C(m, e)}.

The set C(m, e) is finite, so previous corollary give us an algorithmic method for com-
puting F (m, e).

Example 9.9. We compute F (6, 5). First, we calculate C(6, 5) by using Proposition 2.4
and then we apply Corollary 9.8. So,

C(6, 5) = {〈6, 7, 8, 9, 10〉, 〈6, 7, 8, 9, 11〉,
〈6, 7, 8, 10, 11〉, 〈6, 7, 9, 10, 11〉, 〈6, 8, 9, 10, 11〉}

and therefore

F (6, 5) = min{F (〈6, 7, 8, 9, 10〉) = 11, F (〈6, 7, 8, 9, 11〉) = 10,

F (〈6, 7, 8, 10, 11〉) = 9, F (〈6, 7, 9, 10, 11〉) = 8,

F (〈6, 8, 9, 10, 11〉) = 13} = 8.

We are now interested in giving a method for computing {S ∈ L(m, e) | F (S) =
F (m, e)}. The next example shows us that there exist semigroups S ∈ L(m, e) such that
S 6∈ C(m, e) and F (S) = F (m, e).

Example 9.10. The numerical semigroups S1 = 〈7, 9, 10, 15〉 and S2 = 〈7, 8, 10, 19〉
verify that S1, S2 ∈ L(7, 4) \ C(7, 4) and F (S1) = F (S2) = 13 = F (7, 4).
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If S ∈ L(m, e) we denote by θ(S) the numerical semigroup generated by {m} +
{x mod m | x ∈ msg(S)}. Clearly, θ(S) ∈ C(m, e).

Using the partition given in Section 2 and Theorem 2.3, the following two steps are
sufficient for computing {S ∈ L(m, e) | F (S) = F (m, e)}.

1. Compute A = {S ∈ C(m, e) | F (S) = F (m, e)}.
2. For every S ∈ A, compute {T ∈ [S] | F (T ) = F (S)}.

We already know how to compute 1. We now focus on giving an algorithm that allows us
to compute 2.

Using Algorithm 1, for S ∈ C(m, e) and F ∈ N we get the set {T ∈ [S] | F (T ) ≤ F}.
Clearly if S ∈ C(m, e) then {T ∈ [S] | F (T ) = F (S)} = {T ∈ [S] | F (T ) ≤ F (S)}.
We are going to adapt Algorithm 1 to our needs for computing 2.

We now recall some definitions of Section 3. If S is a numerical semigroup, M(S) =
max(msg(S)). If S ∈ C(m, e) the graph G([S]) was defined as follows: [S] is its set of
vertices and (A,B) ∈ [S]× [S] is an edge if

msg(B) = (msg(A) \ {M(A)}) ∪ {M(A)−m}.

Now, using the Theorem 3.3, we give an algorithm which for a semigroup S ∈ C(m, e)
computes the set {T ∈ [S] | F (T ) = F (S)}.

Algorithm 7 An algorithm to compute the semigroups of each equivalence class such that
their Frobenius number is minimum.
INPUT: S ∈ C(m, e).
OUTPUT: {T ∈ [S] | F (T ) = F (S)}.

1: A = {S} and B = {S}.
2: while True do
3: C = {H | H is child of an element of B and F (H) = F (S)}.
4: if C = ∅ then
5: return A
6: A = A ∪ C, B = C.

We finish this section with an example to illustrate the above algorithm.

Example 9.11. We use now Algorithm 7 for computing {T ∈ [S] | F (T ) = F (S) = 10}
where S = 〈6, 7, 8, 9, 11〉 ∈ C(6, 5).

• A = {〈6, 7, 8, 9, 11〉} and B = {〈6, 7, 8, 9, 11〉}.
• C = {〈6, 8, 9, 11, 13〉, 〈6, 8, 11, 13, 15〉}.
• A = {〈6, 7, 8, 9, 11〉, 〈6, 8, 9, 11, 13〉, 〈6, 8, 11, 13, 15〉} and
B = {〈6, 8, 9, 11, 13〉, 〈6, 8, 11, 13, 15〉}.
• C = ∅.

Thus, {T ∈ [S] | F (T ) = 10} = {〈6, 7, 8, 9, 11〉, 〈6, 8, 9, 11, 13〉, 〈6, 8, 11, 13, 15〉}.
This result is also obtained with the package FrobeniusNumberAndGenus ([5]) by
executing the command ComputeEquivalenceClass[{6,7,8,9,11}].
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