ACTA CARSOLOGICA KRASOSLOVNI ZBORNIK XXVI/2 (1997) ACTA CARSOLOGICA is included into: - GEOBASE (on line) - Index to Scientific & Technical Proceedings® (ISTP*) (print and CD ROM) - Index to Social Sciences & Humanities Proceedings® (ISSHP*) (print and CD ROM) ISSN 0583-6050 © ZNANSTVENORAZISKOVALNI CENTER SAZU, 1997 SLOVENSKA AKADEMIJA ZNANOSTI IN UMETNOSTI ACADEMIA SCIENTIARUM ET ARTIUM SLOVENICA RAZRED ZA NARAVOSLOVNE VEDE CLASSIS IV: HISTORIA NATURALIS ZNANSTVENORAZISKOVALNI CENTER SAZU INŠTITUT ZA RAZISKOVANJE KRASA - INSTITUTUM CARSOLOGICUM ACTA CARSOLOGICA KRASOSLOVNI ZBORNIK XXVI/2 1997 International Symposium - Mednarodni simpozij "ALCADI '96" Postojna 1996 4th International Karstological School -4. Mednarodna krasoslovna šola "CLASSICAL KARST - KLASIČNI KRAS" Postojna 1996 LJUBUANA 1997 Gradivo je bilo obravnavano na seji razreda za naravoslovne vede Slovenske akademije znanosti in umetnosti dne 15. oktobra 1997. Uredniški odbor - Editorial Board Franco Cucchi, Jože Čar, Ivan Gams, Andrej Kranjc, Marcel Lalkovič, Mario Pleničar, Trevor R. Shaw, Tadej Slabe Glavni in odgovorni urednik - Editor Andrej Kranjc Avtorji v celoti odgovarjajo za vsebino in jezik prispevkov. Večino angleških besedil je pregledal T. R. Shaw. The authors are fully responsible for the content and for the language of their contributions. The English of most of the papers has been revised by T. R. Shaw. Zamenjava - Exchange Biblioteka SAZU Novi trg 5/1, SI - 1000 Ljubljana, p.p. 323, Slovenija Naslov uredništva - Editor's address Inštitut za raziskovanje krasa ZRC SAZU SI - 6230 Postojna, Titov trg 2, Slovenija Tiskano s finančno pomočjo Ministrstva za znanost in tehnologijo RS, Ministrstva za okolje in prostor RS, Slovenske nacionalne komisije za UNESCO in Zavarovalnice Triglav d.d., območne enote Postojna Published by the financial assistance of Ministry of Science and Technology RS, Ministry of Environment and Physical Planning RS, Slovene National Commission for UNESCO, and of "Triglav Insurance Company Ltd., Main Branch Office Postojna" Po mnenju Ministrstva za znanost in tehnologijo RS št. 415-01-137/94, z dne 26. 4. 1994, je publikacija uvrščena med proizvode, za katere se plačuje 5-odstotni davek od prometa proizvodov. CONTENTS VSEBINA UVODNIK.....................................................................................................................11 PREFACE......................................................................................................................12 PAPERS PRESENTED AT INTERNATIONAL SYMPOSIUM "ALCADI '96" POSTOJNA 1996 PREDAVANJA, PREDSTAVLJENA NA MEDNARODNEM SIMPOZIJU "ALCADI '96" POSTOJNA 1996 Francesco Trevisani LA CROTTA DI VILENIZA, DETTA DI CORNIALE.......................................15 VILENICA, JAMA CORNIALE IMENOVANA (prevedla Nadja Adam).............................................................................................21 PESEM O VILENICI................................................................................................29 Ede Barabäs EMILE G. RACOVITZA AND HIS IMPORTANT ROLE IN SPELEOBIOLOGY..................................................................................31 VLOGA IN POMEN EMILA G. RACOVITZE V SPELEOBIOLOGIJI.......34 György Denes ERWÄHNUNG VON HÖHLEN IN MITTELALTERLICHEN UNGARISCHEN URKUNDEN.................................................................................35 JAME V MADŽARSKIH DOKUMENTIH IZ SREDNJEGA VEKA.........39 Istvan Denes SPELEOLOGICAL DATA IN "THE DESCRIPTION OF THE LAND OF THE SZEKELYS" BY BALÄZS ORBÄN.......................................................41 SPELEOLOŠKI PODATKI V "OPISU DEŽELE SZEKELYS" BALÄZSA ORBÄNA................................................................................................46 Mladen Garašič CONTRIBUTION TO THE KNOWLEDGE ABOUT SPELEOLOGY IN CROATIA................................................................................................................49 PRISPEVEK K POZNAVANJU SPELEOLOGIJE NA HRVAŠKEM........................................................................................................54 Christoph Gauchon LE ROLE DES BOTANISTES DANS LES DEBUTS DE LA SPELEOLOGIE FRANgAISE...................................................................................55 VLOGA BOTANIKOV PRI ZAČETKIH SPELEOLOGIJE V FRANCIJI.....62 Christoph Gauchon UNE CAVERNE CLASSIQUE DU VERCORS: LA GROTTE DES CUVES DE SASSENAGE......................................................63 CUVES DE SASSENAGE, KLASIČNA JAMA V VERCORJU...................73 Pino Guidi INCIDENTI SPELEO D'ALTRI TEMPI - INFORTUNISTICA MINORE SUL CARSO TRIESTINO NEL XIX SECOLO...................................................75 JAMARSKE NESREČE V PRETEKLOSTI. MANJŠE NEZGODE NA TRŽAŠKEM KRASU V 19. STOLETJU....................................................80 Heinz Holzmann DER PLAN DER VILENICA VOM 20. APRIL 1818.........................................81 NAČRT VILENICE DATIRAN "20. APRIL 1818"..........................................84 Heinz Urning SPELEOLOGISTS ON POSTAGE STAMPS........................................................87 SPELEOLOGI NA POŠTNIH ZNAMKAH.........................................................90 Anton Kapel CONTRIBUTION TO THE HISTORY OF THE EXPLORATIONS OF THE CAVE VJETRENICA IN ZAVALA TO 1914.......................................95 PRISPEVEK K ZGODOVINI RAZISKAV VJETRENICE V ZAVALI DO 1914....................................................................98 Andrej Kranjc BRIEF ACCOUNT OF THE DEVELOPMENT OF SPELEOLOGY IN SLOVENIA (TO 1914) ........................................................................................99 KRATEK PREGLED RAZVOJA SPELEOLOGIJE NA SLOVENSKEM (do 1914).............................................................................106 Marcel Lalkovič DANIEL FISCHER UND DIE ANFÄNGE DER SPELÄOLOGIE IN DER SLOWAKEI................................................................................................109 DANIEL FISCHER IN PRIČETKI SPELEOLOGIJE NA SLOVAŠKEM.... 116 Karl Mais FRIEDRICH SIMONY (1813-1896), SEIN BEITRAG ZUR KARST -UND HÖHLENFORSCHUNG................................................................................119 FRIEDRICH SIMONY (1813-1896) IN NJEGOV PRISPEVEK H KRASOSLOVJU IN SPELEOLOGIJI.................................................................137 Kari Mais GEODETIC SURVEY OF POSTOJNA CAVES IN 1891 BY J. SCHMID...139 SCHMIDOVA GEODETSKA IZMERA POSTOJNSKE JAME LETA 1891 .. 146 Klära Patay ABBILDUNGEN DER VETERANI-HÖHLE AUS DEM 17-18. JAHRHUNDERT...........................................................................................149 UPODOBITVE JAME "VETERANI" IZ 17. IN 18. STOLETJA..............157 Pal Patay DIE ERGEBNISSE DER ARCHÄOLOGISCHEN HÖHLENFORSCHUNGEN IN UNGARN............................................................159 REZULTATI ARHEOLOŠKIH RAZISKAV V JAMAH NA MADŽARSKEM..............................................................................166 Raj ko Pavlovec A.C. MORLOT, A GEOLOGIST AND A LESS KNOWN RESEARCHER OF KARST PHENOMENA........................................................167 GEOLOG A.C. MORLOT, MANJ POZNANI RAZISKOVALEC KRAŠKIH POJAVOV...........................................................173 Tanja Pipan A HISTORICAL SIGNIFICANCE OF EGON PRETNER FOR BIOLOGY .... 175 ZGODOVINSKI POMEN EGONA PRETNERJA ZA BIOLOGIJO.........194 Trevor R. Shaw A FAIRY PHANTOM DOES AGAPITO'S 1802 BOOK ON VILENICA EXIST?........................................................................................................................197 ALI OBSTOJA AGAPITOVA KNJIGA O VILENICI IZ LETA 1802? ...201 Trevor R. Shaw ŠKADAVNICA CAVE EXPLORED BY ENGLISH TRAVELLERS IN 1737 ..... 203 KAKO STA ANGLEŠKA POPOTNIKA 1737 RAZISKOVALA JAMO ŠKADAVNICO.............................................................................................220 Trevor R. Shaw ROBERT TOWNSON, TRAVELLER IN HUNGARY IN 1793 - HIS LIFE AND WORK...........................................................................................225 ROBERT TOWNSON, POPOTNIK PO MADŽARSKEM LETA 1793 -NJEGOVO ŽIVLJENJE IN DELO.....................................................................243 Kinga Szekely PUBLISHED IN 1796 ..............................................................................................249 IZŠLO V LETU 1796.............................................................................................255 Katalin Bolner-Takäcs CAVES IN THE WORKS OF THE HUNGARIAN NOVELIST MÖR JÖKAI..............................................................................................................257 JAME V DELIH MADŽARSKEGA PISATEUA MORA JÖKAIA..........264 Di Maurizio Tavagnutti FEDERICO DE COMELLI: GLI STUDI IN MERITO ALL'APPROWIGIONAMENTO D'ACQUA POTABILE PER LA GITTA DI GORIZIA.........................................................................................265 FEDERICO DE COMELLI IN NJEGOVA ŠTUDIJA O OSKRBI GORICE S PITNO VODO............................................................275 PAPERS PRESENTED AT 4th INTERNATIONAL KARSTOLOGICAL SCHOOL "CLASSICAL KARST" POSTOJNA 1996 PREDAVANJA, PREDSTAVLJENA NA 4. MEDNARODNI KRASOSLOVNI ŠOLI "KLASIČNI KRAS", POSTOJNA 1996 Nenad Buzjak MED JAME (SAMOBORSKO GORJE, CROATIA) - AN EXAMPLE OF SPELEOLOGICAL FEATURES FORMED IN UPPER TRIASSIC DOLOMITE.....................................................................279 MEDJAME (SAMOBORSKO GORJE, HRVAŠKA) - PRIMER SPELEOLOŠKIH POJAVOV V ZGORNJETRIASNEM DOLOMITU......292 Jože Car & Stanka Sebela STRUCTURAL POSITION OF VERTICAL KARST OBJECTS ON POSTOJNSKA GMAJNA.........................................................................................295 STRUKTURNA LEGA VERTIKALNIH KRAŠKIH OBJEKTOV NA POSTOJNSKI GMAJNI..........................................................................................304 Franci Gabrovšek THE SHAFT BREZNO POD VELBOM..............................................................315 BREZNO POD VELBOM.....................................................................................319 Ivan Gams CLIMATIC AND LITHOLOGICAL INFLUENCE ON THE CAVE DEPTH DEVELOPMENT.......................................................................................321 LITOLOŠKI IN KLIMATSKI VPLIV NA GLOBINSKI RAZVOJ JAM...........................................................................................................333 Iwona Morawiecka & Peter Walsh A STUDY OF SOLUTION PIPES PRESERVED IN THE MIOCENE LIMESTONES (STASZÖW, POLAND)................................................................337 PREUČEVANJE ZAPOLNJENIH KOROZIJSKIH BREZEN (GEOLOŠKIH ORGEL) V MIOCENSKIH APNENCIH (STASZOW, POUSKA).................347 Slavko Polak A CLASSIFICATION OF THE SUBTERRANEAN ENVIRONMENT AND CAVE FAUNA..................................................................................................351 KLASIFIKACIJA PODZEMELJSKEGA ŽIVLJENSKEGA OKOLJA IN JAMSKE FAVNE...............................................................................................357 Tadej Slabe THE CAVES IN THE MOTORWAY DANE - FERNETIČI............................361 JAME V TRASI AVTOCESTE DANE - FERNETIČI..................................368 Andrzej Tyc SPRING CHEMOGRAPH ANALYSIS - THE INFLUENCE OF THAW EFFECT AND DISPERSED POLLUTION IMPULSES (CRACOW-CZESTOCHOWA UPLAND, POLAND)...........................................373 ANALIZA KEMOGRAMOV IZVIROV - VPLIV EFEKTA TAUENJA SNEGA IN IMPULZOV RAZPRŠENEGA ONESNAŽEVANJA (KRAKOWSKO-CZESTOCHOWSKO VIŠAVJE, POLJSKA)........................385 Kazuko Urushibara-Yoshino A COMPARISON OF RED SOILS FROM SOUTH AUSTRALIA AND JAPAN...............................................................................................................387 PRIMERJAVA RDEČIH PRSTI IZ AVSTRALIJE IN JAPONSKE..........396 Nadja Zupan Hajna KARST DEPRESSIONS WITH PRECIPICED WALLS ON THE SOUTHERN SLOPE OF SNEŽNIK MOUNTAIN, SLOVENIA.....................397 KRAŠKE DEPRESIJE S PREPADNIMI STENAMI NA JUŽNEM POBOČJU SNEŽNIKA, SLOVENIJA.................................................................404 OTHER PAPERS OSTALI ČLANKI Pavel Jamnik PONOVNO O LUKNJAH V NOSOROGOVIH KOSTEH IZ DOLARJEVE JAME...........................................................................................411 NEW DISCUSSION ABOUT THE HOLES IN RHYNOCEROS' BONES FROM DOLARJEVA JAMA...............................427 Martin Knez PRVI REZULTATI RAZISKAV KAMNINE V TREH LUNANSKIH KAMNITIH GOZDOVIH (YUNNAN, KITAJSKA).............................................431 Janja Kogovšek NEKATERE ZNAČILNOSTI PRENIKAJOČE VODE NA LUNANSKEM KRASU, YUNNAN, KITAJSKA.............................................................................441 SOME PROPERTIES OF THE PERCOLATION WATER IN THE KARST OF LUNAN, YUNNAN PROVINCE, CHINA.....................453 David Lowe & John Gunn CARBONATE SPELEOGENESIS: AN INCEPTION HORIZON HYPOTHESIS.......................................................457 SPELEOGENEZA V KARBONATNIH KAMNINAH: HIPOTEZA ZAČETNIH HORIZONTOV.........................................................481 REPORTS POROČILA Martin Knez, Janja Kogovšek, Tadej Slabe KARST RESEARCHES IN YUNNAN PROVINCE, CHINA IN 1997 ....491 Stanka Šebela 6. MEDNARODNA KONFERENCA O VRTAČAH IN INŽENIRSKIH VPLIVIH IN VPLIVIH OKOLJA NA KRASU Springfield/Missouri/ZDA/ 6. - 9. april 1997......................................................497 BOOK REVIEWS KNJIŽNA POROČILA Martin Knez TRACER HYDROLOGY 97 (A. Kranjc, Ed.) Proceedings of the 7th International Symposium on Water Tracing......................................................................................................501 Andrej Kranjc David Gillieson - CAVES: PROCESSES, DEVELOPMENT AND MANAGEMENT.......................................................................................................503 Andrej Kranjc D. Andre & M. Casteret & P Carlier & A. Gautier & G. Kalliatakis & C. in L. Renouard, LA PLUME ET LES GOUFFRES Correspondence de E.-A. Martel (1868 - 1936), Association E.-A. Martel, Meyrueis 1997............................................................506 UVODNIK Prvič, odkar izhaja zbornik Acta carsologica, smo v enem letu uspeli, ali pa nas je obilica gradiva primorala, kakor pač gledamo na stvar, izdati kar dve številki. In to nista drobna zvezka, pač pa zbornika v običajnem obsegu. Se posebej sem vesel, ker se je to zgodilo ravno letos, ko Inštitut za raziskovanje krasa ZRC SAZU praznuje 50-letnico ustanovitve, kar je skromno prikazano na platnicah z letnicama 1947 - 1997. Letnik 1997 je jubilejni in lahko rečem, da smo 50-letnico proslavili tudi s preko 1000 stranmi obsegajočim letnikom Acta carsologica 1997. Zato se mi zdi tudi primerno, da je v tej številki malo več poudarka na zgodovini krasoslovja in speleologije. Nedvomno si je v teh 50 letih tudi Inštitut prislužil primerno mesto v tej zgodovini. Prvi del oziroma sklop tokratne številke obsega prispevke, predstavljene na mednarodnem simpoziju o zgodovini krasoslovja in speleologije, ALCADI '96, ki je bil spomladi 1996 v Postojni. Ni bil posvečen 50-letnici inštituta, pa vendar je vmes več prispevkov, zelo pomembnih za zgodovino našega krasoslovja in speleologije. Naj omenim le prispevek o geodetski izmeri Postojnske jame iz 1891, ko je ob predstavitvi direktor Speleološkega inštituta z Dunaja podaril Inštitutu popoln transkribiran zapisnik - knjigo meritev. Zgodovinski sklop je obenem tudi neke vrste priprava na pomembne obletnice, ki so na vrsti v prihodnjem letu. Takrat bo 250 let, odkar je na našem krasu raziskoval I. A. Nagel. Rezultat njegovega dela je tudi prvi načrt Postojnske jame iz 1748. Istega leta praznuje Postojnska jama 180-letnico odkritja notranjih delov jame. To je tisti dogodek, zaradi katerega je postala Postojnska jama prava turistična jama (1819), zaradi katerega je postala svetovno znana in zaradi katerega je, posredno, tudi Inštitut za raziskovanje krasa lociran prav v Postojni. Drugi sklop vsebuje gradivo, ki je bilo predstavljeno na mednarodni krasoslovni šoli "Klasični Kras" v Postojni 1996, katere vodilna tema so bila brezna. S šolo je Inštitut pričel na pobudo Slovenske nacionalne komisije za UNESCO, podpira pa jo tudi Slovenska znanstvena fundacija. Letošnja šola je bila že peta po vrsti, kar je tudi, sicer majhen, a pomemben jubilej, saj kaže na to, da se je šola usidrala. Vedno večje število udeležencev pa dokazuje, da jo cenijo tudi v tujini. Pri tem ima določen pomen tudi zbornik Acta carsologica, v katerem objavljamo gradivo s teh Sol. Vendar ne gre za same jubileje, čemur so dokaz "Ostali članki". Tudi za ta del je zanimanje med (bodočimi) avtorji vedno večje. Zelo je razveseljivo, da so med njimi tudi mladi in tudi taki, katerih ime je v stroki že uveljavljeno. Da je bilo mogoče v enem letu toliko objaviti, gre največ zahvale Ministrstvu za znanost in tehnologijo kot najpomembnejšemu sofinanserju, ne smemo pa pozabiti tudi sponzorjev in neposredne denarne pomoči obeh soizdajateljev. Urednik PREFACE For the first time in the history of editing Acta carsologica we have succeeded, or we have been forced due to lot of material, it depends on point of view, to publish two volumes in one year. And these are not thin issues but both contain normal number of pages. I am specially glad that this happened just in the year, when the Karst Research Institute ZRC SAZU, Postojna celebrates its 50-th anniversary. This is modestly shown on the front cover by the numbers 1947 -1997. We can say that this year's volume is a jubilee one and Acta carsologica joins to the anniversary by more than 1000 pages. Therefore it is right that the history of karstology and speleology is emphasized in this volume. The Institute earned in 50 years an appropriate place in this history also. First part of this number of Acta carsologica contains the papers, presented at the International symposium on the history of karst and cave science - ALCADI '96 - which was at Postojna in the spring of 1996. This was not dedicated to the 50th anniversary of the Institute, but there are some very important articles regarding history of our karstology and speleology. Let me mention the paper about the geodetic survey of Postojnska Jama cave from 1891. Together with this paper, the director of Speleological Institute of Vienna submitted to the Institute the complete and transcribed surveying book. The historical part is at the same time a sort of introduction to the forthcoming events of the next year This is 250 years since J. A. Nagel investigated our karst. The result of his work is also the first plan of Postojnska Jama (1748). In the same year, 1998, Postojnska Jama will celebrate 180 years of discoveries of the inner parts of the cave. This was the reason that Postojnska Jama became a real show cave in 1819, that it became world known and indirectly also the reason that Karst Research Institute is located at Postojna. The second part of the present Acta carsologica contains papers presented during the International karstological school "Classical Karst" held at Postojna in 1996. The main topic of this school was karst shafts. The Institute started to organise schools by the initiative of the Slovene National Commission for the UNESCO, and this is also supported by the Slovene Scientific Foundation. In this year the fifth school has been organised already. A small but important anniversary, showing that the school is being approved also in the foreign countries, evidenced by the every year bigger number of participants. For the school Acta carsologica is important too as the papers of the schools are printed in it But I must not speak of the jubilees only. There are also so called "Other papers". Also for this part the interest among the (future) authors increases every year. I am glad that among them there are young researchers and also recognized authors from the scientific circles. That we were able to publish that much in one year I must thank the Ministry of Science and Technology as the biggest supporter But we must not forget the sponsors and financial support of both publishers. The Editor PAPERS PRESENTED AT INTERNATIONAL SYMPOSIUM "ALCADI '96" POSTOJNA 1996 PREDAVANJA, PREDSTAVLJENA NA MEDNARODNEM SIMPOZIJU 'ALCADI '96" POSTOJNA 1996 The Editorial Board may print only the abstract of those papers which are not suitable for publication in full. LA CROTTA DI VILENIZA, DETTA DI CORNIALE FRANCESCO TREVISANI L A CROTTA DI VILENIZA, DETTA DI CORNIAItE. TRIESTE, PRESSO GASPARO WEIS 1 8 o 2- RP.Mise. 2-494 jQui est ee, ijut ain osjigner des hornej pr^cl' M ä la NATURES J. I, Rodsseao. ALLA SIGSORA COSTESSA MARIA VOINOVICH NAT A- DEL-ROSSO Francesco D^' Trbvisani fra gUj^rcadi diRo/na ^Iginrio Epirio de<ä;ca e consacta lorgea la notte placMa dalle cimerie mars t quando coU'ali scossemi dai sonnl miei NaTUBa; Pendente tela Candida avea sul bracplorbeUo, e iiella deslra morbida 1! animator penncllo; Heggea la manca il docile plettro,.,.. cosi m'apparve, tutto m'olFn, diccndomi, canla, dipingi, e sparve. X)*estro no^rello, e insolito sento nel sen cribarmi, lascio le pigre coltrici, stendo le mani all'armi; giä la tela Candida; come il pennel la tinge di tinte vivacissime, c d' ürride si piiige j VI Gia döhtro il caldb cerebro,, che un dolcc wicanta be^, vengono, vanno, e riedoiio. r ärdue pillrici idee . Scorrc il pennello, e scorrono gli istanti, e mentre sorge Febo in Oriejjte, Tanima conipUa I'opra scorge, Cui t'offre umU In cetera. Donna gentil, cheinvano TArno richiama, ed invido (") miradase Jontanoj Ite,miei carmi,.... i paliidi timer sgombrate intanto, e ccrto, s'EiLA accoglievi, Ü mio trionfo, c il vanto. {*) Fu in PUa ore Irasse i suoi NaUti la Signer* Cocil«»a. - VII — ^ V VIS o BELLO STMSSO AL LETTORE. X/ Sig. Compagnoni descrtsse dottamente alcum ami inmim la stessa grotta : veramente dopo la sua helladescriMoneedamal-acvor-to il preseiitanie mi ultra-, e non vi sono, che le circostame particolari, che possano garantire il secondo, ed il cedere volontario la palma, per potere impunemente deliiieare, quaii-to Uprimo con tutta V arte dipiiise. L. Ua vez20sa del di foriera, e itiadre dal talamo di rose al vecchio amatitt s'iiu'ola, e lue Id i ss i ma rimonla suIt'oscuFO Oriizonte: i tenebrosi densi vapori, e gli astri Sammeggianti fyggono al raggio , che gli insegue, c vince 1 sogru' piacKfissinii disgombrn, dU'ino Amico, e lor permelLi iji pace, (a) rjedere all'ima cliioslra, or che risorge coll'alba il sole, e fa di Ici quel, ch'clla fa della notte, e delle vaghc stelle. Giä 5ul tiio lunitar mordono i freni, calcitrando il lerreno impazienlf, gli vmgari corridori, q il bieco atiriga Tc d* msctelo , e T}egUgent€ accusa, chc lo scflbro niartcl su^I alii bronii frenienti ricadendo, annuDzia Tora, che fissjisti al j^artir: mobile aureltft, che intoruo spnrgi il rombo fragoroso, dolcetnente.all'orrccchio glielo porta, e lo desia pet me, che i sonni suoi non oso di wibsT? . . i ; roa s'ax-rc alfife« la miJta sogUa '. v» » i placidi riposi disgonibrj alfin, e greca man ti porge nel boemo cristal le amcn'cnne spume col fresco lalte accofte, einislc; Tu le rifiuti, e dalle pigrc plume sorti d'^un salto , al pie adatlando il mollö anglico cuo/o, ed alle forme incbieste aticlie lane all^Europeo costiime. (a) Giä tulto i pronto; e Tu pur anco, vieni, monta il coccJiio ristretto in pria, die l* alio reilor dei Treni ai fervidi cavalli il coBScio segno di parlir di^pensi. Ma alfin si parte, e gli agili destieri, divorando ilcaminino, arrivan dove sul verde praio inculto monte s'aUa, cbequanto piu s'estolle, orrtdo tanto, e men ferUldivien; ove cred'io, deH'util Cerer, di Pomona bella solo a dispelto, vedi pur tallora 0 roammola spuntar, o bionda spica, di cui dai prati iio torbido aquilone ixasse sull'ali, e qui depose il seme. Ma vinto e I'erto deHMi^foxme colle. — XI — c I'arapia vetta al giiardo ofFre soäve ricompensa dell'orrido cammino, che a manca vedi spumegglar il saUo immensurabil liquido Orizzonte, per cui scorrendo mille prore e mille d^estranlo ciel» felicemente onuste d'utili merci, e peregrine stofFe, I'avirea CUtade, che airAdriaco fluUo frena Torgoglio, fan si ricca, ebetla. A destra i praticei fiorili, e moUi, i dilti poggi, i giardirielti ameoi fan sorridere il Ciel di lor bellezza, u* tanti son palagi, ostelli, ease, teUi, erigne, cJie jI gu.irdo ammiratore cento villetee insiem crede raccollc , e germogliarle il fertile terreno, come germogl/a le vefmene, e i ßori, talche deir AtQo tuo, Doska gbxtilf. , i popolati, e fertili-coutomi rivedo in lor, di cul cosi canlava 5ul douo pleitro ilFerrarese Omero. Ma I'uitle Ocean, l'otner»o colle agll occlii fura it pii leggero, e pronto de'fumanti destier, che in inoute alpestre scgnan la «ampa, ove la mano induslre dal molle sasso irac feconda argilla; — XII ns pcuopre pii: per qn.ituo aculo U gnni^Q d«l?aJ£e ^Htenne, e clelle torn cccelse traccio. nel cielo, che aispdre, c fu^ge de{ Lombardo Apeniflo, c do'üsvosi Jilpini gioghi la scagUosn fronlt. Or tutto e orror, tie per iiiggir piu ralto csssa »1 tcrrore, ondc '^aTVRa voUe i prjlpfli sospcnJ»;ic del coi'u, ed Äi-restare n meazo it corso il Scn:igtie . Fra riipl a'pcütri, c^l itv.-guai tiioi:lagne . ampie fosse rhrovi, ove s'arresta ii limjiirfettp ujnur, che larga q^ul ptovviöa dispcusa; ad esse corcs sitibomlo nel giorno il paslo ;-el!o ccU'nff.ionato bue, inentre alU notte Tatre niascelle ancor del sangiie lorde il'incatito aguello, o dl men presta lepre forsc viece r. lavar ii Jupo Ji'.festo. presso le fosse limacclose In ir.agro, nia pur cuUo lerven^ c/ie intorno serra bcissa muraglia di roltaiitf, esassi, qualclte sjiica bioucJcggia, ove dunora d'hifaiisio augurio il U:rpe augeUo,e il guTo. Ma spnrve alfin Torrido scoglio, e sorge fr.igrnnfe, e diiaro - ombiifero boschetto, che oKiq proprio seuo ai ciUaclmi, (b) — ^lU — alle or.este donzc'Jetie accese s'cnra a.^clo, che (Vintorno inve^te i;t Yergin rosa , il vago giglio abbetla, e la quercia ricopre, ove fcioglieniio {leliiJe -tenerhshno usslgriuolo dolce caoto d'amor, amore iöspira. In due divide la boscagiia retto, c ben hingo caminm , ove lassiva la molk erbelta, e ivarlo-piGli fvoci gralo - olcxzando guiclano le piante iti rjstka magjcn, che a caro prezzo su roxzo desco al passaggsr dispsnsa scarsa insjpkia raeiisa; a Te Tu stesso niega la so^lia, ai mal* accord aperta;' segul ToTtiie de'saggi imprcsse, o Amico, scpra il destro cammin, che fra spugoosi rožiami, e sassi ammontichiati appena lascia libero il varco.....Ecco da lunge, negvi tiigiiri, a cui piil negre cnnne 'coprono il telto .... ii raUegra,.ž presso la desiSta Crotta , ore Katuha fa f:j siJeny.io di Se pompa si nota. V'tlein un giorno disadorna, brutta, ccl orrfda cosj, che in cor le mosse tema, e picia, chiamt» sua possaaliora, e II tetro oirore d'abbeliir risolsej —1 XIV — i! forte Vegllo apportator degli anni scco all'opra s^unl; nsl cielo akosse alto bisbiglio fra t Saperol^ e v' era clii opppr ro]ea,....ma Giove allora (i! solo liilanciatore del comun dcsiino)., agrottaado I'austero sopracciglio fe gU audaci iremar, e i'aureo freno cauto pria raccoglieodo, il guardo rclse 30di a mirar i'ardimcntosa impresa. JiATURA intanto dai vicitii monü Tacfiue raccolsc, e ne formd torrente, clie sull'erbe spargeudosi, e sul fiori, comc verme il terien corrose; o quale veggiam tailor etitro sospesa corica mezio, ricolma di minul-a sabl>ia a goccia, a goccia dal pertuggio sngusto della conca cader il sopra-pošto, ed abbondanle liquido elemente, fc) fal peric vie, che si formy serpendo fra il docile terren, parte delfacquc ghinse nel vacuo ciefla grotta informe» ove sul sasso sitiboado, e pregno d'alcalij.e sali nel cader a slilla a mezzo ii corso. s'atrcsiava, e forma perdendo dt liquor; dl sale, e sasso preadea Vaspeiio, e la scsjanz.i amara; indi ahra stilla ricadendo, e cento» e mille ancor, cöine !a prima tutte si trasforraaro in solido elemente, cosl il marmo di se iraggior si fcaj € della grotta s'adornava il tetto.-Altra parte dell'acque in un raccolte obbedife'nti alia tendcnza prima, ' • • die al ceotro universal ior diž Natura , scese fin nel profondo , u* ferri, e martni, e piante, e qwanto ivi trovd, converse ID strumcnti alPimpreša: inslnuätä ■ ■ nelle fibre dc! marrao, e i pori angüsti del dissimil metal, novella forma al roarmo diede, cd al meJallo, e solo degli arbori serbi l*antico aspetto ; forse perchž Le piacque allor formarsi soutrraneo ameaissimo giardino non Tisfo ancor, cJie il graa Compagao all'opra d'ime piriti simili all'erbette orno, e di stalatltici fioretti, cui rnentre il guardo uman stupido mira I'atiima ccde al lusinghiero incanto, " che fra i raortali noa s'arresta soio, ma sale iß cielo a tidcstar nei Numi riflvidc fiamme, mentte ii Dio toaante Francesco Trevisani: La Crotta di Vileniza, delta di Corniale — XVI — — xvit per stupor« inarcan> e parte il ciel rimanda a! suolo; Tardita g'jida aride canne accese, t quests, sembra eq^uillbrata in alto che ii furore det Dfo fanno piii vlvoj;... da equia capelio, cd oßdeggiar, ma invatio giä la vesideua sulf altera froate smuovcr la tenteria Sterope, e Brotite; st3 pilila; e iiumi, allrove voiti, in'peuo d'intorQO ia ispiral giro strumcotl, if faddopian I'orror, msntre la manca fiorami't ? statue io scblpiscon tutlo, i tulmini afTcrrat! a! vicm foco talchc il vaoto con lo^ , su ciii sca'peUo accende, e insorabite k destra segno d«*Daci, e Marcomau le slraggi nn rescieglie» lo injpugfja, e it'corpo taito saeri a Trajanb, cd 'Atitonin , contrasla , di stermmare, e di vibrarlo e in alio. L'csperto intanto condotlier divide Ferma , Giove ,clic fat?.,sospcndi'Tira.... senz'ordine qua, e la I'aride paglie. Koi t'adoriatn prostesi al suol.... ma folic. c Qon visto r accei>de ,. •oh I e jior cedeya ai dubbj, A desira il monre, lacerate i! üaaco, oSr^ iiUrar.via;) che a quella vetta « duce. . Posscule, incomprenslbile Natura, . quanto nell'opre tue sei grande, eDeai... Piü vasia accor. di quante in pm si mosira reggia j^suU',cui sian; due madgiu JinmeQSijve -negri- a custodk V ingresso. Passi Cra loro , e Uioglie arcate, ed ampte rolle, pprtici, loggie osservi» e quiodi duppUcate coloane, alti colossi, armi, trofci, vsstiboli-coa quaato vaito peusiet pu6 immugtrvarc, «>, prcgno d'afra moft'ta, e bas^o puzzo, U volto oiTende, e la brillante Gamma delle faci minaccia: intanto sempte fra^oroso precipita il mac^goo, ove sicnro il piedc unutn non giunge, cheairocchio iodagator Natura avara, qui impose, e nort a Se con fin preciso; qu\ impoaiamlo xioi pur .... bencli^ deh! quantO) It veloce pennello ttascorrenda, stfl qitädro informe i)) Sraccjar commJsel c qunnto a pinger cesterial... ma iovano Testro mi punge diseguir, che il basso SnvincibUe orror-le cHiar« linle «scura, e arresta le piurici idee. ^ XXll I — (ä) II «oropagno dj questo vUgg'io fu il sig. Niecel« Zograj^o 1 Greco di naiioue , cbe veseira se-condo H costume üel aostro paese eoile lane del suo. (b) Egli e amenissimo, ed i iigdori di Trieste »anno i godete sorente della saa »meoiia nelle glor> Date £cseive. (e) SI disse Uquido elemente , come si dira poeo innanzi soUdo elemeTifo ^ per iateniere ^eqaSg t terra; ilgenio fisico i pregKto a compatiie» sol pel qne»(a votla st I adopraia una pe»{ras1, che riecofda i rancldunii, e gU erroti deiraoli. chili} pet. nol conTenlamo dogmv novelU , « rinunriamo agll elementi. (d) Cosl della i Vicenza dai moati Betici, (be ra. gameate la circondano; in ess« i il fantoio Tealro Olimpico sail' «rc&iteUnr« degli «BCidč Rnmant. (e) Quelle due famoie colonne esistono ia Roma; ^uand' anche £<3s$e spogUata di latti i >uui sa« W«>ni avTanil d' anlichiiA, bflsterebbeto esje solo per Tieompensarne le perdite , ed eleriMrla; sogna redetle per esserse coaTinlo« VILENICA, JAMA CORNIALE IMENOVANA (prevedla Nadja Adam) IX 2 Milina, dneva znanilka, ter mati iz rožnate zakonske postelje k ljubimcu staremu odhiti, in se bleščeča zavihti na temno obzorje: temačne goste izparine, in iskreče se zvezde pred žarkom bežijo, ki sledi jim, in jih premaga. Mirne sanje prežene božji Prijatelj, in jim dovoli v miru, (a) v globoko se sotesko vrniti, sedaj ko z zoro ponovno sonce vzide, in z njo opravi tako, kot ona le-to stori z nočjo in zvezdami nestalnimi. In že na tvojem pragu uzde brzdajoč, in s kopiti nepotrpežljivo zemljo udarjajoč, ogrski tekači, in zlobni kočijaž Tebe, brezobzirnosti in nemarnosti, obsoja, da raskavo kladivo na visoke zvonove drgetajoč udarja in oznanja čas, ki določil si ga ob odhodu svojem: nestanovitna sapica, ki naokrog glasno šumenje trosiš, X nežno mu ga k ušesu vodi, in ga za mene, ki njegovega sna ne upam si motiti, zbudi; .... toda na koncu odpre se nemi prag .... in mehka mirovanja dokončno odžene, in grška roka ponudi ti v češkem kristalu ameriške pene, ujete in pomešane z mlekom svežim; ti jih zavrneš, in iz lenega puha odskočiš, nogo navajajoč na mehko angleško usnje in atiško volno na oblike zahtevane noše evropske, (a) In že vse je pripravljeno; tudi Ti, pridi, povzpni se spredaj na ozek voz, da prevzvišeni vladar uzd, iskrim konjem zavestno znak odhoda da. Končno se potuje, in urni plemeniti konji naglo pot požirajoč, prispejo tja, kjer na neobdelanem travniku zelenem, gora kvišku se dviguje, in bolj ko se tako strašna vzpenja, manj plodna postaja; kjer mislim jaz, da samo koristni Cereri, Pomoni lepi navkljub, vidiš vijolico celo pognati ali breskev rumeno, katerih seme je s travnikov nemirni severnik na krilih prinesel in tukaj ga odložil. Toda premagana je strmina brezobličnega hriba XI kjer široki vrh pogledu sladko nagrado po strašni poti nudi, in z leve vidi peniti se slano, neizmerljivo tekoče obzorje, po katerem, nebu neznanem, drsi na tisoče in tisoče ladij, naloženih radostno s tovorom uporabnim in blagi nenavadnimi, mesto zlato, ki ob morskem valu Jadrana brzda svoj ponos, spreminjajoč se v lepo in bogato. Na desni travniki cvetoči, in mehki, griči obdelani, vrtiči ljubki, njih lepota Nebu nasmeh izvablja, oh, brezštevilni so dvorci, bivališča, hiše, strehe, in vinogradi, katere občudujoči pogled vidi kot sto hišic zbranih, in klije rodovitna zemlja, kot klijejo poganjki in cvetlice, tako da tvoj Arno, prijazna gospa, kraje, in njih plodno okolico, v njih prepoznavam, o katerih pel je tako učeni plektronom Homer iz Ferrare. Toda koristni Ocean, prijetni grič očem je lahek bil korak, in poln sopihajočih konjev, ki si v planino pot utirajo, kjer delovna roka vlažno kamenje v ilovico spreminja rodovitno; xir ne odkrije več, čeprav pogled pazljiv anten visokih, in stolpe vzvišene na nebu izginjajočem išče, in zbeži iz lombardskih Apeninov, in iz zasneženih Alp grobo lice si podjarmi. Sedaj vse je groza, niti za urni pobeg tesnoba ne prestane, kjer Narava hoče utišati utrip srca, in zaustaviti obtok krvi. Med skalami planinskimi, in neenakimi gorami najdeš brezna široka, kjer zaustavlja se tekočina čista, in deževje dolgotrajno, predvidelo je nje shrambo, k njej žejen tekom dneva z volom sopihajočim, pastirček hiti, medtem ko ponoči druge čeljusti, še vedno s krvjo nepazljivega jagnja ali manj hitrega kunca zamazane, mogoče pride umit si osovraženi volk. Poleg blatnih brezen in suhe, toda vseeno grude rodovitne, ki zapira jo nizek zid razbitin, in kamenja. kakšna bledorumena breskev, kjer prebiva grd ptič zlosrečnik ter čuk. Končno izgine pečina grozljiva, in pokaže se dišeč, svetlo senčen gozdič, ki v svojih nedrjih meščanom, (b) xni in poštenim gospodičnam varno zatočišče prižge, ki okrog ga oklepa vrtnica nedolžna, ljubka lilija krasi, in hrast pokriva, kjer pojoč tožeči slavček občutljivi sladko pesem ljubezni, ljubezen navdihuje. Na pol razdeli goščavo ravna in dolga pot, kjer spolzka vlažna tratica, in cvetlice vseh barv prijetno dišeče vodijo rastlinje v podeželsko hišo, kjer za drago ceno na neotesani mizi, popotniku razdele boien obed plehak; Sebi Ti sam prestopiti prag prepoveduješ, kateri neprevidnim je odprt, sledil stopinjam sem vtisnjenim, oh Prijatelj, nad desno potjo, ki med gobastimi razvalinami in kamenjem naloženim, komaj prost dohod dopušča ... In glej, od daleč, črne bajte, katerim še bolj črno trsje pokriva streho ... te razvesele, ... in poleg željene Jame, kjer NARAVA v tišini delujoč baha se kot se opazi. Videl sem jo nekega dne brez okrasa, grdo in tako grozljivo, da v srcu strah je prebudila, in usmiljenje, poklicala je torej svojo moč in mračno grozo, da od olepšav jo odreši; XIV mogočni čuvaj, leta prinašajoč s seboj, se s stvaritvijo je združil, v nebo med višave se je dvignilo glasno šepetanje, in bili so tisti, ki upreti so se hoteli, toda ... Jupiter takrat (edini naše skupne usode uravnalec), obrv strogo je nagubal, ter predrzne še prestrašil, ko zlato uzdo pazljivo poprej je zategnil, in pogled zatem v občudovanje drznega dejanja usmeril. Narava pa medtem je z bližnjih gora vode združila, in jih v potok oblikovala, ki po travi se razlil je, in po cvetlicah, ki kot črv zemljo je prežrl, oh, koliko tekočine je takrat v visečo, z drobno mivko zapolnjeno kotanjo zlil. in kapljo za kapljo skozi ozko odprtino iz kotanje v prostor spustil, in obilica tekočega elementa, (c) tako po poti, ki ustvarila se je vijoč prek voljnega terena, del vode prispe! v praznino jame je brezoblične, kjer na kamen žejen, prepojen z lužninami, solmi , kapljajoč v sredino toka se je ustavil, in obliko izgubil zaradi tekočine ter soli, in kamna videz ter snov grenka sta postala; XV odtlej še ena kaplja je padla, in sto in tisoč še, tako kot prva vse so v trden element se spremenile, tako marmor vse večji je postajal, ko strop z jamo se je zaljšal. In druge vode v eno zbrane poslušne prvotni težnji, katerih vesoljno središče je NARAVA, spustile so se vse do globin, železa, marmorjev, rastlin, in kar tam so našle, izpremenile so v orodje preoblikovanja: počasi vtisnjena v vlakna marmorja, in v pore tesne neenakih kovin, novo obliko marmorju, kovini so dala, in samo drevesom prihranila so stari videz, mogoče, ker takrat všeč bilo jim je oblikovati podzemni dražestni vrt, nikoli še viden, katerega veliki Stvaritelj je na dnu s piriti podobnimi dišavnicam, okrasil, in kapniškimi cvetlicami, katerim medtem ko jih presenečeno človeško oko občuduje (opazuje) duša prepusti se laskavemu čaru, in ne ustavi se samo med smrtniki, temveč v nebo se vzdigne prebuditi ponovno pri Numih plamene zavidanja, medtem ko Bog grmeč XVI zaradi začudenja čelo nagrbanči, se s Stvarnikom razveseli. Vstavi, jezdec konje: spustimo se, Prijatelj v globoko jamo .... mrzla groza se po kosteh ob snidenju ponovnem vije .... obok neizmerni, slep ob predstavi blodni, odpre, grob poveljnik goreče iskre z nosečimi bakljami združuje, in spušča se smelo naprej, ker obleka in usnje okovano, ki nogo izkušeno mu obuva, ga pomirja. Nedostopna globoka tišina za svetega prag naredi .... velikanske skale, gosta tema, negotova pot gostišče v groznega spreminjajo, kjer luč malo po malem z zmagovalnim žarkom vrne stvarem bistvo (obstoj), in obliko. Pod čudovitim obokom, kateremu zaman spodbode te želja raziskati temelje trdne, kjer se vzdiguje, (ker nestisnjena tla prepovedujejo jim spust) velika dvorana se razširi, kjer stebri veličastni dvigujejo se hitro podpirajoč vzvišene oboke, ki z njimi bežijo, kar tukaj vidiš ponovljeno rimskega gledališča XVII nespremenljivo sceno, in ostro obliko, ki jo Berga za nas še popolno hrani; (d) iluzija nehote zmoto v prepričanje spodbuja, da duši dodeli tiste, ki v njej prebude gibljiva vlakna iz zanesljivih občutkov in vanje ideje zanese o grobovih, zastorjih, okrasih in frizih, ter med stebri dvojnosti kipov, možnarjev, bogov podob. Toda vzdolž zavite poti, razdrapane ter ozke nas vodnik pričakuje, trdno roko v oporo ponuja .... jaz je ne odbijem, in mimo grem . Oh! Kaj vidim jaz? ... le kam smo prispeli? ... in ta Agamemnova prevzvišena palača, oh, Titov Reggia in Neronov?! ... kaj reči, če oko osuplo obstane, so vredni ogleda ostah deh dvorane sijajne? ... Okrog zidovi polni so arabesk, cvetja, kipov, obeliskov, lestencev in grobov ter tla kot steklo; grbov, skupin, lokov in okraskov nebo je polno. Na dela dva deli neizmerno dvorano skalina velika neobičajna, (podobna stebru širokem) XVIII ki sama je deljena, ker del nje dviguje se iz globin v nebo, in del nebo pošilja nazaj na dno; in le-ta na vrhu izgleda uravnovešena s konjsko grivo, in nihajoč, toda zaman premakniti jo je skušal Sterop, in Bronte; okrog pa polžasto zavita glasbila, cvetlice in kipi popolnoma izklešejo jo, tako da z njimi bahanje, na dletu katerih znaki Dacijev, Markomanov pokoli svetega Trajana, in Antonina, v nasprotju je. Izkušeno medtem vodnik brez reda sem ter tja razdeli, slamo suho, in nevidno prižge ... oh! in vzdigne se nenadoma predstava mila, ki brezmejno domišljijo ugrabi, in jo premaga! Vaze gotske in lestenci egipčanski, drevesa, konice, trinožniki, in orkestri vsi se drugačni predstavijo: poglej, Prijatelj, tjakaj tisto živo mejo, ki spominja na zimsko defloracijo njegove časti, ki jo April, oče trav, v izobilju podeljuje. Obrni se, in poglej tisti kamen gromozanski, ki prezvišen kvišku kipi, čez njega pa gotski piedistal je položen, kjer besna pojava numena strašno grmi in sedeča, v roki strele in puščice drži; XIX tripod je ob njem, na katerega drzni vodič brezčutne strelice usmeri, ki bes Boga še bolj okrepijo; ... že maščevanje na čelu ošabnem se zariše, in svetila, drugam obrnjena, v prsih podvojijo ti grozo, medtem ko levica strele ujete v bližnjem ognju prižge, in desnica privošči si eno izbrati, v pest jo stisne, in celo telo k pokončanju in vihtenju se pripravi. Ustavi se, Jupiter, kaj počneš? ... jezo umiri ... Mi, pri tleh živeči, te častimo ... toda nor, sem jaz! ... to samo kamen je brez življenja, in gibanje, le kakšno gibanje, ter življenje, mu domišljija je vdihnila. Medtem pa moč izgubljajo osamljenih slamic iskre žareče, in kot plamenu sij primankuje, tako oblike bogate predmetom bežijo, in ostaja le kakšna njihova sled, kot od luči, ki jo uniči ter premaga, na novo oživljena groza. Tu skozi se gre po vijugasti, strmi poti, ki vodi nas na vrh do pečine, poprej pa na levi zlovešč zagledaš vhod globok, brezkončen, temačen, kjer obrazi so sledi, in kjer sledi vtisnjene se ne vidi; mogoče prvi XX iz Trakije pevec jo je opeval, če bolj strog, in manj ljubeč ohranjal je obljubo, in dvomom ni popuščal. Na desni gora, razgibano pobočje, drugo pot ponuja, ki k vrhu tistemu je vodnik. Mogočna, nerazumljena NARAVA, kako velika si v dejanjih svojih, o Boginja! ... Se bolj obsežna kot postavlja se palača kraljeva, v predverju kolosa dva postavljena (e) velika in črna, ki vhodu sta čuvaja. Mimo grem pod dolgimi oboki, lože si ogledam, dvojne stebre tudi, visoke kipe, orožje, trofeje, veže in vse kar bujna domišljija lahko si predstavlja, ali umetnost učena izpelje: na stenah vidiš poleg tulipana vrtnico pridobiti si prvotni čisti sijaj, ki takšna bila je že dan poprej, kateri Venera prelepa s krvjo svojo izpremenila ji barve je; in če mika te, brez kazni jo utrži; Prijatelj, sedaj ko trn varujoči Naravo je v nedolžno in surovo skalo zbodel. Toda voditelja našega, kričati slišim, ... pridite Tukaj je konec ... težaven prehod XXI nas tja popelje; ozek vrh in strm ter mračen, da, v čigar nedrjih srce bije. Od daleč vidiš, kot stolp visoko iz dna globokega in grozljivega brezna, ki pod nogami odpira se, kvišku iti čudovito cipreso velikanko, kateri sto manjših okrog plete venec v poklon; takšne prinesli so z Marsa nekoč na polje tisoč manjših kamnov, noseč jih na hrbtih sloni punski okorni, da skali največji voditelja prevzvišenega nudijo obrambo v venec se spletajoč. Obok in nebo, ki pasti grozita, a zaradi gibanja zvezd nikoli padla ne bosta, s svečami velikimi, visoko-globokimi sta pokrita, katerih ostra ost se z globino spogleduje. In na vrhu široka ploščad, ki obrnjena je tako, da v mrzli zimi lesketajoče prozorno družbo ledu, s strehe visečo, opazuje, kako božji jo žarek poprej v belo tekočino iz snega raztopi, in nočni mraz med spuščanjem svojim v kristalne puščice prelevi ... Če izpregovoriš, grozljiv odmev, globoko po jami in breznih zahrumi, tvoje glasove ponovi ter srce ti zopet XXII z grozo napolni; če le kdaj želja te spopade, v kaos neizmerni se podati, deležen boš brezna brezkončnega, trušča mogočnega kateri, ko spuščal se bodeš naglo kotaleč, napolnil ti z grozo bo dušo, medtem ko zrak gost in ganljiv, nasičen s kužnimi hlapi, rahlo zaudarjajoč, obraz žali, in plamen žareči bakljam grozi: medtem pa še zmeraj bučno se spušča skalina, kjer varno ne prispe človeška noga, ki očesu raziskujočem NARAVA skopa, se tukaj vsili, in ne premore meje točne; kar mi jo začrtajmo ... čeprav, oh! koliko, hitri čopič po sliki brezoblični švigajoč pustil je sledi! in koliko je še ostalo nenarisano! ... toda zaman zanos spodbuja me k nadaljevanju, ko globoka nepremagljiva groza barve svetle potemni, in slikarju ideje zaustavi. OPOMBE" (a) Tovariš na tem potovanju je bil g. Niccola Zograff o, Grk po narodnosti, ki se je oblačil po običaju naše dežele, vendar v grška blaga. (b) Kraj je zelo prijeten, in tržaška gospoda ob prostih dnevih cesto uživa v njegovi prikupnosti. (c) Z uporabljeno besedo tekoči element in kasneje uporabljena beseda trdi element, sta mišljena voda in zemlja; genij fizike naj mi oprosti, če sem v tem primeru uporabili opis, ki spominja na staro šaro, in napake antike; kajti strinjam se s sodobnimi dogmami, in se odrekam elementom. (d) Tako poimenovana je Vicenza po hribovju (Monte Berico), ki jo obkroža in kjer se nahaja znani Teatro Olimpico s staro rimsko arhitekturo. (e) Ta dva znana stebra obstajata v Rimu; ce bi Rim oropali vseh njegovih antičnih zakladov, bi ta dva stebra nadomestila izgubo in ga kljub temu ovekovečila. Človek ju mora videti, da se prepriča. ' Catalogo deglo incliti ed emditi ed valorosi pastori e pastorelle arcadi dell'inclita adunanza letteraria di arcadia sonziaca, colonia della insigne arcadia romana. ^ Baronica Voinovich je dejansko živela kar dokazuje oglas v "L'Osservatore Triestino", 15.7.1818. Številka strani navedena po originalu. Opombe kot jih je na koncu pesnitve navedel sam avtor. PESEM O VILENICI Leta 1802 je dr. Francesco Trevisani napisal pesem "La Crotta di Vileniza, detta di Corniale", ki jo je natisnila tiskarna Casparo Weis v Trstu na 23 straneh knjižice malega formata. V knjižnici Biblioteca Civica v Trstu hranijo le zgoraj omenjeno delo tega avtorja, o njem ne obstajajo biografski podatki, tako da o samem avtorju lahko povemo le tisto kar je možno razbrati iz knjige. Trevisani nam na tretji strani knjige pove, da je med člani Akademije arkadij-cev v Rimu bil znan pod imenom Algindo Epireo. Akademije so v Evropi, predvsem pa v Italiji, nastajale od 14. stoletja dalje, zlasti so se razmahnile v času humanizma in renesanse (Accademia della Crusca, dei Lincei, pri nas Accademia Operosorum...). Akademija arkadijcev (Accademia degli Arcadi ali Arcadia) je bila ustanovljena leta 1690 v Rimu kot kulturno zbirališče in torišče literatov in izobražencev ter z namenom, da prečisti književni stil, ki ga je pokvaril italijanski seicento (doba baroka in marinizma). Arkadijci so imeli navado nadeti si grški ali pastoralni psevdonim. Razcvet akademije je trajal do sredine 18. stoletja, nato pa je začel z uveljavljanjem romantike in s svojim poveličevanjem psevdopastoralnosti, erudicije in drobnjakarstva naglo propadati. Akademija je imela je velik vpliv tudi na našem ozemlju, po več krajih je ustanovila podružnice: Ljubljansko akademijo (Accademia Emonina) leta 1709 in goriško akademijo arkadijcev leta 1780. Med novicami "L'Osservatore Triestino" iz dne 8. novembra 1802, št.90 omenja slavnostni zbor rimsko-goriško-tržaških arkadijcev ob priliki odkritja doprsnega kipa predsednika njihove akademije. V čast dogodka so arkadijci recitirah več pesmi napisanih prav za to priložnost, vendar na žalost avtorji niso navedeni. Seznam članov goriške podružnice, ki ga hranijo v Archivio Diplomatico e Storico v Trstu zajema le obdobje med leti 1780 - 1791, med njimi pa dr. Trevisani ni omenjen'. Trevisani je pesnitev posvetil baronici Mariji Voinovich, rojeni Del Rosso kateri je namenil tudi uvodno pesem v devetih kiticah. Pesnitev je sestavljena iz 351 svobodnih verzov, je neke vrste miselna poezija, ki je po večini patetična in brezosebna. Kot sam Trevisani v neposrednem sporočilu bralcu pravi, nikakor ne more doseči čudoviti Compagnonijev epos (op.p. iz leta 1795), vendar si je zaradi posebnih okohščin, jamo v obliki pesnitve dovolil opisati tudi sam. Pesnitev na katero me je opozoril dr. Shaw in na čigar pobudo je pravzaprav nastal pričujoči slovenski prevod pesmi, ki opisuje pot skozi podzemlje, ki s svojo lepoto očara, s svojim neizmernim breznom prestraši in vedno znova privlači. V prevodu, ki ne zajema Trevisanijeve uvodne besede ter uvodne pesmi temveč samo osrednjo pesnitev, sem se skušala držati originala pa vendar jezik iz začetka 19. stoletja približati današnjemu bralcu. Jama Vilenica pri Lokvi je najstarejša turistična jama v Evropi, saj jo obiskujejo turisti že od leta 1633, ko jo je dal takratni lastnik grof Petač v upravo lokavski župniji. Velik sloves in obisk je doživljala v prvi polovici preteklega stoletja, v Trstu je celo veljalo nenapisano pravilo, da je vljudno vabiti angleške mornariške častnike v njeno podzemlje. Leta 1816 je jamo obiskal cesar Franc I. Sloves Vilenice je začel bledeti z odprtjem Postojnske jame in kasnejšim odkritjem Škocjanskih jam. Jama je nekoč z barvitimi kapniki različnih oblik in prečudovitimi kapniškimi zavesami močno burila domišljijo obiskovalcev in tako navdihnila tudi dr. Trevisanija, da je svoje občudovanje preliv v pesnitev. ACTA CARSOLOGICA XXVI/2 1 31-34 LJUBLJANA 1997 EMILE G. RACOVITZA AND HIS IMPORTANT ROLE IN SPELEOBIOLOGY VLOGA IN POMEN EMILA G. RACOVITZE V SPELEOBIOLOGIJI EDE BARABÄS^ Izvleček UDK 57:551.44(091):929 Racovitza E.G. Ede Barabas: Vloga in pomen Emila G. Racovitze v speleobiologiji Emil G. Racovitza (1868-1947) je poleg prava študiral tudi geologijo in zoologijo. 1904 je obiskal jamo Cueva del Drach (Mallorca) in odkril novo jamsko žival. To je vzpodbudilo njegovo zanimanje za jamsko favno, ki ji je posvetil vse svoje življenje. 1907 je objavil najpomembnejše delo "Essai sur les problemes biospeologiques". Z R. Jeannelom je ustanovil revijo Biospeologica. Poleg opisov jamskih živali vsebuje opise stotine jam iz Evrope in sveta, kjer so nabirali jamsko živalstvo. 1920 je ustanovil speleološki inštitut v Cluju (Romunija). Ključne besede: zgodovina speleologije, biospeleologija, speleološki inštitut, Racovitza E. G. Abstract UDC 57:551.44(091):929 Racovitza E.G. Ede Barabas: Emile G. Racovitza and his important role in speleobiology Emile G. Racovitza (1868-1947) qualified in law and studied geology and zoology too. In 1904 he visited Cueva del Drach (Mallorca) and discovered a new cave animal. This aroused his life-long interest in cave fauna. In 1907 he published his most important paper "Essai sur les problemes biospeologiques". With R. Jeannel he estabhshed the journal Biospeologica. It included, among detailed anatomical papers, descriptions of many hundred caves all over Europe and elswhere, in which fauna was collected. In 1920 he founded Institute of Speleology, at Cluj (Rumania). Key words: history of speleology, biospeleology, speleological institute, Racovitza E. G. ' Revärgatan 5, S - 25461 HELSINGBORG, SWEDEN The portrait of Emil G. Racovita (from Livre du centenaire Emih G. Racovitza 1868-1968). Emile G. Racovitza was born on 15 November, 1868 in lasi and there he studied at the primary school and comprehensive school. When he was nineteen years old he started at the Paris University. There he finished the study of law in 1889 because he wanted to carry out his father's wish. He studied also geology, anthropology and zoology at the same time. It was in 1891 when he finally took the state examination in natural science. Later, in 1897, he took part of the Antarctis Expedition on the ship "Belgica". Roald Amundsen, who discovered the South Pole few years later, was also between the members of the expedition. On July 13th 1904 Emile Racovitza was invited by Odon de Buen to the island of Mallorca where he visited the famous cave "Cueva del drach". It was there that he discovered a small, Wind animal which they described together under the name of typhlocirolana moraguesi. Ede Barabäs: Emile G. Racovitza and his important role in speleohiology This aroused his life-long interest in cave fauna and a wide hterature search resuhed, in 1907, in his most important paper "Essai sur les problemes biospeologiques". This long and fundamental paper established biospeleology (he called it "biospeology") as a science, emphasized its importance and set out a plan for future work. In a paper, published in Paris few years later, Racovitza's student Rene Jeannel, stated about the mentioned paper: "Le premier memoire de se periodique, Essai sur les problemes biospeologiques par Emile G. Racovitza, est encore aujourd'hui le statut fondamental de la biospeologie". 1900 his old professor named Racovitza "sous-directeur du laboratoire maritime ARAGO" at Banyuls-sur-Mer and "co-directeur de la revue Archives de Zoologie experimentale et generale". Together with his student and colleague, Rene Jeannel, he established the journal BIOSPEOLOGICA. It included, among detailed anatomical papers, descriptions of many hundred caves, all over Europe (from Carpathians, Dinaric Mountains, Alps and Pyrenees, that is mainly from France, Spain, Slovenia, Romania) and elsewhere (Africa), in which fauna was collected. They worked together with well known cave fauna specialists as Endre Dudich from Hungary and J. A. Birstein from Moscow. The result of their co-operation were "Biospeologica hungarica" and "Biospeo-logica sovjetica". Between 1905 and 1929 he published 20 papers on isopoda only. With R. Jeannel he estabHshed the journal Biospeologica. It included, among detailed anatomical papers, descriptions of many hundred caves all over Europe and elswhere, in which fauna was collected. In 1920 he founded Institute of Speleology, at Cluj (Rumania). Racovitza and Jeannel are not only the pioneers of biospeleology but also very important regarding the international scientific co-operation. So it is not surprising that UNESCO inscribed his name between the great cultural persons to commemorate in the year 1968. BIBLIOGRAPHY Livre du centenaire Emile G. Racovitza 1868-1968.- Academic de la Rep. soc. de Roumanie, pp. 699, Bucarest, 1970. Motas, C.: Zece ani de la moartea marelui savant si esplorator Emile Racovit-za.- Lucrarile Institutului de Speologie "Emile Racovitza", I - II, 1962-1963. Orghidan, T, 1966: Emile Racovitza si rolul sau in crearea biospeologiei.- Lucrarile Institutului de Speologie "Emile Racovitza", V, 1966. Plesa, C., 1983: ABC Emile Racovitza. Racovitza, E., 1964: Opere alese.- Academia R.P.R. VLOGA IN POMEN EMILA G. RACOVITZE V SPELEOBIOLOGIJI Povzetek Emil G. Racovitza (1868-1947) je doštudiral pravo na pariški univerzi 1889 in do 1891 dokončal tudi študij geologije in zoologije. 1904 je obiskal jamo Cueva del Drach na Mallorci in odkril novo jamsko žival, ki jo je poimenoval Typhlocirolana moraguesi. To je vzpodbudilo njegovo zanimanje za jamsko favno, ki ji je posvetil vse svoje življenje. Resno se je poglobil tudi v literaturo in rezultat tega je njegov najpomembnejši prispevek "Essai sur les problemes biospeologiques" (1907). S tem obsežnim in temeljnim sestavkom je utemeljil biospeleologijo kot vedo, podčrtal njen pomen in predstavil načrt za bodoče delo. Skupaj s študentom in kasnejšim sodelavcem R. Jeannelom je ustanovil revijo Biospeologica. Poleg anatomskih opisov jamskih živali vsebuje revija opise stotin jam iz Evrope in z vsega sveta, v katerih so nabirali jamsko živalstvo. 1920 je ustanovil speleološki inštitut v Cluju (Transilvanija, Romuni- ja). ACTA CARSOLOGICA XXVI/2 2 35-39 LJUBLJANA 1997 ERWÄHNUNG VON HÖHLEN IN MITTELALTERLICHEN UNGARISCHEN URKUNDEN JAME V MADŽARSKIH DOKUMENTIH IZ SREDNJEGA VEKA GYÖRGY DENES' Izvleček UDK 551.442(439)"14" György Denes: Jame v madžarskih dokumentih iz srednjega veka V srednjeveških dokumentih so omenjene številne jame. Iskanje dokumentov, interpretacija srednjeveških imen in identifikacija prizora ah jame ni lahka naloga. Prispevek opisuje, kako so našli in identificirali jame v prvih takih štirih srednjeveških dokumentih. Samo ena izmed teh jam ima še danes enako ime, kot v srednjem veku: Pest-ko je v dokumentu iz 1391 zapisana kot Pesthkw. Avtor podrobneje obravnava še Öreglyuk (1340), jamo oziroma grič z jamo Jäszöi (Jasovska) kot "lapis concavus seu perforatus" in jamo Kölyuk. Ključne besede: zgodovina speleologije, imenoslovje. Srednji vek, Madžarska. Abstract UDC 551.442(439)"14" György Denes: Cave References in Medieval Hungarian Documents The first written references to caves occur in medieval documents. The finding of the documents, the interpretation of the medieval name, the identification of the scene and cave is not an easy task. The paper describes the finding of four such early cave references in medieval documents. Only one of these caves still has its medieval name; the Pest-ko name appears in a document dated in 1391 as Pesthkw. The author talks in detail of Öreglyuk (1340), of the cave or better of the hill with the cave Jäszöi (Jasovska) as "lapis concavus seu perforatus" and of the cave Kölyuk. Key words: history of speleology, cave names, Middle ages, Hungary. Borbely u. 5. II/4, HU - 1132 BUDAPEST HUNGARY Höhlen waren für Menschen jeden Zeitalters von großer Bedeutung. Seit der Urzeit können Höhlen einen festen Wohnsitz oder ein gelegentliches Obdach bedeu-tet haben und sind ihnen deshalb immer im Bewußtsein geblieben. Im Mittelalter wählte man als Grenzmarken von Grundstücken oder Herrschaftsbereichen gut bekannten geographische Charakterpunkte, wie etwa Höhlen, einen Höhlenfelsen oder Höhlenberg. Jedem war ein solcher Grenzpunkt ein Begriff, denn er war eindeutig und konnte nicht wie ein Pflock oder Grenzstein, oder wie ein Erd- oder Steinhaufen in betrügerischer Weise verlegt werden. So stieß ich in zahlreichen mittelalterlichen Urkunden auf die Erwähnung von Höhlen, Höhlenfelsen und Höhlenbergen. Die meisten dieser Nennungen wurden bisher in den Urkunden nicht erkannt, da das in der gegenwärtigen ungarischen Sprache allgemein benützte Wort barlang im Mittelalter noch nicht mit der Bedeutung 'Höhle' in Verwendung stand. In den Urkunden wurde damals entweder das zusammengesetzte ungarische Wort kölyuk, das wörtlich übersetzt 'Steinloch' bedeutet, oder das Wort pest (lese: pescht) verwendet (DENES 1973). Das Wort pest ist bulgarisch-slawischen Ursprungs und hat sich bereits vor einem Jahrtausend in der ungarischen Sprache eingebürgert (KNIEZSA 1963; DENES 1983). Ein Fels oder Berghang, in dem ein Höhleneingang gähnte, wurde lyukas-kö (= durchlöcherter Stein) oder pest-kö (= Höhlenfels) oder pest-hegy (= Höhlenberg) genannt (KISS 1988). Aber das Wort pest hatte in der mittelalterlichen ungarischen Sprache ebenso zwei Bedeutungen, wie das ihm entsprechende deutsche Wort Ofen in einigen süd-deutschen und österreichischen Gegenden, wo es sowohl die Bedeutung 'Backofen' als auch die Bedeutung 'Höhle' hat (DENES 1985). Da aber das Wort pest in deren Bedeutung 'Backofen' in einem der ungarischen Dialekte, und zwar in dem der in Siebenbürgen lebenden Szeklern heute noch benützt wird, und der Ortsnamen Meszpest {= Kalkofen) im ungarischen Sprachgebiet mancherorts vorkommt, erkennt die Mehr-zahl der ungarischen Historiker und Sprachforscher nur die Bedeutung 'Ofen' des Wortes pest an, wie in Backofen oder Kalkofen. Die Bedeutung 'Höhle' wird nur ausnahmsweise bei einigen Ortsnamen anerkannt (BÄTKY 1925; HEFTY 1911; MELICH 1938). Jahrelang sammelte ich die Nennung des Wortes pest in mittelalterlichen Urkunden und alten Schriften, und suchte danach die so benannten Orte auf. Es waren dies mehr als dreißig Orte im ganzen historischen ungarischen Sprachgebiet, die im ersten oder zweiten Wortteil ihrer Name die Bezeichnung pest trugen. Auf Grund meiner Forschungen konnte ich feststellen, daß das Hauptwort pest, wenn es in den Namen von Bergen oder Felsen vorkommt auf jeden Fall 'Höhle' bedeutet (DENES 1975b). Wenn man bei Bergen auf den Namen köpest (= Stein-Pest) stößt, ist die Bedeutung nicht 'aus Steinen gebauter Backofen', sondern 'Felsenhöhle'; das Wort pest-kö bedeutet somit nicht 'für den Bau eines Backofens geeigneten Stein', sondern 'Höhlenfels'. György Denes: Erwähnung von Höhlen in mittelalterlichen ungarischen Urkunden Die Bedeutung des Wortes Pest-hegy ist 'Höhlenberg'; der Ortsnamen Festes bedeutet 'hohl', sowie 'Hohler-Berg', 'Hohler-Fels' (DENES 1978; DENES 1995). Gleiches gilt auch für das ungarische Wort luk ~ lyuk, welches 'Loch' oder 'Höhle' bedeutet, wenn es in einem Ortsnamen vorkommt, der einen Berg oder Felsen benennt. Meiner Meinung nach bedeutet der Ortsname Lukas-kö 'durch-löcherter Stein' (in lateinisch geschriebenen Urkunden lapis petforatus bezeichnet) einen 'Höhlenfelsen' (DENES 1973) und nicht, wie ein ungarischer Historiker meint, einen Mühlstein der als Grenzmarke an der Grundgrenze aufgestellt war (SZABÖ 1969. 114). Als Beispiele für die Erwähnung von Höhlen in den mittelalterhchen Urkunden zitiere ich nunmehr vier Objekte, die ich im Rahmen meiner Forschungen entdeckt habe: 1. Der Ortsname Pesthkw der in einer Urkunde von 1391 (OL. Dl. 7699) erwähnt wird bedeutet meiner Meinung nach 'Höhlenfels'. An Ort und Stelle stellte ich fest, daß das der Name des im Gerecse Gebirge westlich von Budapest gelegenen Berges Peskö ist, in seinem Hang öffnet sich auch tatsächlich eine geräumige Höhle. 2. Der Ortsname Kwpesth scheint in einer Urkunde aus dem Jahre 1340 auf (CAP. STRIG. Lad. 37. Fase. 1), er bedeutet meiner Meinung nach 'Felsenhöhle'. An Ort und Stelle stellte ich fest, daß er mit jener Höhle im Gerecse Gebirge identifiziert werden kann, deren Eingang sich zwischen den Gemeinden Bajna und Epöl in einer Bergflanke öffnet. Gegenwärtig ist diese Höhle unter dem Namen Öreglyuk {= geräumige Höhle) bekannt. 3. Im Jahre 1331 pachteten die Einwohner der Siedlung Szepsi ein beidem Ufer des Flusses Bödva gelegenes Grundstück von der Jäszöer Prämonstra-tenser Propstei. Ein Grenzpunkt des gepachteten Grundstückes liegt am Bödvaufer — aus der lateinischen Urkunde sei die Umschreibung zitiert: "unus magnus lapis concavus quasi perforatus" (GYÖRFFY 1963, 100), was in der deutschen Übersetzung heißt 'ein goßer hohler bzw. durchlöcherter Stein'. Nach dem Text der Urkunde nahm ich an, daß dieser Stein wohl ein durchlöcherter Felsenhügel sein werde. Bei der Begehung dieses in der Urkunde beschriebenen Gebietes wurde meine Vermutung bestätigt. Der angesprochene "große hohle durchlöcherte Stein" ist nämlich nicht anderes als der Berghang mit mehreren Öffnungen der wohlbekannten Jäszöer Schauhöhle, Jasovskä Jaskina. 4. Der Ortsname aus einer königlichen Schenkungsurkunde aus dem Jahre 1266 (OL. Dl. 611) hat zu einem interessanten Ergebnis geführt. Als Grenzpunkt am Ufer des gegenwärtig zur Slowakei gehörenden Flüsschens Turöc (Turec) ist ein gewisser rupes Munuhpest erwähnt, der bisher nach der Meinung ungarischer Historiker und Sprachforscher als 'Mönchsfelsen, Mönchsberg, Einsiedlerberg' gedeutet wurde (MELICH 1938; KNIEZSA 1963). Ich war der Meinung, daß die Bedeutung des Ortsnamen rupes Munuhpest in Wirklichkeit 'Einsiedlerhöhlen-Feis' oder 'Eremitenhöhlen-Fels' bedeuten kann, obwohl in jener Gegend auch in ausführlicheren Landkarten keine Höhlen eingezeichnet waren. Nachdem ich jedoch diese Lokahtät aufgesucht hatte, konnte ich die Grenzpunkte des in Frage stehenden Grundstückes klar identifizieren und dort, wo gemäß der Urkunde der Fels Munuhpest stehen soll, fand ich am Ufer des Flüsschens Turöc wirklich einen steilen Kalkstein-Felsen Spuren eines Gesteins-abbaues an der Wand. Die Einwohner der nahe gelegenen Gemeinde Harkäcs (Gemerskä Ves) erzählten, daß es dort früher wirklich eine Höhle gegeben habe, die etwa acht Meter lang mannshoch war. Ende der 50er Jahre, wahrscheinlich 1958, ist diese Höhle jedoch bei Sprengarbeiten zerstört worden. Nachdem ich den Ort wieder aufgesucht hatte, kam ich zu der Ansicht, daß durch die Steinbruchsarbeiten nicht mehr als 3 bis 4 Meter Fels abgebaut worden waren und sich deshalb noch ein Rest der Höhle unter der Blockhalde am Fuß der Felswand befinden müßte. Aus diesem Grunde machte ich den Versuch, den Schutt am Fuß der Wand zu entfernen. Nachdem ich mehrere Stunden hart gearbeitet hatte, gelang es mir die Höhle hinter den Felsblöcken zu finden. Es war, wie vermutet, nur der vorderste Teil beim Gesteinsabbau zerstört worden und ich konnte die ersten fünf Meter aufrecht in die Höhle gehen, dann noch weitere fünfzehn Meter gebückt und kriechend vordringen (DENES 1975a). Das Ergebnis meiner Feldforschung bestätigt meine Vermutung, daß das Wort pest auch im Namen des Velsen Munuhpest 'Höhle' bedeutet. Ich identifizierte dadurch nicht nur den in der Urkunde von 1266 erwähnten Höhlennamen, sondern exhumierte auch die Höhle selbst, die ansonsten durch die vom Gesteinsabbau entstandene Schutthalde endgültig verschüttet geblieben wäre (DENES 1995). Meines Wissens diese ist jetzt die erste schriftlich erwähnte Höhle in der Slowakei. Es hat sich gezeigt, daß die Forschung nach Höhlennamen, die in mittelalterlichen Texten aufscheinen keine vergebliche Mühe ist. Denn durch das Erkennen dieser Höhlennamen und die richtige Deutung, kann der Zeitpunkt der ersten schrifthchen Erwähnung dieser Höhlen um mehrere Jahrhunderte früher angesetzt werden, als man dies früher angenommen hatte. Unsere wissenschafts-geschichtlichen Kenntnisse konnten hiemit wesenthch erweitert werden. LITERATUR UND ABKÜRZUNGEN BÄTKY, Z. (1925): Feskö. — Föld es Ember (Budapest) V. 1-2. 59. CAP. STRIG. = Esztergomi Käptalan Häzi Leveltära. Esztergom DENES, G. (1973): Közepkori magyar barlangnevek. — Karszt es Barlang (Budapest) 1973. MI. 5-6. György Denes: Erwähnung von Höhlen in mittelalterlichen ungarischen Urkunden DENES, G. (1975a): A Munuhpest felfedezese. — Turista Magazin (Budapest) 21/86. raäj. 28. DENES, G. (1975b): A Peskö hegynev es a tarnaleleszi Peskö barlangjai. — Karszt es Barlang (Budapest) 1975. I-II. 25-28. DENES, G. (1978): A csikszentdomokosi Köpest. — Karszt es Barlang (Budapest) 1978.I-II. 35-38. DENES, G. (1983): Wörter bulgarisch-slawischen Ursprungs für "Höhle" in der Ungarischen Sprache. — European Regional Conference on Speleology. Sofia - Bulgaria. 1980. Proceedings. I. 204-205. — Sofia DENES, G. (1985): Die Bezeichnung "Ofen" = "Höhle" in den Ortsnamen Ungarns und der Name der Ungarischen Hauptstadt. — Die Höhle (Wien) 36. (1) 7-12. DENES, G. (1995): A Munuhpest szikläja es a pest köznev jelentese hegyek, szikläk neveben. V. Magyar Nevtudomänyi Konferencia. Miskolc GYÖRFFY, G. (1963): Az Ärpäd-kori Magyarorszäg törteneti földrajza. I. Budapest HEFTY, G.A. (1911): A terszmi formäk nevei. Magyar Nyelvor (Budapest) 40. 304. KISS, L. (1988): Földrajzi Nevek Etimologiai Szötära. (4. kiadäs), Budapest KNIEZSA, I. (1963): Charakteristik der slawischen Ortsnamen in Ungarn. Studia Slavica, (Budapest) 9. 27-44. MELICH, J. (1938): Melyik nep nevezte el Pestet Perf-nek? Magyar Nyelv (Budapest) 34. 5-6. 130-140. OL. Dl. = Magyar Orszägos Leveltär, Mohäcs elötti gyüjtemeny. Budapest SZABÖ, I. (1969): A közepkori magyar falu. Budapest JAME V MADŽARSKIH DOKUMENTIH IZ SREDNJEGA VEKA Povzetek V madžarskih srednjeveških dokumentih so omenjene številne jame. Iskanje dokumentov, interpretacija srednjeveških imen in identifikacija prizora ah jame ni vedno lahka naloga. Prispevek opisuje, kako so našli in identificirali jame v prvih takih štirih srednjeveških dokumentih. Samo ena izmed teh jam ima še danes enako ime, kot v srednjem veku: Pest-ko je v dokumentu iz 1391 zapisana kot Pesthkw{= jamska stena). Ime jame Öreglyuk {= velika, prostorna jama) blizu mesta Bajna je bilo zapisano (1340) kot Kwpesth (= skalna jama). Jama Jäszöi (Jasovskä jaskyna) - danes znana turistična jama na Slovaškem -oziroma skalnat grič, v katerem je jama, je omenjena v dokumentu iz 1331 kot "lapis concavus seu perforatus" (= votla ali preluknjana skala). Jama Kölyuk (= skalna luknja) ob slovaški reki Turoc (Turec) blizu mesta Harkacs (Ge-merska Ves) je v dokumentu iz 1266 imenovana Munuhpest {- puščavniška jama). ACTA CARSOLOGICA XXVI/2 41-47 LJUBLJANA 1997 SPELEOLOGICAL DATA IN "THE DESCRIPTION OF THE LAND OF THE SZEKELYS" BY BALAZS ORBÄN SPELEOLOŠKI PODATKI V "OPISU DEŽELE SZEKELYS" BALÄZSA ORBÄNA ISTVÄN DENES ^ Izvleček UDK 551.44(439):929 Balazs O. Istvän Denes: Speleološki podatki v "Opisu dežele Szekely" Baläzsa Orbäna Balazs Orbän, "Veliki Szekely", je bil popotnik, pisatelj in politik. 1864 - 1868 je prepotoval pet "szeks" (okrožij) dežele Szekelys (Transilvanija, Romunija) in 1868 -1873 objavil v šestih knjigah "Opis dežele Szekelys z arheološkega, naravoslovnega in etnografskega vidika". V tem opisu in še v enem kasnejšem omenja preko 50 speleoloških objektov v apnencu in drugih kamninah. Jame opisuje, dodaja svoja geološka in hidrografska zapažanja, omenja arheološke najdbe in pripovedi v zvezi z njimi. Ilustracije v opisu so gravure, vendar narejene po avtorjevih fotografijah, kar ga uvršča med pionirje tamkajšnje fotografije. Tako štejemo Baläzsa Orbäna med odlične predhodnike raziskovalcev jam v Transilvaniji. Ključne besede: zgodovina speleologije, Baläzs Orbän, Transilvanija, Romunija. Abstract UDC 551.44(439):929 Baläzs O. Istvän Denes: Speleological data in "The description of the land of the Szekelys" by Balazs Orbän Baläzs Orbän, "The Great Szekely" was a traveller, writer and politician. In 1864 -1868 he travelled through the five "Szeks" (districts) of the land of the Szekelys (Transylvania, Romania) and in 1868 - 1873 he published "The description of the land of the Szekelys from the point of view of archaeology, natural history and folk history" in 6 volumes. In this and in one later description he mentioned over 50 caves in limestone and other rocks. He published cave descriptions, geological and hydrological observations, archaeological findings and the legends connected to the caves. Illustrations in his description are engravings based upon the author's own photographs. So he was between the pioneers of the Transylvania photography. Key words: history of speleology, Baläzs Orbän, Transylvania, Romania. ' 4023-BARAOLT, str.l Decembrie 1918, nr.27., bl.6B., ap.5., jud.Covasna, ROMANIA Baläzs Orbän was a traveller, writer and politician. He travelled through the five "Szeks (districts) of the land of the Szekelys (Transylvania, Romania), between 1864-1868. During this journey he made scientific and archival research, took notes and photographs and made sketches. Between 1868-1873 he published "The Description of the Land of the Szekelys from the point of wiew of archaeology, natural history and folk history", a work in 6 volumes (Orbän, 1868-1873). Later in 1889 he publised "Torda, the town and its Surroundings". (Orbän, 1889). In all these works the author mentioned or described 33 caves and 3 potholes in limestone, 2 caves in travertine, 2 caves in andesite, 3 caves in andesite agglomerates and 3 artificial defensive caves in conglomerates. He also described 3 karst springs. During his activity Transylvanian caves researching had just started. Frid-valdszky, Nedeczky, Benkö and Kleinkauf had just mentioned or briefly described the most famous caves (Denes, 1992). The first important cave research was made by Istvan Fekete, a surveyor in Udvarhely district. In 1835 he explored the cave of Homorodalmas and made a plan of it. This plan was the first to be made in Transylvania and his work was pubhshed in Kolozsvar (Cluj-Napoca) in 1836 (Denes, 1990). Shortly before Baläzs Orbän's research journey, between 1858-1862, Adolf Schmidl explored the caves of Bihar mountains (Denes, 1992). First of all Baläzs Orbän's researches were concentrated in the following branches: history and archaeology, folk history and geography. In his geographical description, beside landscape description, demography, economical geography and geology, he showed great interest in cave researching which was scarcely known in Transylvania. He was not an expert in geography but during his travells abroad he learned a lot. He was an accurate observer. The collected data are accurate, the descriptions are detailed. For all what he saw and experienced he tried to give explanations according to the scientific knowledge of his age. Where he was not to able to manage this, he draw Fig 1: Baläzs Orbän (1829 - 1890). the attention of scientists to that ob- Istvän Denes: Speleological data in "The description of the land of the Szekelys" by Balazs Oriydn ject or phenomenon. He published wonderful landscape descriptions, allowing us to learn about the surroundings of the caves, the name of the places, the routes of acces and historical data. He told us about the size of the caves, gave descriptions, geological and hydrologic observations, archaeological findings and the legends connected with the caves. The cave descriptions are very interesting and he always wrote with great enthusiasm about dripstone formations. The hanging dripstones he called stalactites. Perhaps for the first time in Hungarian speleological literature he used expresions like caving and rope ladder. Balazs Orban recognized the importance of photography, a technique which had been just introduced in Transylvania at that time. The photo fixes the reality, but drawings can be inexact. Considering this fact he bought photographic equipment. Taking all this equipment with him, he took a lot of photos and they are important for us for we can sec landscapes from last century "Szekely Land". We are lucky because a great proportion of these photos has been preserved. The printing technology of that age could not reproduce them, so in his works we see only engravings. The description of Vargyas-gorge (Cheile Virghisului) and its caves which was near his native land, is detailed; the names of the places, sights and curiosities are presented in romantic style. From his observations he explained the origins of the gorge: the waters of Vargyas river had to struggle to pass through the high limestone mountain. Then we learn about the historical data, the legends of these places and then the description of the Homorödalmäs Cave (Pestera Mere-sti) follows. The explanation of the origins of the cave is wrong. He denies the fact that the waters of the river could create it because it is on a higher level then the waters of the river. He thought that the cave was the result of karst springs work. We also learn about the big bat colony and guano deposits from the cave. To his description he attached the cave plan made by Fekete. As we read this work we learn about the Locsiir (Hors-Cave), Ugron-lyuk (Ugron-Cave) and Kocsiir (a natural stone bridge). Already he knew about the sinkhole in I ^ Fig. 2: The entrance of the Homorödalmäs Cave. which the waters were disappearing and about their underground route. The river rises at Vi'zkelet, a big karst spring wich is situated at the south end of the gorge. Carryng his photographic equipment he took four photos. Two of them represent the entrance of the cave. He also took three photos in the Olt-pass (Defileul Oltului) from Alsöräkos (Racosul de Jos). Here he described three caves of wich the most detailed was the Tolvajos Cave (Robber-Cave). At Oltheviz (Hoghiz) he described a cave in travertine and took a photo of the surroundings of the travertine hill. In Barcasag (Barca-district, Tara Barsei), he noticed four caves and gave a short description of lalomita Cave in Bucsecs (Bucegi) mountain. He explained the functioning of the intermitent karst spring of Fort-yogohegy (Gespreng berg) in Brasso (Brasov). He gave a detailed description of three andesite caves full of vulcanic gas at Büdös Hill (Stinking Hill) near Bälvänyos resort in Haromszek district. From Csi'k district he mentioned the pothole on Likas mountain and the ice cave in travertine at Borszek (Borsec) resort. Aranyos district is rich in karstic areas. From this region he described four caves situated at Szekelyko mountain at Torocko (Trascau) and seven caves at Kököz-gorge (Cheile Aiudului). From these descriptions we learn about the position and size of these caves, about the dripstone formations, archaeological finds and historical data. On top of the Gesteg hill he observed a lot of "crater like hollows ordered in lines" which are in fact a line of doli-nes. He took a photo of the Szekelyko mountain, too. Among the caves of the Tor-da-gorge (Cheile Turzii) he described the Balika Caves which were fortified caves. In this part of his work we find the first description of a cave accident. It took place on 13th August 1780 when Kis Janos a chimney sweeper from Torda (Turda) looking for the "Treasure of Darius" remained stuck in a pothole. The rescuers could not pull him out with ropes and after 7 days of Fig. 4: The entrance of the Homorödalmäs terrible suffering he died. Cave (photo by Baläzs Orbän). Orbän also told us about the A z ;iiiiii'isi barliuii»' uljriijza. Fig. 3: The plan of the Homorödalmäs Cave. ~K ' \ V-'- I-'' I, m PII: Fig. 5: The Tür Gorge with the entrance of the Malom (Mill) Cave. caves from the Tur-gorge (Cheile Turului) in which there were prehistoric settlements. He saw the entrances of a lot of caves situated at high level in the rock walls. Also he took a few photos in Torda- and Tur-gorges. Through his works the author let us know a lot of valuable data about the caves of Transylvania and fixes a situation which we can not find today. By now the dripstone formations and the fortification walls have been destroyed and the archaeological finds have been lost. Studying all his works we belive that Balazs Orban was one of the excellent forerunners of cave researching in Transylvania. From 1931 as a memorial by posterity the bigest cave in the Land of the Szekelys, the Homorödalmäs Cave, was named after the "Great Szekely" Balazs Orban Cave. REFERENCES DENES, I., 1990: Szemelvenyek a homorodalmasi Orban Balazs barlang ku-tatästörteneteböl, Karszt es Barlang, II. füz. p.123-126, Budapest. DENES, I., 1992: Short history of speleology in Transylvania till 1914, Karszt es Barlang, p.17-20, Budapest. ERDELYI, L. 1971: Orban Balazs, Szekelyföld kepekben, Kriterion Kiado, Bukarest. ERDELYI, L. 1992: Orban Balazs összes fenykepei a Szekelyföldröl, Balassi Kiado - Magyar Fotografiai Müzeum. ORBÄN B. 1868-1873: A Szekelyföld leiräsa törtenelmi, regeszeti, termeszetraj-zi s nepismei szempontbol, I.-II. köt.. Pest. ORBÄN B. 1889: Torda varos es környeke, Budapest. SPELEOLOSKI PODATKI V "OPISU DEŽELE SZEKELYS" BALÄZSA ORBÄNA Povzetek Balazs Orban, "Veliki Szekely", je bil popotnik, pisatelj in politik. 1864 -1868 je prepotoval pet "szeks" (okrožij) dežele Szekelys (Transilvanija, Romunija). Na tem potovanju je preučeval naravo in arhive, zapisoval, fotografiral in skiciral. 1868 - 1873 v šestih knjigah objavil "Opis dežele Szekelys z arheološkega, naravoslovnega in etnografskega vidika". Kasneje (1889) je objavil še delo "Torda, mesto in njegova okohca". V teh delih omenja preko 33 jam in 3 brezen v apnencu, 2 jami v lehnjaku, 2 v andezitu, 3 jame v andezitnem konglomeratu in 3 umetne jame obrambne narave v konglomeratu. Vključuje tudi 3 kraške izvire. Balazs se je osredotočil predvsem na zgodovino in arheologijo, etnografijo in geografijo. Njegovi geografski opisi vsebujejo poleg opisov pokrajine tudi demografske, ekonomsko-geografske in geološke podatke. Posebno zanimanje je kazal za raziskovanje jam, kar je bilo takrat v Transilvaniji zelo redko. Zbrani podatki so točni in opisi podrobni. Vse, kar je videl in doživel, je želel razložiti ustrezno nivoju znanosti v njegovem času. Njegovi pokrajinski opisi so čudoviti, za nas so posebej pomembni opisi okolice jam, topografska imena, dostopi do jam in zgodovinski podatki o njih. Jame opisuje, dodaja svoja geološka in hidrografska zapažanja, omenja arheološke najdbe in pripovedi v zvezi z jamami. Balazs Orban je spoznal pomen fotografije, tehnike, ki je bila v njegovem času ravno vpeljevana v Transilvanijo. Nabavil si je fotografsko opremo in napravil celo vrsto posnetkov dežele Szekelys. na srečo je večina njegovih posnetkov ohranjena. Ker takratna tiskarska tehnika ni mogla reproducirati fotografij, ilustrira svoje opise z gravurami. Balazsa Orbana tako štejemo med odlične predhodnike raziskovalcev jam v Transilvaniji. ACTA CARSOLOGICA XXVI/2 4 49-54 LJUBLJANA 1997 CONTRIBUTION TO THE KNOWLEDGE ABOUT SPELEOLOGY IN CROATIA PRISPEVEK K POZNAVANJU SPELEOLOGIJE NA HRVAŠKEM MLADEN GARAŠIČ' Izvleček UDK 551.44(497.5) Mladen Garašic: Prispevek k poznavanju speleologije na Hrvaškem V prispevku so podatki o speleologih od 1584 dalje ter o speleoloških društvih od 1892, ko je bil ustanovljen "Odbor za uredenje Baračevih spilja". Od tedaj je na Hrvaškem delovalo okoli 50 društev. Ta so nastajala, delovala in iz različnih vzrokov prenehala z delom. Do danes se je okoli 1000 ljudi resno ukvarjalo s speleologije, kar ni veliko v primerjavi z deželami, ki imajo podoben delež krasa. Toda rezultati speleoloških raziskav (število raziskanih jam, objave, vpetost v mednarodno speleologije) so pomembni ne le v regionalnem, ampak tudi v širšem merilu. Ključne besede: zgodovina speleologije, speleoleška organizacija. Hrvaška. Abstract UDC 551.44(497.5) Mladen Garašic: Contribution to the knowledge about speleology in Croatia Basic data about speleologists from 1584 are presented, as well as speleological societies since 1892, when Committee for arrangement of Baračeva špilja (Odbor za uredenje Baračevih špilja) near Rakovica was founded. Since then about 50 societies were founded in Croatia. When established, they were active for some time, and many of them stopped the activities for various reasons. Until now data, serious speleological researches were done by thousand people, and it is not much comparing to other countries with such percent of karst. But outcomes of speleological resources (number of researched objects, pubhshed papers, presence in speleological world, etc.), are remarkable, not just in regional, but in wide contexts. Key words: history of speleology, speleological organization, Croatia. ' Civil Institute of Croatia (IGH), University of Zagreb, Rakušina 1, HR - 10000 ZAGREB, CROATIA 1. INTRODUCTION Speleological activity in Croatia started with the first human penetration underground, where shelters or dwelling places were found. Such examples of speleo people remains or paleolithic artifacts exist in the Croatian karst in several places (eg. Vindija Cave in Hrvatsko Zagorje, Hušnjakovo Cave near Krapina, Šandalja Cave near Pula in Istria, Cerovačke Caves in Lika, Bezda-njača pod Vatinovcem Cave in Lika, Veternica Cave near Zagreb, Gromačka Vlaka Cave near Dubrovnik etc.) 2. THE FIRST SCIENTIFIC WORK IN CAVES The earliest penetrations were due to the needs of man, not his curiosity. In the 16'" century started the period of first researches and expeditions. A Croat from Dubrovnik, Nikola Gučetič had in 1584 recorded his observations on meteorological measurements in caves near Dubrovnik and Cavtat. That year is accepted as the beginning of scientific publishing on Croatian caves. Later on researches were made in some caves known in that time (eg. Marin Getaldic made some optical experiments in Betina Cave near Dubrovnik) and some researchers took part in investigating deeper parts of caves or discovering completely unknown ones (in 17"' cent J.V Valvasor described some caves in Trsat, Mt. Ucka and Dalmatia), Ivan Lovric together with Alberto Fortis in 1774 and 1776 explored Gospodska Cave on the Cetina river. 3. THE FIRST SPELEOLOGICAL ORGANIZATIONS The first society that dealt with cave exploring in Croatia was Odbor za uredenje Baračeve Špilje (Committee for Arrangement of Barač Caves) that was founded on 12"" of August 1892 near Rakovica in region of the Plitvice lakes. That is considered as the first speleological organization in Croatia and is among the first in the world (after Vienna, Trieste and Postojna). D. Gorjanovič Kramberger and J. Poljak on 31" July 1910 had established a Committee for Cave Researches (Odbor za istraživanje špilja) under the Geological Council for the Kingdom of Croatia and Slavonija in Zagreb. That is regarded as the first Croatian scientific society dealing with underground karst phenomena. 4. SPELEOLOGICAL SOCIETY ACTIVITY During more than hundred years many speleological societies existed in Croatia. Some of them left significant evidences of their activities; others had short existence but were important historic ally. In tradition of the Committee for arrangement of Barač Caves (1892-1896), ZAGREB Fig. 1,- The sign of the Croatian Speleological Association (Hrvatsko speleološko društvo). The first speleological organization in Croatia was founded in year 1892 in Ra-kovica, near Plitvice lakes. and a legitimate successor of the Committee for Cave Researches is the Croatian Speleological Association (Hrvatsko speleološko društvo), established on 2"'' April 1954 in Zagreb, and which is repubhc speleological association and a regular member of UIS (Union Internationale de Speleologie) (Fig. 1). Here is list of all the speleological organizations which were founded in Croatia before the Second World War (see Fig. 2 for locations): "Liburnija" in Zadar (1900-1915); Spiljarski odio in Velika realka (gymnasium) in Split (1912-1915); "Runolist" in Lokve (1923-1935); "Mosor" in Split (1926-1935; 1950; 1956-1996); "Runolist" in Zagreb (1927-1929); "Orjen" in Dubrovnik (1933; 1950; 1986-1989; 1996); "Prijatelj prirode" in Zagreb (1936-1940); "Špiljar" on Knežija in Zagreb (1941-1944). After the Second World War there were founded these speleological societies: "Zagreb-matica" in Zagreb 1949-1988); "Željezničar" in Zagreb (1950-1996); "Rudar" in Rasa (1950-1952); "Platak" in Rijeka (1950; 1962-1985); "Javor" in Zagreb (1951; 1955-1959); "Velebit" in Zagreb (1954-1956; 1960-1996); "Mosor" in Dugo Polje (1955-1959), "Speleološka sekcija Hrvatskog geografskog društva" in Zagreb (1956-1963; 1991-1996); "Komisija za speleolo-giju HPS" in Zagreb (1956-1996); "Vladimir Nazor" in Split (1957), "Dubovac" in Karlovac (1957-1963; 1966-1996); "Mosor" in Klis (1959/1960); "Zanatlija" in Zagreb (1960-1963); "Paklenica" in Zadar (1967-1990); "Velebit" on the Island of Hvar (1968); "Speleološki odred izvidača" in Zagreb (1969); "Split" in Split (1970-1978); "Umberto Girometta / Špiljar" in Split (1971-1979; 1983-1996); "Dubovac" in Vojnič (1970); "Otočani" in Novalja, Island of Pag (1974-1990); "Istra" in Pazin (1975-1996); "Japetic" in Samobor (1975-1996); "Proteus" in Poreč (1977-1996); "OKI" in Zagreb (1977-1982); "Biokovo" in Makarska (1977-1996); "Sutjeska" in Zagreb (1978-1986); "Speleološki odred izvidača" in Karlovac (1978); "Ursus Spelaeus" in Zagreb (1978-1989); "Svila-ja" in Sinj (1978-1985); "Vis" in the Island of Vis (1979-1980); "Društvo za istraživanja i snimanja krških fenomena- DISKF" in Zagreb (1980-1996); "Myotis Myotis" in Karlovac (1984-1985); "Pauk" in Fužine (1986-1996); "Rovinj" in Rovinj (1986-1988), "Buje" in Buje (1987-1996) "Kamenar" in Šibenik (1988-1996); "Sv. Mihovil" in Šibenik (1996); "Jamar" in Han (1996); "Karlovac" in Karlovac (1996). AUSTRIA ^ \ ITALY > SLOVENIA^greb'^^ HUNGARY CROATIA BOSNIA , L AND ( ^v. HERZEGOVINA Fig. 2. - Positions of the towns in which were founded speleological organizations in Croatia (1892-1996): LEGEND: 1- Rakovica; 2- Zagreb; 3- Zadar; 4- Split; 5- Dubrovnik; 6- Rasa; 7-Rijeka; 8- Dugo Polje; 9- Karlovac; 10- Klis; 11- Hvar; 12- Vojnic, 13- Novalja; 14- Pazin; 15- Samobor, 16- Poreč; 17- Makarska; 18- Sinj; 19- Vis; 20- Fužine; 21- Rovinj; 22- Buje; 23- Šibenik; 24- Han; 25- Lokve. Mostly they are situated in regions of Istria, Dalmatia, Gorski kotar and Zagreb region. No one is located in Lika karst region. It is evident that in Croatia a relatively small number of societies (fifty) existed, but they explored more than 8000 speleological objects in the last hundred years. That is an impressive number considering the number of active speleologists and the area of Croatia. 5. INDIVIDUALS IMPORTANT FOR CROATIAN SPELEOLOGY Significant contributions for Croatian speleology and karst researches were made also by many individuals (D. Hire, R. Bujas, U. Girometa, M. Margetic, I. Krajac, F. Baučič, V. Redenšek, V. Horvat, G. Novak, J. Roglič, V Blaškovič, S. Smolec, M. Malez and many others). Altogether there have been over 1300 researchers in Croatian speleology in more than a hundred years, and today there are about 350 active speleologists. 6. CONCLUSION More than 8000 speleological objects (caves and pits) are known in Croatia today, which is a great number related to the dimensions of karst area and the number of active speleologists. There are 15 tourist caves in Croatia. Speleologists are associated in 23 speleological societies that are active in Croatian territory. Important are discoveries of endemic underground animals - Proteus angui-nus in 26 Croatian caves and pits, and unidentified underground species in two pits deeper than 1000 m. The deepest pit of the Croatian karst is Lukina jama on Velebit, 1392 m deep, and the longest cave system is Dula - Medvedica Cave System near Ogulin, 16,5 km long. Croatian speleologists are respected in the world and have organized or participated at many international expeditions. Croatia is a member of UIS, International Union of Speleology, which has 60 members. Croatian karst is so-called locus typicus for all karst regions - it is considered as a classic example of karst in the world, where first scientific theories on speleogenesis and karst groundwater flow were born. There will be more contributions to the history of speleological researches in Croatia due to the work of speleologists from Austria, Hungary, Italy, Slovenia, Czech Republic, Slovakia, France and Germany. ALCADI meetings will play a significant role because more data resources about Croatian speleological karst researches will become available. 7. REFERENCES Božičevič, S. (1984): 30 godina postojanja Speleoloskog društva Hrvatske. Zbornik predavanja. Deveti Jugos. speleološki kongres, Karlovac, pp. 103-109, Zagreb. Dadič, Ž. (1984): Osvrt Nikole Gučetiča u 16. stolječu na dvije spilje u okolici Dubrovnika. Zbornik predavanja. Deveti Jugosl. speleološki kongres, Karlovac, pp. 741-746, Zagreb. Garašič, M. (1992): 1892 - The year of establishing the first organization connected with speleological activities in Croatia. Spelaeologia Croatica, vol. 3, pp. 53-55, Zagreb. Gučetič, N. (Gozze di Vito Nicolo) (1585): Quatrogiornate sopra le metheore di Aristotele. Presso F. Ziletti, Venezia. Lovric, I. (1776): Osservazioni di Giovanni Lovrich sopra diversi pezzi del Viaggio in Dalmazia del signor Abate Alberto Fortis coll'aggiunta della vita Socivizza, pp. 229, Venezia. Malez, M. (1990): Eighty years of organized speleological investigations in Croatia. Spelaeologia Croatica, vol.1, pp. 5-8, Zagreb. PRISPEVEK K POZNAVANJU SPELEOLOGIJE NA HRVAŠKEM Povzetek V prispevku so podani osnovni podatki o delovanju bolj znanih "speleistov" ali speleologov od leta 1584 dalje, kot tudi o speleoloških društvih na Hrvaškem od 1892. leta, ko je bil ustanovljen "Odbor za uredenje Baračevih spilja", pri Rakovici, kot četrto speleološko društvo na svetu. Od tedaj dalje je bilo na Hrvaškem osnovanih okoli 50 speleoloških društev, ki so se vsaka na svoj način ukvarjala s speleološkimi raziskavami. Ta društva so nastajala, delovala in mnoga so iz najrazhčnejših vzrokov tudi prenehala z delom. Po razpoložljivih podatkih vemo, da se je do danes nekaj več kot 1000 ljudi resno ukvarjalo s speleologijo, kar je majhno število v primerjavi z drugimi kraškimi področji in glede na delež krasa na Hrvaškem. Vendar so rezultati speleoloških raziskav (število znanih oziroma raziskanih speleoloških objektov, objavljena dela, vpetost v mednarodno speleologijo, itd.) pomembni, lahko bi celo rekel občudovanja vredni in to ne le v regionalnem, ampak tudi v širšem smislu. ACTA CARSOLOGICA XXVI/2 5 55-62 LJUBLJANA 1997 LE ROLE DES BOTANISTES DANS LES DEBUTS DE LA SPELEOLOGIE FRAN^AISE VLOGA BOTANIKOV PRI ZAČETKIH SPELEOLOGIJE V FRANCIJI CHRISTOPH GAUCHON^ Izvleček UDK 58:551.44(44)(091) Christophe Gauchon: Vloga botanikov pri začetkih speleologije v Franciji Pogosto je prispevek botanikov k poznavanju podzemeljskega sveta neopažen, običajno omejen le na Tournefortov spust v jamo Antiparos (1700) in njegovo zmotno mišljenje o rasti kapnikov. Vendar so botaniki v 18. in 19. stol. veliko prispevali k odkrivanju in k raziskovanju jam, saj so po terenu nabirali gradivo za herbarije in cesto iskali jame, da bi pred njimi našli redke rastline. Najboljši primer je Villaijev opis Trou du Glas, glavnega vhoda v jamski splet Dent de Grolles, iz 1786. Ključne besede: zgodovina speleologije, botaniki, Francija, Alpe, Dent de Grolles, Pireneji. Abstract UDC 58:551.44(44)(091) Christophe Gauchon: The contribution of botanists to the development of speleology in France The contribution of botanists to knowledge of the subterranean world is often undervalued. Sometimes only Tournefort's visit to the Antiparos cave in 1700 is quoted, together with his mistaken views about the vegetative origin of stalactites. But botanists did play a very important part because they systematically practiced field-work to full their herbarium; and they often looked for caves to find scarce plants, unusual elsewhere. The best instance of this contribution is the first description of the main entrance of Dent de Grolles system by Dominique Villars, in 1786. Key words: history of speleology, botanists, France, Alps, Dent de Grolles, Pyrenees. 13, Impasse du Languedoc, 34730 PRADES-LE-LEZ, FRANCE Tantot encore, un cercle se forme autour d'un alerte vieillard Qui explore la nature et connait sa beaute; La vertu miraculeuse des plantes et leurs formes varices Sa perspicacite les a des longtemps scrutees, elle a nomme chaque mousse; II penetre d'un oeil aigu les souterrains abTmes Et c'est en vain que la terre cherche ä lui derober son or pale. Albrecht de HALLER. Les Alpes La question que Ton peut se poser quant ä I'histoire de la speleologie est de savoir qui allait sous terre, qui explorait et rendait compte de ce que recelaient les cavernes, avant que les speleologues n'existent? Bien sür il est aise d'apporter quelques elements de reponse: les paleontologues, les archeologues viennent tout d'abord ä I'esprit, mais, en France au moins, leurs premieres investigations ne remontent pas au-dela de 1826, lorsque furent decouverts des ossements d'ours des cavernes dans la grotte d'Osselles (Doubs). On pense ensuite aux physiciens qui des le XVIeme siede s'interesserent aux circulations d'eau sou-terraines: Palissy, Kircher, Perrault..., puis aux geographes, aux geologues... Mais il est une categoric de savants que Ton oublie peut-etre trop souvent et que Ton ne croirait pas avoir joue ici un role bien important, ce sont les bota-nistes. Certes, il est au moins une celebre figure de botaniste qui emerge de I'histoire de la speleologie, c'est celle de Joseph Pitton de Tournefort, professeur de botanique au jardin des plantes de Paris, dont chacun connait I'exploration de la grotte d'Antiparos, ä la fin de 1700; les observations qu'il fit sur place le conduisirent ä se prononcer pour la "vegetation des pierres" comme mode de formation des concretions et ä defendre cette opinion jusqu'a sa mort, surve-nue en 1708. Meme si Tournefort n'emporta pas I'adhesion de tous les savants, ses recits de voyage eurent une grande audience, connurent plusieurs editions et furent meme traduits et publies en Angleterre (Shaw 1992, 244). On a beaucoup raille Tournefort, et tous n'ont pas compris "la designation d'un botaniste pour une recherche en mineralogie" (Minvielle 1967, 20). Or, juger severement sur ce seul episode, c'est meconnaitre I'apport des botanistes en general ä la decouverte du monde souterrain. Certes, les connaissances des botanistes ne trouvent guere leur utilite dans la comprehension des cavernes, et il n'y a sans doute rien de bon ä en garder, mais nous verrons qu'en revanche, leurs fagons de travailler les mettaient dans des situations propres ä favoriser des decouvertes importantes. I. LA BOTANIQUE AU CENTRE DES SCIENCES NATURELLES: II n'est pas innocent que la connaissance des plantes et celle des cavernes soient souvent mises en parallele, et attribuees aux memes hommes. La citation de Haller que nous avons mise en exergue en est une premiere illustration. II en est bien d'autres. Bosc par exemple, vantant, en 1797, la diversite des Grands Gausses de I'Aveyron, ecrivait ainsi: "Quelle etude plus attrayante que celle de ces plantes, de ces arbustes, de ces simples de toute espece (...); de ces coteaux (...); de I'interieur de ces grottes profondes, par lesquelles on semble penetrer les entrailles de la terre, pour lui derober les secrets mysterieux de la vegetation, ou pour contempler les routes cachees des fontaines et des ruisseaux?" (Bose 1797, I, 12). Les plantes rares sont autant de secrets, que la nature cache, comme eile cache les cavernes, et qu'il faut chercher et invento-rier de la meme fagon. De plus, revocation des plantes medicinales suppose une certaine initiation reservee ä un petit nombre, et au secret s'ajoute alors un mystere. A cet egard, I'association entre cavernes et guerisseurs est significative: Termite qui sejournait au XVIII™® siecle dans la petite grotte de Loi-zia (Jura) faisait pousser, juste au-devant, sur un petit terre-plein, du cerfeuil, du cresson et de la valeriane (Lequinio 1801, 246-247), et il est probable que Termite de la grotte de Saint-Antoine de Galamus (Pyrenees-Orientales) four-nissait des plantes abortives aux paysans des alentours (Fabre 1985, 23). Mais cette parente entre cavernes et plantes n'existe pas seulement dans les mentalites; au XVIIF""' siecle, et dans une moindre mesure au XIX™®, avant que la speleologie ne se soit constituee en discipline ä part entiere, les botanistes joueront souvent un role de premier plan dans la decouverte des grottes. Le rapport entre les deux domaines n'est pourtant pas a priori evident, et merite exphcation: au siecle des Lumieres, la botanique est ä la base de toute Tinstruction scientifique; Saussure, quand il se rendit pour la premiere fois dans la vallee de Ghamonix, avail surout Tidee d'y herboriser, et ses "Voyages dans les Alpes" abondent de notations botaniques autant que de considerations geologiques. Les deux disciplines sont d'ailleurs etroitement liees, ne serait-ce que pour reconnaitre la flore fossile des gisements houillers; les annees d'etudes du je-une Humboldt sont dominees par une reelle passion pour la botanique (Sotting 1988, 16), passion qu'il sut prolonger lorsqu'il entra ä TAcademie des Mines de Freiberg; nous y reviendrons. Un siecle plus tard, Martel comptera parmi ses collaborateurs au moins deux hommes dont la premiere curiosite avait ete pour la botanique: Felix Mazauric, qui dressa la topographic complete de la grotte de Bramabiau avant de s'orienter vers Tarcheologie du pays nimois, avait redige ä Tage de 20 ans le recit d'une excursion botanique au Mont-Aigoual; et Joseph Vallot, selon son biographe, etait ä 16 ans "un passionne de botanique, discipline dans laquelle il s'averait un veritable speciahste (et) les herbiers succedaient aux herbiers" (Vivian 1986, 36-37); il publia plus de 20 etudes de botanique, tout en s'interessant aux gouffres des Gausses, puis se consacra tout entier au Mont-Blanc. De meme, Henri Poujol, qui fut le predecesseur de Martel dans les gorges de la Jonte mais qui refusa ensuite de collaborer avec lui, s'etait d'abord fait connaitre par des travaux de botanique, avant de proceder ä des fouilles archeologiques fruc-tueuses dans les grottes des Gausses. La botanique apparait done comme une veritable et indispensable initiation ä I'esprit scientifique, quelle que soit la discipline ä laquelle on se destine finalement. En plus des savants, la botanique jouit aussi au XVIIP™ d'un grand effet de mode et toute personne distinguee qui se pique d'histoire naturelle tient forcement un herbier. En 1770, Jean-Jacques Rousseau herborisa autour de Grenoble, et le secteur du Vercors qu'il arpenta s'appelle, depuis lors, "Desert de Jean-Jacques"; atteint de la maladie de la persecution, il aimait ä se retirer dans des endroits tranquilles, et en 1762-63, lors de son sejour ä Motiers-Travers (Jura suisse), il s'etait plu ä mediter sous le grand porche de la grotte de Motiers. II. LES BOTANISTES SUR LE TERRAIN: Serieux ou dilettantes, les naturalistes sont done avant tout des botanistes, mais avec cet avantage formidable sur tous les autres savants que les botanistes, eux, allaient forcement sur le terrain, ne serait-ce que pour remplir leurs herbiers, alors que de nombreux geologues ou geographes ne quittaient guere leurs cabinets de travail. Et quand I'Europe decouvrit les grands glaciers de Chamonix et de Grindelwald, les hauts massifs alpins capterent tous les regards, drainerent tous les curieux. Les botanistes ne trouvaient guere leur compte dans ces etendues rocailleuses et englacees, et continuerent ä preferer la moyenne montagne, souvent plus isolee et, paradoxalement, plus difficile d'acces. En effet, alors que des touristes par milliers montaient dejä ä Chamonix ou au cirque de Gavarnie, beaucoup de massifs moins prestigieux n'etaient desservis par aucune route, ce qui faisait dire ä un savant de la fin du XVIII'™ siede que "les Pyrenees n'ont paru etre ouvertes qu'aux seuls amateurs de la botanique" (Reboul 1788). Ceux-ci cherchaient ä illustrer par leurs trouvailles le principe de I'etagement de la vegetation qu'avait, le premier, enonce Tournefort ä la suite de ses observations sur les flancs du mont Ararat (Broc 1991, 174) et arpentaient done, entre autres, les massifs karstiques des Pyrenees et des Alpes. Le Casque de Lheris (1595 metres) au-dessus de Bagneres-de-Bigorre (Hautes-Pyrenees) fut ainsi un haut lieu de la botanique au XVIIP""® siede, mentionne par tous les ouvrages de l'epoque, et, tout en herborisant, on ne pouvait manquer de re-marquer les cavernes qui s'ouvraient sur ses flancs: "Le celebre Tournefort a parcouru la montagne de Lheyris (ä l'automne 1685); comme lui, venez y remplir votre herbier (...) Nous verrons le puits d'Arris, que le vulgaire, ami du merveilleux, croit un abime incommensurable. Nous visiterons les grottes de la Gourgue et de Coume-Barade" (Joudou 1818, 137). Le peuple ignorant et superstitieux s'oppose done au savant botaniste, seul qualifie pour observer avec serenite et methode les phenomenes de la nature. De meme, dans les Prealpes de Savoie, la grotte des Portes (commune de Doucy) est opposee ä la grotte de Banges, frequentee par les curistes d'Aix-les-Bains: "Cette caverne, moins connue, n'est guere visitee que par les bota- nistes qui viennent herboriser dans ces hautes regions" (Richard 1839, 109). Cette pratique systematique du terrain est alors relativement rare, et il semble que tous les savants reconnaissent cette specificite aux botanistes. Un exemple nous le montre bien, choisi dans les Alpes du Sud: sur le flanc Nord du Mont Ventoux, autour de 1400 metres d'altitude s'ouvre une caverne aujourd'hui bien connue et longue d'environ 500 metres: le Trou du Vent. Mentionne depuis longtemps, les descriptions en sont toutefois imprecises, et pourtant le courant d'air qui en sort intrigue. Le geologue Guettard, ayant fait le point des con-naissances acquises sur cette caverne, aimerait bien en savoir davantage, et conclut logiquement: "Le Mont Ventoux est fameux en Provence ä cause des plantes qu'on y trouve: les botanistes le parcourent souvent; quelques uns d'eux probablement resolvera (sic) cette difficulte & nous decrira ces cavernes, si reellement elles existent" (Guettard 1779, XCVI). Les botanistes se trouvent ainsi en position d'arbitres des problemes qui ne peuvent trouver leur solution que d'une frequentation du terain. III. LES BOTANISTES SOUS TERRE: Mais ce qui importe le plus pour nous, et qui est la consequence logique de ce que nous venons d'exposer, c'est que les botanistes seront les premiers ä signaler et ä decrire toute une serie de cavites; en un temps oü la specialisation scientifique n'existe pas encore, certains n'hesiteront pas ä penetrer sous terre et ä en ramener des informations interessantes. La premiere synthese sur la Fontaine de Vaucluse, sur son fonctionnement et son bassin d'alimentation, est due ä Joseph Guerin, createur du jardin botanique d'Avignon (1775-1850). Au cours de ses herborisations dans les Grands Gausses, Antoine Gouan fut le premier, ä la fin du XVIIP""= siecle, ä decrire le site de Bramabiau; sa relation est precise et distingue bien I'orifice dans lequel se perd le Bonheur de la resurgence de Bramabiau ä proprement parier (Gouan 1796, 196-197). Mais surtout, en 1768, il consacra deux journees ä I'exploration de la Baume-Cellier (Monts de Saint-Guilhem, Herault), elargit avec ses compagnons I'etroiture qui terminait la caverne et decouvrit ainsi une nouvelle salle (id. 175-177). Une fois qu'il est entre sous terre, Gouan semble avoir laisse de cote ses preoccupations botaniques et ses investigations sont reellement speleologiques. II n'en est pas de meme de Dominique Villars; ce grand botaniste dauphi-nois de la fin du XVIIP""® parcourut pendant des annees les montagnes de sa province, du massif des Ecrins jusqu'a la Grande Chartreuse, sans en laisser un coin inexplore. Les grottes I'interessent pour elles-memes sans doute, mais surtout parce qu'il y traque les formes specifiques de vegetation: "Les grottes, les lieux bas marecageux, les aqueducs, les conduits souterrains, les puits, les galeries de mines, les endroits les plus infects qui refusent la vie aux plantes ordinaires, sont converts de moisissures, de lichen, de biffus, de mousses et d'autres productions analogues. Ces plantes contribuent ä la salubrite de Fair" (Villars 1781, 166-167). La lecture de son Histoire des Plantes du Dauphine, et surtout de son tome III consacre aux cryptogames, reserve ainsi de nombreuses notations sur les mousses qui croissent "dans les antres, les fentes, ä I'entree des grottes" (Hypnum crispum, 893), sur des lichens qui viennent "dans les pierres creuses, les grottes, dans les endroits oü Fair circule difficilement et oü le soleil ne penetre presque jamais" {lichen lutescens, 1003)... A plusieurs reprises, il cite des especes qu'il a trouvees ä I'entree de la grotte des Cuves de Sassenage (Vercors) ou dans la grotte de I'Ermitage au Neron (Chartreuse). Mais sa contribution la plus importante tient dans sa description du Trou du Glaz, premiere mention connue de ce qui deviendra, bien plus tard, le reseau de la Dent de Grolles. Le passage merite d'etre cite in extenso: En 1775, "nous visitames la fameuse grotte appelee trou-du-Glaz, c'est ä dire trou de la glace, parce qu'elle en conserve souvent toute I'annee. La direction de cette grotte est au Nord; sa hauteur est considerable, sa longueur est de plus de 700 pieds, dans un enfoncement regulier & presque horizontal; son elevation est ä plus de 3600 pieds au-dessus de la plaine de grenoble; on y trouve des stalactites d'une grosseur enorme et d'une assez belle transparence. La vegetation ne se prolonge qu'a 30 ä 40 pieds environ, quoique son ouverture ait plus de 20 pieds de diametre. Les plantes, d'abord legerement inclinees vers le cote du jour, deviennent de plus en plus penchees et plus minces ä mesure qu'on s'enfonce davantage & finissent par etre jaunes, eti-olees, minces comme des cheveux, insipides, inodores et sans consistance, au moment oü cette grotte leur refuse la vie" (1786, XXVI-XXVII). Le temoi-gnage est certes precieux, ä la fois sur le plan speleologique, et sur le plan d'une etude ecologique du monde souterrain. A n'en pas douter, Villars est ici un precurseur. On voit bien par cet exemple que les botanistes ne visitent pas seulement les grottes ä I'occasion de leurs excursions en montagne, en plus de leurs travaux serieux, mais aussi pour y chercher des formes de vie vegetale propres ä ce milieu. Quelques annees seulement apres Villars, Humboldt fut anime de la meme curiosite, meme si eile ne s'appliquait pas aux cavites naturelles : "A I'occasion de ses nombreuses expeditions personnelles dans le sombre laby-rinthe des mines de Freiberg, il est completement fascine par les mousses et autres plantes qui parviennent ä produire une pigmentation verte avec, pour toute lumiere, la faible lueur des lampes de mineur. Du coup, il se met ä etudier, dans son petit jardin souterrain, I'effet de la lumiere sur la croissance des vegetaux" (Botting 1988, 21). Depuis longtemps, la presence de vegetaux ä I'entree des grottes avait dü intriguer; des 1616, Chifflet, medecin de Besangon avait note ä la glaciere de la Grace-Dieu (Doubs) que "les pulmonaires poussent dans cette antre avec la saxifrage" (Chifflet 1616, 97). Mais il semble qu'au debut du XIX^™« siecle, de telles notations deviennent plus frequentes. Dans les Pyrenees, par exemple, le grand botaniste Picot de Lapeyrouse releve la presence d'une fougere Adian-tum Capillus Veneris "sur les rochers humides, dans les cavernes, dans les puits" (Picot 1813, 629). A la meme epoque, Monteil explique que le bord du Causse Noir "presente un grand nombre de belles grottes: celles qui sont d'un acces facile servent ä renfermer les troupeaux, les autres, ou Ton ne penetre qu'avec peine, offrent des concretions pierreuses et plusieurs especes de plantes, telles que le polipo-dium, le politricum, le pinguicula (qui sert ä soigner les gergures des mamelles des vaches), Vacrosticum et Vadiantum" (Monteil 1802, 170). On retrouve ici cette predilection du botaniste pour des grottes d'acces un peu difficile, des grottes qui ne sont pas frequentees pour les usages quotidiens et qui recelent des plantes medicinales. CONCLUSION Cette inclination des botanistes, ou de certains d'entre eux du moins, pour les cavernes ne concerna certes pas souvent le karst profond, et leur curiosite s'arretait en general peu au-dela de la zone de penombre. lis se soucierent rarement de considerations karstologiques ou hydrologiques, mais firent indu-bitablement faire ses premiers pas ä I'ecologie souterraine. Et surtout, dans bien des cas, ils ouvrirent la voie: ä la suite de Villars, plusieurs auteurs mentionnerent le trou du Glas, bientöt indispensable ä toute description du massif de la Chartreuse; Gouan ä la Baume Cellier fut suivi 30 ans apres par un autre botaniste, Amelin, qui la fit connaitre au grand public. Et il est evident que le travail de defrichement effectue par Poujol fut d'une grande utilite ä Martel lorsqu'il vint ä son tour explorer les grottes des Gausses. Sans exagerer done cet apport des botanistes, il convenait de leur rendre ici la place qui leur etait due, aux cotes des autres pionniers de la speleologie. BIBLIOGRAPHIE BOSG (L. C. P.), 1797, Memoires pour servir ä I'histoire du Rouergue, Rodez, Devic, 3 t. BOTTING (D.), 1988, Humboldt, un savant democrate, Paris, Belin, 296 p. BROC (N.), 1991, La Montagne au siecle des Lumieres, Paris, C.T.H.S., 300 p. CHEVALIER (M.), 1987, Au temps des geographes sedentaires, in Le Climat, la Montagne, I'Homme: Melanges geographiques offerts ä Pierre Esti-enne, Clermont-Ferrand, p. 263 ä 275 CHIFFLET (J. J.), 1616, Vesontio, Civitas Imperialis Libera Sequanorum Metropolis, Lyon, Claude Cayne FABRE (D.), 1985, Savoirs naturalistes populaires et projets anthropologistes, in Les savoirs naturalistes populaires, Paris, ed. M.S.H., p. 15 ä 27 GOUAN (A.), 1796, Herborisations des environs de Montpellier, Montpellier, Izar 1 Ricard, 275 p. GUERIN (J.), 1804, Description de la Fontaine de Vaucluse, Avignon, 139 p. GUETTARD (J. E.), 1779, Memoires sur la Mineralogie du Dauphine JOUDOU (J. B.), 1818, Guide des voyageurs ä Bagneres de Bigorre et dans les environs, Tarbes, Lagarrigue, 163 p. LEQUINIO (J. M.), 1801, Voyage pittoresque et physico-economique du Jura, Paris, 2 t. MINVIELLE (P.), 1967, La Conquete souterraine, Grenoble, Arthaud, 258 p. MONTEIL (A. A.), 1802, Description du departement de I'Aveiron, Paris, 2 t. MORNET (D.), 1911, Les Sciences de la Nature en France au XVIIP siecle, Paris, Armand Colin, 291 p. PICOT de LAPEYROUSE, 1813, Histoire abregee des Plantes des Pyrenees et itineraire des botanistes dans ces montagnes, Toulouse, LXXXIII et 700 p. REBOUL, 1788, Description de la vallee du Gave Bearnais dans les Pyrenees, extrait d'un Memoire de I'Academie des Sciences, 53 p. RICHARD, 1839, Guide de I'etranger aux eaux d'Aix, Paris, de Maison, 182 p. SHAW (T. R.), 1992, History of Cave Science, Sydney, S.S.S., 338 p. VILLARS (D), 1781, Botanique, in les Affiches du Dauphine, n" 42, vendredi 9 fevrier VILLARS (D.), 1786-89, Histoire des Plantes de Dauphine, Grenoble, 3 t. VIVIAN (R.), 1986, L'epopee Vallot au Mont-Blanc, Paris, Denoel, 199 p. VLOGA BOTANIKOV PRI ZAČETKIH SPELEOLOGIJE V FRANCIJI Povzetek Pogosto je prispevek botanikov k poznavanju podzemeljskega sveta neopa-žen. Običajno je omejen le na Tournefortov spust v jamo Antiparos (1700) in njegovo zmotno mišljenje, da kapniki rastejo kakor rastline. Vendar so botaniki v 18. in 19. stol., to je v času, preden se je speleologija uveljavila kot veda, veliko prispevali k odkrivanju in često tudi k raziskovanju jam. Od 18. stol. dalje je bila botanika temelj naravoslovne izobrazbe in naravoslovnega znanja. Tako sta Saussure in Humboldt, preden sta se odpravila na potovanji po Alpah oziroma po svetu, študirala botaniko; J. Vallot in E Mazauric, Martelova tovariša, sta bila predvsem botanika. V drugi polovici 18. stol., ko je Evropa odkrila ledenike Chamonixa in Grindelwalda, so visokogorja pritegnil turiste in znanstvenike, medtem ko so botaniki nadaljevali s pohodi po manj obiskovanih in teže dostopnih predalpskih gorovjih. Zagotovo vemo, da so botaniki v času, ko večina geografov in naravoslovcev ni zapuščala svojih kabinetov, nabirali po terenu gradivo za herbarije. Znani botanik iz Grenobla, Dominique Villars, je prvi objavil (1786) opis Trou du Glas, glavnega vhoda v jamski splet Dent de Grolles. Klasično Chaixovo delo o škrapljah temelji na seznamu, ki ga je sestavil botanik John Briquet. Na podlagi več primerov iz Alp in s francoskega krasa avtor v tem prispevku pomaga osvethti vlogo botanikov pri nastajanju znanosti o jamah. ACTA CARSOLOGICA XXVI/2 6 63-73 LJUBLJANA 1997 UNE CAVERNE CLASSIQUE DU VERCORS: LA GROTTE DES CUVES DE SASSENAGE CUVES DE SASSENAGE, KLASIČNA JAMA V VERCORJU CHRISTOPH GAUCHON^ Izvleček UDK 551.442(44)(091) Christoph Gauchon: Cuves de Sassenage, klasična jama v Vercorju Jama Cuves de Sassenage leži v SV vznožju planote Vercors, blizu Grenobla. V jami, dolgi 9 km, se pojavlja voda iz brezna Berger. Tolmuna - "cuves" - v jamskem vhodu sta bila dvakrat opisana v prvi polovici 16. stol. in uvrščena v "Sedem čudes Dofineje". Vsako leto so se okoličani podali do tolmunov, da bi po njih sklepali na letino, globlje v jamo pa do raziskav Faujas de Saint-Fondsa 1781 ni šel nihče. J. Fonne je 1898-1899 izdelal prvi jamski načrt, nadaljevanja jame pa kljub prizadevanjem ni našel. Ključne besede: zgodovina speleologije, Francija, Vercors, Gouffre Berger, Cuves de Sassenage. Abstract UDC 551.442(44)(091) A classic cavern in Vercors, Cuves de Sassenage The cave of the "Cuves de Sassenage" lies at the foot of Vercors, 5 km far from Grenoble. This more than 9 km long cave is the resurgence of the Gouffre Berger. Twice described in the first half of the XVIth century, the Cuves were two large rockbasins, considered as one of the 7 Wonders of Dauphine. People scrutinized them each year to know if harvests would be copious but no-one passed beyond, before the first exploration by Faujas de Saint-Fonds in 1781. The first survey of the cave was drawn in 1898-1899 by Joseph Fonne, who could not find any extension in spite of his endeavours. Key words: history of speleology, France, Vercors, Gouffre Berger, Cuves de Sassenage. 13, Impasse du Languedoc, F - 34730 PRADES-LE-LEZ, FRANCE L'histoire de la grotte des Cuves de Sassenage est tout entiere placee sous le signe du paradoxe: "connue depuis toujours", citee par les erudits au moins depuis le XVP™ siecle, la grotte ne fut reellement exploree que bien plus tard. Cavite horizontale, eile opposa longtemps aux curieux I'eau froide de ses cascades, le reseau labyrinthique de ses galeries et les silex dechiquetes qui en ornent les parois; ces obstacles, que nous ne percevons plus guere aujourd'hui, retarderent considerablement la connaissance de cette grotte dont I'exploration fut, pendant des siecles, d'une lenteur desesperante. Et pourtant, on ne cessa jamais de s'interesser ä cette caverne qui, s'ouvrant au pied du Vercors, ä 5 kilometres de Grenoble, reste accessible en toutes saisons. Au fil des siecles, plusieurs centres d'interet se relayerent, suivant revolution des mentalites, et assurerent aux Cuves de Sassenage une renommee ininterrompue. L'histoire des Cuves, assez proche finalement de Celle de beaucoup de cavernes connues de longue date, merite bien d'etre racontee. I. LE TEMPS DES FABLES La grotte des Cuves de Sassenage est, ä ma connaissance, la cavite naturelle des Alpes fran^aises la plus anciennement citee: en 1525, dans une biographic du fameux chevalier Bayard, heros dauphinois disparu I'annee precedente, Symphorien Champier decrit les "singularites" de sa province, parmi lesquelles "trois tines faites naturellement dans une roche aupres d'un chateau nomme Sassenage, en la montagne, lesquelles sont grandes ä merveilles. Et un certain jour de I'annee, ceux du pays vont voir lesdites tines dans le rocher assises, et si I'annee doit etre sterile, elles sont vides et n'y a comme point d'eau. Si I'annee doit etre abondante en biens, elles sont pleines d'eau. Et ainsi I'affirment ceux du pays entour." (Champier 1525, 39). Neuf ans plus tard, un autre erudit dauphinois, Aymar Falcoz donne davantage de details ä propos de ces cuves: "On voit ä Sassenage deux fosses que les habitants appellent tines, lesquelles sont dans un rocher et une pierre, et sont d'une grande capacite, dans lesquelles durant toute I'annee on ne voit aucune marque d'humidite, et demeurent tout ä fait seches et on ne peut voir d'oü I'eau peut sortir ou couler. Si ce n'est un jour de I'annee et inevitable-ment la nuit de I'apparition de notre seigneur qu'on les voit pleines d'eau en abondance, toutefois I'eau n'y abondant toujours d'une egale fagon mais I'une ou I'autre fait voir tantot plus, tantot moins d'humidite et les habitants de ce lieu tirent des conjectures de ce signe, de la fecondite ou de la sterilite de la terre. L'une de ces fosses denotant I'abondance ou disette de vin, et I'autre marquant la grande quantite ou peu de ble qu'on cueillera cette annee. Or, ce jour etant passe, toute I'eau s'ecoule et disparait merveilleusement sans que personne ne puisse apercevoir comment cela se fait" (Falcoz 1534, LXII-LXIII). Ces deux textes, peu connus, meritent d'etre cites in extenso, d'abord en raison de leur anciennete, mais surtout parce qu'ils fixent pour pres de 200 ans la vision dominante des Cuves. Si Champier et Faleoz ont juge utile d'incorporer la description des Cuves dans le tableau qu'ils dressent de leur province, c'est que les Cuves de Sassenage font partie de ce qu'il sera bientot convenu d'appeler les "7 Merveilles du Dauphine": ces "Merveilles" ou "Miracles" sont des sites naturels comme le Mont-Aiguille ou la grotte de La Balme, auxquels l'imagination pretait quelques vertus surnaturelles. Pendant des siecles, et jusqu'ä aujourd'hui, toute description du Dauphine comportait une evocation de ces Merveilles, et c'est pourquoi l'interet pour les Cuves de Sassenage n'a jamais faibli. Le caractere miraculeux des Cuves tenait done ä cette valeur prophetique qu'on leur pretait, et ä la suite de Falcoz, tous les auteurs posterieurs ont repris la description de la procession qui, le jour de la fete des Rois, montait jusqu'ä la grotte. Chacun ajoutait d'ailleurs des elements propres ä renforcer le mystere; en 1656, Salvaing de Boissieu attribue ä la fee Melusine, aieule legendaire des seigneurs de Sassenage, I'origine de la vertu predictive de ces deux grandes marmites. A partir de ce moment-la, le souvenir de Melusine s'attache de fagon indelebile aux Cuves de Sassenage, dont la toponymie souterraine va s'orner d'une "table de Melusine", d'un "lavabo de Melusine", d'un "labyrinthe de Melusine", des "oubliettes de Melusine", et meme d'un "vase de nuit de Melusine", ce qui est un peu irrespectueux! Le phenomene des Cuves divinatrices est ä coup sür au centre du premier interet pour le site, au point que les deux cuves eclipsent la cavite elle-meme, dont ne parlent ni Champier, ni Falcoz. Le premier ä VOIR veritablement la grotte semble avoir ete Nicolas Chorier, grand historien du Dauphine. Avant meme de decrire le miracle des Cuves, il ecrit: "Les grottes de Sassenage ne sont pas moins dignes d'etre contemplees. L'une est d'une grandeur incroyable, & elle jette de I'horreur dans les ames les plus fermes. En I'autre sont ces cuves si celebres, & dans la troisieme est une table de pierre, que Ton nomme la table de Melusine" (Chorier 1661, I, 34). Sans doute la description est-elle breve, mais elle nous prouve peut-etre que Chorier a pu aller sur place, et personne n'en dira plus jusqu'ä la fin du XVIIP"'' siecle: la premiere grotte laisse echapper une bruyante cascade, susceptible en effet d'effrayer les visi-teurs que Chorier encourage pourtant ä venir. La seconde galerie, haute de trois metres et large d'un, est entierement occupee au sol par les fameuses bassines que personne n'ose franchir pour s'aventurer au-dela. La troisieme est une galerie de peu d'importance, qui s'ouvre en contre-haut du porche principal. Au "miracle des Cuves", Chorier ajoute d'ailleurs une autre merveille, que sont les "pierres ophtalmiques": "Rien ne purifie les yeux ni ne les eclaircit ä I'egal de ces pierres" que Ton fait ghsser sous la paupiere (id., 40). II est difficile pour nous d'identifier ces pierres, que Chorier semble avoir vues, mais qu'il ne dit pas explicitement avoir trouve dans les grottes mais "sur la meme montagne de Sassenage". Apres quoi la plupart des auteurs piocheront dans le texte de Chorier pour donner du site une relation stereotypee. Personne n'ose encore remettre en doute le caractere prophetique du lieu, mais certains cherchent ä I'expliquer. En effet, Chorier avait provoque la curiosite de ses lecteurs: "Quel esprit conduit si fidelement cette eau en ce lieu, pour y etre un oracle qui parle sans enigme? Comment I'eau perce-t-elle un rocher si dur? Comment disparait-elle sitot? Les savants se sont appliques souvent ä la recherche de la cause de cette merveille, mais leurs doutes en ont augmente les tenebres." (id., 39). Pique au vif, le voyageur J. Dumont proposera une premiere explication: "Cela pourrait bien etre parce qu'elles se remplissent suivant I'abondance des eaux qui descendent des montagnes toujours couvertes de neige pendant I'hiver, & comme vous savez, cette abondance n'est pas indifferente ä la fertihte de la Terre. Mais avec cela je serais aisement porte ä croire qu'il y aurait bien de I'abus & de la superstition" (Dumont 1699, I, 107). On voit par la que les premieres interrogations rationnelles amenent ä prendre un certain recul vis-a-vis des croyanees ancestrales. Un certain scepticisme s'installe parmi les erudits, et Thomas Corneille ecrira dans son Dictionnaire: "Ces Cuves passe-raient avec raison pour une des merveilles du Dauphine, s'il n'y avait rien de fabuleux dans ce qui s'en dit" (Corneille 1708, III, 400). Certes, I'exploration de la cavite elle-meme en est toujours au point zero, mais I'incredulite qui va gagner tout au long du XVIIP™ siecle va constituer un nouveau moteur de la curiosite; des lors il s'agit de venir aux Cuves pour verifier le bien-fonde de la legende, et souvent pour la battre en breche. II. LE TEMPS DE LTNCREDULITE Dans les premieres annees du XVIIP™ siecle, les Academies parisiennes demandent ä leurs corespondants en province de verifier un certain nombre de faits tenus pour merveilleux: ainsi M. Dieulamant examina successivement la fontaine ardente et la grotte de la Balme, MM de Vaubonnays et Casset rendirent du Mont-Aiguille une relation plus conforme ä la realite; et en avril 1721, M. Lancelot prononga devant I'Academie des Inscriptions et Belles-Lettres un "Discours sur les 7 Merveilles du Dauphine", tout entier place sous le signe de I'incredulite: ici il rabaisse le merveilleux, la il le nie, rien ne resiste ä cet esprit cartesien. Des Cuves, il ecrit: "C'est une vieille fable que I'adresse maligne de quelques uns des habitants du lieu qui les remplissaient d'eau, a entretenue pendant plusieurs siecles. II ne s'y en trouve plus ä present, & le miracle a cesse, sitot qu'il a ete examine avec attention" (Lancelot 1729, 763). Le jugement est severe, les Sassenageois etant tout simplement accuses de supercherie, bien que Ton ne comprenne pas exacte-ment dans quel but. Heureusement pour les Cuves, Lancelot ajoute: "Ce qu'il y a de curieux ä Sassenage, & dont on parle le moins, est une cascade qui est dans une grotte ä cote de celle oü sont les cuves. La source qui la forme, & qui sort du creux du rocher, a communication avec un lac qui est ä deux lieues de la sur le haut de la montagne de Lans. Cette chute d'eau est regue dans un grand bassin naturel." (id., 764). Ce texte-la est fondateur car, alors que d'autres Merveilles du Dauphine une fois desacralisees allaient sombrer dans I'oubli, Lancelot parvient ä requalifier I'interet du site sassenageois: si les Cuves n'ont rien de remarquable, la grotte non seulement est admirable comme le disait dejä Chorier, mais encore elle pose aux savants un probleme autrement plus interessant, celui de la circulation des eaux ä travers les masses calcaires du Vercors. Certes, il n'y a pas de lac ä Lans, mais I'idee d un bassin versant est dejä clairement exposee, et le fonctionnement de la grotte s'en trouve rationnalise. L'opinion de Lancelot est frequemment reprise dans les decennies qui suivent, et les Cuves de Sassenage eurent ainsi I'honneur de la grande Encyclopedie de Diderot et d'Alembert (1765, X, 392-393), qui re-prirent ä leur compte I'explication du pseudo-miracle par la supercherie des Sassenageois. Mais ces assauts de scepticisme ne faisaient pas progresser la connaissance reelle de la caverne, et il faut attendre pour cela I'intervention d'un nouveau personnage, Faujas de Saint-Fond, Lieutenant-General de la ville de Monteli-mar. En 1781, ce magistrat public une copieuse "Histoire Naturelle du Dauphine", dans laquelle un chapitre entier est consacre ä la "Description des Fig. 1: Plan des Cuves de Sassenage (S. & J. Fonne 1900). Grottes et des Cuves de Sassenage". Faujas avait lu ce que Chorier avait ecrit des Cuves mais n'avait pu admettre "les choses extraordinaires et incroyables qu'il en debitait" (Faujas 1774, 246); il vint done sur place par deux fois en 1774, puis une fois ä nouveau en 1778. Faujas s'est done livre ä une veritable exploration, ä une epoque oü les investigations souterraines connaissent en France une vogue notable. La description qu'il donne de la caverne est precise; s'il n'en dresse malheureusement pas de plan, il a mesure la hauteur, la largeur et la longueur des galeries qu'il a parcourues, d'autant plus systematiquement qu'il progresse avec un fil d'Ariane, pour etre sür de ne pas se perdre dans les dedales. Sa description suit les trois grottes qu'avait dejä distinguees Chorier: du cote oü sortent les eaux, Faujas s'etait heurte en 1774 ä des eaux trop abondante, mais son guide I'avait assure que c'etait par la que se trouvaient les pierres ophtalmiques (Faujas 1774, 249). "Pendant I'ete 1778 & par un temps de secheresse", Faujas revint done aux Cuves et put progresser d'environ 100 pieds "dans un boyau etroit & humide", et fut tout de§u de n'y trouver ni stalactites ni fossiles (Faujas 1781, 277)..., ni pierres ophtalmiques (id., 289). Fig. 2: Portrait de Faujas de St Fond Fig. 3: Les Cuves de Sassenage vers (fonds et cliche Bibliotheque Munici- 1770 (fonds Bibliotheque Municipale de pale de Grenoble). Pau). Ses efforts portent done ensuite sur la galerie oü sont les Cuves: ayant d'abord donne les mesures precises de ces deux grandes marmites, il avoue que "l'on imagine difficilement ce qui a pu donner tant de celebrite ä deux simples creux ou excavations dans le roc vif" (id., 278). Faujas passe done au-delä des Cuves, observe quelques belemnites dans la galerie d'en face, decou-vre sur sa gauche une galerie qui le ramene jusqu'au cours d'eau souterrain oü 'Ton est etourdi par le bruit des eaux & fatigue par le vent" (id., 279). Au total, Faujas n'a parcouru ici que 168 pieds, moins de 60 metres, et il est passe au pied de la "Cheminee des Quatre Vents" sans penser ä lever la tete et ä chercher au plafond la suite de la cavite. Enfin, tout comme Chorier, il signale la troisieme grotte, celle oü Ton remarque la "table de Melusine". Au total, la longueur de I'ensemble ne depasse pas les 100 metres, et c'est bien peu de choses car il y a dejä en France plusieurs grottes connues sur plus d'un kilometre (Osselles, Arcy, La Balme...). Les observations de Faujas seront connues du monde savant de I'epoque, puisque le grand geologue Guettard s'en fera I'echo, et que 30 ans plus tard, I'Encyclopedie methodique de Geographie physique en reprendra des elements. L'opiniatrete de Faujas, son entetement ä verifier la realite de ce qui avait ete ecrit avant lui, les mesures systematiques auxquelles il se livre et qui se substituent des lors aux dimensions mythiques du lieu, tout cela inscrit bien cette demarche dans le XVIIP""= siecle; on retrouve, au meme moment, les memes attitudes chez les explorateurs de la grotte de La Balme, dans le Nord de risere. A partir de la, on pourrait penser que tout est dit, et que les Cuves, ayant perdu tout leur mystere, vont cesser d'attirer les curieux. La sensibihte du XIX®™ prendra le relais ä point nomme: le goüt pour le moyen-age entretient la curiosite pour la legende de Melusine, et s'y ajoute meme la croyance selon laquelle la "table de Melusine" avait servi ä des sacrifices druidiques. D'autre part, le pittoresque du site continue ä faire venir les promeneurs qui admirent les jeux de lumiere du double porche et s'amusent ä s'effrayer du bruit de la cascade. Si Ton en croit Fonne, "tous les dimanches de la belle saison, on voit des centaines de promeneurs (...) s'avancer jusqu'aux grottes" (Fonne 1900, 178). III. A LA RECHERCHE DE PROLONGEMENTS Entre 1781 et 1900, il semble que plus personne ne se soit reellement soucie d'etudier les Cuves de Sassenage et de voir s'il serait possible de depasser le terminus de Faujas. Certaines assertions audacieuses auraient pourtant pu provoquer la curiosite des chercheurs; Pallias n'avait-il pas ecrit: "On assure que ces grottes conduisent jusque dans le Royans situe ä plus de six lieues de lä" (Palhas 1854, 5)? Toutefois, ä travers certains ouvrages d'histoire locale ou certains guides touristiques, il semble bien que certains prolongements etaient dejä connus vers le milieu du XIX'™'= siecle. Taulier parle ainsi de "vastes souterrains" dont la visite "n'est pas sans dangers, ä cause des crevasses qu'il faut franchir, et au fond desquelles on entend mugir les eaux ä une assez grande profondeur" (Taulier 1855, 78). On reconnait la I'allee des Tombeaux, equipee de "deux rails ä ornieres graves dans la paroi" (Fonne 1900, 255) pour faciliter le passage en opposition. Sans doute les visiteurs allaient-ils done au moins jusqu'a la salle des Ratapanades. Un autre guide confirme qu'il s'agit d'une excursion assez eprouvante d'oü "les curieux ne sont pas assures de rapporter de leur expedition toutes les pieces de leur vetement intactes" (Ferry 1869, 58). Ces quelques notations montrent combien, avant que la speleologie ne se soit institutionnalisee grace aux efforts de Mattel, I'excursion touristique et I'exploration etaient melees, ces guides de promenade etant les seuls temoignages de cette epoque. La deuxieme etude serieuse sur les Cuves de Sassenage attendra done la toute fin du XIX=""= siecle, et I'intervention d'un personnage peu connu et qui se signala pourtant par deux series d'explorations speleologiques importantes, d'abord aux Cuves de Sassenage entre 1898 et 1899, puis, apres 1900, dans les grottes des Echelles (massif de la Chartreuse): il s'agit de R. Joseph Fonne, aide le plus souvent de son frere Edouard. II semble que sa carriere de speleologue se soit limitee ä ces deux groupes de cavites, mais les memoires qu'il en a laisses sont precieux et accompagnes de plans fort precis. Le plan qu'il dressa des Cuves, qui n'avaient jamais ete topographiees, fut d'ailleurs reproduit ä plusieurs reprises par Martel, qui remarqua en particulier "le degre de fissuration interne de la montagne" que Fonne s'etait efforce de restituer le plus fidelement possible (Spelunca Bulletin, 1900, n° 21-22, p. 78). L'interet de Fonne pour les Cuves de Sassenage coincide avec un moment oü le pro-prietaire des lieux, le marquis de Berenger envisage pour sa grotte de grands amenagements touristiques et industriels. II est probable que les deux hommes se soient concertes, la plaquette de Berenger etant illustree d'un plan qui, quoique signe d'un certain Riboulet, ressemble etrangement ä celui de Fonne. Quoiqu'il en soit, les freres Fonne vont s'attacher ä fouiller aussi complete-ment que possible les galeries labyrinthiques, et si possible ä en decouvrir les prolongements. Leurs investigations se font sous la conduite des guides habitu-els des grottes, qui s'amusent ä les perdre sur le chemin du retour, ce qui prouve bien que jusqu'a la salle du Styx qui sera leur terminus, les freres Fonne ne font pas de veritables decouvertes. lis sont toutefois les premiers ä decrire toute cette partie de la grotte, et ne se resignent pas ä ne pas pouvoir progresser au-dela. Le 6 fevrier 1898, ils s'acharnent done ä trouver un passage dans la salle du Styx, et, en se faufilant a travers les blocs, parviennent ä descendre assez pour retrouver le cours d'eau souterrain en amont de sa partie connue : ce sera la "cascade Edouard", atteinte apres 5 heures d'efforts. Pas moyen d'aller plus loin, I'eau sortant d'un trou impenetrable. Mais Fonne n'a pas dit son dernier mot. En 1857, le geologue Lory avaient explique que les eaux ressortant aux Cuves de Sassenage venaient du "large plateau qui s'etend vers le Sud jusqu'au village de Saint-Nizier (Lory 1858, 18), et un echo avail paru au debut de 1899 dans Spelunca, signalant I'existence ä Saint-Nizier d'un puits: "on pretend qu'il doit communiquer avec les grottes ou cuves de Sassenage" (Spelunca, Bulletin n° 17-20, p.70). Le 12 fevrier 1899, voici done Fonne ä pied d'oeuvre, ä plus de 1000 metres d'altitude; le puits, dans lequel se jette un ruisselet, est encombre de stalactites de glace, mais qu'importe, Fonne et ses trois compagnons descendront chacun ä leur tour jusqu'a 35 metres de profondeur, oü ils constateront tous que le puits est irremediablement bouche. La s'arreteront les recherches de Fonne. Conclusion: Martel, semble-t-il, n'est jamais venu aux Cuves, mais il en parle ä plusieurs reprises. Avant les explorations de Fonne, il supposait que la navigation souterraine pourrait, ici aussi, faire progresser I'exploration (Martel 1894, 416), mais les lieux ne s'y pretaient vraiment pas. Si, par la suite, il chercha ä proteger le site menace par un projet de captage hydro-electrique, Martel ne cacha pas sa deception quant aux resultats obtenus par Fonne: dans une des comparaisons dont il est coutumier, il dit sa preference pour les grottes des gorges de la Bourne explorees par Decombaz (1928, 165). II est vrai qu'au terme de tous ces efforts, le point ultime atteint dans les Cuves n'est distant de I'entree que d'environ 160 metres, et les centaines de metres de developpement acquis dans les labyrinthes ne font pas illusion: les Cuves restent une caverne bien modeste. Le terminus de la salle du Styx ne sera depasse que le 27 octobre 1947 par Geo Mathieu et Louis Eymas qui, trouvant au sol un passage entre les blocs, allaient donner la cle des decou-vertes ä venir. Fonne, qui n'avait pas epargne sa peine et qui avait minutieuse-ment fouille ce secteur, etait passe tout pres du but. Apres quoi, Mathieu, Eymas et leurs camarades, au lieu de retourner sur le plateau de Saint-Nizier qui ne leur parait pas interessant (Cadoux et al. 1955, 88), investirent le plateau du Sornin oü, le 24 mai 1953, ils allaient decouvrir le Gouffre Berger. L'aventure ne faisait que commencer! Meme si la jonction avec le gouffre Berger n'a jamais pu etre reussie, malgre de nombreuses plongees et escalades, les Cuves de Sassenage sont aujourd'hui connues sur plus de 9 kilometres de developpement, et jusqu'a plus de 400 metres au-dessus de I'entree. Les speleologues grenoblois aiment done ä visiter ce reseau varie et agreable ä parcourir, sans toujours penser aux efforts de leurs lointains predecesseurs. BIBLIOGRAPHIE A. A. (1774) "Histoire naturelle", c.r. d'un memoire de Faujas, in Les Affiches du Dauphine du 28 oct., p. 118-119 BERENGER (marquis de), 1900, Visite aux Cuves de Sassenage et coup d'oeil rapide sur le chateau, Grenoble, Gratier, 8 p. BERENGER (marquis de), 1900, L'industrie moderne ä Sassenage, Grenoble, Gratier, 16 p. CADOUX (J.), LAVIGNE (J.), MATHIEU (G.), POTIE (L.), 1955, Operation -1000, Grenoble, Arthaud, 264 p. CHAMPIER (S.), 1525, Les gestes ensemble la vie du preubc Chevalier Bayard, reed. Payot 1918, Paris, 289 p. CHORIER (N.), 1661, Histoire Generale du Dauphine, vol. I, p. 34 et 39-40 CORNEILLE (T), 1708, Dictionnaire Universel, Geographique et Historique, Paris, 3 t. DESMAREST (N.), 1818, Encyclopedie methodique. Geographie physique, Paris, impr. Agasse, t. V, p. 386 DUMONT (J.), 1699, Voyages en France, en Italie, en Allemagne, ä Malthe et en Turquie, La Haye, t. I, p. 106-108 FALCOZ (A.^ 1534, Abrege de I'histoire de Sainct-Antoine, trad, manuscrite du XVIIP'^% ch. 23, p. 42-43 M.D.F. (= FAUJAS DE SAINT-FONDS), 1774, Description des Grottes & des Cuves de Sassenage en Dauphine, in Observations sur la physique, Paris, t. IV, septembre, p. 246 ä 257 FAUJAS de SAINT-FONDS, 1781, Histoire naturelle de la Province du Dauphine, Paris-Grenoble, 464 p. FERRY (L.), 1869, Promenades en Dauphine, Grenoble, Prudhomme, t. I, p. 58 FONNE (R.), 1899, Le scialet de Saint-Nizier, Revue des Alpes Dauphinoises, t. I, janvier, n° 7, p. 190-191 FONNE (J.), 1900, Les Cuves de Sassenage, in Revue des Alpes Dauphinoises, t. II, fevrier, n° 8, p. 174 ä 187; avril, n° 10, p. 228 ä 235; mai, n" 11, p. 253 ä 260; juin, n° 12, p. 270 ä 282. FONNE (R. J.), 1903, Les grottes des Echelles, Spelunca, Bulletin & memoires de la Societe de Speleologie, t. V, n° 34, 52 p. GUETTARD (J.-E.), 1779, Memoires sur la Mineralogie du Dauphine LANCELOT (M.), 1729, Discours sur les 7 Merveilles du Dauphine, in Memoires de I'Academie des Inscriptions et Belles-Lettres, t. VI, p. 763-764 LORY (Ch.), 1858, Compte-rendu d'une excursion faite ä Sassenage le 6.9.1857, Grenoble, Maisonville, 26 p. MARTEL (E.-A.), 1894, Les Abimes, Paris, Delagrave, 580 p. MARTEL (E.-A.), 1914, La destruction des paysages en France: Sassenage, in La Nature, n° 2149, 1" aoüt, p. 161-162 MARTEL (E.-A.), 1928, La France ignoree, Sud-Est de la France, Paris, Delagrave, 290 p. MOREL-COUPRIE (E.), 1913, Notes pour servir ä I'histoire des Merveilles du Dauphine, in Revue des Alpes Dauphinoises, t. XVI, mai, n° 5, p. 76 ä 78 SALVAING de BOISSIEU (D.), 1656, Septem Miracula Delphinatus, Grenoble TAULIER (J.), 1855, Histoire du Dauphine depuis les temps les plus recules jusqu'ä nos jours, Grenoble, p. 78 CUVES DE SASSENAGE, KLASIČNA JAMA V VERCORJU Povzetek Jama Cuves de Sassenage, ki leži v SV vznožju planote Vercors, 5 km od Grenobla, je jamarjem dobro znana in jo pogosto obiskujejo. V jami, dolgi 9 km in v nadm. viš. 408 m (zgornji vhod), se pojavlja voda iz brezna Berger. Prvi del jame je urejen za turistični obisk. Jama je znana že stoletja, vendar je bila v glavnem raziskana šele 1947. Nekdaj so jamo uvrščali v "Sedem čudes Dofineje", to je med sedem naravnih pojavov, ki so jih v srednjem veku šteli za čudežne. Enkrat letno so se okohčani v procesiji podah do jame in si ogledah tolmuna v živi skali; glede na to, ali sta bila polna vode ali suha, so sklepali na dobro ali slabo letino. Ta dva tolmuna - "cuves" - sta v samem jamskem vhodu in kaže, da globlje v jamo ni šel nihče. Od začetka 16. stol. dalje so številni opisi teh "cuves", toda pred 18. stol. nihče ni opisal jame in njenih rovov. 1781 je Faujas de Saint-Fonds izdal "Naravoslovni opis Dofineje", kjer je poglavje z opisom te jame, takrat preiskane v dolžini 178 čevljev. Do 1898 ni bilo o njej ničesar novega, takrat pa se je J. Fonne ponovno lotil raziskav, opisal labirint rovov in izdelal prvi jamski načrt (1898-1899). To je svojevrsten paradoks: velika jama v več nivojih, znana že zelo dolgo časa, v katero pa ni nihče stopil pred koncem 19. stol.! ACTA CARSOLOGICA XXVI/2 7 75-80 LJUBLJANA 1997 INCIDENTI SPELEO D'ALTRI TEMPI -INFORTUNISTICA MINORE SUL CARSO TRIESTINO NEL XIX SECOLO JAMARSKE NESREČE V PRETEKLOSTI. MANJŠE NEZGODE NA TRŽAŠKEM KRASU V 19. STOLETJU PINO GUIDr Izvleček UDK 551.44(450.361)"18" Pino Guidi: Jamarske nesreče v preteklosti. Manjše nezgode na IVžaškem Krasu v 19. stoletju Prispevek opisuje tri nesreče, ki so se pripetile v zadnjih dvajsetih letih devetnajstega stoletja jamarjem iz Trsta na Tržaškem Krasu (Škocjanske jame, brezno pri Padričah, Labodnica). Ti so bili člani Abteilung für Grotten Forschung des Section Küstenland des Deutschen und Österreichischen Alpenvereins, Club Alpino dei Sette in Commis-sione Grotte della Societä Alpina delle Giulie. Ključne besede: zgodovina speleologije, nesreča, Italija, Slovenija, Kras. Abstract UDC 551.44(450.361)"18" Pino Guidi: Cave accidents in the past. Smaller mischances in the 19th century on the Trieste Karst The papers describes three accidents, happened to the cavers from Trieste in the last 20 years of the 19th century on the Trieste Karst (Škocjanske jame caves, pothole near Padriciano, Grotta di Trebiciano cave). The cavers were the members of the "Abteilung für Grotten Forschung des Section Küstenland des Deutschen und Österreichischen Alpenvereins", "Club Alpino dei Sette" and "Commissione Grotte della Societä Alpina delle Giulie". Key words: history of speleology, accident, Italy, Slovenia, Kras. ' Commissione Grotte "Eugenio Boegan" - Societä Alpina delle Giulie - C.A.I. TRIESTE, ITALIA PREMESSA L'esplorazione delle grotte e un'attivita che comporta sempre qualche rischio: ci si puo far male per colpa propria (awentatezza, uso di materiali scadenti o impropri, inesperienza) o per cause esterne (frane o piene non prevedibili, cedimenti di ripiani ecc.). L'attivita speleologica sul Carso triestino nell'altro secolo, che - almeno da quanto emerge dalle ricerche d'archivio tuttora in corso - doveva essere piuttosto intensa', non poteva non annoverare anche qualche incidente. A parte quello che ha provocato quattro morti al "Foro della Speranza", da quel giorno chiamato Grotta dei Morti e su cui ha scritto esaurientemente Mario GALLP, se ne conoscono parecchi altri, con esito mortale e non. Alcuni dei maggiori sono ricordati nel 2000 Grotte ^ mentre ultimamente si e interessato all'argomento lo storico inglese Trevor R. SHAW^ In attesa di poter dare una panoramica per quanto possibile completa deH'infortunistica speleologica (o legata alle grotte) degh ultimi due secoli si presentano qui di seguito tre incidenti che hanno coinvolto i grottisti triestini, episodi a modo loro peculiari di quei tempi pionieristici. 4 MAGGIO 1884 - GROTTA DI SAN CANZIANO Dal gennaio del 1884 il Grottenabtheilung del D.Ö.A.V., gruppo di esplora-tori delle grotte della Societa Alpina Austro-Tedesca costituito nel settembre dell'anno prima^, stava conducendo la sistematica esplorazione delle Grotte di San Canziano, esplorazione non piü ripresa dopo i tentativi fatti da Adolf Schimdl (insieme all'ingegnere minerario di Idria Ivan Rudolf) nel 1852®. II 4 maggio, durante l'esplorazione del tratto di grotta in cui il Timavo, dopo un percorso sotterraneo di quasi 300 metri, sbocca nella grande Voragine I'imbar-cazione che trasportava Giuseppe Marinitsch, quarantenne uomo di punta della squadra, si rovesciava; il malcapitato, trascinato dalla corrente sino all'uscita della caverna, riesci a mettersi in salvo su di uno sperone di roccia dove lo troveranno i soccorritori dodici ore piü tardi. Ecco la cronaca deU'episodio come venne narrata il 6 maggio dal Piccolo corriere del mattino di Trieste: "UN INTREPIDO NUOTATORE. Nel pomeriggio di ieri I'altro, alcuni signori facevano un'escursione in battello, nella grotta di S. Canziano, la quale come si sa, e attraversata dal Recca. Ad un tratto il signor Marinitsch, che faceva parte della comitiva, cadde nell'acqua. Trasportato dalla corrente, ben presto gh amici lo perdettero di vista. Egli pero nuotava intrepidamente e riusci a mettersi in salvo. II signor Marinitsch stanco e sfinito e tutto molle d'acqua, diede fiato ad un corno che teneva fortunatamente presso di se. Gli amici intanto lo ceravano disperatamente. Infine, a notte inoltrata, udirono il suono del corno e guidati da quello trassero il compagno a salvamento...". L'awentura fini bene (anche per la robusta fibra del Marinitsch, che nel 1906 troveremo ancora a San Canziano -sessantenne di ferro - ad esplorare la Galleria del Silenzio), ed oggi quel tratto delle grotte di San Canziano porta il suo nome'. 11 secondo incidente ricordato in questa breve nota awenne quattro anni piü tardi nel Carso piü prossimo a Trieste, ed ebbe quali protagonisti un gruppo di giovanissimi študenti. MAGGIO 1888 ■ POZZO PRESSO PADRICIANO, Una comitiva del Club dei Sette (che pero non si chiamava ancora cosi: il Club sara formalmente costituito soltanto alcuni anni piü tardi) si reco a visitare la prima parte (sino ai pozzi) della Grotta 12; poscia il gruppo ando ad esplorare una vicina grotta che inizia con un pozzo profondo 15 metri (probabilmente la Grotta presso Padriciano, 36 VG). Dalla relazione di Silvio Cavalli'* leggiamo: "...ci portammo all'imbocco dell'accennato pozzetto di 15 metri di profon-ditä, distante circa 150 passi, nella direzione di Lipizza, dove lo Chaudoin' s'era proposto di scendere. AU'uopo avevamo fatto sulla famosa corda una serie di nodi per facilitare la discesa che segui senza difßcolta. Raggiunto il fondo, il visitatore si limito a constatare la direzione apparente che prendevano piü rami della grotta, poi si accinse a risalire. dopo cinque metri di salita, lo Chaudoin aveva fatto una sosta su una sporgenza di roccia quando questa cedette e il novello speleologo precipitd con la schiena aU'ingiu perdendo i sensi. II nostro imbarazzo perdurd parecchio, finche lo Chaudoin si riprese e pote rispondere ai nostri appelli. Per facilitare la sua rampicata sostituimmo i nodi con dei lacci e cosi egli pote uscire quasi incolume, zoppicando solamente un pochino." Successivamente buona parte dei giovani del Club dei Sette passo all'Alpi-na'", vivificando la sua Commissione Grotte. A quel tempi gU speleologi della Societa Alpina delle Giulie dedicavano gran parte delle loro energie alia Grotta di Trebiciano, non solo finestra sul Timavo sotterraneo, ma altresi, allora, la piü profonda cavita del mondo. E qui, quasi alia fine del secolo, ecco verificarsi un altro incidente rimasto per fortuna senza conseguenze. 12 DICEMBRE 1897 - GROTTA DI TREBICIANO, 17 VG. Nel corso di una visita alia Grotta di Trebiciano, 17 VG, i grottisti deirAlpina provenienti dal Club dei Sette ebbero un drammatico contrattempo. Ecco come racconta il fatto Eugenio Boegan" che partecipö all'escursione: "Con la Commissione Grotte, nelle domeniche e nei giorni festivi, con costanza e pazienza non poca, riprese un rilievo particolareggiato e, per quanto possibile, scrupoloso dell'intera grotta, tanto per I'altimetria, quanto per la planimetria; fece osservazioni termometriche dell'aria a varie profondita, della temperatura dell'acqua, ecc. quando il giorno 12 decembre 1897, ad una delle nostre solite discese in grotta a circa 200 metri di profondita, successe un incidente che poteva avere serie conseguenze. La comitiva, composta dai consoci Umberto Sotto Corona, Mario Zey, lo scrivente e un operaio, stava misurando alcuni particolari dei pozzi, quando improwisamente uno scricchiolio fece comprendere che una impalcatura, che chiudeva trasversalmente il pozzo, cedeva. Difatti questa dopo pochi secondi crollo tutta intera assieme alle scale sottostanti, trascinando con se soltanto lo Zey, che, istintivamente afferratosi ad una scala di legno, precipito con essa perforando altre tre impalcature, fermandosi sopra una quarta e rimanendo illeso miracolosamente! Venne tosto soccorso dai compagni rimasti al di sopra del sito crollato; gh si calo un fanale e gli venne calata una scala a corda acciocche potesse risahre il tratto del pozzo mancante delle scale di legno, le quali, assieme al legname delle impalcature formavano una catasta aggrovighata bizzarramente." Incidente rimasto senza conseguenze, come quelli - la storia si ripete... -annoverati daH'infortunistica speleologica nella Grotta di Trebiciano nel secolo successivo: sempre per colpa delle scale di legno fradice mezza dozzina di speleologi si infortuneranno nella grotta piü conosciuta del Carso triestino'l NOTE 1) FARONE Egizio, 1994: Le ricerche sul Timavo sottenaneo in relazione all'approvvigionamento idrico della cittä di Trieste (1841-1842) - Atti e Mem. Comm. Grotte "E. Boegan", 31: 95-158; sulle ricerche ed esplorazioni di grotte nel secolo XIX si vedano pure i vari contributi di Egizio E\RA-ONE, MARIO GALLI, Pino Guidi negli "Atti" del Simposio Int. sulla Protostoria della Speleologia, Cittä di Castello, 1991: 41-111 e Dario MARINI, 1981: Prima ricerca dell'acqua sottenanea sul Carso - Alpi Giulie, 75: 60-66 2.) GALLI Mario, 1975.' Documenti inediti e biografie per una "Storia della Speleologia" (Friuli-Venezia giulia). La Grotta dei Morti - Mondo Sotterra-neo, 1974-75: 135-172, Udine 1975 3.) Pur non riportando tutti gli incidenti sicuramente allora conosciuti (nella descrizione delle Grotte di San Canziano, per esempio, non si accenna all'insidente in cui perse la vita Federico Prez) I'opera contiene notizie su una dozzina di infortuni, di cui 7 awenuti prima del 1900, Cfr. BER-TARELLI Luigi Vittorio, BOEGAN Eugenio, 1926: 2000 Grotte, qua-rant'anni di ricerche [sul Carso??] T.C.I, ed., Milano 1926: 1-494 4.) SHAW Trevor R., 1994: Some cave accidentc and rescue before 1894 -ALCADI-94, Zusammenfassung, Symp. zur Geschichte der Speläologie in Raum Alpen, Karpaten und Dinariden, Wien 1994: 25-26. Nel riassunto I'A. ricorda I'incidente alia Crotta dei Morti (ott. 1866) ed il decesoo (die. 1891), conseguenza di una pleurite contratta all'Ab, dei Serpenti, di Anton Hanke. 5.) Notizie sui primi anni di vita del Abtheilung für Grottenforschung (o anche Grottenanbtheilung), come pure degli altri due sodalizi piu avanti menzionati, si trovano in GUIDI Pino, 1995: Cenni sull'attivitä dei Gnippi Grotte a Trieste dal 1871 al 1900, Atti e Memorie della Commissione Grotte "E. Boegan", 32: 85-127,Trieste 1995. 6.) SCHIMDL Adolf, 1851: Üeber den unteridischen Lauf der Recca -Sitz.: 655-682, Wien 1851; GALLI Mario, 1971: Antonio Hanke e I'esplorazione delle Grotte di San Caziano - Alpi Giulie, 66-85, Trieste 1971. Su Ivan Rudolf vedi NOVAK Dušan et al., 1988: Gradivo za slovensko biografijo - Naše jame 30, suppl.: 1-192, Ljubljana 1988 7.) Galli, 1971, op. cit. pag. 78, (da cui e tratto il trafiletto del goirnale) nella seconda parte del lavoro descrive con dovizia di particolari l'inizio delle esplorazioni a San Canziano. 8.) Silvio CAVALLI, 1958: Come conobbi il mio amico Eugenio Boegan, pag. 3, dattiloscritto di 38 pagine, datato Trieste ottobre 1958 e conservato nelFarchivio della Comm. Grotte "E. Boegan". II Cavalli (all'epoca Kobau o, talvolta, Cobau) e stato compagno di esplorazioni del Boegan sin dai tempi del "Club dei Sette" e assieme alio stesso redasse nel 1897-98 uno studio sulla Crotta di Trebiciano premiato al concordo indetto dalla Reale Societä Geografica Italiana. II dattiloscritto she ci ha lasciato contiene moltissime notizie sul mondo speleologico giovanile di allora. Quanto all'anno cui il Cavalli riferisce I'incidente e doveroso segnalare che sussiste qualche perplessitä: il Club dei Sette, contituto ufficialmente nel 1893, risulterebbe avere iniziato la sua attivita almeno tre anni prima (cioe al massimo nel 1890-1891), per cui la data 1888 parrebbe troppo lontana, oltrettutto quando il Boegan avrebbe avuto soltanto 13 anni. 9.) Ferruccio Chaudion, figlio del comandante dei Vigili del Fuoco di Trieste, CAVALLI, op. cit., pag. 3; descritto come elemento di notevole robustezza e coraggio, nel 1914 - all'awicinarsi dell'entrata in guerra dellTtaha -diverrä capitano del corpo dei Vigili Fuoco volontari instituito dal Comune di Trieste. 10.) II "Club dei Sette", prima - in ordine di tempo - societä alpinistico-speleologica giovanile triestina, svolse attivita (soprattutto speleologica) per almeno quatro anni (1891-1894); per le sue file passarono una sessantina di speleologi. Sciolta nell'estate 1894 dalla polizia in quanto non in regola con la normativa di allora suirassociazionismo, conflui praticamente in toto (uomini, idee, materiali) all'Alpina delle Guihe. 11.) La cavita, sin dalla sua scoperta oggetto di studi da parte del Comune di Trieste, era stata attrezzata con scale fisse di legno, varie volte sostituite in quanto soggette ad un rapido deperimento. La relazione dell'incidente e riportata alia pag. 21 della monografia sulla cavita (BOEGAN Eugenio, 1909-1910: La Crotta di Trebiciano - Alpi Giulie 1909-1910, Tip. Caprin, estr.: 1-68); 12.) Dei molti incidenti registrati nella Crotta di Trebiciano (solo per gli anni '60 gli archivi del Soccorso Speleologico ne riportano cinque: 6.5.1961; 31.8.1961; 8.7.1962; 3.3.1963; 7.4.1968) alcuni erano dovuti al cattivo stato delle scale di legno fiesse, come quelli successi a Marino Vianelo, maggio 1961 (cedimento di due gradini) e ad Arturo Battaglia, tre mesi dopo (cedimento di un gradino). Ambedue gli speleologi si fermeranno sul ripiano posto qualche piü sotto, riportando contusioni varie. JAMARSKE NESREČE V PRETEKLOSTI. MANJŠE NEZGODE NA TRŽAŠKEM KRASU V 19. STOLETJU Povzetek Prispevek opisuje tri nesreče, ki so se pripetile v zadnjih dvajsetih letih devetnajstega stoletja jamarjem iz Trsta na Tržaškem Krasu. Prva se je pripetila članom Abteilung für Grotten Forschung des Section Küstenland des Deutschen und Österreichischen Alpenvereins 4. maja 1884 v Škocjanskih jamah, v delu, ki se imenuje Mariničeva jama. Pri prečkanju Reke je J. Marinitsch padel in tok ga je odnesel, vendar je uspel niže ob vodi splavati na breg. Maja 1888 se je v brezno pri Padričah (globoko okoli 15 m) spustil član-novinec organizacije Club Alpino dei Sette. Pri plezanju iz jame, ob vrvi, se je odkrušila skala in padel je na dno ter se onesvestil. Vendar ni bil resneje poškodovan in je končno sam priplezal iz jame. 12. decembra 1897 je skupina raziskovalcev, članov "Commissione Grotte della Societa Alpina delle Giulie" merila značilnosti v vhodnem breznu, ko se je udri leseni podest in zgrmel v globino. Enega izmed članov je potegnilo zraven. Podrlo je še tri podeste, jamar pa je, kot po čudežu, ostal nepoškodovan. ACTA CARSOLOGICA XXVI/2 8 81-85 LJUBLJANA 1997 DER PLAN DER VILENICA VOM 20. APRIL 1818 NAČRT VILENICE DATIRAN "20. APRIL 1818" HEINZ HOLZMANN 1 Izvleček UDK 551.442(497.4)"1818" Heinz Holzmann: Načrt Vilenice datiran "20. april 1818" Najstarejši načrt Vilenice J. A. Nagla iz 1748 predstavlja le skico tlorisa; drugi, iz Mollovega atlasa (1752) je bolj groteskna slika, kot pa načrt, tretji pa je Vicentinijev načrt v akvarelu iz 1818. Meri 77 x 50 cm in ima sivo osenčen obris ter barvni pogled s strani, s sigo in kapniki. Na sliki so tudi obiskovalci, ki se držijo za ograjo. Na vrhu je šest vrst opisa jamev rokopisu, po vsej širini lista, s podpisom. Najbrž načrt ni bil nikoli javno predstavljen, saj so 1818 odkrili notranje dele Postojnske jame in zanimanje se je usmerilo tja. avtor prispevka je dobil ta načrt pred 10 leti na bolšjem trgu na Dunaju. Ključne besede: zgodovina speleologije, jamski načrt, Slovenija, Kras, Vilenica, Vicen-tini. Abstract UDC 551.442(497.4)"1818" Heinz Holzmann: The map of Vilenica from 20. April 1818 The oldest map of Vilenica by J.A. Nagel (1748) is only a plan sketch; the second one from the Moll's Atlas (1752) is a rather grotesque painting; and the third one is watercolour by Vicentini from 1818. It measures 77 x 50 cm and shows a grey shaded outline and a coloured side view showing dripstonesan stalagmites. This layout also shows some visitors holding the handrail. At the top a signed sbc-line handwritten description of the cave covers the full map width. Probably this map was never exhibited publicly because in 1818 the new parts of Postojnska jama were explored and the interest was directed there. The author acquired the map at the Vienna fleamarket 10 years ago. Key words: history of speleology, cave map, Slovenia, Kras, Vilenica, Vicentini. ' Straussengasse 3 a, AT - 1050 WIEN, AUSTRIA Die Höhle, die wahrsclieinlich die älteste Schauhöhle der Welt ist, hat im Laufe der Zeit verschiedene Bezeichnungen gehabt. Von den Landsleuten der Gegend wurde und wird sie als Vilenica bezeichnet, dann als Berggrotte von Triest oder Grotte von Corniale bzw. Höhle von Corjnale oder deutsch Feenhöhle und heute heißt sie Vilenica. Man kann annehmen, daß bereits gegen Ende des 15. Jahrhunderts von Reisenden, Doktoren der Naturwissenschaften und Studenten, von Triest aus, die Höhle besucht wurde. Im 17. Jahrhundert waren es dann die Mannschaften, der Triest anlaufenden Handelsschiffe und besonders die Engländer ließen sich in die Höhle führen. Der Graf Petazzi (Petač) vom Gute Schwarzenegg (Zavrhek) übertrug das Nutzungsrecht der Höhle 1633 der Kirche von Lokev (Corniale) mit der Auflage ihm die Hälfte der Einnahmen abzuhefern. Laut I. Gams (1973): Slovenska Kraška Terminologija (Ljubljana) 47, besuchte wahrscheinlich Kaiser Leopold L die Höhle 1660. Aus der Chronik der Pfarre von Lokev ist ersichtlich, daß der Graf Petazzi im Jahre 1709 die Höhle der Pfarre vom Lokev abgetreten hat, um mit einem Teil der Einnahmen die Armen zu unterstützen. Dann muß es aber still um die Höhle geworden sein, denn als 1748 Josef Anton Nagel der Hofmathematikus des Kaisers Franzisko I besuchte schreibt er in seiner Handschrift die in der Österr. Nationalbibliothek liegt. "Beschreibung deren / Auf allerhöchsten Befehl / Ihro Röm. Kaijl. und Königl. Maijtt. FRANCISCI I untersuchten, in dem Herzogthum Crain befindlichen Seltenheiten der Natur." Nachdem er über 7 Seiten die Höhle mit all ihren Tropfsteinen beschreibt (einem Grundrißplan (Plan Nr. XII) sowie 3 Bilder fügt er bei), stellt dann am Schluß fest: "Diese von mir zu erst bekannt gemachte Höhle ist ohnstreitig die schönste unter denen die bishero entdeckt worden sind." Und vergleicht weiter die in A. Kirchener (1679): Mundi Subterranei, 3. Auflage (Amsterdamm), beschriebene Höhle auf Antiparos noch die Baumannshöhle in der Grafschaft Stollberg die in "actis eruditorum Lipsiensium" beschrieben und abgebildet ist, noch die von Keyssler so gerühmte Magdalenenhöhle, und ebensowenig die von Valvasor über alle andere erhobene Lueger-Höhle können mit der Corniale in Vergleich gestellt werden. Daher verewigte sich Nagel als Entdecker auf warzigem Tropfstein mit folgender Inschrift: "Cum N.N. juhus / Augustishimi Imperätoris / Francisci I. hanc et alias / complures cryptas perlustrahset, / in Corniolia Cornialiensem / hanc omnium invenit principem. / Anno 1748 die 18er July". Nagel hat uns den 1. erhaltenen Plan der Höhle gezeichnet, der aber nur einen sehr einfachen Grundriß darstellt. Ein weiterer Plan ist uns aus dem sogenannten Mollschen Atlas, 1752 Brünn, eine Handschrift mit 8000 Blättern erhalten. Der Plan und die Beschreibung zeigt, daß hier viel Fantasie mitspielt so ist es ca. 30 km Luftlinie nach Wipach und in der Höhle fließt ein Fluß. Hier liegt wahrscheinlich eine Verwechslung mit der Höhle von St. Kanzian vor, die der Künstler wahrschein- lich von Einheimischen erzählt bekommen hat. Richtig wird aber bemerkt, daß die Höhle dem Grafen Petazi gehört. Dies läßt schließen, daß dieser Plan wahrscheinhch früher entstanden ist. Die erste gedruckte Beschreibung erscheint 1795 in Trieste in alt italienischer Sprache und zwar Giuseppe Compagnioni: "La Crotta di Vileniza". Diese bibliophile Rarität wurde auch ins Deutsche vom Autor übersetzt, und liegt uns in einem Privatdruck (1986) vor. Der Plan von 20. April 1818, der sich im Privatbesitz des Autor befindet, konnte vor 10 Jahren am Wiener Flohmarkt aus dem Nachlaß von dem akademischen Maler E. Fehlinger erstanden werden. Er war im Jahr 1892 warscheinlich in der Höhle und konnte diesen Aquarellplan, 77 x 50 cm, nach Wien mitnehmen. Ein Aquarell von E. Fehlinger, "Die Schmidel-Grotte", in der Höhle von St. Kanzian, 22 x 27 cm, das gleichzeitig mit dem Plan vom Autor gekauft wurde, läßt die Vermutung erhärten. Da 1818 die neuen Teile in der Adelsberger Grotte gefunden wurden und sogleich der Öffentlichkeit zugänglich gemacht wurden, war das Interesse zum Besuch der Vilenica mit einem Schlag vorbei. Da Adelsberg heute in Postojna, an der Eisenbahnlinie Wien - Trieste, liegt, war der Besuch dieser Höhle für das interessierte Publikum weitaus bequemer. So ist anzunehmen, daß dieser Plan nie zur Ausstellung gekommen ist und daher so gut erhalten geblieben ist. Dieser vom Inspektor des öffentlichen Bauwesens VICENTINI, gezeichnete Plan gliedert sich in drei Abschnitte: Oben ist in sechs Zeilen in Schreibschrift die Höhle beschrieben. Dieser Text wird im nachfolgenden dem Atikel angefügt. In der Mitte ist ein gestreckter Längenschnitt nur entlang des Führungsweges dargestellt. Es ist die große Tropfsteinsäule im Eingangsbereich, sowie die makanten Stalaktiten und Stalakmitten fein säuberlich gemalt und entlang des Führungsweggeländers stehen insgesamt 8 Besucher. Es ist auch die Höhe der Überdeckung der Höhle, vom Führungsweg bis zur Oberfläche, ca. alle 25 Klafter kotiert und beträgt zwischen 87 Fuß bei der Tropfsteinsäule und 150 Fuß am Ende des Führungsweges. Der Felsenschnitt ist rosa angelegt während die Tropfsteine in Brauntönen gemalt sind. An der Oberfläche ist eine vegetationsarme Karstlandschaft dargestellt. Die untere Hälfte des Bildes nimmt der Grundriß ein, der in Grauschattierungen in einem grün angelegten Feld gemalt ist. Außer dem Führungswegbereich (180 Klafter) werden noch drei weitere Bereiche C, D und E planhch erfaßt und die Gesamtlänge mit ca 480 Klafter (= 910 Meter) angegeben. BESCHREIBUNG DER GROTTE VON CORNIALE: Diese Grotte ist vom Punkt des Einganges A. bis B. in einer horizontalen Länge von 180 Klafter begehbar. Außer den ebenen Flächen steigt man über 330 Stufen hinunter und über 90 hinauf, zusammen 420 Stufen. Vom Plateau B. bis zum Punkt E. zu dem der Unterzeichnete mühselig vordrang, das heißt in C. D. E. fand er drei schräge Flächen, welche dem Betrachter viele leuchtende Säulen, Katarakte, Drapierungen, Girlanden und wunderschöne Nadeln zeigte. Zwischen denen in der Höhle D., eine hat die Form eines gotischen Kirchturms mit vielen Abschnitten, Kanellierungen und sind nachempfundene Arbeiten der Kunst; und ihr Durchmesser an der Basis ist 16 Fuß. An der Spitze läuft sie zu einem Punkt aus, und hat eine Höhe von ungefähr 90 Fuß. Diese Höhle von runder Form hat einen Durchmesser von 90 Fuß, sie wird getragen von einer großen Zahl von Säulen und der Himmel ist von einer gleichmäßigen ebenen Decke gebildet, in deren Mitte sieht man ein rundes Medaillon von 5 Fuß Durchmesser, umgeben von prismenförmigen Stalaktiten von verschiedener Länge und wunderbarer Großartigkeit. In der Höhle E. ist der Abstieg sehr beschwerlich, weil es durch eine Passage zwischen zwei eng stehenden Säulen durchgeht, es bieten gleichfalls wunderschöne Ansichten; angrenzend gibt es Zimmerchen von sehr kurioser Form und einen mühselig begehbaren Weg, welcher sehr steil in die Tiefe führt und in welche man ohne Leitern und Seile nicht hineingehen kann. Vom Horizont des Einganges A. bis B. ist die Tiefe 156 Fuß, im Punkt C 240 Fuß, im Punkt D 350 Fuß und schließlich bis dorthin , wo man vordringen konnte, sind es horizontal ca. 480 Klafter. Trieste den 20. April 1818 Gezeichnet:Vicentini ausgezeichnet von seiner Majestät mit dem Kreuz für zivile Verdienste und Inspektor des öffentlichen Bauwesens NAČRT VILENICE DATIRAN 20. APRIL 1818 Povzetek Najstarejša turistična jama tega področja je "Cave of Triest = Grotta di Corniale = Vilenica = Feenhöhle", ki je bila obiskovana že konec 15. stol. Verjetno so vodniki imeh jamske načrte, vendar jih je le nekaj ohranjenih. Najstarejši načrt Vilenice J. A. Nagla iz 1748 predstavlja le skico tlorisa; drugi, iz Mollovega atlasa (1752), je bolj groteskna slika, kot pa načrt, tretji pa je Vicentinijev načrt v akvarelu iz 1818. Meri 77 x 50 cm in ima sivo osenčen obris ter barvni pogled s strani, s sigo in kapniki. Na sliki so tudi obiskovalci, ki se držijo za ograjo. Na vrhu je šest vrst opisa jame v rokopisu, po vsej širini hsta, z avtorjevim podpisom in njegovimi naslovi. Po tem opisu oziroma načrtu je jama globoka ca 480 klafter, to je 910 metrov. Najbrž načrt ni bil nikoh javno predstavljen, saj so 1818 odkrili notranje dele Postojnske jame in zanimanje se je usmerilo tja. avtor prispevka je dobil ta načrt pred 10 leti na bolšjem trgu na Dunaju. J Fig. 1: The plan of the Viienica cave from 1818. Fig. 2: The plan of the Viienica cave from 1818, the detail. ACTA CARSOLOGICA XXVI/2 9 87-93 LJUBLJANA 1997 SPELEOLOGISTS ON POSTAGE STAMPS SPELEOLOGI NA POŠTNIH ZNAMKAH HEINZ ILMINGi Izvleček UDK 551.44:656.835.91 Heinz liming: Speleologi na poštnih znamkah Med znamenitimi osebami, ki jih prikazujejo poštne znamke, jih je tudi več zanimivih za speleologijo. Avtor jih našteje štirinajst in na kratko označi njihov pomen za speleologijo. Vsi so pomembni tudi za dežele v okviru "ALCADI". Ključne besede: zgodovina speleologije, znameniti speleologi, poštna znamka. Abstract UDC 551.44:656.835.91 Heinz liming: Speleologists on Postage Stamps Among the postage stamps with portraits of important persons are several that are interesting for speleology. The author enumerate 14 of them and shows their importance for the speleology. They are also important for the "ALCADI" countries. Key words: history of speleology, important speleologists, postage stamp. ' Bahngasse 6, E/1 /4, AT - 2345 BRUNN AM GEBIRGE, AUSTRIA The author presented pictures of postage stamps bearing portraits of people important in the history of speleology (reproduced from the collection belonging to Mrs. Helga Hartmann, Landesverein für Höhlenkunde in Wien und NÖ). The earliest person we can connect with speleology is AVICENNA (Abu Sina) born 980 in Buchara, died 1037 during a battle against Hamadan. He was a philosopher, theologian and physician. Being also a scientist he became interested in the origin of dripstones. Stamp: Poland 1952, Hungary 1987. GEORG AGRICOLA - Agricola is Latin for "farmer" - the founder of modern metallurgy and mineralogy, was born 1494 in Glachau and died 1555 in Chemnitz where he had been mayor and town-physician. In the consequence of the mining methods of his time he became interested in natural subterraneous cavities and he also published a cave-map in 1646. Stamp: DDR 1957. We owe a summary of Karst and Caving, which is of special interest to speleologists, to JOHANN WEICHARD Freiherr von VALVASOR. It is included in his work "Die Ehre des Herzogthums Grain" in 4 volumes, published 1689 in Nürnberg and Laibach. In his work not only caves are included, but also the descriptions of the special hydrological situation of Zirknitzer lake. Stamp: Yugoslavia 1989. The Danish scientist NIELS STENSEN searched 1671 in Northern Italy, where he was well known under the name NICOLO STENONE. As a guest of the Count of Castelbarco he visited several already known ice-caves. In the same year he wrote his "Cave-letters", containing descriptions of the ice-caves, sketches of them and reflections about their origin. Stamp: Denmark 1969. The Italian naturalist L. SR4LLANZANI, 1729 - 1799, realised - early already - that bats do not need their eyes for orientation. Stamp: Italy 1979. GEORGES Baron CUVIER, born 1769 (the same year as Napoleon) in Mömpelgard, died in Paris 1832. He was the founder of systematic anatomy -initiated the biggest anatomic collection in Europe - and introduced comparative osteology into palaeontology. His reconstruction of fossil vertebrates are of special importance for speleo-paleontology. Stamp: Italy 1979. ALEXANDER Freiherr von HUMBOLDT, born 1769 and died 1859 in Berlin. He is considered the greatest scientist of his time. He contrasts the poetic/speculative tendency of his period with exact experiment. Many research -voyages brought results of an extraordinary synopsis over various fields of knowledge. Speleology owes him the exact descriptions of several caves among them the report about the Guacharo cave and about the birds in it which can locate themselves with sound reflection. Stamp: Venezuela 1969, DDR 1969. Of great importance for Belgium and especially for the Grotte de Han is ADOLPHE QUETELET 1796 - 1854. His excellently drawn cave-maps show the progress in research in his time. Stamp: Belgium 1974. The scientist HERMAN OTTO lived 1835 to 1914 and is considered the father of Hungarian speleology. Herman's findings of stone-tools caused a discussion about prehistoric man in Hungary and inspired for the foundation of the Hungarian Society of Speleology. Stamp: Hungary 1954, 1960. JOVAN CVmČ born 1865 in Loznica, died 1927 in Beograd. Finished his studies with a dissertation on "The Karst". He was the most important geographer who in the course of modern research was able to combine all aspects of geography, as for instance geomorphology, hydrology of karst, ethnography, anthropogeography and also speleology. Stamp: Yugoslavia 1970. The important bio-speleologist EMILE RACOVITZA 1868 - 1947 was one of the first to construct a subterranean laboratory for the study of cave animals and who was working on their systematics. Stamp: Rumania 1958. CESARE BATISTI born 1875 in Trento is without doubt better known as a pohtician and a fighter for the independence of his native country - he was sentenced to death by a court martial in 1916 - than as a speleologist. Still, as a geographer he was passionate in describing the mountains of his country and in exploring new caves. As an organiser he was the father of speleology in the country of Trento and a leading person for the speleology in Italy. Stamp: Italy 1966. ABBE BREUIL (1877 - 1961) and PIERRE TEILHARD DE CHARDIN (1881 - 1961) are of great importance, having set up the basic perception in the investigation of the history of early man. BREUIL recognised, against many antagonists, the authenticity and importance of cave wall-painting and became its first expert. His disciple TEILHARD DE CHARDIN, a highly cultivated Jesuit priest, devoted himself to excavations in caves. His finds in the Zhoukoudian cave in China are world famous. In all his works he endeavours to reconcile "Darwin and the Bible". Stamp: France 1977 and 1981. GIULIO NATTA 1903-1979, received in 1963 the Nobel prize for Chemistry. This great scientist was also a passionate caver and president of the Gruppo Grotte Milano. Stamp: Italy 1992. SPELEOLOGI NA POŠTNIH ZNAMKAH Povzetek AVICENNA (Abu Sina) (980-1037), se je zanimal za nastanek kapnikov. (Poljska 1952, Madžarska 1987). GEORG AGRICOLA (1494-1555), osnovatelj moderne metalurgije in mineralogije, je 1646 objavil jamski načrt. (DDR 1957). Baron JOHANN WEICHARD VALVASOR je najbolj pomemben zaradi objave "Die Ehre des Herzogthums Crain" v 4 oblikah (1689), kjer je veliko tudi o krasu in jamah. (Jugoslavija 1989). NIELS STENSEN (NICOLO STENONE) je obiskal ledene jame v Severni Italiji in 1671 objavil "pisma o jamah" z opisi ledenih jam in razglabljanjem o njihovem nastanku. (Danska 1969). L. SPALLANZANI (1729-1799) je ugotovil, da netopirji za orientacijo ne potrebujejo oči. (Italija 1979). GEORGES CUVIER (1769-1832), utemeljitelj sistematske anatomije, znan predvsem po rekonstrukcijah fosilnih sesalcev, pomemben za "speleo-paleonto-logijo". (Italija 1979). ALEXANDER von HUMBOLDT (1769-1859) je s svojih potovanj opisal več jam, posebej je pomembna jama Guacharo, kjer živijo ptice, ki se orientirajo s pomočjo zvoka. (Venezuela 1969, DDR 1969). ADOLPHE QUETELET (1796-1854), risar načrtov jame Grotte de Han (Belgija 1974). OTTO HERMAN, (1835-1914), odkritelj paleolitskih kultur in ustanovitelj Madžarskega speleološkega društva. (Madžarska 1954, 1960). JOVAN CVIJIČ, (1865-1927), je objavil disertacijo "Kras" in utemeljil speleologijo kot vedo, ki povezuje razne naravoslovne veje. (Jugoslavija 1970). EMILE RACOVITZA, (1868-1947), znan po podzemeljskem laboratoriju za preučevanje jamske favne in kot sistematik. (Romunija 1958). CESARE BATISTI, (1875-1916), geograf in raziskovalec alpskih jam, vodilni med italijanskimi speleologi. (Italija 1966). ABBE BREUIL (1877-1961), raziskovalec prazgodovine človeka in strokovnjak za jamsko umetnost. PIERRE TEILHARD DE CHARDIN, (1881-1961), učenec A. Breuila in jezuit, odkritelj znane jame Zhoukoudian na Kitajskem, ki je skušal uskladiti Darwina z Biblijo. (Francija 1977 in 1981). GIULIO NATTA, (1903-1979), Nobelova nagrada za kemijo 1963, navdušen jamar in predsednik Gruppo Grotte Milano. (Italija 1992). yi »-.inii • liiRi.lXi • Ml i Kmt mtjiL mi I ! 40 FR\NCI ACTA CARSOLOGICA XXVI/2 10 95-98 LJUBLJANA 1997 CONTRIBUTION TO THE HISTORY OF THE EXPLORATIONS OF THE CAVE VJETRENICA IN ZAVALA TO 1914 PRISPEVEK K ZGODOVINI RAZISKAV VJETRENICE V ZAVALI DO 1914 ANTON KAPELI Izvleček UDK 551.442(497.6)(091) Anton Kapel: Prispevek k zgodovini raziskav Vjetrenice v Zavali do 1914 Prispevek navaja najpomembnejše raziskave in avtorje, ki so raziskovali Vjetrenico oziroma objavili opise ali načrte. Prva omemba jame je že iz 15. stol., prve raziskave pa so s konca prejšnjega stoletja (Vavrovič), z začetka tega pa so pomembnejši raziskovalci inženirji sarajevske želežniške direkcije, K. Absolon in K. Paž. Ključne besede: zgodovina speleologije, Hercegovina, Vjetrenica. Abstract UDC 551.442(497.6)(091) Anton Kapel: Contribution to the history of the explorations of the cave Vjetrenica in Zavala to 1914 The most important explorations of Vjetrenica by those published the results of their work with surveys, are dealt with. Vjetrenica was first mentioned in 15th century. The most important investigators from the end of the 19th century and the beginning of the 20th were Vavrovič, the engineers of the Sarajevo's Railway Administration, K. Absolon and K. Paž. Key words: history of speleology, Herzegovina, Vjetrenica Cave. ' Zavod za zaštitu kulturno-historijskog i prirodnog nasljedja BiH, Alekse Šantiča 8/III, SARAJEVO, REPUBLIKA BOSNA I HERCEGOVINA Bosnia and Herzegovina lie in the mountainous heart of the Dinarids, between the Adriatic Sea and the Pannonian plain. The territory covers 51.129 km^ of which 30 % are karst. It is understandable that in such a large territory there are numerous karst phenomena, the caves being the most important. The karst of Bosnia and Herzegovina has numerous surface and underground phenomena which are seldom found in other lands. One of them is Vjetrenica cave, which is one of the most interesting karst phenomena in Bosnia and Herzegovina. Owing to its flowstone formations, abundance of water, natural beauty and rarity, and to its scientific value as well, it was put in the Register of protected phenomena as the first speleological natural monument under the number 3, under the Cultural and Natural Monuments Protection Act (Kapel 1980). Vjetrenica cave is situated at Zavala in the SW corner of Popovo Polje, about 15 km from the Adriatic coast. It is a very interesting underground feature and the most impressive one in the Dinaric karst, with regard to its genesis. The cave is very interesting from the hydrogeological, geological, geomorphological, speleological, palaeontological and biological points of view. Because of its flowstone decoration and the wealth of water, Vjetrenica became a show cave in 1964. Taking into account the fact that Vjetrenica is the biggest and the most complex system in the Popovo Polje region, it is natural that it interested travellers as well as local and foreign scientists long ago. Vjetrenica is over 7,5 km long and thus also the longest cave in Bosnia and Herzegovina. There are many published works about its speleological characteristics, professional and scientific papers, reports, studies, etc. In the paper Contribution to the knowledge of speleological investigations in Bosnia and Herzegovina by Malez and Lenardic - Fabic (1988), there is a chronological overview of the more important investigations including those of Vjetrenica. The authors suggested that it is necessary to continue the historical investigations of cave data in Bosnia and Herzegovina, so I would like to present a short contribution to the history of Vjetrenica exploration. The Vjetrenica cave is first mentioned in 15th century, according to M. Vego's (1957) book Places of Bosnia in the Middle Ages, where he stated: "Zavala is mentioned as a village in 1372. It is mentioned again in 1461, when the Vjetrenica cave is mentioned too." After the Austro-Hungarian occupation of Bosnia and Herzegovina in 1878, the scientific research about the land started too. To achieve this aim the "Zemaljski muzej" (Country Museum) was founded in Sarajevo, the first scientific institution in the country. It began to function by the 1st February 1888 investigating Bosnia and Herzegovina from different aspects. It started its own publication (Glasnik Zemaljskog muzeja) where the results of its investigations were published (Gašparovič 1984). Josip Vavrovič, an ex-Austro-Hungarian officer, surveyed and described the first part of Vjetrenica (1893). He made a good description of the main channel, from the entrance to a point 700 m in. He has drawn a plan of this part of the cave too, at a scale of 1:4000 and a longitudinal section (horizontal scale 1:800 and vertical 1:1000). There are some inaccuracies in his plan but all the same it is much better than the previous one made by H. Mihajlovic, which shows only the first 250 m of the cave. In 1904 the engineers of Sarajevo's Railway Administration succeeded in reaching "Veliko jezero" (the Big lake). They made the plan and longitudinal section of a part of the main channel at a scale 1:1000. The shape of the main channel, up to a distance of 770 m from the entrance, is shown on the plan and the base line only to Veliko Jezero was drawn (Radovanovic 1929). The well-known Czech speleologist Karel Absolon, a curator of the museum of Brno, investigated cave fauna in our caverns. He visited some of them many times, Vjetrenica for example 27 times (Mikšič 1978). In the years 1912 - 1914 he organised three expeditions to Vjetrenica. In the summer 1912, during the first one, they reached "Veliko Jezero" and collected rich underground fauna, which made Vjetrenica well known over the World. In 1913 he and some members of his team reached the top of "Brdo" (the Mountain); while the third expedition was organised with the help of A. Krai in 1914. K. Absolon was the first to enter the channel which starts 600 m from the entrance and leads under the main channel of Vjetrenica (Absolon 1916). In honour of him the channel was called "Absolonov Kanal" (Absolon's Channel) by Radovanovic. Absolon's friend K. Paž, ex-officer of Austro-Hungarian army, brought a big boat into Vjetrenica in 1913 with the help of the army. With the boat they were able to cross "Malo Jezero" (Small Lake) and "Veliko Jezero" thus reaching collapsed limestone blocks beyond (Radovanovic 1929). Finally it is necessary and sad to mention that a lot of written material about Vjetrenica was destroyed during the war in the Repubhc of Bosnia and Herzegovina (literature in the National and University Library and in the Institute for the protection of cultural-historical and natural heritage of Bosnia and Herzegovina in Sarajevo). REFERENCES Absolon, K., 1916: "O Vjetrenici" a jeskynich nad Zatonem.- Zlata Praha, Praha. Gašparovič, R., 1984: Historija geografskih upoznavanja i proučavanja Bosne i Hercegovine do 1918. godine,- Geografski pregled, Sarajevo. Kapel, A., 1980: Zaštita speleoloških objekata u Bosni i Hercegovini. Protection of Speleological sites in Bosnia and Herzegovina.- Naš krš, 9, 61-66, Sarajevo. Malez, M. & J. Lenardic - Fabic, 1988: Prilog poznavanju povijesti speleoloških istraživanja u Bosni i Hercegovini,- Naš krš, 24 - 25, 169-176, Sarajevo. Mikšič, S., 1978: O biospeleološkim istraživanjima dr Karla Absolona u našoj zemlji,- Naš krš, 4, 17-18, Sarajevo, Radovanovič, M,, 1929: Pečina Vjetrenica u hercegovini. Morfološko hidrološka študija,- Beograd Vavrovič, J,, 1893: Nešto o Vjetrenici pečini,- Glasnik Zemaljskog muzeja, Sarajevo, Vego, M,, 1957: Naselja Bosanske srednjovjekovne države,- Svjetlost, Sarajevo, PRISPEVEK K ZGODOVINI RAZISKAV VJETRENICE V ZAVALI DO 1914 Povzetek Prispevek navaja najpomembnejše raziskave in avtorje, ki so raziskovali Vjetrenico oziroma objavili opise oziroma načrte. Prvič je Vjetrenica omenjena že v 15. stol, kot pravi M, Vego v svoji knjigi "Naselja Bosanske srednjovjekovne države" (1957): "Zavala je omenjena 1372 kot vas. Ponovno se omenja 1461, takrat je omenjena tudi jama Vjetrenica." J. Vavrovič (1893), bivši avstro-ogrski oficir, je objavil opis in načrt prvih 700 m glavnega rova Vjetrenice. Tloris je v merilu 1:4000, vzdolžni profil pa ima horizontalno merilo 1:800, vertikalno pa 1:1000. Kljub pomanjkljivostim predstavlja načrt bistveni napredek v primerjavi z načrtom H. Mihajloviča, ki prikazuje le prvih 250 m rova. 1904 so jamo raziskovali inženirji Sarajevske železniške direkcije. Prodrli so do Velikega jezera, napravih načrt v merilu 1:1000 do dolžine 770 m, do Velikega jezera pa so potegnih poligon. Češki speleolog K, Absolon je obiskal Vjetrenico kar 27 krat in med 1912 - 1914 pripravil vanjo tri odprave. Jama je postala svetovno znana prav zaradi njegovih favnističnih odkritij. Po njem so kasneje imenovali Absolonov kanal, rov, ki poteka pod glavnim rovom, 1913 je Absolonov prijatelj K. Paž s pomočjo vojske spravil v jamo vehk čoln, Z njegovo pomočjo so prečkah Malo in Veliko jezero in prodrh do podornih apnenčevih blokov. Na koncu je treba povedati, da je bilo o Vjetrenici veliko zapisanega gradiva (Narodna i univerzitetska biblioteka BiH, Zavod za zaštitu kulturno-historijskog i prirodnog nasljedja BiH), ki je bilo, žal, uničeno med vojnimi dogodki v Republiki BiH. ACTA CARSOLOGICA XXVI/2 11 99-107 LJUBLJANA 1997 BRIEF ACCOUNT OF THE DEVELOPMENT OF SPELEOLOGY IN SLOVENIA (to 1914) KRATEK PREGLED RAZVOJA SPELEOLOGUE NA SLOVENSKEM (do 1914) ANDREJ KRANJC Izvleček UDK 551.44(497.4)(091) Andrej Kranjc: Kratek pregled razvoja speleologije na Slovenskem (do 1914) Med starejšimi predhodniki speleologov so najpomembnejši Valvasor, Nagel in Hac-quet, ter raziskovalci najstarejših turističnih jam (Vilenice, Postojnske in Škocjanskih). V prvi polovici 19. stol. so najpomembnejše speleološke raziskave za iskanje vode za Trst, v drugi polovici pa globokih brezen in velikih vodnih jam na Notranjskem. 1882 ("Slovenski gadje") oziroma 1883 (prve speleološke organizacije v Trstu) pa se prične na Slovenskem čas organiziranega jamarstva. Ključne besede: zgodovina speleologije, Slovenija. Abstract UDC 551.44(497.4)(091) Andrej Kranjc: Brief account of the development of speleology in Slovenia (to 1914) The most important predecessors in speleology are Valvasor, Nagel and Hacquet, and the explorers of the first show caves (Vilenica, Postojnska jama, Škocjanske jame). In the first half of the 19th century the most important speleological explorations were those intended to find drinking water sources for Triest, and in the second half the explorations of deep potholes and big water caves of Notranjsko. In the years 1882 ("Slovenski gadje") and 1883 the period of organised caving activity began. Key words: history of speleology, Slovenia. ' Karst Research Institute, ZRC SAZU, Titov trg 2, SI - 6230 POSTOJNA, SLOVENIA On the territory of present-day Slovenia people have known and used caves since Palaeolithic times. The caves were used as shelters, campsites, stores, for water supply (e.g. Podpeška Jama on Dobrepolje) and as sanctuaries. Among them Sveta Jama (The Holy Cave) is maybe the best example. The martyr Saint Socerb (Servulus) lived in the cave and, soon after he died (24th May 284 AD), the cave was visited as a sacred place and an altar was erected in it (Kranjc 1995). However we cannot speak about "speleological approach" before the Enlightenment. Our first predecessor of Slovene speleology is J. W. Valvasor (1641-1693) who visited, studied, and published about 70 caverns from Kranjska (Carniola). He pubhshed the first cave plan of a Slovene cave - Podpeška Jama in 1687 (Fig. 1) - being, according to our knowledge, the second pubhshed cave survey in the Western World. A true "speleological project" were Nagel's investigations in 1748. In his manuscript, the first plans of some of our caves (Postojnska Jama, and Željnske Jame near Kočevje) appeared. Although F. A. Steinberg did not take a special interest in caves, his book about Cerkniško Jezero (1758) is very important for the history of Slovene karst and cave science. In the second part of the 18th century the "scientific discovery" of Proteus by Laurenti (1768) gave new aspect to visiting caves. Hacquet, who lived in Kranjska from 1766 to 1786, was the first man who was scientifically interested in karst and caverns. He was aware that karst features are due to a sort of corrosion and that "karst" (he wrote a native expression "krš" or "karoš") is not limited to the Kras region only. It is a pity that he left Kranjska because of ignorant, hypocritical and religious inhabitants. Gruber was the first who understood (and published in 1781) the hydrology of karst in Iks -plait of the. &rotto Tod-ye^chio Fig. 1: Valvasor's "Plan of the Grotto Podpetschio " (Podpeška jama), published in Philosophical Transactions in 1687. Kranjska. He was not specially interested in caves, but he visited quite a lot of them and made possible a much better knowledge about our water caves. Cave tourism was very important too. It had been practised already in different forms (for example a religious one) for centuries. According to documents Vilenica was a "real" show cave already in 1633. At the end of the 18th century the discovery of Proteus in Črna Jama (at that time called Magdalena Grotte) aroused new interest in visiting caverns. Postojnska and Škocjanske Jame caves were officially opened as show caves in 1819. The names such as Luka Čeč and Josip Jeršinovič, Tominc and Mahorčič are closely connected with discoveries and display of these caves. The first half of the 19th century is marked by investigations for the water supply of Triest; great explorations were carried out in Škocjanske Jame (by J. Svetina in 1839) as well as in deep shafts on Kras by F. Lindner with considerable help of native workers, such as L. Kralj (Jama na Hudem Letu -226 m, Labodnica -329 m). A group of Idrija miners, headed by Arh, formed the "Exploration Commission for Water and Shafts above Triest" (Savnik 1961). Although the exploring technique was such as in mines, we can speak about the great speleological achievements of the period. When they reached the bottom of Labodnica (1841), this pothole kept the world's depth record for nearly 70 years (Shaw 1961). H IT I'AT I C» N S -PjL .V.V Fig. 2: Schaffenrath's 1821 plan of Postojnska jama from the year 1821. The first half of 19th century can be considered as the time when real speleology developed in Slovenia, from the technical as well as of the scientific point of view, with important contributions by Slovene speleologists. Besides the above achievements in Labodnica, discoveries in water caves were also very important: J. Cerer's at Križna Jama (1825) (Zörrer 1838), G. Kebe at Velika Karlovica and Zelške Jame (1844) (Kebe 1860) and A. Urbas at Planinska Jama (1847-48) (Urbas 1849). Luka Ceč discovered the inner parts of Postojnska Jama in 1818 and the first plan was made by A. Schaffenrath in 1821 (and the next one by A. Fercher in 1834) (Fig. 2). Among scientific achievements, Hohenwart's paleontological excavations in Postojnska Jama (1830 - 1836) must be mentioned. They were continued by H. Freyer of Ljubljana museum, who explored caves in different parts of present-day Slovenia, including ice-caves on Trnovski gozd and caves in the Alps. Also Hohenwart's guide-book to Postojnska Jama (1830) can be regarded as a speleological monograph. With the discovery of the first cave beetle in Postojnska Jama by L. Čeč, the new study, speleobiology, started. The second half of the 19th century may be regarded as the classical period of speleology in Kranjska. It began with Schmidl's explorations in the fifties, helped by the cave-surveyor L Rudolf and Idrija miners. Due to his achievements underground Schmidl is often called "the father of modern speleology" (Shaw 1978), but for Kranjska karst his book "Die Grotten und Höhlen von Adelsberg, Planina und Laas..." (1854) is the most important. Schmidl's description together with additional chapters by other specialists on mineralogy and spelobiology, places the book among the true speleological monographs. The speleological investigations were carried out mostly in two regions: on the Primorski Kras (Littoral Karst) and in Notranjsko (Inner Carniola). In Notranjska, besides Schmidl's explorations, the explorations of W. Putick must be mentioned. His first big achievement was the descent to the Gradišnica pothole near Logatec in 1886 (Schmidl did not succeed in this) (Putick 1887), later his explorations and flood control works in water caves between the karst poljes of Lož, Cerknica and Planina were a great success (Kranjc 1995a). Schmidl explored caves in the Primorski Kras too. In a later period the discovery of Divaška Jama (1867) must be mentioned, the explorations of Škocjanske Jame after 1884 (by members of the "Abteilung für Grottenforschung" of the "Section Küstenland d. DÖAV" at Trieste) and the descent into the 200 m deep entrance of Kačna Jama shaft in 1889 (Pazze 1893). F. Kraus was maybe not so important a the field researcher but he was the initiator of the first Austro-Hungarian speleological society, and important for E. A. Martel's visit and explorations of the karst of Primorska in 1893. Martel's 1893 exploration of Postojnska Jama (the boat descent downstream on underground Pivka river) is a good example how important the caves of Carniola were for the history of speleology (Martel 1894). Court Counsellor von Hauer came from Vienna to Postojna to introduce Putick to Martel and Kraus. While Martel was exploring down the Pivka river, helped by the Postojna cavers from the speleological club "Anthron" and by the cave guides of Postojnska Jama. Kraus with his team was at the entrance to Postojnska Jama and Putick were awaiting them at the entrance to Magdalena Jama. The end of the last century is the time when organised speleology was born and karst of Kranjska was soon included: the Verein für Höhlenkunde was founded in 1879 at Vienna, largely due to Kraus' efforts. The Society's sections at Postojna and Planina were foreseen too by Kraus from the beginning. Kraus friends reported about 50 members. But instead, the Anthron society at Postojna was founded in 1889, thus being the first speleological organisation in the territory of today's Slovenia (Kranjc 1988). In the Jama cave near Predjama, is an inscription on the cave wall far away from the entrance: "Slovenski Gadje 2W 82" (Slovene Vipers) - maybe the predecessor of Anthron. Kraus was also in some way the founder of the Slovene cave register. Before he died he permitted O. Gratzy to pubhsh a part of his cave data, the data of the caves from Car-niola (1897). The whole collection he willed to Martel (for the Societe de Speleolo-gie) and after Martel's death, I am sorry to say, all the material was dispersed to collectors in France and elsewhere. But already in 1883 at Triest two speleological organisations had been formed: "Abtheilung für Grottenforschung des Section Küstenland des Deutschen und österreichischen Alpenvereins" and "Commissione Grotte della Societä Alpina delle Giulie", both having the karst of Kranjska as a field of their explorations. In 1893 the Fig. 3: Caving technique from the beginning of the 20th century (Mačkova jama above Dobrepolje) (Photo B. Brin-šek). "Slovensko planinsko društvo" (Mountaineering Society of Slovenia) was founded and some of its sections (Ajdovščina, Luče, Radovljica, and Trst) immediately started to explore caves too. Before 1900 a caving club existed at Kočevje, probably directly linked with the Vienna's "Verein" but details about it and its work have still to be searched. In 1909 I.A. Perko came to Postojna as the secretary of the Postojnska Jama administration. He tried to make Postojna "the world's speleological centre" by combining tourism (Postojnska Jama), culture (speleological museum) and science (speleological institute). Postojnska Jama became world famous in this period, the speleological institute was founded at Postojna in 1929, and we are still hoping to get the speleological museum. Perko and Putick are among the fonders of the "Društvo za raziskovanje podzemeljskih jam na Kranjskem" (Society for investigation of underground caverns in Carniola) at Ljubljana in 1910, which marked the beginning of the present-day Speleological Association of Slovenia and thus "the modern times" of speleology in Slovenia. The nucleus of the society was "speleological section" consisting of the members of the mountaineering group "Dren", where specially Brinšek, Cerk, Kunaver and Michler became well-known Slovene caving pioneers (Fig. 3) (Habe & Kranjc 1981). The First World War did not only bring fundamental changes regarding the territory and national hfe of Slovenes, but it also marked an important change and a hiatus in speleological activity. REFERENCES Gospodarič, R., 1968: Raziskovanje Postojnske jame po letu 1818.- 150 let Postojnske jame, 41-58, Postojna Gratzy, O., 1897: Die Höhlen und Grotten in Krain.- Mittheilungen d. Musealvereines für Krain, X, 5, 133-174, Laibach. Gruber, T, 1781: Briefe hydrographischen un physikalischen Inhalts aus Krain.-Pp. 159, Wien. Habe, F. & A. Kranjc, 1981: Delež Slovencev v Speleologiji.- Zbornik za zgod. naravosl. in tehnike, 5 in 6, 13-93, Ljubljana. Hacquet, B., 1778: Oryctographia Carniolica oder physikalische Beschreibung des Herzogthums Krain, Istrien und zum Theil der benachbarten Laen-der." 1, Leipzig. Hohenwart, F., 1830: Wegweiser für die Wanderer in der berühmten Adelsber-ger und Kronprinz Ferdinands-Grotte bey Adelsberg in Krain.- I, 1-14, Laibach. Kebe, G., 1860: Popis Cerkniškega jezera.- Novice gospodarske, obertniške in narodne, 18/1860, str. 267-268, 274-275, 283, 298-299, 308-309, 327-328, Ljubljana. Kranjc, A., 1988: Ob 100-letnici ustanovitve jamarskega društva Anthron - At 100th anniversary of caving dub Anthron foundation.- Naše jame 30, 11-17, Ljubljana. Kranjc, A., 1995: The Beginnings of Cave Tourism in Former Hereditary Lands Carniola and (Lower) Styria.- Caves and Man, Intern. Symp. on the occ. of the 70-th anniv. opening to the public of the Demänovska cave of Liberty, 62-66, Liptovsky Mikulaš. Kranjc, A., 1995a: Anthropogenic impacts on karst polje morphology in Slove-nia.- Cave and Karst Science, Vol. 21, No. 2, 51-54. Laurent(i), J. N., 1768: Synopsis Reptilium emendata, cum experimentis circa venena et antidota Reptilium austriacorum.- Specimen medicum, 36-37, Viennae Martel, E. A., 1894: Les Abimes. Les eaux souterraines, les cavernes, les sources, la speleologie. Explorations souterraines effectuees de 1888 ä 1893 en France, Belgique, Autriche et Grece.- Charles Delagrave, 1-578, Paris. Nagel, J. A., 1748: Beschreibung deren auf allerhöchsten Befehl Ihro Rom. kayserl. köngl. Maytt: Francisci L in dem Herzogthume Crain befindlichen Seltenheiten der Natur.- Nationalbibliothek, Handschrift Nr. 7854, Wien. Pazze, P, 1893: Chronik der Section Küstenland des Deutschen und österreichischen Alpenvereines 1873-1892.- 370 pp., Trieste. Putick, W., 1887: Gradisnica - Die Teufelshöhle, die tiefste der bisher bekannten Karsthöhlen.- Laibacher Zeitung, Nr. 121, 122, 123, 124, 126, pp. 1027-1028, 1035-1037, 1043-1049, 1051-1052, 1069-1070, Laibach. Putick, W., 1889: Die unterirdischen Flussläufe von Innerkrain. Das Flussgebiet der Laibach.- Mitt. Geogr. Ges., 33, Wien Savnik, R., 1961: Prvi raziskovalci našega kraškega podzemlja.- Naše jame, 2, 1-2, 16-24, Ljubljana. Schmidl, A., 1854: Die Grotten und Höhlen von Adelsberg, Lueg, Planina und Laas.- Pp. VIII, 316, Wien. Shaw, T. R., 1961: The deepest caves in the world and caves which have held the world depth record.- Cave Research Group of Great Britain, Occasional Publication, 5, s.I. Shaw, T. R., 1978: Adolf Schmidl (1802-1863) the father of modern speleology?- Intern. Journ. of speleology, 10, 253-267. Steinberg, F. A. v., 1758: GriindUche Nachricht von dem in dem Inner-Crain gelegenen Czirknitzer-See....- Pp. 235, Laybach. Urbas, A., 1849: Die Grotten und Abgründe bei Planina.- Illyr. Blatt, Nr. 32, 34, 37, Laibach. Valvasor, J. W, 1687: An extract of a letter written to the Royal Society out of Carniola, being a full and accurate description of the wonderful lake of Zirknitz in that country.- Phil. Trans. R. Soc., 16, 411-427, London. Valvasor, J. W, 1689: Die Ehre dess Hertzogthums Grain.- I. Th., 1-696, Laybach Zörrer, J. N., 1838: Beschreibung einer Berghöhle beim Heihgen Kreuz unweit Laas in Adelsberger Kreise nebst dem Grundrisse und Situation des Planes.- Beitr. zur Naturgeschichte, Landwirtschaft und Topographie des Herzogthums Krain, I, 78-88, Laibach. KRATEK PREGLED RAZVOJA SPELEOLOGIJE NA SLOVENSKEM (DO 1914) Povzetek Čeprav so bile jame na današnjem Slovenskem ozemlju znane in obiskovane že od starejše kamene dobe, o speleoloških raziskavah ne moremo govoriti pred Razsvetljenstvom. Med starejšimi predhodniki speleologov je najpomembnejši Valvasor, ki v svojem delu "Slava vojvodine Kranjske..." (1689) omenja okoli 70 jam in je nekatere tudi v resnici raziskoval. Pravi "speleološki projekt" je Naglovo (po cesarskem naročilu) raziskovanje naših jam 1748. Poleg Hac-queta (na Kranjskem je živel 1766-1786), ki je že spoznal, da "kras" ni samo na "Krasu" in da je kras rezultat raztapljanja apnenca (korozije), je treba omeniti še Steinbergovo delo o Cerkniškem jezeru (1758), Laurentijev opis Proteusa (1768) in Gruberjeva (1781) "pisma" o kraški hidrologiji. Za zgodovino speleologije je tudi zelo pomemben jamski turizem. Tako je bila Vilenica turistična jama že vsaj 1633, Postojnska in Škocjanske jame pa so bile uradno odprte 1819. V zvezi z njihovimi raziskavami omenjam Luko Čeča, Jeršinoviča, Tominca in Mahorčiča. V prvi polovici 19. stol. so bile najpomembnejše speleološke raziskave namenjene iskanju vode za Trst. Do podzemeljske Reke so skušali prodreti skozi Škocjanske jame (Svetina 1839) in skozi globoka brezna. Pri tem so prodrh 1841 (Lindner) do dna 329 m globoke Labodnice, ki je ostala najgloblje znano brezno na svetu še okoli 70 let. V tem času se je v Sloveniji razvila speleologija tako s tehničnega kot z znanstvenega vidika. Takrat so raziskovah velike jame, kot je Križna (Cerer 1825), Velika Karlovica in Zelške jame (Kebe 1848) ter Planinska jama (Urbas 1847-48). Čeč je odkril notranje dele Postojnske jame (1818) in v njej našel tudi prvi primerek jamske kopne favne (1831); Schaffenrath, Fercher in Hochenwart so merih in izkopavali v Postojnski jami. Freyer pa je raziskoval tudi ledenice in alpske jame. Druga polovica 19. stol. je "klasična doba" speleologije na Slovenskem. Začela se je s Schmidlovimi raziskavami (1850-1854), vrh pa dosegla s Putickovimi odkritji in Martelovim podvigom v Postojnski jami (1893). Izredno zahtevne so bile raziskave Škocjanskih jam (od 1884 dalje) in Kačne jame (od 1889). Morda bi lahko za začetek organiziranega jamarstva v Sloveniji šteli obisk (1882) "slovenskih gadov" Jame pri Predjami, o čemer sicer ni dosti znanega. Na vsak način je pa to leto 1883, ko sta bili v Trstu ustanovljeni skupini "Abtheilung für Grottenforschung des Section Küstenland des Deutschen und Österreichischen Alpenvereins" in "Commissione Grotte della Societä Alpina delle Giulie". 1889 je bilo v Postojni ustanovljeno prvo pravo slovensko jamarsko društvo "Anthron". 1893 je nastalo Slovensko planinsko društvo, katerega sekcije so se takoj lotile tudi raziskovanja jam. Društvo za raziskovanje podzemeljskih jam na Kranjskem (jedro raziskovalcev so sestavljali Drenov-ci), ustanovljeno 1910 v Ljubljani, pa je že neposredni predhodnik današnje Jamarske zveze Slovenije. ACTA CARSOLOGICA XXVI/2 12 109-117 LJUBLJANA 1997 DANIEL FISCHER UND DIE ANFÄNGE DER SPELÄOLOGIE IN DER SLOWAKEI DANIEL FISCHER IN PRIČETKI SPELEOLOGIJB NA SLOVAŠKEM MARCEL LALKOVIČ^ Izvleček UDK 551.44(437.6)(091) Marcel Lalkovič: Daniel Fischer in pričetki speleologije na Slovaškem Začetki speleologije na Slovaškem segajo v prvo polovico 18. stol. Pri tem je igral pomembno vlogo Matthias Bel in krog njegovih tovarišev. Z vidika zanimanja za jame pa je bil pravo nasprotje M. Belu Daniel Fischer. Poleg medicine, farmacije, fizike in kemije se je Fischer ukvarjal tudi z naravoslovjem. Rojen je bil v Kežmarku 1695, 1713-1716 je študiral v Wittenbergu in umrl v Debrecenu 1764. Jame ga niso zanimale kot objekti, ampak kot kraji in snov, ki mu je omogočala opravljati poizkuse. Preučeval je predvsem rast in obliko kapnikov. Bil je prvi, ki je v okvirih Slovaške in Madžarske pokazal na potrebnost reševanja takih vprašanj. Ključne besede: zgodovina speleologije, kapnik, Slovaška, Fischer D. Abstract UDC 551.44(437.6)(091) Marcel Lalkovič: Daniel Fischer and the beginnings of speleology in Slovakia Beginnings of speleology in Slovakia go back to the first half of 18th century. M. Bel and circle of his fellows played important role. Opposite pole of M. bel was Daniel Fischer in terms of interest in caves. Beside medicine, pharmacy, physics and chemistry Fischer dealt with natural science history too. He was born in 1695 at Kežmarok, 1713-1716 he studied at Wittenberg and died at Debrecen in 1764. Caves interested him as the objects that enabled him to develop his experiments. He studied the most the growth and the forms of flowstone formations. He was the first in Slovakia and Hungary who showed the interest of such questions. Key words: history of speleology, flowstone, Slovakia, Fischer D. ' Slovenske muzeum ochrany prirody a jaskyniarstva, Školska 4, SK - 031 01 LIPTOVSKY MIKULAŠ, SLOVAKIA Nach den Erwähnungen über die slowakischen Höhlen in der Literatur im 16. und 17. Jahrhundert begannen in der Slowakei die Anfänge der Speläologie an Anfang des 18. Jahrhunderts zu formieren. Die erste Angaben über die Höhlen publizierte Georg Wehrner, humanistischer Gebildete aus dem Schlesien im Jahr 1549, Pietro Ranzano, der Gesandte des Neapelskönigs am ungarischen königlichen Hofe im Jahr 1558, Johann Paterson Hain, der Arzt im Kesmark (Kežmarok), Leutschau (Levoča) und Preschof (Prešov) im Jahr 1672, und Martin Szentivänyi, der slowakische Jesuit und Professor der Universität in Tyrnau (Trnava) im Jahr 1689. Mit dem Verdienst dieselber Gebildeten und mit ihnen Informationen über die Höhlen endstand auch in der Slowakei die Klima, die für die Forschung der Höhlen aus dem naturschaftlichen Interesse sehr günstige war. Die Bedeutungsrolle trugen hier auch Matias Bei und seine Mitarbeiter aus. Zu diesen gehörten auch Georg Buchholtz der Jüngere und Juraj Bohuš. Slowakischer Polyhistor und Rektor des evangelischen Lyceums in Pressburg (Bratislava) Mathias Bei führte als der erste in der Literatur die breitere Erkenntnisse über in damaliger Zeit bekannte Höhlen der Slowakei an. Er publizierte diese im Werk Hungariae antiquae et novae prodromus aus dem Jahr 1723. Hier widmete er den Höhlen ein ganzes Kapitel. In seinem Werk konzipierte er seine Wissenschaftsbestrebung - Kollektivsbearbeitung der komplexe Monographie über Ungarn. In Einzelbänden dieses Werkes Notitien (4 aus ihnen erschienen in Jahren 1735-1742) beschrieb er dann auch die Mehrheit der bekannten slowakischen Höhlen. Mit seiner Tätigkeit begann Mathias Bei die Epoche des neuen Interesses über die Erkenntnis der slowakischen Höhlen. Mit den Ergebnisse ihrer Arbeit dokumentierten es später nicht nur F.E. Brückmann, oder R. Towson sondern auch andere. Im Fall Georg Buchholtzs der Jüngere begegneten wir mit dem ersten wirklichen Interesse über die Erkenntis der einigen slowakischen Höhlen. Unter seinem Einfluss in der lateinischen Schule im Paludza in Jahren 1714-1723 interesierte er sich für die Höhlen des Gebiets Liptau. Viele Höhlen forschte, skizierte und beschrieb er. Die Ergebnisse seiner Tätigkeit waren den Unterlagen der Informationen, die M. Bei in seinen Publikationen übergab. Die Bedeutungsrolle hatte auch Juraj Bohuš, der Rektor des Kesmarksgymna-sium. Er interesierte sich für die Höhlen des Gebiets Zips. Der ausdruckvolle Gegenpol von M. Bei, aber nicht nur mit dem Interesse über die Höhlen in der Slowakei, war die Persönlichkeit Daniel Fischers (1695-1746). Dieselber gebürtiger Kesmarker und M. Bei gehörten zu den ersten Vorkämpfern der modernen Wissenschaft in der ungarischen Kulturwelt, vor allem aber in der Slowakei. M. Bei mochte ihn für die Zusammenarbeit in seinem heimatskundlichen Projekt erwerben, aber D. Fischer ging in der wischenschaftlichen Forschung mit anderem Weg. Er arbeitete wissenschaftlich in der Medizin, Pharmazie, Physik und Chemie, aber beschäftigte sich auch mit der naturwissenschaftlichen Forschung von Liptau, Zips und Hohe Tatra. Er wurde am 9. November 1695 im Kesmark (Kežmarok) geboren. Nach den Studien im Kesmarksgymnasium im Jahr 1713 ging es in die medizinischen Fakultät der Universität im Wittenberg studieren weg. Nach dem Gewinn des Lizenziats im Jahr 1716 begann er seine ärzliche Praxis in seinem Geburtsort. Im Jahr 1718 gewann er auf der Wittenbergsuniversität den Titel Doktor der Medizin. In Jahren 1719-25 wirkte er in der Stadt Liptauer Nikolaus (Liptovsky Mikuläs) als Amtarzt des Liptauer Komitats. Von hier ging er im Kesmark (Kežmarok) weg. Hier wurde er Stadtarzt und Amtarzt des Zipsauer Komitats. Zu dieser Zeit war er auch der Leibarzt des Zipsgaugraf Nikolaus Csäky. Er starb im Debrecen im Jahr 1764. ÄhnHch als M. Bei bemühte er sich den Mitarbeiterkreis zu gründen, mit den sein wissenschaftliche Programm realisieren mochte. Er war bewundernswert gebildeter Mensch und orientierte sich sehr gut in der damaligen wissenschaftlichen Literatur. Die Zusammenarbeit mit M. Bei lehnte er strikt ab. Die Problematik der wissenschaftlichen Forschung darstellte nach ihm sehr ansprüchige Rolle und er hielte Bels für ihre Lösung fachtlich nicht zu bereiten. Den Charakter seiner Individualität erfasste auch es, dass er allein das Mehrbandwerk Admiranda Hungariae varia naturae curiosa exhibentia (Verschiedene Besonderheiten der Ungarnnatur) zu schrieben mochte. Diese Ansicht realisierte er aber niemals. Er hatte die Kontakte mit Georg Buchholz der Jüngere und Juraj Bohuš, obwohl sie beide zu grossen Förderern der Belsbestrebungen gehörten. Auch ihnen Grundlagen entwickelte er auch sein Interesse für die Höhlen. Er trat so isoliert deshalb auf, dass er in den Höhlen für etwas anderes interesierte, um was widmeten sich nicht seine Vorgänger und Zeitgenossen. Wissenschafts-publikationsanfänge von Daniel Fischer hängen mit der Universität von Wittenberg zusammen. Er begann systematisch wissenschaftlich arbeiten, wenn er im Kesmark (Kežmarok) sich siedeinte an. Seine Erkenntnisse sendete er für die Veröffentlichung in Zeitschriften der Academie Leopoldina - Ephemerides und Acta und in der Zeitschrift Sammlung von Natur- und Medizin-Geschichten, die im Wrattislaw erschien. Im Jahr 1719 war er zum Mitglied der gelehrten Gesellschaft Sacri Romani Imperii Academia Caesareo - Leopoldina gewählt. Daniel Fischers Interesse über die Höhlen hatte gegenüber Mathias Bei ausdruckvolle andere Dimensionen. Er interesierte sich nicht für die Existenz der Höhlen im Kontext der Naturbesonderheiten, oder über die Umschreibung und die Darstellung ihnen Räumen. Die Höhlen nahm er aus die Objekte wahr, mit Vermittlung welchen seine Experimente entwickeln konnte. Die Höhlen boten ihm den Material, der ihre Realisation zu ermöghchten. Das Fischersinteresse über die Höhlen hängt mit dem ersten Zeitabschnitt seiner wissenschafts-fachhchen Tätigkeit zusammen und bindet sich an seiner Aufenthalt im Liptauer Nikolaus (Liptovsky Mikuläs). Die dominierende Elemente dieselbes Interesses war die Aktivität von G. Buchloltz der Jüngere in Höhlen ACADEMIAE CAESAREAE- LEOPOLDINO GAROLINAE NATVRAE CVRIOSORVM EPHEMERIDES SIFB OBSERVATIONVM MEDICO-PHYSICARVM CELEBERRIMJS FJRIS Tum Medicis, tum aliis Eruditis in Germania et extra cam commtinicataruiii CENTVRFA IX. et X. C«w APPENDICE ct Stt£t. OefMajeßalis. ^^ayST^E FimBLlCOSVM, Apud Viduam PAVL! KuHTZIf, LiKeris PETRI DETLEFFSEH. ANNO M DCC XXII. ' Ai '.F--«/ des Demänovä Tals und von Juraj Bo-huš in den Höhlen des Gebiets Zips. Sie beide gehörten zu den Mitarbeiten des Mathias Bels, aber die Informationen und Erkenntnissen zu welchen sie beendigten, bewies Daniel Fischer wesentlich anders. D. Fischer knüpfte mit Georg Buch-loltz der Jüngere die Kontakte schon am Anfang seines Aufenthaltes in Lip-tauer Nikolaus (Liptovsky Mikulaš) an, und diese folgten aus dem Interesse für die naturwissenschaftliche Forschung. Diese Kontakte überdauerten auch nach dem Abgang des Buch-holtzs auf einen Post des Rektors des Evangelischen Lyceums im Kesmark (Kežmarok). Mathias Bei war nur der Empfänger der Buchholtzerkenntnisse über die Höhlen, aber D. Fischer war ein Fachmann, der die Antworte auf die Fragen, mit welchen G. Buchholtz der Jüngere bei der Forschung in den Höhlen des Demänovä Tals traf, finden mochte. Wir schalten nicht diese Möglichkeit, dass das naturwissenschaftliche Interesse von D. Fischer die wichtige Rolle in der Beziehung mit Georg Buchholtz der Jüngere spielte, von ihm er die Materialien für wissenschaftliches Verfahren erwarb. Sie waren beide die gebürtige Kesmarker und diese Wirklichkeit flusste ihre wechselseitige Beziehung beein und hatte die grosse Rolle auch bei der Formierung des Fischersinteresses für die Höhlen. Mit dem Verdienst von Johann Paterson Hain erschien im Jahr 1672 in der Literatur die Erkenntnisse über die Höhle, die im Zipsen Komitat bei dem Kartäuserkloster neben dem Dorf Helbingsau (Haligovce) fand. Er beschrieb auch die Funde der Drachenknochen. Die Kenntnis der damaligen Fachliteratur flusste die Entscheidung D. Fischers diese Höhle (die heutige Höhle Aksamitka bei dem Dorf Haligovce) zu besuchen beein. Auch er fand in dieser Höhle die Drachenknochen. Wir haben Grunde zu der Annahme, dass es nach dem Jahr 1716 wurde. Es ist sehr schwer vorauszusetzen, dass er mit dieser Höhle während der Gymnasiums- und Universtätsstudien beschäftigte. Es ist sehr regelmäsig, dass er mit der Forschung erst in der Zeit, wann begann er seine ärzliche Praxis in seinem Geburtsort, beschäftigte. Er mochte vor den Gewinn des Titels Doktor der Medizin einige mit Studium die Erwerbungskenntnisse bewiesen. Aus seinen Funden steUte er das ganze Skellet zusammen. Er schenkte es dem Kaiser, für was diente er den Landadel und den Titel des Hofvertrauensmannes Aulae familiaris aus. Es ist ganz natürlich, dass ihm Georg Buchloltz der Jüngere im Jahr 1719, wenn er die Drachenknochen in Demänovä Höhle Benikovä fand, ein Teil der Funden für die Bestimmung sandte. Den zweite Teil dieser Sendung waren einige Tropfsteine aus dieser Höhle und gewann er gerade in ihnen die Materie, die ihn sehr zog. Fischer diese Tropfsteine beschrieb und erforschte. Er widmete nicht nur mit der Aussenform, aber er forschte auch ihre chemische Eigenschaften. Er dachte, dass sie die Wasserquellen sind, die aus dem Felsen flössen heraus, und dann wieder auf die felsartige Materie hart geworden. Sie hatten verschiedene und bewundernswerte Formen. Einige aus ihnen hatten die Kegelformen und andere hatten die rauhe Wände. Manche aus ihnen hatten Erbsen- oder Rundformen, eventuell sie aus einigen kleineren und grösseren Kügelchen bestanden. Überwiegende Mehrheit aus ihnen hatte schneeweisse Farbe mit der gelblichen Abstufung. In seinen Abhandlung ging er von der Disertation des deutschen Wissenschaftlers Martin Gotthard Lerschen über die ausfälltenden und anwachsenden Felsen. Auch der Arzt von Wittenberg Abraham Vater beschäftigte sich mit den Felsenformen. Im chemischen Vorgang setzte er bei der Bildung der Tropfsteinen auch das Vorhandensein von weissen Vitriol, Kochsalz, Schwefel, Salpeter, Weinstein, Erdmasse, Alkohol, Wasser und Luft voraus. Bis jetzt wissen wir nicht zu beurteilen, inwiefern mit diesem Interesse Daniel Fischers hängten auch seine weitere Besuche in einigen Höhlen des Demänovä Tals zusammen. Während der botanischen Forschung in felsenreichen Bergen Ende August 1720 besuchte er mit Georg Bucholtz der Jüngere auch nähere unbekannte Höhle. Im August 1723 wanderte er über das Demänovä Tal. Neben der Höhle Fenster (Demänovskä jaskyöa Okno) forschten sie zusammen die Höhle Brunner (jaskyöa Studöa) durch, und hier stiegen sie in einer Tiefe von 22 Klafter ab. Wir wissen nicht zu erzählen, ob es nur diese Besuche waren, oder er in die Höhlen oft ging. Die Angaben im Tagesbuch von Georg Buchholtz der Jüngere sind in dieser Richtung sehr kurzgefasst. Es ist sehr wahrscheinlich, dass er mit den Höhlen sehr interesierte. Ausser den Höhlen des Demänovä Tals, sie lagen in der Nähe von seinem Aufenthaltort, beschäftigte er sich auch mit einigen Höhlen des Gebiets Zips. Georg Buchholtz der Jüngere sendete ihm die Tropfsteinsstücke aus der Drachenhöhle im Benediksfelsen, begann er über es nachzudenken, dass etwas ähnliches auch in den Höhlen der Zipsen Karpathen vorkommen muss. Die Erwähnung dieselbes Charakters skizzierte indirekt auch eventuellen Besuch in diesen Höhlen. In seinem Fall können wir nur sehr schwer voraussetzen, dass der Mensch dieselbes Formats und der grossen Wissenschaftsambitionen auf die Vermittlungsinformationen jemand anderes verlassen konnte. Bei seinen Erwähnungen über die Höhlen der Zipsen Karpathen ist sicher, dass er etwas über die Existenz dieser Höhlen wissen musste. Er dachte nicht nur die Höhle unweit dem Kartäuserkloster. Man kann sagen, dass gerade auf diese Frage wir die Antwort in der Tätigkeit J. Bohuš finden, er war Fischers Zeitgenosse und Rektor des Gymnasiums im Kesmark. Zur Zeit seines Aufenthalts im Liptauer Nikolaus (Liptovsky Mikuläs) beschäftigte sich D. Fischer mit den Höhlen im Gebiet der Belaer Tatra. Hier forschte er eine Höhle über der Stadt Bela (kleine zipsere Stadt unweit der Stadt Kesmark) und das Drachenloch, welches eine halb Meile vom Dorf Morgenröte (Ždiar) entfernt ist. Es ist fast sicher, dass der Bohušaufmerksamkeit auch einige Höhlen in der Nähe der Belianska Höhle (Behanska jaskyöa) nicht entgangen. Wir wissen nicht, inwieweit konnte auch die Belianska Höhle sein. Bei seiner Entdeckung im Jahr 1881 waren an den Wänden ihrer Vorderteilen auch Nammen und Anschriften aus dem Jahr 1718 gefunden. Daniel Fischer interesierte sich auch im Fall der Höhlen der Zipsen Karpathen für die Tropfsteindekoration. In der Sammlung, die er von dem ständigen Besucher der karpathen Bergen erwarb, beschäftigte er sich in erster Reihe mit den Steinen verschiedenen Formen und nicht mit den Knochen des grossen Tieres, welches aus diesen Höhlen kam her. Diese Steinen nannten Stalaktiten und sie waren pyramidenförmig mit einem spitzen Winkel. Mit dem Schlag an dem Felsen khngten sie. Nach der Zerschlagung floss aus ihnen klares Wasser aus. Es schmeckte nach dem iridischen Flusswasser. Einige hatten rundliche Formen in der Grösse der Erbse oder Nuss, und andere waren die Kügelchen verschiedener Grösse mit glatter oder rauber Oberfläche. Er tat auch mit diesen Felsen die Experimente und erarbeitete sich zu änlichen Erkenntnissen als im Falle der Funden aus der Höhlen des Demänovä SUPPLEMENTÜMIV, ^ CurieufccuntnuPöttr !ttitier«it«gett SOB afur« >rf(|((|fe«/ Itgeiic gtfabtiiiis un&augDidertf^ Conefpondenzg«fatnm(rt JOHANNE^KANOLD, M^icifi« Dod, ünb Pravico (H^r^lail/ vit and} »»j^^^SeCf eföfitifc^r €ar»KftiT(|(ti Acadfimix ___NaaiKgCttriororttm _ 04 pcrcuricufiBgttttitf(ftmfl(Pf^ttžuyiL^unff «tolorumftir«relict, nttUK/^^r.ittrddtkm ibßtm Btfffnaiy ^dipi» C^ehuiop^irtercientiloipidtininforeniMc. < ' " Exaatod9ducibmp3RbIt,KŠjli)lu cuinintuf SccptUicnSt in «fltw flibusetiamdidi-rte; Ti enim dilTcru» proporticiD« tleiBcntDrua)» difl«' »ar<}uoq(t« necelfe eft & tSxiim ab ciraMmofBJB projici^osc depm&n-tei* Hiucamemdi/rnioclimunuiquisquereifepoiCfU cxuteidicUt* Arctc. 17. III. Defcriprio lapidum Ibladites inaa- - - trkGai pathiSc^ufienfis mycnEorum. §«.!>.SfTÄ«»: Cum mihi miffi 8c ftynx exsqa« cončretz.invcntz in antrh quibusdain Lj-f«ovienrtbu«,iini^a«v«(otnaocro dracooum pcirx'Äwwai^w, ft»-timcogiubam,6mtSeq<9td,«mmm antnsCsi|>3thi comifan»&:«pii> fienüsinvenin KmcoDHitoftl» tarn qü^sdsizw comiiuium Ccrfwrhicoram monttom viHtatorem» per-i^afique>utrp&.tnneraQrra» enim rum pUne ob'pndicoslabo-f4KonopoUTaro,)qood5ifecit,MulHquea)imSe off* maxuni co)Ufr-daiBantOMt», &pra&(08 tapiäcs, varia fignrs ptzditos, qui Gtjfini» jihSQi enim conum referent acut«>goiarem» ar^xfi!t^i»(!amiup«t^raf|>ef», quidamverO planagaudcbaDT. Hi conli^«« peti« allifl, joOgnkcr tiankSMftr^ non «ameo omncScfcdrolUiorrtRnturti; cxhis «(>am quidsm erantcavi;qtit,ß ^ngebanrnr» «z eanim caviare aqua pcRu^tda Cc dara emani&ar, Qasdem iaporis cum aqua SiiviatilE at)fCri«ftrem tarnen mffiüacce« deiKif. AiiqDiprvdtiirtUmcramßgurarörundtf, piS liCtfCiMviCBßti KM S( fub ptKdlti^ metiRa- diite figdrir e rantfpharici, fiipct ficic vcl plana vfl afpsra gamßnws» Exhis^tobuiisreagairaäine ramen inzq^ülibos^tatnrotundis,quam ifilwrkis, qaidam compofiii eranr. fttque ho» Japide» globulofg» ifiw/». Sdprat i^^mmtKt. Jt Tftrmh Ct^elfnii Qif.l//.p.tj, ftaU^rtike» ^leHambocmas]^etl3rivQli^>Ce>lorhoräm'i;^uin qoibusdair» eftalbtc»n».plQsnirauf(pe 8av<ß«n»,C — + 1,75''C 4500 - 5000 ft 1422 - 1580 m 3,50 - 4,50°C 4,25»C 3,00 - 3,75°C 4000 - 4500 ft 1264 - 1422 m 3,62 - 5,50°C 4,50°C 3,75 - 4,50°C 3500 - 4000 ft 1106 - 1264 m 1,50 - 5,50T 4,87^ 4,50 - 5,25''C 3000 - 3500 ft 948 - 1106 m 1,75 - 6,25T 5,12''C 5,25 - 6,00''C 2500 - 3000 ft 790 - 948 m 3,62 - 6,87°C 5,50T 6,00 - 6,75T 2000 - 2500 ft 632 - 790 m 5.12 - 7,50T 6,12T 6,75 - 7,50°C 1400 - 2000 ft 442 - 632 m 5,37 - 9,62T 7,25T 7,50 - 8,50''C The original descriptions of the columns by SIMONY are the following: Column 1. Column 2. Column 3. Column 4. "Altitude of the springs /sources/ in Wiener Fuß" /column 1(a): original footage; column 1(b): converted into meters/. "Observed spring temperatures in late summer" /notated in half degrees Reaumur, converted into degrees Celsius/. "Mean annual temperature of all studied springs" /notated in half degrees Reaumur, converted into degrees Celsius/. "Approximate climatic annual mean of the corresponding altitude" /notated in half degrees Reaumur, converted into degrees Celsius/. Limestone removal SIMONY often focused on moraines, rubble and water with suspended sediments in his field work. He called the removal of material and its origin "erosive processes" ("erosierende Kräfte"), summarizing erosion and corrosion in one single term. He assigned water a special role in the "erosive" ("erosirenden Abtrag") hmestone removal, defining it "the omnipresent means of destruction connected with an incessant change of temperature" (1871: 3); in connection with the climate he considered water as "atmospheric erosion". He said that "rain and snow water" served as "chemical solvent, eroding the rocks on the surface." In this way SIMONY expressed and described the origin of karst phenomena: "The whole surrounding area looks as ragged, gnawed at and hollowed as if strong acids had rained on the rocks for centuries." He continues (1871: 5): "The share of atmospheric precipitation in the formation of the terrain must not be underestimated. In any case the latter is being continually 'gnawed off by the .. corrosion of the surface of the rocks, and .. every crevice rippled by water .. is slowly and continually deepened and enlarged .. to an unmeasurable degree." This limestone removal which was not only mentioned in 1871, is still a prominent topic in modern research! SIMONY realized that besides the change of temperature of the water there exists another essential influence on the limestone, as he wrote in 1871 (page 10): the carbonic acid, "substantially increasing the effect of atmospheric precipitation, is brought into the system from the air, but is absorbed to a much larger extent from layers of plants and soil. The corrosive power of the water may be increased .. many times .. by carbonic acid." The limestone removal = eroding effect of the biogene carbonic acid from algae and layers of moss was stressed in his later work. In 1869 SIMONY had already written a paper on these "means of destruction in high mountains" and had made it public (1870) in a popular calendar (an almanac with calender and a lot of informativ and educativ items). There are hints to be found in earher pubhcations. SIMONY calculated the limestone removal especially for the "Kaiserbrun-nen am Schneeberg" (Lower Austria). He said (1871: 43-44) that "25.000 Kubikfuß /= 7.900 mV of sohd rock were annually removed by the Kaiserbrun-nen as a product of erosion, which corresponds to the volume of a kubicle 29 feet /= 9.16 m/ high". From this he calculated the general surface removal, noting that "in a thousand years a layer of not more than 5/4 Zoll /= 3.29 cm/ would be removed. He tried to compare these rates of removal from the limestone areas with those of the crystalline. He concluded that the surface removal rate by the glaciers was not very substantial. Not a period of a thousand, but hundred thousand years would be required for the big diluvial sediments in the forelands. A remarkable view for that time, which he gained by empirical observation, measurements and calculation. Karst phenomena, especially karren Already in his first publications SIMONY gave a realistic presentation of limestone massif morphology in the mountains of Totes Gebirge and Dachstein. He documented the various karst phenomena such as karren, dohnes and caves. He described the phenomenon of karren and made drawings thereof. At first he ascribed the conspicuous formations to the effect of glaciers, he also limited their appearance to the glacier zone. He was of that opinion at the beginning of his research and also later, although he had clearly realized the effect of the water. In 1878 he wrote (on oage 114): "Even if the origin of the karren still seem .. to be doubtful, this question appears to have found .. a sure answer. These strange hollowings are solely the product of the concurrence of melt water from the glaciers and the rubble of the moraines serving as abrasives." This statement does not correspond with the present state of knowledge and actually differs from SIMONY's other views on karst processes. For, in his above mentioned paper from 1871, he clearly considered the rain- and soil water with its CO^ to be a driving force for karst processes. However you can see from his drawings that he observed the karren and karren areas correctly and portrayed them in all details. Apparantly he could not correlate the relief of the karren with the effect of the surface removal. In the present it is easier to find different conclusions. His drawings are nonetheless important and correct evidence, such as a sectional drawing of a karren area in his diary, and the drawing Nr.382 from 1844 (Fig. 1). The caves Caves are normal phenomena of limestone mountains for SIMONY. Precipitation made its way into the subsoil, as described above, through crevices and "Karrenbrunnen" (karren-pit). Smaller crevices and canals were widenend, and caves developed in the course of time due to subsurface waters, which streamed again through the "canals" to the outer world. Thus he perfectly explained the circle of karst water by the direct connection between sinking surface waters, their subsoil course to the surfacing of the spring. As to the origin of the caves, SIMONY stated (1871: 11) "that at least a substantial number of them owe their origin their .. continual enlargement .. and also their final collapse to the combined attacks .. of the water." Therefore he must have realized, "that the number of known and accessible caves was infinitely little, .. compared to that of the ones existing. Innumerable caves he .. inside the mountains ..". Still, about a hundred years later scientists fiercly discussed "caves without entrances" as a "remarkable" phenomenon, although this had been no problem, but a fact in earher times. Fig. 1: Karren-Poster by Friedrich SIMONY 1844. Different views of karren in didactic combination with explinanetary legends. See translation on page XXX. Drawing, water coloured, approx. 55x37cm. Archiv des Naturhistorischen Museums Wien: Material SIMONY Blatt Nr 382. Fig. 2: Presentation of karrenforms: bolder with Firstkarren, "Karrenköpfe" with grooves and subsoilforms. Part of a geater sheet entiteld "Zur Charakteristik von altem Gletscherterrain im Kalk Hochgebirge, Aussicht vom Steige von der Ochsenwieshöhe nach dem Taubenkar (Dachsteinplateau)", made in september 1844. At the side are legends explaining items, with number 12 there are "Karrenköpfe" inscribed. Archiv des Naturhistorischen Museums Wien: Material SIMONY Blatt Nr. 338. SIMONY named practical examples of the development and collapsing of caves from the Nördliche Kalkalpen. He studied the Almbergloch in the Totes Gebirge and the Thiergartenloch in the Dachstein. He had made drawings already in 1845 (Nr.190) and commented on the development of caves at a meeting of the "Freunde der Naturwissenschaften" (HAIDINGER 1847, GRAF 1979). At that time he had little experience, yet he drew justifiable conclusions on this matter (HAIDINGER 1847: 55-59). He made a distinction between primary and secondary caves, the karst caves belonging to the latter. As to basins, gullies and partly also blind valleys (Sacktäler) he beheved them to be formations, which owed "their first appearance to the collapse of large primitive or secondary caves". This opinion can only be agreed to in a few cases. SIMONY did not consider the caves suitable for tourism, in any case not as shelters for alpinists or hikers. Unfortunately there are no diary notes on the "Gschlösslkirche", which he visited in 1844 and where he found fireplaces as evidence of earlier visits. We are in possession of diaries only from 1847 onward. At the occasion of a later visit he explored the cave more thoroughly and found it apt to be used, to a limited degree, as a shelter for tourists. He wrote (1877: 126 right below); "Although .. our experience generally speaks against the use of caves for touristic purposes, the Gschlösslkirche seems to offer favourable conditions for such usage .. however only if any expensive development is avoided, and only the most necessary equipment should be procured." From this statement we can surmise that SIMONY wanted nature to be changed as little as possible, and not "conquered". Changes should not be noticeable within the cave nor on the outside. This attitude may be regarded as a very first attempt of "soft tourism". One of SIMONY's studies in caves can be traced from his second diary in 1848 (Nr. 1756), containing notes on an excursion to the Loserloch on August 3rd. SIMONY took different temperatures during his ascent, inside the cave Fig. 3: Drawing according to the speleogenetic questions, 'Ausseer Gebirge" = Totes Gebirge, 1845, pencil sketch, approx. 55x37cm; Archiv des Naturhistorischen Museums Wien: Material SIMONY Blatt Nnl90. This sketch is also published by GRAF 1979. he measured 2.2°R (=2,75°C). He described the chambers of the cave, made a drawing of the entrance area, as well as the way through the cave, producing a horizontal projection as well as a vertical section. ? ■ : - f •'i iiSliiii Fig. 4: The great entrance of Almbergloch, Totes Gebirge, Styria. Pencil. "Bleistiftzeichnung nach der Natur von F. SIMONY im Jahre 1845". Archiv des Naturhistorischen Museums Wien: Material SIMONY. This drawing was used on end of the 70ths up to the early SOths as cover of the local cavers journal "Mitteilungen der Sektion Ausseerland des Landesvereins für Höhlenkunde in Steiermark". Karl Mais: Friedrich SIMONY {1813-1896), kis contributions to karst and cave science The graphic work From the rich fund of drawings by Friedrich SIMONY one item (Nr.382) from 1844 is presented here. It is neither a picture nor a drawing, but a poster - in modern sense. This poster on karren in the high mountains is titled "Profiles and Views of the Karren in the Dachstein Area" {Durchschnitte und Ansichten von Karren aus dem Dachsteingebirge). It is made on a sheet of drawing paper, size of 39x54 cm, several water coloured sketches are placed together. Two sections show karren, ravines of different width cut deeply into the hmestone layer (I. and IL). Below to the left we find a view through a "Karstgasse" (III.) Various types of karren have developed in horizontal and steep vertical parts of rocks. Below there is a water color drawing of a "Karrenkopf" (V) with vegetation on top of it, clearly showing karren. The right side of the poster shows five profile sections of a "Karstgasse"(IV) leaning to the entrance of a cave. The section clearly shows the variebility of karren types. Below there are two more profile sections of karren (VI und VII). The text in between runs as follows: The original text of the poster in translation: I.: 30° ( = Klafter) long section of a karren field {Karrenfeld) in the Dachstein mountains (between Krippeneck and Tenneck). II.: A karren field on the west side of the Speikberg (east of Däumelkogel). III.: Karren formations {Karrengebilde) on the eastern slopes of the Krippeneck. (In I., II. and III. the rounding and flattening of the surface of karren and karren fields (Karrenfelder und Karrenköpfe) seems to be a product of ancient glaciers. In II. and III. the sected marble spots and layers point to that as well as the deposition of erratic boulders and gravel in a vast terrain surrounded by higher areas covered with vegetation. IV: 5 sections of a 3-4 Klafter deep rock pit running from a small cave through the western slope of a ridge south of Krippenstein. The cave was formed by water erosion probably as a product of ancient glacier water running through the cave (now filled with sand), v.: A peculiar Karrenkopf between Modereck- and Gjaidalpe. VI., VII.: Karren sections {Karrendurchschnitte) on the high Dürren in the Dachstein. VIII.: A karren spot {Karrenfleck) from the Brunngräben in Gösau. Composed true to nature and painted by F. Simony 1844. The sheet Nr.382 was composed apparently for didactic reason to show the variety of karren types. In the large section through the karren fields there is a human figure drawn, also a yardstick of 9 Klafter (= 9,48m) length. The backstage presentation of III. and the several profile sections in IV. try to present the different appearances of karren in a perspective or geometrical way. These combined illustrations were obviously composed for a lecture on this topic. The conspicuous numbering of each drawing on the poster shows the documentary/didactic purpose of the illustration. Contributions to glacier speleology and other items of karstology SIMONY was fascinated by the investigation in glacial areas, also he found interest in glacier caves. His observations thereof date back as far as 1840. At the 4th Int.UIS Symposion on glacial caves a special paper is presented. It must be mentioned that SIMONY compared his earher drawing with later photos, to assess the dynamic changes of ice and glacier status. For other comparisons he did not use his material. This was done later by the scientists of the Speleological Institute in Vienna. In the karst research program of this institute, especially from 1950 onward, SIMONY's photos were used for comparative studies of plant development in this karstregion. Georg KYRLE (around 1930), as well as Fridtjof BAUER made new photos in these places. Otto CECH analyzed the dyamics of the vegetation with plant-sociological methods (BAUER 1958). Such investigations are still being carried out. SIMONY's drawings and photos His drawings, water color paintings and photos are documents of karst and caves that have not yet been given a satisfactory classification. The bibhogra-phy set up by BÖHM in 1899 and of late by KAINRATH in 1993 offer a step for beginning. In SIMONY's graphic work several karst regions are presented. It contains the Polauer Berge, the limestone alpine regions of Lower Austria Styria, Upper Austria, Salzburg, than karst massifs like Schneeberg, Rax, Hochschwab, Totes Gebirge, Dachstein, Schafberg, Tennengebirge, Steinernes Meer, Watzmann, as well as the regions of the southern limestone alps in Carinthia and Krain (Slovenia). Besides that we must mention the pseudokarst areas of the Riesengebirge. The first karst object drawn by SIMONY was the chasm of the Mazocha in Mähren on a water color painting in 1830. Other karstobjects he draw in the early fieldwork in the Totes Gebirge and the Dachstein. Karren and dolines are shown on gearter pictures with a high exactness, also springwater and caveparts like Waldbach, Hirschbrunn, Kessel, Koppenbrüllerhöhle. The early drawings and graphic works of F. SIMONY still show a little clumsiness, but SIMONY soon reached great perfection. In order to draw the landscape true to nature he used a frame, and only for the sky and the clouds he permitted himself a certain artistic touch. Later on his drawings became more and more precise and less artistic, as SIMONY refrained from painting the sky and artistic manipulations. On his drawings he made captions emphasizing the documentary character of the pictures. With the help of a drawing Fig. 5: Taubenkogel, view from Ochsenwieshöhe (1989m), the photograph a: taken by F. SIMONY 1875-08-12 (SIM xxv; SP.J. 35) andb: by F BAUER 1955 (SEJ. 481) were used in studies on changes of karst vegetation (O. CECH & F BAUER). aparatus, he had developed himself, and the systematic superelevation of the relief his pictures became purely documentary. This becomes evident when he makes objective pictures from his photos. Apart from the documentary drawings and photos SIMONY also painted idealizing pictures. On the one hand they were character sketches of landscapes, where he focused on composition and included the portrayal of clouds, on the other hand they were expressive teaching material for his lectures at the university. With his photos he used retouch techniques to stress parts of the pictures that lacked clearness. Thus he emphasized indistinct contours caused by under-exposure or over-exposure, and added suitable skyscapes. He used this kind of picture improvement in his "Dachsteinwerk". Final remarks Friedrich SIMONY's speleological works are numerous and were presented in a small scale only. Their high value would favor a closer study of this scientist's achievement. The importance of his research for scientific speleology is only partly known. His publications, drawings and diaries should be studied and presented, as his life's work is practically unknown, but still valuable today. The results of SIMONY's research had a substantial impact on his colleagues, his students as well as on other contemporaries. His work was reflected in the scientific literature of his time, and its contents became part of common knowledge. Especially the knowledge he conferred in his lectures and speeches was carried on in the educated circles of the 19th century. Therefore references are rarely to be found in contemporary literature. In 1898 Jovan CVIJIC mentioned SIMONY's reports on karren and dolines. Later on, in 1913, BOCK, LAHNER and GAUNERSDORFER refer to him in "Die Höhlen des Dachstein" ("The Caves of the Dachstein"). Recently his work has been recalled to a certain extent. In 1977 SEEMANN gave proper attention to his work of the Dachstein area, and GRAF (1979) to that of the Totes Gebirge. Yet SIMONY's field work is not only important for retrospective, but also for actual research - as introduced and presented by G. KYRLE and Fridtjof BAUER, who compared his pictures with modern ones of the same sites. Today SIMONY's historic material is of great importance for research in the field of speleology. Only a minor part of it has been evaluated so far. In SIMONY's memorial year many of his works will appear accompanying publications and exhibitions. SIMONY's work will be acknowledged to a greater extent, see also the catalogue for the exhibition in the Landesmuseum Linz (SPETA & AUBRECHT 1966, with contributions by Franz GRIMS among others). REFERENCES BAUER, F. (1958): Vegetationsveränderungen im Dachsteingebiet zwischen 1800 und 1950.- Centralbl. f.d. gesamte Forstwesen (Wien) 75(3/5): 298-320, 12 Abb. BAUER, F. (1989): Die unterirdischen Abflußverhältnisse im Dachsteingebiet und ihre Bedeutung für den Karstwasserschutz.- Reports d. Umweltbundesamtes (Wien) UBA-89-28: 73 Seiten, 8 Beilagen. BOCK, H., LAHNER, G., GAUNERSDORFER, G. (1913): Die Höhlen im Dachstein und ihre Bedeutung für Geologie, Karsthydrographie und die Theorien über die Entstehung des Höhleneises. Dem Andenken weiland Professor Friedrich Simonys gewidmet von den Verfassern.- Graz 1913 (Verl. d. Ver. f. Höhlenkunde in Österreich) 151 Seiten, mit Taf. u. Plänen. BÖHM V. BÖHMERSHEIM, A. (1899): Zur Biographie Friedrich SIMONYs.-Wien, 1899, 63 Seiten. CVUIČ, J. (1898): Das Karstphänomen. Versuch einer morphologischen Monographie.- Geograph. Abhandlungen (Albrecht PENCK) (Wien) 5(3): 215ff . = Arbeiten aus dem geograph. Inst. Univ. Wien Heft 2. FORSTER, A.E. (1893): Verzeichniss der im Druck veröffentlichten Arbeiten von Friedrich SIMONY zu dessen 80. Geburtstag am 30. November 1893 zusammengestellt.- Wien, Geograph. Inst. d. Univ. 15 Seiten. GRAF, G. (1979): Höhlenkundhche Untersuchungen F SIMONYs im Ausseer-land.-Mitt. d. Sektion Ausseerland (Altaussee) 17(4): 97-102. GRIMS, F (1996): Das wissenschaftliche Wirken Friedrich SIMONYs im Salzkammergut.- Stapfia 43 Katalog des OÖ Landesmuseums (Linz) N.F. 103 (1996): 43-71. HAIDINGER, W. (1847-1851): Berichte über die Mittheilungen von Freunden der Naturwissenschaften in Wien; gesammelt und herausgegeben von W. H.-(Wien) 1.(1847); 2.(1847); 3.(1848); 4.(1848); 5.(1849); 6.(1849); 7.(1851). Die Beiträge in den Berichten wurden weitgehend von HAIDINGERs und nicht von den Referenten verfaßt. KAINRATH (1993): Friedrich SIMONY und seine Beiträge zur Erforschung der Alpen. Ein Lebensbild des Alpenforschers und ersten Ordinarius für Geographie unter besonderer Berücksichtigung seiner glaziologischen Forschungen und einer Analyse ausgewählter Diplomarbeit zur Erlangung des Magistergrades der Philosophie an der Grund- u. Intergra-tivwiss. Fak. d. Univ. Wien (Wien, 1993) 207 Seiten, zahlr. Abb. / Angaben über heute greifbares Material von SIMONY, Angaben und Zitate z.T. unzuverlässig. SCHADEN, Adolph von (1833): Neuestes Taschenbuch für Reisende durch Bayerns und Tyrols Hochlande, dann durch Berchtesgaden und Salzburgs romantische Gefilde, nebst ausführhcher Beschreibung der Gastuna (Ga- steins) und des Salzkammergutes; Als Fortsetzung seiner Beschreibung des Tegern- und Schlier-Sees ... .- München, 184 Seiten, 1 Karte, 25 Ansichten. SEEMANN, R. (1977): Höhlen im Dachstein.- Austria Nachrichten (Wien) 1977(3): 8-13. SIMONY, E (1842): Ersteigung des hohen Dachstein vom Carl-Eisfeld aus.-Wiener Zeitung (Wien) 1842(268): 1982-1984; 28. September 1842. SIMONY, F. (1850): Bericht über die /geologischen Aufnahme-ZArbeiten der Section V- Jahrb. d. Geolog. Reichsanstralt (Wien, 1859) 1: 651-657. SIMONY, E (1865): Ueber Kalkalpenquellen.- Oesterr. Revue (Wien, 1865) 3(1): 185-195. SIMONY, F. (1870): Die Mächte der Zerstörung im Hochgebirge.- Oesterreichischer Volks- und Wirthschaftafts-Kalender für das Jahr 1870 (Wien, ? 1869) 19: 110-128. SIMONY, E (1871): Die erosirenden Kräfte im Alpenlande.- Jahrbuch d. Österr. Alpenvereines (Wien, 1871) 7: 1-48. SIMONY, F. (1876): Die Vegetationszonen der Alpen.- Schriften des Vereines zur Verbreitung naturwiss. Kenntnisse in Wien (Wien, 1876) 16. (1875/ 76): 241-283. SIMONY, E (1877): Die Gschlösslkirche, eine Schutzhöhle für Dachsteinbestei-ger.- Neue dt. Alpenzeitung (Wien) 5: 124-127. SIMONY, E (1878): Die Gletscher des Dachsteingebirges.- Neue dt. Alpenzeitung (Wien) 6: 97-100, 111-114. SPETA, E; AUBRECHT, G. (1996): Ein Leben für den Dachstein. Friedrich SIMONY - zum 100. Todestag.- Stapfia (Linz) 43. Kataloge des OÖ Landesmuseums (Linz) NF 103: 355 Seiten, zahlr. Abb.; versch. Artikel. FRIEDRICH SIMONY (1813-1896) IN NJEGOV PRISPEVEK H KRASOSLOVJU IN SPELEOLOGIJI Povzetek F. Simony, ob svoji smrti 1896 znan predvsem kot alpinist, naravoslovec in geograf, se je ukvarjal tudi z glaciologijo in speleologijo, še posebej v pogorju Dachstein v avstrijskih Alpah. Terensko delo je dopolnjeval z lastnimi risbami, posnetimi po naravi, ki jih je kasneje uporabljal kot ilustracije pri objavah in predavanjih. Danes je njegovo speleološko delo zelo slabo poznano. Vendar je že 1842 apneniške planote imenoval "kraška območja". Ukvarjal se je s kraško hidrologijo in morfologijo. Tako je preučeval hidrologijo jame Koppenbrüller ter sosednjih kraških izvirov na severnem obrobju Dachsteina, meril je temperature vode in zraka v jamah, preučeval vodni transport trdnega in raztopljenega tovora, intenzivnost korozije tako v kraškem podzemlju kot tudi na površju, itd. Danes lahko ocenjujemo njegovo delo predvsem po njegovih objavah in risbah. S svojim poročanjem v znanstvenih družbah in s svojimi predavanji na univerzi je bistveno pripomogel k uveljavitvi dunajskega geografskega inštituta, kjer ga je nasledil Albrecht Penck, kot profesor fizične geografije, in kjer je končal študije tudi J. Cvijič. F. Simony je bil tisti, ki je v drugi polovici 19. stoletja zelo veliko pripomogel k uveljavitvi in popularizaciji speleologije. ACTA CARSOLOGICA XXVI/2 14 139-147 LJUBLJANA 1997 GEODETIC SURVEY OF POSTOJNA CAVES IN 1891 BY J. SCHMID SCHMIDOVA GEODETSKA IZMERA POSTOJNSKE JAME LETA 1891 KARL MAISi Izvleček UDK 091:551.44(497.4)"1891" Karl Mais: Schmidova geodetska izmera Postojnske jame leta 1891 - Prispevek k transkripciji dokumentov, pisanih v gotici, pomembnih za zgodovino speleologije V zvezi s preučevanjem speleološke dokumentacije sta se Inštitut za raziskovanje krasa (Postojna) in Oddelek za jame in kras dunajskega Naravoslovnega muzeja lotila projekta - transkribiranje nemških rokopisnih dokumentov, pisanih v gotici. Prvi primer je zapis geodetske izmere Postojnske jame iz 1891 J. Schmida iz knjižnice na Dunaju. Trenutno so v transkribiranju dokumenti iz lastnih arhivov (F. Simony, G. Abel), načrtujejo še transkripcijo pisem in dokumentov F. Krausa, A. Silberhuberja, W. Puticka iz arhiva Inštituta za raziskovanje krasa. Ključne besede: zgodovina speleologije, jamomerstvo, dokumentacija, Avstrija, Slovenija, Postojnska jama, Schmid J. Abstract UDC 091:551.44(497.4)"1891" Kari Mais: Geodetic survey of Postojna Caves in 1891 by J. SCHMID - about the transscription of handwritten ("kurrent" - "german script") speleohistoric documents. For the purpose of speleo-documentation a project was started by the Karst Research Institute (Postojna) and the Department of Karst and Caves of the Museum of Natural History (Vienna) to transcribe documents in German Script into normal. A first transformation was made with geodetic survey record of the Postojna Caves in 1891 ("Berechnung der Adelsberger u. Ottoker Grotten - Vermessung... ausgeführt im Jahre 1891") by J. Schmid, from the cave departement library in Vienna. Now documents from our collections (F. Simony, G. Abel) are transcribed for further investigations. A greater project to transcribe the letters and documents from the archives of the Postojna Karst Research Institut (F. Kraus, A. Silberhuber, W. Putick) is foreseen. Key words: history of speleology, cave survey, documentation, Austria, Slovenia, Postojnska Jama, Schmid J. ' Naturhistorisches Museum Wien, Karst- und Höhlenkunde Abteilung, Messeplatz 1, Stiege 10/1, AT - 1070 WIEN, AUSTRIA About handwritten data Handwritten documents do constitute the most important sources for works about the history of speleology. Although it is rather difficult to work with these sources due to "old fashioned" CA'pressions and older hardly legible fonts. Especially young researchers face difficulties when dealing with documents which are written in gothic letters. Naturally for foreign researcher the comprehension of such original documents is even more arduous. Projects concerning the transcription of historic documents The Institute for Karst Research of Postojna and the Department of Karst and Caves of the Museum for Natural History Vienna do intend to transcribe and transform the documents concerned into a more comprehensible form in order to ease source research. Hence translation and interpretation will be less challenging. Josef SCHMID: "Vermessung der Adelsberger Grotten" dip ADELSBERGER U.OTTDKER GROTTEN-VERMESSUNG dtx/ S^iMi^uXaXicn/ i>-ci> Scx^uü-n^^, 'ÖJ^vÄenncM.X' '^'^'W^iArcaÄAv w. iw^cn' J.Schmid k.k.ObaraspksohEidBf Pribram. JM/ Certainly the transcription of the by Josef SCHMID of Pribram penned protocols was a paying subject. These protocols of 1891 were calligraphical transcribed ("mundiert") by Karl KORB in 1892 (Fig. 1). The protocol was written in a leather bound blank book. The embossed cover carries the title "Vermessung der Adelsberger Grotten 1891". The content of the first page is as follows: ''Berechnung der Adelsberger und Ottoker Grotten - Vermessung bestehend aus: der Triangulation des Terrains, der Aufnahme der Grotten, dem Nivellement im Terrain und in den Grotten und der Fig. 1: Title page of the geodetic survey of Postojna caves in 1891 by J. SCHMID (1892: page 1). Hi / - - / a / - ^ ^ M Za^iff • i. Ze^z-^-i i ^ • - J / [J. - z /Z. ZZ/J/- » ■ ZZ//4-Z \ ^ - - ^ z /Z ZZfMf ZZPO/- s -s / zszss:-^ , 6 - 30 ZZJ^SS-.f . 1/- ■ s Z ~ Y - // . jcr-3 - ■ JS ^Z ~ - /3 _ - ji = fz . // r ' 6 ~ r . ž/e- - Fig. 3: Measurings in the region of "Ottoker Belveder"; fonts, tabulations and sketch of the measure point situations (SCHMID 1892: part of page 52). 'TcT^irt-e.y' SZ3jf02. -yn^. ~F7r Fig. 4: Sketch of measure points with elevations, Main Entrance of the Postojna Cave; (SCHMID 1892: part of page 81). meters could be determined, as for instance, the height of the Dome of the Cave of Adelsberg in the river level {"vom Poik-Niveau") and on the "Calvaria Plateau". The survey lists also give evidence of the then used notations for the various rooms. When performing the transcription of the protocol it was subsequently paginated to enable the relation of textpassages to pages. Furthermore, the gothic writing was converted to a common printed font and normal writing and headings were converted to a bold font. Table contents were only converted if they had been in gothic writing. Numbers were left unchanged. Tables, drawings were numbered. A "T-" (T=Tabelle) stands for table and a "Z-" (Z=Zeichnung) for the drawings. Below the drawing often the description of polygons can be found as well as two index maps of the triangulation which indicate the cave entrances and drafts of some branches of the grotto. Additional remarks, not in the original text, figure between two slashes (/../). Further amendments of the protocol have not been made. Orthographic idiosyncrasies were left unchanged. The archaic spelling might confuse some readers (for instance "Tor" was then written as "Thor"), but they enables to read or to revert the original text. The original protocol is stored in the Karst and Cave Department of the Museum for Natural History in Vienna. Most probably it formed part of the stock of the Ministry of Agriculture which then had competencies in speleology and it was a entry gift founding the "Speläologisches Institut" in the 1921. It carries the institute stamp "B-33". Later on, after WW-2 the Speleological Institute was re-established and the library reorganized. The stock of Prof. KYRLE was added to the re-numbered Instituts library. Then the number "4001-D" was assigned to the new library hst. According to Andrej KRANJC a sketch of the 1891 survey is stored at the Postojna Institute. Other sketches and drawings of the here presented survey data are not yet ascertained. The big effort made in carrying out the survey, detailed calculations and the makeout of the here presented calculation protocol (sheet) make the official state importance of the Adelsberg Caves clear. Other documents Albert AUSOBSKY, a speleologist of Salzburg, left us a report concerning the discovery of the body of Franz RATHSCHÜLER for transcription. Rathschüler died by an accident in the "Frauenmauerhohle" in Summer 1928. His body was found by the two speleologists Johann GANGL and AUSOBSKY in December 1928. AUSOBSKY's report differs from the official pohce report, the reporting of the news papers and a report by HOFMANN-MONTANUS (1952) covering the same subject. Albert AUSOBSKY is holder of the original document. A copy of the report is stored with the transcription in the archive of the Department of Karst and Caves - Museum of Natural History Vienna for the purpose of further investigations. According to the will of AUSOBSKY the public does not yet have access to the document, likewise the report is not open for publishing. Further reports documenting the development of the Salzburg Caving Club are about to be transcribed by its members, as for instance the narrative minutes of the early discoveries in "Bücher der Expeditionen". Thus the younger members will gain interesting insights into the early works of their colleagues. Transcriptions of biographic documents about Walter CZOERNIG could already be used as interesting source for other works (MAIS 1996). The original documents are part of the archive staff "Material Gustave ABEE', stored at the Department of Karst and Caves of the Museum of Natural History Vienna. Parts of the dairy of Friedrich SIMONY (1813-1896) had been described as they were needed for current research work, e. g. a description of the "Loserhöhle" of 1848; he drew a V^i/Xy. sketch of the longi- tudinal section and of the horizontal projection (Fig. 5). The dairies of SIMONY contain several unpublished speleological obser- Fig. 5: Closing signature: Pribram im Monat August 1892, vations which are Josef SCHMID k.k. Obermarkscheider"; (SCHMID 1892: subject to a future Part of page 102). subscription. The Kg. 6; Map of Loserhöhle in horizontal and vertical projection ("Horizontalprojektion und Vertikaldurchschnitt von S nach N."); F. SIMONY's diary (Nr. 1756) withe the date of 3rd of august 1848, description of Loserhöhle; Original stored in the Department Archive of the Museum of Natural History Vienna. respective documents are stored in the Archive - Department of the Museum of Natural History, copies of parts with speleological content can be found in the archive of the Karst Department in Vienna. The transcription of the archive records of the Institute for Karst Research in Postojna constitutes a major projects. It is still in its beginnings. The documents concerned will reveal interesting details with respect to the "Karst-Comites" as the correspondence of E KRAUS, A. SILBERHUBER, W. PUTICK and others will be examined. Andrej KRANJC presented some of these documents at the ALCADI-94 Symposium in Semriach. Major revealings could not be made. The documents examined so far deal with the field work and frequent financial problems. The examination of these documents will offer a clearer picture of the local research work as it currently available reports do. The original documents are stored in the archive of the Institute for Karst Research in Postojna. Photocopies are kept in the Karst and Cave Department of the Museum in Vienna. The documents will be transcribed and indexed in a data base for easier information retrieval. CONCLUSION The Department of Karst and Caves (Vienna) offers interested colleagues the transcription of gothic writings (kurrent od german script) which are in the context with speleology or the biography of speleologists. These writings can be dairies, tourbooks, letters, post cards, biographical notes, etc. Thus we hope to save documents which otherwise would be lost due to their illegibihty. We suggest to store the original document with its owner and to deliver a copy of the original document and its transcription to the archives of official Karst Research Institutes. This would guarantee a competent source research and a save backup of the documents concerned. Archives in question are the respective institutes of Budapest, Postojna and Vienna. REFERENCES HOFMANN-MONTANUS, H.; PETRITSCH, F. (1952): Die Welt ohne Licht.- Regensburg, J. Habbel, 418 Seiten. MAIS, K. (1995): Zur Person Walter CZOERNIG 1883 bis 1945,- Atlantis (Salzburg) 1995(3/4): 40-49. SCHMID, J. (1892): Berechnung der Adelberger u. Ottoker Grotten - Vermessung. bestehend aus: der Triangulation des Terrains, der Aufnahme der Grotten, dem Nivellement im Terrain u. in den Grotten und der Höhenmessung in den Grotten. Ausgeführt im Jahre 1891.- Handschriftliches Protokoll, Pribram 1892, 102 Seiten; Original in library of the Deparment of Karst and Caves, Museum of Natural History Vienna, Copies with text-trascriptions in the Instituts of Postojna and Budapest. SIMONY, F: Tagebücher.- Sammlung Friedrich SIMONY. Department -Archiv of the Museum of Natural History Vienna. 1.: Title Page of the geodetic survay of Postojna caves in 1891 by J. SCHMID (1892: page 1). SCHMIDOVA GEODETSKA IZMERA POSTOJNSKE JAME LETA 1891 - PRISPEVEK K TRANSKRIPCIJI DOKUMENTOV, PISANIH V GOTICI, POMEMBNIH ZA ZGODOVINO SPELEOLOGIJE Povzetek Dokumenti, pisani v gotici, četudi v nemščini, često povzročajo težave preučevalcem zgodovine speleologije. Nekatere rokopise oziroma črke je težko brati celo v materinem jeziku. Iz leta v leto je manj ljudi, še posebej mladih, ki znajo brati nemščino, pisano v gotici. V zvezi s preučevanjem speleološke dokumentacije sta se Inštitut za raziskovanje krasa (Postojna) in Oddelek za jame in kras dunajskega Naravoslovnega muzeja lotila posebnega projekta. Originalni dokumenti, pisani v nemški gotici, bodo transkribirani v "normalno" pisavo in jih bodo lahko preučevali in uporabljah celo taki, ki bolj slabo obvladajo nemščino. Prvi primer takega dokumenta je zapis geodetske izmere Postojnske jame iz 1891 (Berechnung der Adelsberger u. Ottoker Grotten -Vermessung... ausgeführt im Jahre 1891), ki jo je opravil J. Schmid. To natančno geodetsko poročilo kaže tudi na tedanji pomen Postojnske jame. Original hrani oddelek za jame knjižnice na Dunaju. Trenutno so v transkribiranju, pripravljeni za nova preučevanja, dokumenti iz zasebnih zbirk, kot je npr. rokopisno poročilo A. Ausobskega o odkritju trupla F. Rathschülerja v jami Frauenmauer, dokumenti salzburškega jamarskega društva in dokumenti iz lastnih arhivov (o F. Simonyju, G. Ablu, itd.). Več dela bo potrebnega za transkripcijo pisem in dokumentov F. Krausa, A. Silberhuberja, W. Puticka in drugih, ki so shranjeni v arhivu Inštituta za raziskovanje krasa. To so dokumenti o delu nekdanjega "Kraškega komiteja" na Krasu v ISBOtih in 1890tih letih. Tako so oziroma bodo strokovnjakom za zgodovino speleologije dostopni transkribirani dokumenti, pisani v nemščini in gotici. S tem bo omogočena priprava prispevkov, pomembnih tako za dokumentacijo kot za raziskovanje zgodovine speleologije. ACTA CARSOLOGICA XXVI/2 15 149-157 LJÜBLJANA 1997 ABBILDUNGEN DER VETERANI-HOHLE AUS DEM 17-18. JAHRHUNDERT UPODOBITVE JAME "VETERANI" IZ 17. IN 18. STOLETJA KLÄRA PATAY^ Izvleček IJDJC 94(436-89)"16/17" Klara Patay: Upodobitve jame "Veterani" iz 17. in 18. stoletja Prispevek govori o zemljevidih in drugih upodobitvah jame Pescabara (Veterani) iz 17. in 18. stol. Jama leži na bregu Donave v bližini Železnih vrat. V času "turških vojn" so bile v bližini hude bitke v letih 1692 in 1788 in zato je cesarska vojska jamo utrdila. Danes je jama pod vodno gladino akumulacijskega jezera. Ključne besede: zgodovina speleologije, utrjena jama, Romunija, Pescabara (Veterani). Abstract UDC 94(436-89)"16/17" Klara Patay: Illustrations of Veterani cave from 17th and 18th century The article is treating maps and other illustrations of the cave Pescabara (Veterani) from the 17th and 18. centuries. The cave is in the bank of Danube, near Iron gate. In 1692 and 1788, during the "Turkish wars" there were hot battles nearby and therefore the emperor's army fortified the cave. Today the cave is under the water of the accumulation lake. Key words: history of speleology, fortified cave, Romania, Pescabara (Veterani). Räköczi üt 19, HU - 1088 BUDAPEST HUNGARY Die zwei Kaiser - namentlich der deutsch-römische und der türkische -standen während des 16., 17. und 18. Jahrhunderts wiederholt im Kriege. Im Lauf dieser war eine Höhle sogar zweimal der Schauplatz von heftigen Kämpfen. Das war die Pescabara-Höhle, am linken Ufer der Donau, in der Kazan-Enge, 22 km südwestlich von Orsova. Den erfolglosen Angriff von Wien im Jahre 1683 folgend bemühte sich das kaiserliche Heer durch langjährigen Feldzügen Ungarn, dessen ein drittel unter türkischen Herrschaft stand, zu befreien. Im Laufe dieser hat 1691 der in Siebenbürgen tätig gewesene, aus Venedig gebürtige General Friedrich Veterani die Gegend des Eisernen Tores besetzt. Da die Donau war für den Türken ein wichtiger Nachschubweg für die strategisch besonders bedeutende Festung Belgrad, hat er die Pescabara-Höhle für ein Stromsperre-Fort bestimmt. Deswegen wurde sie später durch die wiener Heeresleitung Veterani-Höhle benannt. Diese Stelle war für eine Stromsperre besonders geeignet, da die Donau war an dieser Stelle nur 19 m breit, so konnten die stromaufwerts fahrende Schiffe den Kanonen leichten Ziel dienen. Abb. 1: Die Gegend der Veterani-Höhle. Anonyme Karte, 1692. Kriegsarchiv, Wien, luv. Nr. H. III. e. 185. Im folgenden Jahr, das heißt 1692 begannen die Türken einen Gegenangriff. General Veterani stellte für die Stromsperre eine Wache von 300 Mann und 5 Kanonen unter der Kommandatur vom Hauptmann D'Arnan auf. Am 29 März belagerten die Türken die Höhle und den darüberliegenden Berg, doch erfolglos. Ebenso vergeblich blieben die Angriffe am 15. und 27. April. Doch am 2. Mai rückten sie mit vielen Schiffen auf. Die ans Land gestzte türkische Infanterie - 2000 Mann - bestiegen den felsigen Berg - womit d'Arnan hat nicht gerechnet - und besetzten ihn. Die Verteidiger zogen in die Höhle zurück. Die Türken blockierten den Eingang der Höhle, gleichzeitig beschossen sie ihn mit Kanonen vom rechten Flußufer. Dadurch angeregt war D'Arnan gezwungen am Abend unter Bedingung von freiem Abzug zu kapitulieren.' Die Veterani-Höhle wurde im Türkenkrieg Josefs II. erwiedert Schauplatz von Kämpfen. Der Kaiser erklärte als Verbündeter der russischen Zarin Katarina am 9. Februar den Krieg. Bis die Hauptarmee bereitete sich unter der persönlichen Kommandatur des Kaisers in Syrmien für die Belagerung von Belgrad, wurde aus den anderen Truppen eine Kordon von der Adria entlang der Sau, der Donau und den Karpaten bis Moldau aufgestellt. Eine Wachsta-, tion dieser bildete die Veterani-Höhle. Sie wurde durch den Major Stein mit einer Division des Brechainville-Regimentes und zwei Compenien des Wallachisch-illyrisches Grenzregimentes soauch mit Kanonen des 2. Artillerieregimentes (ihre Zahl - 11-17 ist abweichend in den Angabenquellen). Diese wurden teilweise in den Redouten (Schanzen) von dem Eingang der Höhle, teilweise in denen entlang der Donau und teilweise auch am Berg über die Höhle aufgestellt. Das türkische Heer, unter dem Großvezir Pascha Jusuf, welches für die Entsetzung von Belgrad aufrücken sollte, verändernd seinen ursprünglichen Plan, überschritt am 7. August bei Orsova die Donau, drückte die kaiserlichen Truppen von dort und aus der einige km weiter hinten liegende Wachtstation Schupaneck (Jupalnic - Rumänien) zurück und am 10. unternahmen sie mit 36 Tschaiken (Schiffe) einen Angriff gegen die Höhle. Das wurde noch zurückgeschlagen. Doch der während der Nacht mit großer Übermacht - 5000 Man -aufrückende Feind eröffnete am nächsten Tag, das heißt am 11. August eine neue Aktion gegen die am Berge sich befindliche Stellungen. An diesen konnten die Verteidiger schon nicht mehr widerstehen. Nach dem Verlust von 400 Männer zog Major Stein mit dem Rest seiner Division in die Höhle zurück. Inzwischen wurden zwei Röhren der auf den Berg aufgestellten Kanonen eingenagelt und von ihren Lafetten abhebend in die Tiefe hinuntergeworfen. Während beinahe drei Wochen lang war die Höhle heldmutig verteidigt, doch wegen an Mangel der Besatzung, auf den dritten angebotenen Accord der Türken, übergab sie unter Bedingung von freiem Abzug Major Stein ihnen. Die Offiziere konnten ihre Seitengewähre und Pistolen behalten. Infolge dessen sind die kaiserliche Truppen entlang der Donau bis Belgrad aus ihre Wachstationen zurückgezogen. Wegen ihre bei der Verteidigung bestätigte Tapferkeit wurde Hauptmann Machowatz aus dem Wallachisch-illyrischen Grenzregiment zu Major, und Artillerie-Leutnant Foitte zu Oberleutnant befördert und auch mit dem Maria-Theresia-Orden ausgezeichnet.^ Die Verteidigung der Höhle fand einnen großen Widerhall im Deutschen Kaisertum; schon im nächsten Jahr wurde in Frankfurt und Leipzig ein Büchlein verlegt mit dem Titel "Die Geschichte der Veteranischen Höhle". Im Zusammenhang mit den beiden Anlässen wurden Karten, Ansichten hergestellt. Von diesen bewahrt die Szechenyi Nationalbibhothek in Budapest 3, das Kriegsarchiv in Wien 20 Exemplare. Ausser diesen kennen wir noch eine Abbildung in dem in Wien im Jahre 1790 erschienenen Atlas "Schauplatz des oesterreichisch-russisch türken Krieges". Unter den in Wien bewahrten Exemplaren steht ein mit den Kämpfen von 1692 in Zusammenhang. Es stellt die Umgebung der Höhle vor, halb ansichtsartig. Die Öffnung der Höhle ist aufgezeichnet, doch noch unter dem Namen Piscabara-Höhle, soauch Schanzen entlang der Donau und vor dem Eingang.^ ./;.- A^av^AA-ZUA"-,.;// Ay( f.r'-w/-..-/ Ay /y.wi-.-., A /''■'■: 'fj.9 /, y /j ■'/„i. -^iit i-f /f.-/', « . // /«' t' Bn-Jum>-M- l It /am.' .i. - 'J i ''.i'-' 'A ,f / / // ' ,mJ JMnri .....l' i«/ 3« //i*-.' Abb. 2: Karte der Umgebung der Donau zwischen Svinita und Turnu Severin und Ansicht der Veterani-Höhle. Blatt 18. eines anonymen Atlases, Wien 1790, Szechenyi Nationalhibliothek, Budapest, Kartensammlung, Inv. Nr. TA 55. Patay Klara: Abbildungen der veterani-höhle aus dem 17-18. Jahrhundert Sämmtliche andere Abbildungen sind mit den Kämpfen von 1788 in Zusammenhang. Eine ist eine Ansicht, die die Umgebung von der Donau aus sehend vorstellt/ An einer anderen befinden sich vier Ansichten, von denen zwei bilden den wegen Verteidigingszwecke vermauerten Eingang ab, doch in zwei verschiedenen Formen.^ Einen Ansicht treffen wir auch an den erwähnten Atlasblatt, neben der Karte von einem längeren Abschnitt der Donau. An weiteren 19 Blättern. finden wir die Karte der näheren Umgebung der Höhle mit den Redouten, Retrenchements (Schanzen) entlang der Donau und am Berg über die Höhle, soauch die Stellungen der kaiserhchen und türkischen Truppen vor und nach der Schlacht vom 11. August.® Von der Höhle selbst - was uns besonders interessiert - finden wir auch Abbildungen, und zwar Grundrisse und Profilschnitte. An zwei Blättern befinden sich diese allein,' an neun anderen (von denen aber drei als Duplikate zu betrachten sind)® dieselben als Nebenabbildungen der Karten. An diesen ist aber die Höhle in drei Variationen abgebildet. In den meisten Fällen' ist der Grundriß in einer elipsoiden Form gezeichnet, in den ein 4 Klafter und 3 Fuß langer, 2 Klafter breiter und 4 ein halb 1,. k. ■k, k ii h !i, K K ' ^ ? t I Is tj «t is l 1» • tl. u. t K ^ K ■ tii I. •• - ''.5: "v t ,.: K i •• ^ II, I. "i ' '«I '' t it_ i H, "-ft " ■ • ... 'V " Abb. 3: Die Umgebung der Veterani-Höhle. Anonyme Karte, nach 1789. Szechenyi Nationalbibliothek, Budapest, Kartensammlung, Inv. Nr. TK 90. Fuß hoher Gang führt. Der innere Raum hat eine Ausdehnung in der Richtung des Eingagnges von 12, darauf senkrecht von 16 Klaftern und 3 Füsse. Rechts vom Eingang ist eingezeichnet der Backofen, an der östlichen Wand der Herd, hinten, in der Mittellinie der Brunnen. An der westlichen Seite finden wir eine vermauerte Höhlung; das Pulver-Magazin. Der Boden der Höhle steigt nach hinten; nach der Beschreibung ist er sehr uneben. Im östlichen Profil ist auch ein Loch bezeichnet, woraus das Licht "in die Höhle fällt.""' An zwei anderen Blättern ähnelt der Grundirß an einen Rechteck mit abgerundeten Ecken. Die Einteilung des Raumes weicht auch vollständig von den obigen ab. Es befindet sich kein Eintrittsgang und an der westlichen Seite auch keine kleine Höhlung. Doch der große Raum wird durch Mauern geteilt. Die Tür des vermauerten Einganges öffnet in den "Vorkeller". Links von diesem, in einem "Zimmer" finden wir den Herd. Zu diesem schließt sich das "Gewölb", das heißt das Proviantenmagazin. Links hinten befindet sich das weite Pulvermagazin, rechts, direkt hinter dem "Vorkeller" ist der Backofen. Im mittleren Raum, entlang der Wände und in der Mitte sind Pritsche für 250 . /m/ M/f/f/.- J"-^(fifvt/Oat ^l'ekrawdm I» / Abb. 4: Grundriß und Profile der Veterani-Höhle. Anonymen Karte, nach 1789. Szechenyi Nationalbibliothek, Budapest, Kartensammlung, Inv. Nn TK 134. Mann eingezeichnet. Übrigens ist die Höhle für die Beherbergung von 500 Mann geeignet. Auch eine Abweichung vom vorigen Grundriß ist, daß der Brunnen hegt nicht in der MitteUinie. Im Profilschnitt ist der Boden in einem Abschnitt steigend (doch hinten senkend) abgebildet. Die Höhe ist nur ein sechstel der Tiefe, was höchstens 3 und ein halb Klafter bedeuten möchte." Es gibt auch eine andere Variante dieses Grundrißes. Sie weicht nur damit vom vorigen ab, daß sie ist weniger Rechteckförmig und ihre größte Tiefe befindet sich nicht an der linken, sondern an der rechten Seite, ihr Boden ist völlig glatt und der Plafon senkt gleichmäßig nach hinten.'^ Es ist nicht bekannt, wann wurden diese Abbildungen gezeichnet; vor oder nach der Schlacht von 1788. Jahreszahl eins ausgenommen'-^ - 1805 - befindet sich an keinem; der Name des Zeichners ist auch nur an manchen zu finden. Da an vielen Exemplaren sind die Stellungen der Truppen aufgezeichnet und vom Ablauf der Kämpfe gibt es auch Beschreibungen, sind - mindestens diese - unbedingt nachträglich verfertigt. Doch die Abbildung des Geländes, soauch die Tatsache, daß zur ersten Variante des Grundrißes und Profile sind auch Maße angegeben, läßt darauf hinweisen, daß das Gelände und die Höhle .'iJitallo/ij i'.'i Jif hg Jtr n/cfuft V-idftlL.^ ) YU/'d/l • ^/t/ '"^^jr^nnry SU- Mrmiumtrt k-ttta^t.. amM »lyw w ^ J^A.. k.mfU -iSmiMU^. sm^^iZk iftixf^fi-iJaaiWj^^iaMi^ft ßn^rf^ mtUmw^i .J^xy«/ o^PienA^unftvuJtH XiuAin.ro M^l fron a^Jtr »»»^vm'y/^n^e^^ ^ COu!.^«;/«. "ffi.uf,/ ) a ,tl . 'K Abb. 5: "Situations Plan von der Gegend bey der Veteranschen-Höhle", Anonyme Karte, nach 1789. Kriegsarchiv, Wien, Inv. Nr. K III. e. 2953-1. wurden noch vor der Belagerung aufgemessen und die Zeichnungen wurden aufgrund dieser hergestellt. Es ist merkwürdig, daß bis die erste Variante bildet die Höhle als von einem einzigen weiten Raum bestehend ab, die zwei anderen schon mit Wänden aufgeteilt. Man könnte vorstellen, daß da die Türken zogen bald vom linken Ufer der Donau zurück, waren diese Abbildungen Pläne für eine neue Ausbildung der Höhle zu ein Fort. Die Ausbreitung des Einganges könnte auch damit in Zusammenhang sein. Vielleicht die Ansichten des vermauerten Einganges''* dienten auch nur als Pläne. Daß diese später verwirlicht wurden -ist uns augenblickhch nicht bekannt. Doch entweder wurden die Abbildungen vor, oder nach der Belagerung hergestellt, gehören sie auf jede weise unter den ältesten Höhlenkarten des Karpatenbeckens; die mit den Kämpfen von 1692 in Zusammenhang stehende ist sogar vielleicht die älteste. Doch ob Wände in Innerem der Höhle wirklich errichtet wurden, können wir heute schon nicht entscheiden. Der Eingang der Höhle war nur mit 2 Klafternhöher als der Wasserspiegel zur Zeit der Aufmessung, so ist sie wegen dem Bau des Staudammes am Eisernen Tor unter Wasser gekommen. ANMERKUNGEN 1. Bänlaky, Jözsef: A magyar nemzet hadtörtenelme. (Kriegsgeschichte der ungarischen Nation.) Band 17. Budapest 193. S. 432. - Kriegs-Chronik Österreich-Ungarns. III/l. S. 146. 2. Bänlaky, Jözsef: op. cit. Band 19. Budapest 193. S. 271. - Crise, Oskar: Kriege unter Kaiser Josef II. Wien 1904. S. 162. - Kriegsarchiv, Wien, Kartensammlung. Inv. Nr. H. III. e. 2947, 2953-1, 2954. 3. Kriegsarchiv... Inv. Nr. H. III. e. 185. 4. Kriegsarchiv... Inv. Nr. H. III. e. 2958. 5. Kriegsarchiv... Inv. Nr. H. III. e. 2957 III. 6. Szechenyi Nationalbibliothek, Budapest, Kartensammlung. Inv. Nr. TK 90, TK 718. - Kriegsarchiv... Inv. Nr. B. IX. a. 687-3, H. III. e. 2946-2956, 2958-1. 7. Szechenyi... Inv. Nr. TK 134. - Kriegsarchiv... Inv. Nr. H. III. e. 2957. 8. Kriegsarchiv... Inv. Nr. H. III. e. 2953-11, 2955-11, 2956-11. 9. Szechenyi... Inv. Nr. TK 134. - Kriegsarchiv... Inv. Nr. H. III. e. 2949, 2950, 2956-I-n, 2957. 10. Szechenyi... Inv. Nr. TK 134. - Kriegsarchiv... Inv. Nr. H. III. e. 2957. 11. Kriegsarchiv... Inv. Nr. H. III. e. 2954, 2958-1. 12. Kriegsarchiv... Inv. Nr. H. III. e. 2948, 2953-I-II. 13. Kriegsarchiv... Inv. Nr. H. III. e. 2947. 14. Kriegsarchiv... Inv. Nr. H. III. e. 2957. f". UPODOBITVE JAME "VETERANI" IZ 17. IN 18. STOLETJA Povzetek Prispevek govori o zemljevidih in drugih upodobitvah jame Peseabara (Veterani) iz 17. in 18. stol. Jama leži na levem bregu Donave v bližini Železnih vrat (Kazan, 22 km jugozahodno od Orsove). V času "turških vojn" 1692, ko so Turki pripravljah protinapad, je general Veterani v jami namestil 300 mož s petimi topovi. Turki so jih oblegali, dokler se niso predah. 1788, je zopet izbruhnila vojna in cesarskim četam je osebno poveljeval cesar Jožef II. Tudi tokrat je bila jama pomembno stražarsko mesto, varovana s tremi oddelki pehote in artilerijskim regimentom in posebej urejena ter utrjena, vključno s posebej obzidanim skladiščem za smodnik. Turki so jamo oblegah z ladjami in veliko premočjo v četah. Cesarski so se tri tedne branili globlje v jami, 400 jih je padlo, nato pa vdali. Zaradi teh dogodkov je jama pogosto označena na takratnih zemljevidih in panoramah (iz Budimpešte so znani 3, z Dunaja pa 20 dokumentov) in prikazana z najrazhčnejših vidikov, vključno z jamskimi načrti. Ker je bila jama prvotno le 2 sežnja nad vodo, je danes pod vodno gladino akumulacijskega jezera. ACTA CARSOLOGICA XXVI/2 16 159-166 LJUBLJANA 1997 DIE ERGEBNISSE DER ARCHÄOLOGISCHEN HÖHLENFORSCHUNGEN IN UNGARN REZULTATI ARHEOLOŠKIH RAZISKAV V JAMAH NA MADŽARSKEM PÄL PATAY^ Izvleček UDK 903.3(439) Pal Patay: Rezultati arheoloških raziskav v jamah na Madžarskem Na Madžarskem so pričeli z ariieološkimi izkopavanji v jamah v 70-tih letiti prejšnjega stoletja. Pozitivni rezultati izkopavanj O. Kadiča 1906 v jami Szeleta, so bili vzpodbuda nadaljnjim izkopavanjem, ki niso bila prekinjena niti med I. Svetovno vojno. Najdbam iz mlajšega paleolitika so sledila odkritja neolitika, bakrene in mlajše bronaste dobe. Zelo pomembne so bile raziskave 1932 v jami Subalyuk, kjer so poleg srednjepaleo-litskih artefaktov naleteli tudi na kosti neandertalskega človeka. Naloga sedanjih raziskav je odkrivati in raziskovati nove jame ter na novo ovrednotiti starejše najdbe. Ključne besede: arheologija, speleologija, jamske najdbe, paleoHt, neoht, Madžarska. Abstract UDC 903.3(439) Pal Patay: The results of archaeological investigation in the caves of Hungary Archaeological investigations of Hungarian caves began in the seventieth years of the last century. O. Kadic's success in the cave of Szeleta from 1906 was the impulse to continue the investigations which did not stop even between the 1st World War. The remains of the younger Palaeolithic were followed by those of NeoUthic, Copper Age and younger Bronze Age. The investigations of the cave Subalyuk in 1932 were specialy important, because besides the artifacts from the middle Paleolithic also the bones of the Neanderthal man were found. The tasks of recent investigations is to find and to explore new caves and to evaluated anew the older findings. Key words: archaeology, speleology, cave findings, Palaeohthic, Neolithic, Hungary. Rakoczi ut 19, HU - 1088 BUDAPEST HUNGARY Die archäologische Höhlenforschungen kamen in Ungarn als Folge den erfolgreichen westeuropäischen in den 70-er Jahren des vorigen Jahrhunderts in Gang. Die ersten Ausgrabungen fanden in den verschiedenen Teilen das dameligen Ungarns statt. Unter ihnen zählen auch diejenige von Zsöfia Torma, über denen wir, gemeinsam mit Kinga Szekely an der Tagung ALCADI '92 in Budapest ein Referat gaben.' Diese Forschungen befanden sich aber im Areal der heutigen Slowakei und Siebenbürgen und nur eine einzige in dem von heutigen Ungarn, namenthch in der Baradla-Höhle von Aggtelek. Hier führte Baron Jenö Nyäry am 24-26 August 1876, mit 60 Arbeitern eine Ausgrabung. Im Laufe dieser wurden auch 27 Skelette aufgedeckt. Über dieser Forschung gab er schon 16 Tage später, am VIII. Internationalen Anthropologischen und Archäologischen Kongress in Budapest einen Bericht.^ Die Ausgrabung setzte er noch zweimal fort und 1881 gab er die Ergebnisse in einer Monographie bekannt.' Es ist anerkennungswürdig, daß er heß die Funde durch in der Anthropologie, Zoologie und Botanik hervorragende Fachleute untersuchen, doch infolge seiner genaue Beobachtungen und Angaben entbehrenden Bes hreibungen hat seine Arbeit heutzutag nur noch einen forschungsgeschichthchen Wert. Da weder in Aggtelek, noch in anderen Höhlen wurden paläolothische Funde gefunden, bzw. wo - wie es sich nachträglich herausstellte - solche vorkamen (wie z. B. in der Großen Höhle von Öruzsin - Ružin, Slowakei), erkannten die zeitgenossische Geologen den pleistocänen Alter der die Funde liefernden Schicht nicht, sogar sie verneinten während langer Zeit, daß in Ungarn der Nachlaß des diluvialen Menschen zu finden wäre. So - man kann sagen - höhrten die archäologischen Höhlenforschungen auf. Diese Untätigkeit dauerte bis dan Anfang von unserem Jahrhundert. Es ist merkwürdig, daß ein Freilandsfund gab den Impuls zur Neubeginnung der Höhlenforschungen. Zwei in Miskolc, am Fuß des Bükk-Gebirges gefundene Steinartefakte wurden durch unseren letzten Pohhistor, Otto Herman als diluvial-altrig anerkannt. Mit unverbrüchlicher Ausdauer erreichte er, daß fachmäßige Forschungen wurden in den Höhlen des Bükk-Gebirges begonnen. Die Durch Ottokär Kadic 1907 durchgeführte Ausgrabung in der Szeleta-Höhle führte zu unerwarteten positiven Erfolg. Infolge diesem setzten sich die Arbeiten unter seiner Leitung, später auch unter dieser von Jenö Hillebrand jährlich fort, zu denen sich aber auch andere Forscher, z. B. Tivadar Kormos anschalteten. Sogar der erste Weltkrieg machte diesen Forschungen kein Ende. Das war die Blütezeit der ungarischen archäologischen Höhlenforschung. Aufgrund der in der Szeleta-Höhle erreichten Ergebnisse dehnten sich die Forschungan überwiegend nur auf die Höhlen des Bükkgebirges aus. In beinahe sämtlichen größeren, oder leicht erreichbaren Höhlen, wie die Balla-, Iställöskö-, Peskö-, Büdöspest-Höhle usw. fanden Ausgrabungen statt. Doch nach einigen Jahren wurden solche auch in den Bergen am Donauknie (z. B. Kiskevely-, Jankovich-Höhle, Felsnische von PiHsszäntö) durchgeführt. Obwohl zahlreiche höhlenführende Gebirge befandesn sich im vorkriegszeitlichen Ungarn, die in der heutigen Slowakei und in Siebengürgen hegenden waren durch den Forschern nur hie und da aufgesucht. Über die Ergebnisse der Ausgrabungen gaben die Forscher ständig Berichte. Bei der Auswertung der Funde nahmen sie die Resultete der französischen Forschung an und verwendeten auch die Terminologie dieser für die heimischen Funde. Aufgrund dieser meinten sie den Nachlaß des Solutreens, Aurigna-ciens und Magdaleniens zu erkennen. Doch sie stellten schon fest, daß im Bükk-Gebirge wurde das Hochsolutreen durch ein eigenartiges Frotosolutreen vorangegangen. Im Laufe dieser Forschungen kamen auch Funde aus Holocän-Schichten zum Forschein - im Bükk-Gebirge besonders neohthische - doch im Schatten der Paläolithen legte man weniger Gewicht auf sie. Wegen der schweren wirtschaftlichen Lage des Landes nach dem ersten Weltkrieg setzten sich die archäologischer. Höhlenforschungen nur in der Mitte der zwanziger Jahren fort. Kadic und Hillebrand suchten vorwiegend die schon bekannten Höhlen mehrmals auf. Zu diesen Arbeiten schaltete sich auch Andor Saäd, Arzt in Miskolc, zu. Unter den neu begonnenen Ausgrabungen war diese der Subalyuk-Höhle im Jahre 1932 von großer Bedeutung. Hier kamen zum ersten Mal ohne Zweifel zum Mousterien gehörige Funde zum Vorschein. Ja sogar Knochenreste einer erwachsenen Frau und eines etwa dreijährigen Kindes des Homo Neanderta-liensis kamen aus der oberen Schicht des Mousteriens ans Tageshcht." Größere Arbeit fand auch 1934-37 unter der Leitung von Istvän Gaäl in der Szelim-Höhle statt. Doch nehen diesen besuchten Ottokär Kadic und Maria Mottl im Laufe der dreiziger Jahren mit großer Intensität zahlreiche Höhlen, die aber keine besondere Ergebnisse leisteten. In den dreiziger Jahren sahen die laitende Forscher - Kadic und Hillebrand - die Zeit ankommend um die Ergebnisse der Forschungen monographisch zusammen zu fassen.^ Doch ihre chronologische und kulturelle Festlegungen deckten sich nicht in jeden Fällen. Hillebrand hat schon z. B. bemerkt, daß die Entwicklung des heimischen Solutreens ist unabhängig von dem französischen. Unseres "Frotosolutreen" geht dem echten französischen Solutreen voran, ist sogar mit dem Aurignacien gleichzeitig. Er hat auch erkannt, daß unseres, bis an der Zeit ins Magdalenien eingereihte Funde sind auch nicht völhg glech mit dem französischen. Nach dem zweiten Weltkrieg übernahm eine neue Forschergarde - vor allem Läszlö Vertes, dann Miklös Gäbori, bzw. Vera Gäbori-Csänk, in den letzten Jahrzehnten Viola Dobosi - mit großen Fleiß und Begeisterung die Aufgaben der Paläohthforschung, soauch natürlich auch der Höhlenforschung. In zahlreichen, früher noch nicht erforschten Höhlen wurden durch ihnen Ausgrabungen durchgeführt, doch in manchen Fällen suchten sie auch einige, durch die Fachhteratur schon wohlbekannte auf. Von diesen sind die Grabungen der Lambrecht-, Hillebrand-, Iställöskö-Höhlen und der in der Gemarkung der Stadt Budapest sich befindliche Obere-Remete- (Eremiten-) Höhle die bedeutendsten. Die Funde der Lambrecht-Höhle kann man auf faunistischem Grund in die zweite Helfte des Riss-Würm Interglacials, nach ihrem Charakter in ein kiesbearbeitendes frühes Mittelpeläolithikum einreihen.'' An den Wänden der Hillebrand-Höhle, dessen Öffnung war seit dem Neolithikum verstopft, waren Kratzer zu beobachten. Doch nach den vergleichenden Untersuchungen von Läszlö Vertes waren es nicht Spuren der Höhlenbären, sondern von Menschen.' In der Iställöskö-Höhle deckte Läszlö Vertes eine, bei den vorigen Forschungen noch nicht bekannt gewordene, reiche Knochenwaffen und Geräte liefernde Schicht des Aurignaciens auf.® In der Oberen-Remete-Höhle fand Vera Gäbori-Csänk in einer, vor dem Höhepunkt der Würm I. Glacialperiode stammende Schicht drei Zähne, und zwar den Ij, I^ und C von dem rechten Unterkiefer eines Homo Neandertaliensis.' Die neue Forschergarde - vor allem Läszlö Vertes - legte die Forschung auf neue Gründe, indem er - neben den typologischen, faunistichen und floristischen Angaben - auch die Ergebnisse verschiedener physikalischer und chemischer Sedimentuntersuchungen der, die Höhle ausfüllenden Schichten, soauch matematisch-statistischer Rechnungen mit Erfolg anwendte. Er hat auch die Ergebnisse der ersten zwanzig Nachkriegsjahren - drei Jahre vor seinem Tod, d. h. 1965 - in einer handbuchartigen Arbeit zusammengefaßt.'" Hier hat er auch die naturwissenschaftlichen und archäologischen Angaben der einzelnen Höhlen ausführlich und systematisch aufgezählt. Einige zusammenfassende Berichte wurden auch durch Miklös Gäbori hergestellt." In den letzten Jahrzehnten ist die Tätigkeit der Höhlenforscher-Archäologen ziemhch beschränkt geworden, da es gibt schon kaum Höhlen, in denen keine Ausgrabung durchgeführt wurde. So man kann aus den Höhlen keine neue bedeutende Ergebnisse erwarten. Deswegen befassen sich die Forscher einerseits mit der Revision und Neuauswertung der Ergebnisse der alten Ausgrabungen, andererseits legten sie den Schwerpunkt der Paläolithforschung auf die Freiland-Fundstellen über. Aufgrund der Ergebnisse der Freiland- und der Höhlenforschungen haben unsere Forscher erkannt, daß das Paläolithikum des Karpatenbeckens ist nicht gleich mit dem französischen. Hier kann das Schema folgend zusammengefasst sein: Unter den Höhlenfunden ist die älteste eine kiesbearbeitende frühmittel-paläolithische Kultur; sie ist am charakteristischesten in der Lambrecht-Höhle representiert. Das Mousterien kennen wir schon aus mohreren Fundstellen. Sein charakteristischer Fundort ist die Subalyuk-Höhle, mit ihre zwei, sich schart trennende Schichten, derem Material - zumindest laut Zsolt Mester - zeigt keine genetische Beziehungen zwischen ihnen.Übrigens das Monsterien der Höhlen des Bükk-Gebirges und das Mittelpaläohthikum der Fundstellen von Westungarn weicht teilweise von einander ab. Der Unterschied der zwei Regionen erscheint auch während dem oberen Paläolithikum. An der estlichen Seite des Bükk-Gebirges (z. B. Szeleta-Höhle) ist sein erster Abschnitt das Szeletien, dessen ältere Phase (früher Protosolu-treen benannt) weist mousteroide Züge auf. Deswegen betrachten es manche Forscher noch zum Mittelpaläohthikum gehörig. Es wurde aber erkannt, daß zu selber Zeit lebten in den westhch hegenden Höheen des selben Gebirges (z. B. Iställöskö-Höhle) Leute des Aurignacien, die aber genetisch und kulturel waren überhaupt nicht mit den Szeletien-Menschen in Beziehung. Die Funde der Donauknie-Berge (z. B. Jankovich-Höhle) die ebenso Bifazial-Spitzen aufweisen, sind doch nicht identisch mit dem Szeletien; sie werden mit den Namen Jankovichien benannt. Durch den Neuauswertungen wurde auch bekannt, daß die früher als Magdalenien bezeichnete Funde (z. B. Kiskevely-Höhle) stellen eigentlich eine Variante des Gravettiens dar. Es war aber auch zu beobachten, daß dieses Gravettien lebte bis in die Postglacial-Periode (z. B. Felsnische von Pilisszäntö). Diese wurde durch Läszlö Vertes Pilisszäntoien ermannt. Das Mezohthikum ist in unseren Land besonders ärmhch. Aus Höhlen kam vielleicht nur in der Remete-Höhle eine einzige Obsidian-Klinge zum Vorschein, die nach stratigraphischen Angaben hierher zu reihen ist. Die Holocän-Ablagerungen der Höhlen lieferten auch in größerer Menge archäologische Funde. Sogar man kann sagen, daß sie durch den Menschen bis den Mittelalter stetig aufgesucht wurden; doch nicht mit gleicher Intensität in jedem Zeitalter. Die Aggteleker Höhle, zu der die Archäologen beinahe in jedem Jahrzehnt zurückkehrten, soauch die Höhlen des Bükk-Gebirges sind reich an neolithischen Funden. Aufgrund dieser gab Ferenc Tompa, der, für diese Gegend charakteristische jungsteinzeithche Kultur den Namen Bükkar-Kultur. Übrigens deckte er in Aggtelek einen Opferplatz dieser Kultur auf.'' Ein ähnhches Objekt beobachtete man auch in der Hillebrand-Höhle.''* Doch in diesen beiden Höhlen waren auch im Boden zahlreiche Pfostenlöcher eingetieft, aus denen die Forscher - so Sändor Gallus, wie Jözsef Korek - darauf folgerten, daß die neolithische Bewohner haben sich gegen das abtropfende Wasser durch Errichten von Hütten geschützt.'^ Währen der Hochkupferzeit waren besonders die Höhlen im Donauknie durch das Volk der Ludanice-Kultur bewohnt. Ein mittelbronzezeitlicher Gold-, Bronze- und Bernstein-Schmucksachen, bronzenen Beil und Rohmaterial enthältender Varwahrfund kam in der Obe-ren-Remete-Höhle zum Vorschein.'® Die Höhlen des Bükk-Gebirges, soauch diejanige von Aggtelek sind auch reich an Funden der spätbronzezeitHchen Kyjatice-Kultur. In der letzteren fand Ferenc Tompa 1927 einen aus bronzenen Waffen und Schmucksachen zusam- mengestellten Verwahrfund, ja sogar einen anderen aus goldenen Ringe und Drähte von einem Gesamtgewicht von 140,83 Gramm." Er deckte auch ein gleichzeitiges Skelett auf. Aufgrund dessen ist es glaubhaft, daß die durch Jenö Nyäry ausgegrabene Skelette stammen auch aus der Spätbronzezeit. Merkwürdigerweise fahlen völkerwanderungszeitliche Funde in den Höhlen. Dementgegen hochmittelalterliche sind schon - doch nicht zahlreich - zu finden. Doch in der Szelim-Höhle deckte Istvän Gaäl 102 Skelette auf, die -aufgrund einer Münze und Schmucksachen - aus dem 11-13. Jahrhundert stannen.'® Als Sonderbares erwähnen wir, daß Laut den Funden wurde in 15. Jahrhundert in der Legeny- (Burschen-) Höhle im Donauknie-Gebirge Falschmünzerei geübt.'' Leider es befinden sich in Ungarn relativ wenige Höhlen. Infolge der intensiven Forschungen kann die Zahl der noch umbekannten Höhlen gering sein. Unter den bekannten gibt es vielleicht keine einzige in der keine archäologische Aufschließung durchgeführt wurde. Ja sogar ein Großteil dieser ist schon beinahe fast erschöpft. So gibt es eigentlich für die zukünftige Forschung im Gelände - ausgenommen von Neuentdeckungen in glücklichen Fällen noch intakter Höhlen - nur eingeschränkte Möglichkeiten. ANMERKUNGEN 1 Fatay, Päl - Szekely, Kinga: Zsöfia Torma, The first woman - scientist in hungaryan Speleology. In: Karst es barlang - Karst and Cave. Special issue. 1992. S. 93-94. 2 Nyäry, Eugene: Les hommes de Tage de la pierre dans la caverne d'Aggte- lek, Comte de Gömör. In: Congres International d'Anthropologie et d'Archeologie Prehistoriques. Compte rendue de la Seme session a Budapest. Budapest, 1877. S. 626-634. 3 Nyäry, Jenö: Az aggteleki barlang mint öskori temetö. (Die Höhle von Aggtelek als urzeitliches Gräberfeld.) Budapest, 1881. 179 Pag., 5 Taf. 4 Kadic, Ottokär: A Mussolini barlang äsatäsänak eredmenyei. (Die Ergebnisse der Ausgrabung der Mussolini Höhle.) Budapest, 1940. 40 Pag., 4 Taf. 5 Kadic, Ottokär: A jegkor embere Magyaro szägon. - Der Mensch zur Eiszeit in Ungarn. A magyar kirälyi Földtani Intezet Evkönyve. (Jahrbuch des ungarischen königlichen Geologischen Instituts.) 30, 1930. 24 -l- 147 Pag., 4 Taf. 6 Vertes, Läszlö: Az also paleolitikum emberenek elsö biztos emberi leletei Magyarorszägon. (Die ersten sichere Funde des Menschen des Unteren Paleolithikums in Ungarn.) In: Archaeologiai Ertesitö. 80, 1953. S. 17-26. 7 Vertes, Läszlö: Die Wandgravierungen in der Hillebrand-Jenö-Höhle. In: Foha Archaeologica. 12, 1960. S. 3-11. 8 Vertes, Läszlö: Neuere Ausgrabungen und paleolithische Funde in der Höhle von Iställöskö. In: Acta Archaeologica Academiae Scientiarum Hungari-cae. 5, 1955. S. 111-131. 9 Gäborine-Csänk, Vera: A Remete Felsö-barlang es a "Dunäntuli Szeletien". - Die Remete Obere Höhle und das transdanubische Szeletien. In: Budapest regisegei. 26, 1984. S. 13. 10 Vertes, Läszlö: Az öskor es az ätemeneti kökor emlekei Magyarorszägon. A magyar regeszet Kezikönyve. I. (Die Denkmäler der Altsteinzeit und mittleren Steinzeit in Ungarn. Handbuch der ungarischen Archäologie. I.) Budapest, 1965, 385 Pag. 11 Gäbori, Miklös: 25 Jahre Paleohthforschung in Ungarn. In: Acta Archaeo- logica Academiae Scientiarum Hungaricae. 22, 1970. S. 351-364. 12 Mester, Zsolt: A Subalyuk-barland közepsö paleolitikus iparänak ujraertekelese. - La reevaluation des industries du Paleolithiques de la grotte Subalyuk. In: Folia Archaeologica. 40, 1989, S. 29. 13 Tompa, Ferenc: 25 Jahre Urgeschichtsforschung in Ungarn. In: 24/25 Bericht der Römisch-Germanischen Kommission. 1934-35 (1937). S. 37., Abb. 1-2. 14 Korek, Jözsef: A bükki kuktura települese a Hillebrand barlangban. - Settlement of the Bükk Culture in the Hillebrand Cave. In: Foha Archaeologica. 1:, 1958. S. 18. 15 Banner, Jänos: Az ujabbkökori laköhäzkutatäs mai älläsa Magyarorszägon. - L'etat actuel de la recherche des habitations neolithiques en Hongrie. In: Archaeologiai Ertesitö 1943. S. 10, 21., Abb. 7. - Korek, Jözsef: a. a. O. S. 17-28. 16 Gäborine-Csänk, Vera: a. a. O. S. 8. 17 Tompa, Ferenc: a. a. O. S. 106-107., Taf. 51. - Ders. Adatok az öskori Aranykereskedelemhez. - Beiträge zur Kenntnis des urzeithchen Goldhandels,/ In: Archaeologiai Ertesitö. 50, 1937. S. 53, 204. 18 Gaäl, Istvän: Mi a valösäg a Szelim-barlang mondäjäban? - (Was ist die Wahrheit in der Sage der Szelim-Höhle?) In: Termeszet 1937. S. 86. 19 Horväth, Istvän: Pilisszentlelek-Legenybarlang. In: Az 1968 ev regeszeti Kutatäsai. (Archäologische Forschungen des Jahres 1968.) Regeszeti Füzetek. 22, 1969. S. 18. Ergäzung zu Anm. 5 Hillebrand, Jenö: Magyarorszäg öskökora. - Die ältere Steinzeit Ungarns. Archaeologia Hungarica 17. Budapest, 1935. 41 Pag., 7 Taf. REZULTATI ARHEOLOŠKIH RAZISKAV V JAMAH NA MADŽARSKEM Povzetek Sledeč zgledu raziskav po Zahodni Evropi, so na Madžarskem pričeli izkopavati v jamah v 70-tih letih prejšnjega stoletja. Dolgoročni cilj in želja strokovnjakov, ki so se lotili teh raziskav, je bil dokazati, da je pleistocenski človek živel tudi v karpatskem bazenu. Pozitivni rezultati izkopavanj O. Kadiča 1906 v jami Szeleta, so bili močna vzpodbuda nadaljnjim izkopavanjem, ki niso bila prekinjena niti med I. Svetovno vojno. Najdbam izmlajšega paleolitika so sledila odkritja neolitika, bakrene in mlajše bronaste dobe. Zelo pomembne so bile raziskave 1932 v jami Subalyuk, kjer so poleg srednjepaleolitskih artefaktov naleteli tudi na kosti neandertalskega človeka. Ker so bila v najpomembnejših madžarskih jamah izkopavanja opravljena že pred II. Svetovno vojno, je naloga zadnjih desetletij po eni strani odkrivati in raziskovati nove jame, po drugi strani pa na novo ovrednotiti starejše najdbe. Jamske raztiskave naj bi tudi osvetlile bivalno okolje neolitskega človeka. ACTA CARSOLOGICA XXVI/2 17 167-173 LJUBLJANA 1997 A.c. MORLOT, A GEOLOGIST AND A LESS KNOWN RESEARCHER OF KARST PHENOMENA GEOLOG A.C. MORLOT, MANJ POZNANI RAZISKOVALEC KRAŠKIH POJAVOV RAJKO PAVLOVEC^ Izvleček UDK 551.44:929 Morlot A.C. Rajko Pavlovec: Geolog A.C. Morlot, manj poznani raziskovalec kraških pojavov A. C. Morlot (1820 - 1867) je raziskoval Istro in sosednje Zunanje Dinaride. V svojih delih omenja tudi kraške pojave. Skušal je pojasniti njihov nastanek, vendar njegove razlage niso vedno pravilne. Vseeno pa lahko štejemo Morlota za zanimivega raziskovalca krasa, še posebej, če upoštevamo, da je pisal sredi 19. stol. Ključne besede: geologija, krasoslovje, zgodovina krasoslovja, Slovenija, Kras, Morlot A. C. Abstract UDC 551.44:929 Morlot A.C. Rajko Pavlovec: A.C. Morlot, a geologist and a less known researcher of karst phenomena A. C. Morlot (1820 - 1867) was researching Istria and the neighbouring parts of the External Dinarids in adition to other areas. Besides other geological data he also mentioned karst phenomena in his publications. He tried to establish the origin of various forms, but his explanations were not always correct. However, Morlot can be regarded as an interesting researcher of Karst, especially bearing in mind that he wrote in the middle of the 19th century. Key words: geology, karstology, history of karstology, Slovenia, Kras, Morlot A. C. ' University of Ljubljana, Geology department at the Faculty of Natural Sciences and Technic, Aškerčeva 12, SI - 1000 LJUBLJANA, SLOVENIA Adolphe Charles Morlot was born on 22"'' March, 1820 in Napoli and died on 10"' February, 1867 in Lausanne at the age of only 47. Taking a look at both years we can see that in the year 1995, 175 years have passed since his birth and, in the year 1997, 130 years will have passed since his death. Morlot studied mathematic and and geology in Paris, Freiberg and Bern. In the year 1846 he joined the researching activities of our countries. At that time (1843) "Der geognostisch-montanistische Verein für Innerösterreich, das Land ob der Enns und das Königreich Ilyrien" was founded. Morlot was a busy researcher, especially at fieldwork. This was as well pointed out in the year 1867 by Dr. Franz Hauer, the manager of the geological institute in Vienna. According to his words Morlot was working at the field during the summer, and in the winter he was handling the material; he was hard-working and full of energy. Morlot's field of research was very wide. He was interested in petrology and ore deposits, and he observed Pleistocene sediments. In the field of regional geology he took part in the geological mapping of East Alps, Styria and Illyria. ABOUT THE KARST In 1848 Morlot published his most important work regarding the External Dinarids (1848-a). In the same work he mentioned karst phenomena. In a special publication from the year 1848 Morlot describes the Lobodnica cave (Trebichgrotte; 1848-b). Morlot characterizes the Karst landscape as a hmesto-ne region with waste, stony and eroded ground. It would be quite interesting to establish whether Morlot himself created the incorrect explanation of the word karst. He thus presumed that the word derived from the Slovenian word "hrast" (Quercus), meaning oak. He wrote that the country was once overgrown with oaks, but there was only a treeless surface in his days. The word karst in fact derives from the word "carra", which means stone (Gams 1974). Besides, Morlot describes stalactites, whereby all kinds of stalactites and stalagmites are meant. According to his opinion the stalactites in the so called "great caves" appeared in the "younger period" and are growing very slowly at present. According to his deductions the majority of karst phenomena appeared in the Pleistocene, which does not coincide with present opinion. Although Morlot made a vivid description of karst phenomena it was not he who found that limestone country was full of caves. He stated that limestone countries were so porous that no drop of water could stay there. According to his opinion such a country was similar to a great porous sponge. Morlot mentioned various caves, as for example the caves of Skocjan (Škocjanske jame), Lobodnica (Trebichgrotte), the caves in the neighbourhood of Opcine (Opicina) and Bazovica (Basovizza) near Trieste, the Postojna cave, the Cerknica polje (Cerkniško polje) and others. Morlot spent quite a lot of time on some of them. He seemed to be fascinated by the research activities in Fig. 1: "Tafel III" of Morlot's work "Über die geologischen Verhältnisse von Istrien mit Berücksichtigung Dalmatiens und der angrenzender Gegenden Croatiens, Un-terkrains und des Görzer Kreises" (1848) showing Trebich Grotte (Labodnica). Lobodnica (Morlot 1848-a, b) which was carefully measured by Sforzi, an engineer from Trieste. The cave was discovered in the year 1840, which is the almost the time when Morlot was researching these places. At that time they were searching for water to supply Trieste. As water rose at some places during the rainy weather and there was a strong current of air flowing through the cracks, they expected to find water in the underground. Morlot was thinking about karst caves. He observed some of the approximately horizontal ones, that divide and are irregularly shaped. As an example Morlot mentioned the Postojna cave. He knew the Pivka river that vanished into the cave and appears after one hour as Unica in The Planina cave. He was also famihar with the Reka river that disappears into the caves of Skocjan and reappears at Devin (Duino). He explained that the impermeable flysch layers prevent the Reka river from flowing faster into the sea. As far as the horizontal caves are concerned, Morlot states that they are easy to research and therefore most frequently visited. Hence, we could conclude, that most caves in Karst are of that type. However, according to Morlot one can easily find out how the majority of caves extend into depth. He gives some examples with their depths. Most probably Morlot did not visit all the caves, for many times he states that he got the data "by oral tradition". Morlot's consideration about inclined or vertical caves, respectively, which should in most cases extend into sack-formed tubes, is very interesting. He belived that mechanical action without chemical processes could not form the caves. According to his explanations the caves are supposed to appear in a similar way as "iron ore deposits" in karst regions, where "acid mineral waters" were present. Morlot has correctly explained the origin of karst sinkholes, which he named "die Dollinen". He belived that they had appeared due to the subsiding of the roof in the caves. TERRA ROSSA AND BAUXITE Morlot speaks about iron oxide that makes the surface red. Therefore he knows the red Istria (Istria rossa) very well and states that the colour depends on the fundamental rocks, because they can always be found on limestone and never on flysch. Consequently he named flysch "Tasello". Morlot compares the appearance of the red weathered soil with the appearance of brown iron oxide (that can be found in form of small grains in clay) and sediments in karst caves, where there is also a clay with brown iron ore. In the vicinity of Karojba in central Istria, Morlot found such formations at the edge of funnel-shaped holes which resemble caves that collapsed. According to Morlot's opinion they were once most probably filled with iron oxide. Bauxite deposits can in fact be found in the karst caves and gulfs near Karojba (Pavlovec 1995). Already in Morlot's time many people were wondering %ow the enormous quantities of terra rossa in Dalmatia and Istria appeared. Morlot was obviously amazed at that, otherwise he would not have written this remark. Sometimes Morlot most probably equated terra rossa or even bauxite with brown iron ore, but his explanation of its origin was not correct. To infer from his treatise, he obviously set his heart upon the explanation of Gressly's, describing similar phenomena in the Jura mountains. Supposedly the rising of mountains created cracks, which mineral waters enlarged into caves. The waters also brought clay and iron solutions. LOWER AND UPPER KARST LIMESTONE (KARSTKALK) Morlot introduced the term of lower or older karst limestone where the fossils can very rarely be found. It is light in colour, in most cases white, layered, not bituminous, and sometimes it sounds like glass or metal. On the other hand, Morlot describes fossils in that limestone. It was extracted in Roman quarries near Pula. There were many rudists in it that can also easily be found elsewhere. However, Morlot states that the limestones with the fossils differ from that without them. Most probably he classified the Cretaceous rudist limestones and Cretaceous limestones without rudists among the older karst limestones. There is coal in these beds near Lipica, at Vreme and in other parts. Morlot describes the older karst limestone as being corroded and bare. He did not know its thickness. Yet he stated that the entire Lobodnica cave (Trebichgrotte) is situated within this limestone with a thickness of 300 m. Morlot called the upper karst limestone also the nummuhte limestone. He states that the nummulite formation is spread from the Atlantic Ocean over the Pyrenees, the Alps, Turkey, Asia Minor, and Iran to the Himalayas. The rock forms thick beds, which are mostly compact, light limestone. When struck it smells like bitumen, falls into sharp pieces and very often it "sounds". Its surface is eroded and bare. In addition to alveolinids and coal, Morlot mentions nummulites as a special characteristic of this limestone. This way we can conclude that Morlot joined all the Paleogene limestones, that is Kozina, miliolids and alveolina-nummuhtes limestones under the term upper karst limestone. FOSSILS IN THE CAVES Morlot did not miss out some of the fossil finds in the caves or karst shafts. He mentioned bone breccias from Roman quarries south from Pula, as well as from some other deposits. It is not quite clear whether Morlot had in mind bone breccias in fact, or whether he was thinking of some other deposits of Pleistocene mammals. He knew some bone breccias from Dalmatia, where they can be found in the cracks or open caves. The cement is red, and the bones are broken into small pieces. Morlot states that there are mostly cervids with terrestrial and freshwater snails among the fossil finds. There are no marine fossils. Morlot based his statement on the fact that bone breccias have appeared in karst caves. The almost forgotten data about The Pleistocene mammals from The Postojna cave are very interesting. In the year 1821 (J. Volpi) the finding of Ursus spelaeus was described and illustrated with good pictures. He then classified it to the Palaeotherium genus, but Morlot referred to it as Ursus spelaeus. As the cave bear was found among pieces of stalactites, Morlot inferred that the animal had fallen into the cave and had not been washed in. CONCLUSION Adolphe Charles Morlot was not an expressive researcher of karst. However, as a through and meticulous describer of geological and other phenomena, he met karst caves and other karst phenomena. He tried to explain them as much as possible — consistently with the opinions of the middle of the last century. Although Morlot did not make a great contribution to the field of karstology and speleology, he was one of the most interesting researchers during the time of the first serious attempts to get to know karst phenomena in our country. REFERENCES Gams, I., 1974: Kras.—Slovenska matica, 1-360, Ljubljana. Hauer, F., 1867: Sitzung am 5. März 1867.—Verh. geol. RA, 4, 69-71, Wien. Morlot, A. Ch., 1848-a: Über die geologischen Verhältnisse von Istrien mit Berücksichtigung Dalmatiens und der angrenzender Gegenden Croatiens, Unterkrains und des Görzer Kreises.—Naturwiss. Abh., 2/2, 257-321, Wien. Morlot, A. Gh., 1848-b: Trebich Grotte bei Triest.—Berichte Haidinger, 3, 380, Wien. Pavlovec, R., 1977: Adolphe Charles Morlot in naš kras (Adolphe Charles Morlot und unser Karst).—Naše jame, 18, 63-70, Ljubljana. Pavlovec, R., 1995: Karst phenomena and the origin of bauxite.—Acta carsol., 24, 447-453, Ljubljana. [Volpi, J.], 1821: Über ein bei Adelsberg neuentdecktes Paläotherium.—Triest, 31 p. GEOLOG A.C. MORLOT, MANJ POZNANI RAZISKOVALEC KRAŠKIH POJAVOV Povzetek Adolphe Charles Morlot (Napoh 1820 — Lausanne 1867) je predvsem poznan po raznih področjih geologije, med drugim pleistocena, sedimentologije, petrologije, rudnih ležišč, regionalne geologije, manj na področju krasa. Raziskoval je tudi v Dinaridih, kjer ni šel mimo kraških pojavov. Izvor besede kras si je Morlot napačno razlagal, češ da pride od hrasta, s katerim je bila poraščena ta pokrajina. Za kapnike je bil prepričan, da jih je večina pa tudi večina drugih kraških pojavov nastala v pleistocenu, danes jih nastaja malo. Morlot omenja vrsto kraških pojavov pri nas, med drugim Postojnsko jamo. Škocjanske jame, Lobodnico, jame v okoHci Trsta, Cerkniško jezero in druge. Morlot govori o horizontalnih jamah, vendar pravi, da so poševne oziroma vertikalne pogostejše. Sklepa tudi na to, da niso nastajale samo na mehanski, ampak tudi na kemični način. Nastanek jam vzporeja z nastankom rjavega železovca. Pri tem misli deloma tudi na jerovico, deloma na boksit, kjer naj bi povsod delovale kisle mineralne vode. Morlot je uvedel izraza spodnji kraški apnenec, pri čemer misli predvsem na rudistni in druge kredne apnence, ter zgornji kraški apnenec, s čemer združuje paleogenske kozinske, miliolidne in alveolinsko-numulitne apnence. Vsi imajo zakraselo površino. Morlot omenja kostne breče iz Istre in Dalmacije. Posebno zanimivi so podatki o odlično ohranjeni lobanji jamskega medveda iz Postojnske jame. A.C. Morlot ni bil izraziti raziskovalec krasa. Kot vesten in dober opisovalec geoloških in drugih pojavov pa se je srečal s kraškimi jamami in drugimi kraškimi fenomeni. Kolikor je bilo mogoče, jih je skušal razložiti, seveda sredini prejšnjega stoletja primerno. Morlot na področju karstologije in speleo-logije ni prispeval velikega napredka, bil pa je eden zanimivejših raziskovalcev v času prvih resnejših korakov pri spoznavanju kraških pojavov pri nas. ACTA CARSOLOGICA XXVI/2 18 175-195 LJUBLJANA 1997 A HISTORICAL SIGNIFICANCE OF EGON PRETNER FOR BIOLOGY ZGODOVINSKI POMEN EGONA PRETNERJA ZA BIOLOGIJO TANJA PIPAN Izvleček UDK 57(091):929 Pretner E. Tanja Pipan: Zgodovinski pomen Egona Pretnerja za biologijo Egon Pretner (1896-1982), čeprav samouk, je bil v mednarodnem merilu eden najboljših poznavalcev evropskega krasa in živali v kraških jamah, še posebej hroščev. Odkril je nad sto novih živalskih vrst (migetalkarjev, polžev, dvojenog in zlasti hroščev), preko 20 vrst pa se jih imenuje po njem. Obiskal je 1492 jam: 649 na Slovenskem, 773 v drugih deželah Balkana, 70 v drugih evropskih državah. Bil je neutrudljiv terenski delavec, slovenski in celotni balkanski kras, pa tudi kraške predele v sosednji Italiji in Avstriji, je poznal bolje kot kdorkoli. Napisal je nad 70 razprav in člankov v domačih in tujih znanstvenih revijah. Za opravljeno delo je prejel mnoga društvena priznanja in odlikovanja. Ključne besede: zgodovina speleologije, biospeleologija, Coleoptera, Pretner E. Abstract UDC 57(091):929 Pretner E. Tanja Pipan: A historical significance of Egon Pretner for biology On the international scale Egon Pretner (1896-1982), self-taught person, was one of the best authoritis of the European karst and animals in the caves, beetles in particular. He discovered more than hundred new animal species (ciliates, gastropods and arthropods, and notably the beetles), more than 20 species are named after him. He visited 1492 caves: 649 in Slovenia, 773 in other parts of Balkans and 70 in other European countries. He was a tireless expert in the field of knowing better than anybody the Slovene and Balkan karst and also karst regions in neighbouring countries of Italy and Austria. He published more than 70 papers and articles in Slovene and foreign scientific magazines. For his work he gained numerous awards and medals from learned societies. Key words: history of speleology, biospeleology, Coleoptera, Pretner E. ' Karst Research Institute, ZRC SAZU, Titov trg 2, SI - 6230 POSTOJNA, SLOVENIA ' The author's name when presenting the paper was Čelhar. TO LIGHT UP LIFE IN DARKNESS It is justified to call Postojnska jama "the cradle of biospeleology". In 1831 the cave guide Luka Čeč discovered on Calvary (Velika Gora) in Postojnska jama the first cave beetle Leptodims hochenwarti (Schmidt 1831). By 1860 researchers discovered in Slovenia almost all the genera and most of the species of cave beetles. The studies of our cave fauna began anew in the beginning of the 20 th century when J. Müller was appointed professor at the grammarschool in Triest. Full of zeal he very systematically explored the caves in the Trieste karst, Istria and the Gorica karst. He educated a lot of entomologists, among others Egon Pretner who attended the grammarschool at this time. During field excursions he met many distinguished European scientists and he preserved these contacts during all the time of his research activity. Among the others they were: Fr. Blasich, O. Chenda, E. Gridelli, VI. Kodrič, J. Krekich-Strassoldo, Ljudevit and Vladimir Kuščer, C. Lona, C. de Mayer, Carlo and his son Giorgio Ravasini, A. Schatzmayr, H. Springer and St. Gaberščik. E. Pretner also maintained friendly and professional contacts with the following experts: B. Drovenik (Ljubljana), CI. Besuchet (Geneva), J. Fig. 1: At the entrance of Jelenca jama (Kras), 13th November 1910. E. Pretner, 14 years old, is in the first plan, pulling the rope (photo Dr. Lennig). Bole (Ljubljana), P. Brandmayr (Trieste), S. Brelih (Ljubljana), G. Castellini (Firenze), M. Seguin (France), B. Curčič (Beograd), P. R. Deeleman (Holland), C. D. Deboutteville (France), G. Drioli (Trieste), D. Mihajlovic (Valjevo), H. Frank (Laichingen), D. Godard (France), A. Gspan (Ljubljana), B. Hauser (Geneva), R. Husson (France), B. Jalzic (Zagreb), G. Karaman (Titograd), R. Mezzena (Trieste), S. Mikšič (Sarajevo), E. Pichl (Trieste), L. Quaia (Italy), L Rakovec (Slovenia), F. AneUi (Italy), M. E. Schmidt (Austria), R. Seemann (Austria), J. M. Thiband (France), T. Tischler (Germany), M. Vachon (France). An interesting story is told by B. Drovenik about cave beetle collecting at Dobrovlje. He was helped by Pretner who was the only one who succeeded in finding several specimens of the species Anophthalmus erebus erebus (Kraus), A. schaumi knirschi (Winkler) and Aphaenopodius treulandi cephalotes (Knirsch) although he used the same method as Drovenik and others. Before the last World War the beetles of Slovene caves were scientifically studied mostly by J. Müller, R. Jeannel and A. Winkler and after the war by E. Pretner. The interest of the Slovene biologists in cavernicolous fauna became very strong after the Second War. The biologists of Ljubljana University organised a series of excursions to the caves of former Yugoslavia and brought back very interesting material. By systematic researches they discovered new species and subspecies and got to know the geographical distribution of cave beetles. According to Pretner it is interesting zoogeographically that in the Dinaric part of Dolenjska the betle's species Antisphodrus schreibersi (Küster), and in the mountains between Postojna basin and the Notranjska Reka Leptodirus are not found, and that in some caves there live together two species of the genus Bathyscimorphus and two species otAntisphodrus (A. cavicola and^. schreibersi). Furthermore, "the centre of Carniola's fauna" is in fact located around Plitvice (Croatia) while almost all the genera described of Slovenia {Leptodirus, Astagobius, Anophthalmus, Bathyscimorphus, Machaerites and Troglorrhynchus) extend far to the south over the Slovene-Croatian border. In the years 1934-1938 Wolfs Animalium Cavernarum Catalogus was being published with a review of cave fauna, location of finding sites and references for each animal. In this voluminous work the cave fauna of Slovenia is included, studied minutely and in detail, mostly due to Pretner's research work and publications (Pretner 1974b). Pretner's first published paper is "Neue Hydrophyliden aus dem örthchen Mittelmeergebiet"; in 1930 two papers were published in Italian and the next year another three. However it was not until his undisturbed professional work in Postojna, that he could dedicate himself entirely to research (mostly to biospeleology and entomology) to such an extent that he became an expert in karst all over Yugoslavia and in particular on the underground fauna. Pretner also knew the karst landscapes elsewhere in Europe, in Italy, Austria, France, Romania, Bulgaria and so on, and he has taken part not only in all speleological congresses in Yugoslavia but also in numerous international congresses where he usually presented an interesting and fundamental communication. Thus he found at home and abroad a large number of followers (Pirjevec -Rebula 1986). Pretner's researches in the fauna of Postojnska jama were extremely extensive. He introduced the scientific importance of the Postojna area as a centre of the classical karst. Many are grateful for his professional list of the underground animals that lived, and unfortunately only partially live still in Postojnska jama (Annex 1). In the years 1970-1975 many reported about cave beetles appearing outside caves. Also in northern Italy and in Yugoslavia they appeared provided that the conditions of low temperature and high humidity were fulfilled. Due to this reason the abundance of beetles in some caves is smaller than under stones and rocks deeply buried in forest soil or higher in the mountains, close to the snow. In a special treatise E. Pretner explained this confusing phenomenon: "Primary habitat of cave beetles is fissures within the karst massif. From these cracks the animals migrate into the caves and thus the caves may be considered as their secondary habitat. To some extent some species may be found below rocks and stones but only in the period from autumn to spring, while they disappear during warmer seasons into cooler and more humid lower layers. Due to microclimate changes from cave to cave some species may be found at the entrance and other, deeper inside. The presence of animals is controlled by local temperature and humidity. Microclimatic conditions define whether the cave beetles are inside or outside the cave" (Pretner 1977a). The fissures underground are a true living habitat of the underground fauna and from them they come into accessible caves or artificial channels. Abandoned mine passages, catacombs and artificial underground cavities of any kind offer a habitat to the underground fauna and E. Pretner (1979) pointed out that their importance must not be neglected as the fauna is there extremely rich. The underground organisms find much more stable living conditions within the fissures than are provided in large passages of the caves. E. Pretner composed a finding site list of underground coleopterological fauna in artificial caverns of Slovenia, Croatia, Austria, France and Italy (Annex 2). When E. Pretner retired he deciphered the notes of L. Weirather relating to finding sites of cave beetles and prepared for the Natural Science Museum, Geneva, a 155 page study "Die Verdienste Leon Weiraths um die Biospäleo-logie, insbesondere Jugoslawiens, sein Höhlenkataster und seine Sammelplätze". L. Weirather was a famous biospeleologist who marked the finding sites of cave beetles by a number in his own cave register and by a false name of a cave or a region where the cave lies. By such a mode he protected himself against the concurrence although he disclosed to his friends, E. Pretner among them, the real name of a cave. The Natural Science Museum bought Weirat-her's collection of beetles together with all the notes and remarks which E. Pretner that he deciphered and studied from the German shorthand. He also elaborated the manuscript "Travunia" of K. Absolon about the underground beetles of Bosnia and Hercegovina and succeeded in determining the location and names of almost all the finding sites cited by Absolon (Letopis SAZU 1975; Pretner 1974a). A CHRONOLOGICAL REVIEW OF EGON PRETNER'S RESEARCH WORK FROM 1949 TO 1979 In 1949 Pretner published a newly discovered finding site of a species Anophthalmus egonis J. Müller. This species was then known only from the cave Pesjakov Buden, on the northern Pokljuka slopes; however he later found more than eight different caves containing this species. He discovered a new species Anophthalmus besnicensis that lives in Bidovčeva Luknja on the hill called Rovnik near Kranj. Probably he traced the same species in Častitljiva Jama, on the northern slopes of Jelovica. He discovered new finding sites for a species Anophthalmus erebus Krauss which is endemitic for Kamnik Alps. At the same time he confirmed the finding site of a species A. nivalis G. Müller on Triglav discovered by A. Gspan. He discovered a new species A. bukoveci in Turkova Jama, near Logatec. E. Pretner described also the species yl. pu-bescens Joseph and its subspecies. All of them live in the caves of Logatec plateau between Ljubljana Moor and Planinsko Polje. During his research work he dealt with the rules of nomenclature and, among others, explained the incorrectness in naming a species Anophthalmus scopolii Sturm while correct is Schmidt. In the literature all the coleopterists quoted Sturm as the author of a species A. scopolii with the exception only of Sturm himself (Pretner 1949a). Fig. 2: E. Pretner in the entrance to Gorjan-ska jama near Bled, 21st May 1939 (photo F. Bar). A species that E. Pretner discovered in a shaft Covška Prepad near Dobrovlje is calledAphaobius (Aphaobiella) budnar-lipoglavsek. He discovered a subspeciesyl. (A.) b.-l. mozirjensis in a small snow cave on Mozirska Planina in the eastern Kamnik Alps. At both finding sites he found also a species Aphaobius milleri Schmidt (subsp.). E. Pretner named newly discovered species after a curator of the Natural Science Museum, Ljubljana, Dr. A. Budnar-Lipoglavšek. Näphaobius (Aphaobiella) tisnicensis is a newly discovered species that Pretner found in many caves on a mountain Tisnik near Mislinja. This finding site lie on the northeastern border of the area in the Eastern Alps where cavernicolous silfides? live. The distance from it to the cave Covška Prepad, where A. budnar-lipoglavšeki was found, is about 18 km towards the south-west. In the hills above these finding sites Pretner did not find any example of the Aphaobius genus although in the caves and passages of the area live Anophthalmus hitleri Schreib, and Laemostenus schreibersi Küst. Pretner described and determined all the properties of silfides; it is important that he did not just cite the names but he described anatomic-morphological, physiological and ecological characteristics. He also composed a simple key for determining the genera of Aphaobius filogenetic species. According to Müller Pretneria is a subgenus of the genus Aphaobius; but Pretner determined Pretneria as an independent genus as it ressembles Orostygia and Oryotus in respect to its habitat and represents an intermediate to these two genera. Pretner also represented the differences between the species Pretneria latitarsi G. Müller and Pretneria saulii G. Müller. During long years of researches he found out that an important living condition for a genus Pretneria is low temperature; this is why it lives only high in the mountains or in ice caves (Pretner 1949b). Pretner reviewed the genera Oryotus L. Miller, Pretneria G. Müller, Astago-bius Reitter and Leptodirus Schmidt (Coleoptera). He described new finding sites that he discovered and described known species of these genera, many of them new. He also composed a key for determining the species of Oryotus L. Miller genus, and keys for subspecies Astagobius angustatus and subspecies Leptodirus hochenwartii Schmidt. He also collected ecological data on all the three genera (Pretner 1955). Pretner's researches of the rare genus Aphaenopsis confirmed that these organisms are rightly classified into philogenetic series that had baffled the researchers. Based on copulation organs of the male of Aphaenopsis, Scotopla-netes and Adriaphaenops genera Pretner started to solve the question whether three different genera are concerned or whether there is only one. He assessed the appurtenance to one genus only Aphaeonopsis J. Müller and at the same time he investigated the distribution of this Dinaric genus spread in a wide area of the southern Bosnia and Montenegro. Due to confusion within the systematics of genus Ceutmonocharis Jeannel, Pretner decided to resolve it and he found a lot of irregularities. He determined to this genus five species and subspecies: C. freyeri L. Müller, C. netolitzkyi J. Müller, C. robid Gangibauer, C. pusillus Jeannel and C. Matjasici n.sp. He elaborated the key to determine these species and subspecies and their distribution (Pretner 1959a, b). In spring 1959 a team of Karst Research Institute SAZU workers visited Prekonoška Pečina which was considered as the most beautiful cave of Serbia. A team surveyed the cave and prepared suggestions for its touristic display. In the final part of the cave Pretner discovered new bhnd species of the genus Duvalius (Coleoptera) and new genus of a blind arthropod Serboiulus lucifigus Strasser; both organisms are true troglobionts (Pretner 1959 c). Since 1963 only three superficial species of this genus were known from Macedonia. They were mostly found below the stones, at the altitude above 2000 m: D. fodori Scheibel, D. peristericus J. Müller and D. macedonicus J. Müller. In 1962 M. Gogala discovered the first true cavernicolous Duvalius in Macedonia D. s. str. gogalai (Pretner 1963 a). E. Pretner was enthusiastic about the Montenegro karst, wild and interesting, as he said, and almost untouched from the speleological point of view. He gathered all the known data about previous researches in Montenegro hsting explored and published caves, explored but not yet published caves unexplored caves. Due to his better understanding he classified the caves according to mountain massifs around bigger towns. He also noted a name of the cave, if it existed, and if the cave appeared in the literature under some other name he put it down also; he also quoted the author, the year and the name of pubhcation where it was cited. In this way he wished to contribute his part in preparing a register of caves and shafts of Montenegro. Pretner studied the cave fauna in Boka Kotorska and around Titograd and Virpazar in 1933 and he discovered some new species. From 1955 to 1973 he organised shorter or longer biospeleological excursions to Montenegro, except for the years 1960, 1961 and 1964. In the years from 1955 to 1957 the Slovene and Serbian biospeleologists and cavers explored the shafts, caves and swallow-holes on Nikšičko Polje for a planned hydro-power station "Gornja Zeta". They together explored the cave Duboki Do and other caves in Lovcen. In the years 1965-67 Speleo Club des Ardennes explored underground in Krivošije and Grahovo (Serbia). These explorations were controlled by E. Pretner who also carried out a lot of research excursions together with the family of Dr. P. R. Deeleman. They were good friends and they travelled and cooperated together a lot. In 1969 they explored 16 caves, in 1970 20, in 1971 30 and in 1975 17, altogether 85 speleological objects (Pretner 1961, 1977). Skakavac is an active cave located in SE Bosnia biologically explored by E. Pretner in 1956. He found two new troglobionts: Macrochaetosoma drinae Strasser and a new subspecies of a beetle Apholeuomus nudus subsp. petrovid. In the sixties he studied the cave fauna in Serbia and composed a list of cavernicoles endemic in Serbia. Besides the discoveries in Prekonoška Pečina he found in Ravnička Jama a new diplopod Bulgarosomacruds Strasser, and in Mirkina Jama a diplopod Typhoiulus albanicus Attems; for the latter it was the northernmost finding site (Pretner 1963 b, c). In the years 1964 and 1965 E. Pretner, together with J. Bole and S. Červek, succeeded in finding three new finding sites of a cave beetle Speleodromus pluto Reitter 1881. Till then it was only known that in the caves of Velebit. Like the genera Astagobius and Pretneria Spleodromus also lives only in caves with low temperature, i.e. in snow- and ice-caves at high altitudes. The animals walk over the walls and the rocks lying on the floor. Pretner reached these data by careful, long-lasting and patient sampling and contemporaneous measurement of physico-chemical parameters (Pretner 1966). At the end of 1967 the Laneyrie's Nouvelle classification des Bathysciinae was published, based mostly on different internal structures of the male copulative organ. In 1970 Pretner wrote the remarks to the Laneyrie's catalogue which substantially differs from Jeannel's classical classification although the material was not yet studied in detail. The first part of his remarks appears on four typed pages and includes mostly corrections of finding sites, wrongly written names and deficiencies. Typical finding sites of numerous species of the subfam. Bathysciinae cited by the authors often differ from those, described in Pretner's list (Catalogus Faunae lugoslaviae, III/6, Subfam. Bathysciinae, 1968). People who gathered the material were mostly foreigners, not understanding the language, and this is why they frequently cited the names of bigger places nearby or the names of the mountains. The gatherers, interested in cave beetle as dealers mostly, intentionally provided insufficient data about the finding sites. Pretner visited numerous caves and again he succeeded for many organisms in finding out the typical finding site and its correct name. He replaced German or Italian names by the original Slavs names. Remarks and completed literature were published on additional 7 typed pages (Pretner 1970 d). In the huge cave Vrthna in the southern Velebit Pretner, together with J. Bole and H. Freud, found with surprise that typical representatives of "Carniolian cave fauna" Leptodims and Astagobius reach so far to the south. Biospeleological researches in Gorski Kotar, Croatian httoral, in Lika and Velebit indicated that this area, compared to the vicinity, bears the most similarity with the cave fauna of Slovenia, in respect to the genera Bathysciotes Jeannel, Bathyscimorphus Jeannel, Parapropus Ganglbauer, Astagobius Reitter, Leptodims Schmidt, Typlotrechus J. Müller. From Dalmatia and Bosnia only Neotrechus J. Müller and Duvalius subgen. Neoduvalius J. Müller reach to Slovenia. Post-war researches showed that a line Zagreb - Rrk (that had been set up by Jeannel in 1928) as the south-eastern border does not hold, as the cited genera appear also more to the south. E. Pretner (1970 c) described all these genera ecologically and morphologically in detail, sketched them, described the finding sites and noted locus tipicus and added his own thoughts and conclusions based on the years of experience and observation. Pretner is found also among those who studied the genus Hydraena; most of this material he collected in Slovenia, but also in Bosnia and Hercegovina and in Montenegro. He found out that hydraena are not known in some regions or they appear with single specimens only; he assessed that the subgenus Haenydra Rey is represented in the area of the former Yugoslavia by 17 species. Among them Pretner found and described 6 endemites living in relatively narrow area: H. camiolica sp. n. is known only in Gorenjska, H. czemohorsky (J. Müller) from southern Slovenia, Croatian Istria, around Triest and Gorica in Italy, H. dalmatina (Ganglbauer) from south Dalmatia and coastal belt of Montenegro, H. montenegrina sp.n. from central Montenegro, H. devincta Orchymont and H. muelleri Pretner from Slovenia and Venetian Slovenia in Italy (Pretner 1970 b). In 1968 Pretner discovered a new species Antrosedes longicollis in the cave Kruščica near Ihdža in Bosnia. When he published the description of this new species he also corrected the name of a species Blattodromus herculeus Reitter which is an extreme rarity. He states (1970 a) that the right adjective form is herculeus and not herculaneus. The species that Pretner found belong to the caves of higher mountains. He concluded the biospeleological explorations of the Croatian karst by pubhshing papers (1973, 1977, 1979) in which he provided for each area a short historical review of the explorations in chronological order of discoveries of new species and subspecies. He also described the caves and shafts and cited discovered species of beetles belonging to families Carabidae, Bathyscii-nae, Pselaphidae, Scydmaenidae, Cumlionidae. In the systematic part he included for each species or subspecies a finding site, divided by areas. A shorter chapter is dedicated to zoogeography. Egon Pretner was modest and hard-working up to the end, full of new projects that remain our responsibility to complete. We shall hold him in fond remembrance, full of gratitude for everything he has done for Slovene speleology and the young generations that he introduced with love and rich experiences into this marvellous world of the underground. REFERENCES Pretner, E., 1949a: Prispevek k poznavanju anoftalmov (Coleoptera, Carabidae) iz Slovenije. Razpr. SAZU, cl. 4 (Ljubljana), 121 - 141 Pretner, E., 1949b: Aphaobius {Aphaobiella subgen. nov.) budnar-lipoglavšeki spec, nov., A. (A.) tisnicensis spec. nov. in opis samca Pretneria saulii G. Müller {Coleoptera, Silphidae). Razpr. SAZU, cl. 4, (Ljubljana), 143 -158 Pretner, E., 1952: Podzemeljski svet Slovenskega Primorja. Slovensko Primorje v luči turizma, 135 - 166, Koper Pretner, E., 1955: Rodovi Oryotus L. Miller, Pretneria G. Müller, Astagobius Reitter et Leptodirus Schmidt (Coleoptera). - Acta carsologica, 1, 41 -71, Ljubljana Pretner, E., 1959a: Doneski k poznavanju rodu Aphaenopsis J. Müller {Coleoptera, Trechinae). Contribution ä la connaissance du genre Aphaenopsis J. Müller. - Acta carsologica, 2, 79 - 95, Ljubljana Pretner, E., 1959b: Rod Ceutmonocharis Jeannel {Coleoptera, Catopidae). Die Gattung Ceutmonocharis Jeannel {Coleoptera, Catopidae). - Acta carsologica, 2, 263 - 284, Ljubljana Pretner, E., 1959c: Prekonoška pečina. Prekonoška pečina. - Naše jame, 1, 2, 65 - 68, Ljubljana Pretner, E., 1961: Speleološka istraživanja u Crnoj gori i spisak ovdašnjih pečina i jama. 2. jugoslovanski speleološki kongres, 219 - 235, Zagreb Pretner, E., 1963a: Novi Duvalius iz Makedonije. Fragmenta balcanica, 4, 185 - 190, Skopje Pretner, E., 1963b: Biološke najdbe v Skakavcu. Decouvertes biologiques dans la grotte Skakavac. - Acta carsologica, 3, 131 - 135, Ljubljana Pretner, E., 1963c: Biospeleološka istraživanja u Srbiji. Les recherches biospeolo- giques en Serbie. - Acta carsologica, 3, 137 - 147, Ljubljana Pretner, E., 1966: Najdišča jamskega hrošča Speleodromus Pluto Reitter 1881. Fundorte des Höhlenkäfers Speleodromus Pluto Reitter 1881. - Acta carsologica, 4, 221 - 227, Ljubljana Pretner, E., 1968a: Coleoptera, subfam. Bathysciinae. Catalogus faunae Jugosla- viae, 3, 6, 1 - 60, Ljubljana Pretner, E., 1968b: Živalstvo Postojnske jame. 150 let Postojnske jame 1818 -1968, 59 - 78 Pretner, E., 1970a: Antrosedes longicollis sp. n. iz Bosne, razprostranjenost vrste Blattodromus herculeus Reitter, rod Pheggomisetes v Srbiji (Bathysciinae in Trechinae). Razprave IV. razreda SAZU, 13, 152 - 164, Ljubljana Pretner, E., 1970b: Hydraena (subgen. Haenydra) v Jugoslaviji (Coleoptera: Palpicornia, Hydraenidae). Razprave IV. razreda SAZU, 13, 113 - 152, Ljubljana Pretner, E., 191 Qc: Leptodirus hochenwarti velebiticus ssp. n. in Astagobius hadzii sp. n. z Velebita, Astagobius angustatus deelemani ssp. n. in Astagobius angustatus driolii ssp. n. iz Like {Coleoptera). Leptodirus hochenwarti velebiticus ssp. n. und Astagobius hadzii sp. n. vom Velebit, Astagobius angustatus deelemani ssp. n. und Astagobius angustatus driolii ssp. n. aus der Lika (Coleoptera). - Acta carsologica, 5, 321 - 340, Ljubljana Pretner, E., 1970d: Pripombe h katalogu v Laneyriejevi novi klasifikaciji subfam. Bathysciinae {Coleoptera) in pojasnila h katalogu subfam. Bathysciinae - Catalogus Faunae Jugoslaviae (Pretner, 1968). Remarques au catalogue des Bathysciinae dans la nouvelle classification des Bathysciinae - Catalogus Faunae Jugoslaviae (Pretner, 1968). - Acta carsologica, 5, 341 - 365, Ljubljana Pretner, E., 1973: Koleopterološka fauna pečina i jama Hrvatske s historijskim pregledom istraživanja. Krš Jugoslavije (Zagreb), 8/6, 101 - 239 Pretner, E., 1974a: Zasluge Leona Weiratherja za jugoslovansko biospeleologi- jo. Acta entomologica Jugoslavica, 10, 7 - 13, Zagreb Pretner, E., 1974b: Zgodovinski pregled koleopteroloških raziskovanj v jamah Slovenije. Historische Übersicht der koleopterologischen Firschungen in den Höhlen Sloweniens. - Acta carsologica, 6, 309 - 316, Ljubljana Pretner, E., 1977a: On the ecology of the allegedly cavernicolous beetles with remarks on the classification of the alleged cave fauna. 6. Congres International de Speleologie, 5, 221, Olomouc Pretner, E., 1977b: Pregled podzemne faune koleoptera Crne gore. Glasnik Crnogor. akad. nauka i umjet. Odj. prirod. nauka, 2, 91 - 186, Titograd Pretner, E., Jalžič, B., 1977c: Prilog poznavanju faune koleoptera pečina i jama Hrvatske. Krš Jugoslavije, 9, 5, 239 - 271, Zagreb Pretner, E., 1979a: Podzemeljska koleopterska fauna umetnih votlin. Acta entomologica Jugoslavica, 15, 1 - 2, 89 - 102, Zagreb Pretner, E., 1979b: Lovricia Jalzici, novi rod i nova vrsta podzemnog kornjaša (Coleoptera, Carabidae) iz Dalmacije. Rad JAZU (Zagreb), 383, 377 -385 Sitar, S., 1987: Sto slovenskih znanstvenikov, zdravnikov in tehnikov. Prešernova družba, 78, Ljubljana ANNEX 1: THE LIST OF POSTOJNSKA JAMA FAUNA BY E. PRETNER Deblo: SPUŽVE (SPONGIARIÄ) Spongillidae, species Deblo: NEČLENARJI (AMERIA) Razred: Vrtinčarji (Turbellaria) Detidrocoelum lacteum O. F. Müller Dendrocoelum tubuliferum Beauchamp 1919 Fonticola albissima Vejdovsky Fonticola dalmatina Stankovič & Komarek Razred: Mehkužci (Mollusca) Podrazred: Polži (Gastropoda) Carychium tridentatum Risso Zospeum spelaeum Rossmässler 1837 Zospeum alpestre rossmässleri Wagner 1912 Oxychilus cellarius O. F. Müller Frauenfeldia lacheineri Küster Iglica luxurians Kuščer Hauffenia subpiscinalis Kuščer Acroloxus tetensi Kuščer Deblo: MNOGOČLENARJI (POLYMERIA) Poddeblo: Kolobarniki (Annelida) Razred: Maloščetinci (Oligochaeta) Nais communis Piguet Tubifex velutinus Grube Aulodrilus pluriseta Piguet Eiseniella tetraedra Savigny Helodrilus constrictus Rosa Razred: Pijavke (Hirudinea) Herpobdella octoculata Linne Species Poddeblo: Členonožci (Arthropoda) Razred: Raki (Crustacea) Nižji raki (Entomostraca) Red: Listonožci (Phyllopoda) Simocephalus vetulus O. F. Müller Ceriodaphnia affinis Lilljeborg Bosmina longirostris O. F. Müller Rhynchotalona rostrata Koch Pleuroxus laevis Sars Red: Dvoklopniki (Ostracoda) Cypria ophthalmica Jurine Cypria pellucida O. F. Müller Candona Candida O. F. Müller Candona trigonella Klie 1931 Typhlocypris schmeili Müller Red: Ceponožci (Copepod) Diaptomus spec. 1 Macrocyclops albidus Jurine Eucyclops macruwides Lilljeborg Eucyclops serrulatus Fischer Eucyclops prasinus Fischer Paracyclops fimbriatus Fischer Paracyclops fimbriatus f. imminuta Kiefer Cyclops bisetosus Rehberg Cyclops charon Kiefer 1931 Cyclops languiodoides f. gotica Kiefer 1931 Cyclops viridis Jurine Mesocyclops dybowskyi Lande Paracamptus schmeili Mrazek Bryocamptus zschokkei Schmeil Echinocamptus georgevitchi Chappuis Echinocamptus unicus Kiefer 1931 Echinocamptus dacicus Chappius Ehinocamptus luenensis Schmeil Attheyella crassa Sars Elaphoidella jeanneli Chappuis Višji raki (Malacostraca) Red: Deseteronožci (Decapoda) Astacaus fluviatilis Fabricius Troglocaris anophthalmus Kollar Red: Enakonožci ali prašički (Isopoda) Titanethes albus Schiödte 1848 Androniscus cavernarum tschammeri Strouhal Asellus aquaticus Linne Asellus aguaticus cavemicolus Racovitza 1925 Asellus istrianus Stammer Red: Postranice (Amphipoda) Niphargus stygius Schiödte 1848 Niphargus puteanus spoeckeri Schellenberg 1933 Niphargus kochianus wolfi Schellenberg 1933 Razred: Pajkovci (Arachnoidea) Red: Palpigrada Koenenia austriaca Hansen Red: Pajki (Araneidea) Stalita taenaria Schiödte 1848 Red: Paščipalci (Pseudoscorpionidea) Neobisium spelaeum Schiödte 1848 Neobisium pusillium Beier 1939 Chtonius cavernarum Ellington Roncus stussineri Simon Red: Suhe južine (Opilionidea) Hadziana postumicola Roewer 1935 Nelima aurantiaca Simon Red: Pršice (Acarina) Asca affinis Oudemans Ixodes vespertilionis C. L. Koch Labidostoma lyra Willmann 1932 Eugamasus loricatus Wankel Veigeia kocki Trägardh Cyrtolaelaps mucronatus G. & R. Canestrini Hygrobates longipalpis Hermann Neumannia limosa C. L. Koch Arrenurus albator O. F. Müller Razred: Stonoge (Myriapoda) Podrazred: Strige {Chilopoda) Lithobius stgius Latzel 1880 Podrazred: Kačice (Diplopoda) Acherosoma troglodytes Latzel 1880 Attemisia stygium Latzel 1880 Brachydesmus subterraneus Heller Gervaisia costata Waga Razred: Žuželke (Insecta aut Hexapoda) Podrazred: Pražuželke (Apterygota) Hypogastrura purpurascens Lubbock Hypogastrura sigillata Uzel Achorutes spelaeus Joseph 1882 Onychiurus armatus Tullberg Onychiurus boldorii Denis 1938 Onychiurus giganteus Absolon 1901 Onychiurus postumicus Bonet 1931 Onychiurus stachi Denis 1938 Onychiurus stillicidii Schiödte 1848 Anurophorus caecus Joseph (?) Isotomurus alticolus Carl Heteromurus nitidus Templeton Tomocerus niveus Joseph 1882 Oncopodura cavemarwn Stach 1934 Sminthurus coecus Joseph 1882 (?) Plusiocampa erebophila Hamann 1896 Podrazred: Krilate žuželke {Pterygota) Red; Pravokrilci {Orthoptera) Troglophilus cavicola Koliar Troglophilus neglectus Krauss Red: Enodnevnice (Ephemeroidea) Baetis bioculata Linne Ličinke {larvae) spec. ? Red: Pribrežnice (Plecoptera) Ličinke (larvae) spec. ? Red: Mladoletnice (Trichoptera) Ličinke {larvae) spec. ? Red: Metulji (Lepidoptera) Triphosa dubitata Linne Scoliopteryx libatrix Linne Red: Hrošči (Coleoptera) Anophthalmus schmldti Sturm Anophthalmus hirtus confusus G. Müller 1935 Laemostenus elongatus Dejan Laemostenus schreibersi Küster 1846 Bathyscimorphus byssinus Schiödte 1848 Bathysciotes khenvenhüUeri L. Miller 1852 Aphaobius milleri F. Schmidt (subsp.) Leptodirus hochenwarti F. Schmidt 1832 Atheta spelaea Erichson Quedius mesomelinus Marsham Machaerites ravasinii G. Müller Red: Dvokrilci (Diptera) Neosciaria vivida f. tenuicornis Lengersdorf 1932 Chironomus viridulus Linne Triphleba aptina Schiner & Egger 1854 Chiromia oppidana Scopoli Nycteribia biarticulata Hermann Nycteribia schmidli Schiner & Egger Ličinke (larvae) fam. Culicidae Deblo: STRUNARJI {CHORDONIA) Poddeblo: Vretenčarji (Vertebrata) Razred: Ribe {Pisces) Phoxinus laevis Linne Leuciscus spec. Trutta spec. Razred: Dvoživke (Amphibia) Proteus anguinus Laurenti Razred: Sesalci (Mammalia) Rhinolophus hipposideros Bechstein Rhinolophus ferrum-equinum Schreber Miniopterus schreibersi Kuhl ANNEX 2: THE LIST OF COLEOPTEROLOGICAL FAUNA OF ARTIFICAL SPACES BY E. PRETNER CARABIDAE Geotrechus saulcy subsp. metallorum Jeannel Rudnik hematitnega železa, Frivas (Ardeche) Aphaenops loubensi Jeannel Aphaenops cabidockei Coiffait Hydraphaenops vasconicus subsp. delicatus Coiffait Tunel do dvorane Verna na dnu brezna Aven de Pierre-Saint-Martin in do jame Grotte d Arphidia, Basses Alpes Speotrechus (s. str.) mayeti Abeille Rudnik hematitnega železa, Privas (Ardeche) Orotrechus (s. str.) carinthiacus Mandl Rovi na Obirju v višini 900 do 2000 m Orotrechus (s. str.) globulipennis Schaum Rov pod Piano nad Plužno pri Bovcu Orotrechus (s. str.) muellerianus Schatzmayr Kaverna pri železniški postaji Prosek (Prosecco) na Krasu Orotrechus (s. str.) Rov na vzhodnem rovu Tisnika blizu Hude luknje Orotrechus (s. str.) fabianii Oestro Podzemeljska kamnoloma Cogolo di Costozza in pri Covolo del Tesoro, Monti Berici Duvalius (s. str.) carantii Sella Podzemeljski prostori samostana Certosa di Pesio, Alpi Marittime Duvalius (s. str.) exaratus Schaum Knapovka jama, Paka severno od Velenja (obronki Karavank) Duvalius (Euduvalius) lucidus J. Müller Spilja-rudnik "Minera", Škrip (otok Brač) Anophthalmus bernhaueri Ganglbauer Obir: rov nad prevalom Saj da, rovi svinčenih rudnikov "Fladung" in "Seealpe", rov v gorskem hrbtu zahodno od Železne Kaple, približno 600 m visoko Karavanke v Sloveniji: gornji rov na Počivalu nad kmetijo Počivalnik na južnem pobočju kota 1172 Samuha; gornji in doljnji rov v Podlju-belju nad kmetijo Potočnik Anophthalmus kaufmanii subsp. weingärtneri (Winkler) Rudarski vrt, Sv Jakob na Medvednici nad Zagrebom Anophthalmus mariae Schatzmayr Rov pod Valvazorjevo planinsko kočo na Stolu (Karavanke): rudnik "Pri štolnu " pod planino Trento (Julijske Alpe) Anophthalmus egonis J. Müller Julijske Alpe: rov nad Rudnim poljem ob stezi za Konjšco planino, rovi "Janez I-III" na Rudnici kota 946 pri Studorju v Bohinju; rov na prevalu med Uskovnico in Ovčarijo; okohca Viševnik planine: rov ob stezi na preval nad Viševnik planino, tretji od zgoraj navzdol, rov pod "Jamo na sedlu" Anophthalmus ajdovskanus subsp. fodinae Mandl Obir: rov pod Rainerjevim domom na Ojstercu, rovi svinčenega rudnika "Seealpe" Anophthalmus ajdovskanus subsp. pretneri J. Müller Rov pod Valvazorjevo planinsko kočo na Stolu in rov "Pri knapih" pod stezo na Begunjščici (Karavanke) Anophthalmus ajdovskanus äff. subsp. muelleri Jeannel Viševnik planina (Julijske Alpe): rov ob stezi od Viševnik planine na preval, tretji od zgoraj navzdol, veliki rov pri mostu v steni nad jamo Zlatico Anophthalmus ajdovskanus aff. subsp. santiacus G. Müller Italijanska kaverna iz prve svetovne vojne za Gomiščekovim zavetiščem pod vrhom Krna 2245 m visoko (Julijske Alpe) Anophthalmus ajdovskanus /Ganglbauer/ (subsp. spec.) Trenta v Julijskih Alpah: rudnik "Pri štolnu" pod planino Trento in rudnik na Srednici pod Vršacem v Zgornji Trenti Laemosthenes {A.) schreibersi Küster Julijske Alpe: kaverna na Lajnerju nad Soriško planino, rovi "Janez I-III" na Rudnici kota 946 pri Studorju v Bohinju, rov ob stezi od Viševnik planine na preval, tretji od zgoraj navzdol; italijanska kaverna iz prve svetovne vojne na južnerd pobočju Kim 1600 m visoko, rov pod Planjo nad Plužno pri Bovcu; rudnik na Srednici pod Vršacem v Zgornji Trenti, 1800 m visoko in rudnik "Pri štolnu" pod planino Trento Karavanke: rovi "Pri knapih" na Begunjščici, nad in pod stezo ter tik ob stezi Menina planina: Selška luknja pri vasi Selo zahodno od Zgornjega Tuhinja Pohorje: Rov nad kasarno v Bukovju, Dravograd Kobansko: rov v Sturmovi grabi, Fala Škofjeloški hribi: rov Arnežov bavhenk na vznožju Šmarjetne gore pri Kranju BATHYSCIINAE Bathysciola (s. str.) linderi Abeille Rudnik galenita, Sainte-Marguerite-Lafigere (Cevennes) Bathysciola Boldoria (ghidinii) F. Lona Podzemeljski prostori trdnjave v mestu Brescia Aphaobius heydeni subsp. robustus J. Müller "Štoln" pri Dobravškem mostu pri Kamni gorici (Škofjeloško hribovje) Aphaobius milleri subsp. pretneri J. Müller Rov pod Valvazorjevo kočo na Stolu in 3 rovi "Pri knapih" na Begunjščici (Karavanke) Aphaobius milleri subsp. winkleri Mandl Rov pri Uletovega planinskega doma na Peci; rova Kolša in Heller na avstrijskem pobočju Pece ("Petzen") v Karavankah Aphaobius milleri subsp. brevicornis Mandl Obir v avstrijskih Karavankah: rovi v višini 1400 do 2000 m, rov nad prevalom Šajda in rovi svinčenega rudnika "Seealpe" Aphaobius milleri /F. Schmidt/ (subsp.) Karavanke: gornji rov na Počivalu nad kmetijo Počivalnik na južnem pobočju kote 1172 Samuha in dolnji rudniški rov nad kmetijo Potočnik v Podljubelju Menina planina: Selška luknja pri vasi Selo (Zgornji Tuhinj) Julijske Alpe: rov ob stezi Viševnik planina-preval, t.j. tretji rov od zgoraj navzdol, rov z navpičnim vhodom levo od steze Viševnik plani-na-preval, veliki rov pri mostu v steni nad jamo Zlatico; rudnik na Srednici pod Vršačem v Zgornji Trenti in rudnik "Pri štolnu" pod planino Trento Lotharia angulicollis Mandl Rov nad prevalom Sajda na južnem pobočju Obirja Oryotus micklitzi Reitter Julijske Alpe: rov nad Rudnim poljem na Pokljuki; rov ob stezi od Viševnik planine na preval, t.j. tretji od zgoraj navzdol, rov z navpičnim vhodom levo od steze Viševnik planina-preval, veliki rov pri mostu v steni nad jamo Zlatico pod Viševnik planino, rov ob navedeni stezi na levo, kjer ta ne traverzira več pobočje, ampak krene navzgor proti prevalu Spelaeobates kraussi J. Müller Spilja-rudnik "Minera", Škrip (otok Brač) STAPHYLINIDAE Lathrobium {Glyptomems) cavicola H. Müller Menina planina: Selška luknja pri vasi Selo (Zgornji Tuhinj) Phloeocharis (Scotodytes) winkleri Coiffait Les Cabesses, rudnik mangana, Riverenert (Aričge) CURCULIONIDAE Troglorhynchus anophthalmus F. Schmidt Menina planina: Selška luknja pri vasi Selo (Zgornji Tuhinj) ANNEX 3: SPECIES NAMED AFTER EGON PRETNER HROŠČI Coleoptera družina KRESICEV, Carabidae Carabus croaticus pretneri Drovenik-Krätschmer, 1977 Adriaphaenops pretneri Scheibel, 1935 (Vjetrenica, Zira jama, BIH - endemit) Neotrechus suturalis pretneri Scheibel, 1936 (Jama pri Vlaništu, Črna gora - endemit) Anophthalmus egonis J. Müller, 1923 (Jame na Pokljuki in Pršivcu, Slovenija - endemit) Anophthalmus ajdovskanus pretneri J. Müller, 1913 (Karavanke, Slovenija - endemit) Anophthalmus micklitzi pretneri J. Müller, 1913 Anophthalmus milleri pretneri J. Müller, 1913 družina MRHARČKOV, Catopiidae, Bathysciinae Aphaohius milleri pretneri J. Müller, 1913 (Stol, Karavanke, Slovenija - endemit) Pretneria G. Müller, 1931 Pretneria latitarsis (G. Müller, 1931) (Golobja jama. Trnovski gozd, Slovenija - endemit) Pretneria saulii (G. Müller, 1941) (Snežnice na Kaninu, Slovenija - endemit) Orostygia pretneri G. Müller (Julijska krajina, Italija) Speonesiotes pretneri G. Müller, 1934 (pečina Magara, Skadar - endemit) Leptodirus hochenwarti pretneri (G. Müller, 1926) (Jama nad Zosten, Čičarija, Istra) družina RILČKARJEV, Curculionidae Troglorhynchus pretneri Solari 1955 (Velika severna Notranjska planota) PAJKI, Aranea Troglohyphantes pretneri Deeleman-Reinhold, 1978 (Špela Koruns, gora Prokletije, Črna gora - endemit) Stalita pretneri Deeleman-Reinhold, 1971 (Donja Cerovačka pečina, Lika, Hrvaška - endemit) STONOGE, Chilopoda Scolopendrellopsis pretneri Juberthie-Jupeau, 1963 DVOJNONOGE, Diplopoda Attemisia pretneri Strasser, 1933 (Križna jama. Lož, Slovenija - endemit) Acherosoma pretneri Strasser, 1940 (Medvedja pečina, Lokve, Hrvaška - endemit) Orobainosoma pretneri Strasser Leptoiulus pretneri minor Strasser, 1940 (Menina planina, Savinjske Alpe, Slovenija - endemit) Bmchydesmus inferus pretneri Verhoeff Egonopretneria Strasser RAKI, Crustacea Spelaeocaris pretneri Matjašič, 1958 Niphargus aquilex pretneri Sket, 1959 (Gornja Cerovačka pečina. Hrvaška - endemit) Monolistra pretneri pretneri Sket, 1969 (Pečina kod Vrane, Hrvaška - endemit) Pseudocandona pretneri Danielopol, 1978 POLŽI, Gastropoda Zospeum pretneri Bole, 1961 VRTINČARJI, Turbellaria Bubalocerus pretneri Matjašič, 1958 ZGODOVINSKI POMEN EGONA PRETNERJA ZA BIOLOGIJO Povzetek Egon Pretner (1896 - 1982) je bil v mednarodnem merilu eden najboljših poznavalcev evropskega krasa in živali v kraških jamah, še posebej hroščev. Največ v tem življenjskem okolju je odkril nad sto novih živalskih vrst in je s tem bistveno prispeval k jamskim katastrom Slovenije in drugih dežel bivše Jugoslavije, saj je bil zanesljivo jamar, ki je obiskal največ jam v Jugoslaviji. Po svojih zapiskih je obiskal 1492 jam: 649 na Slovenskem, 773 v drugih deželah Jugoslavije, 70 v drugih evropskih državah in sestavil je kataster za večino kraških jam v Sloveniji in republikah bivše Jugoslavije. Za opravljeno delo je prejel mnoga društvena priznanja in odlikovanja. Bil je častni predsednik Slovenskega entomološkega društva ter častni član Jugoslovanskega in Francoskega entomološkega društva. Za znanstveno delo je prejel Prešernovo in Jesenkovo nagrado. Ob 80- letnici je bil odlikovan z redom dela z zlatim vencem. Skromen in delaven je ostal do konca, še poln načrtov, ki pa so ostali naša obveza, da jih dokončamo. Na področju, kjer je dosegel mednarodni sloves, je bil E. Pretner samouk in dolga leta po statusu zgolj amater. Bil je neutrudljiv terenski delavec, slovenski in celotni jugoslovanski kras, pa tudi kraške predele v sosednji Italiji in Avstriji, je poznal bolje kot kdorkoh. Pridobil si je pomembne zasluge na raznih področjih krasoslovja (evidenca jam, geografija krasa, tehnika jamarstva in jamarskega raziskovanja itn.), predvsem pa se je posvečal raziskovanju Življenja v kraškem podzemlju. Tu je odkril številne nove vrste migetalkarjev, polžev, dvojenog in zlasti hroščev. Kot žužkoslovec je posegel tudi na nekatera druga področja, tako je bil na svetu največji specialist za skupino vodnih hroščev Hydraena, vendar pa slovi predvsem kot raziskovalec jamskih hroščev. Razvil je izvirne načine za zbiranje tovrstnega študijskega gradiva. Poleg odkrivanja novih vrst je preverjal tudi že publicirane podatke in ustvaril si je celovito sliko o geografski razširjenosti posameznih vrst. Napisal je nad 70 razprav in člankov v domačih in tujih znanstvenih revijah, za sintezo raziskovalnega dela - monografijo o jamskih hroščih Slovenije - pa mu je zmanjkalo časa. Kot velik altruist je E. Pretner zbrano gradivo pogosto prepuščal v obdelavo raznim speciahstom, da so tako prvi opisah mnoge živalske vrste, ki jih je sam odkril. Preko 20 vrst pa se le imenuje po njem, kar kaže na veliko spoštovanje in cenjenost s strani biologov. E. Pretner se je med prvimi zavedel ekološke ogroženosti kraških jam in postal je zgoden bojevnik za varstvo narave tudi na tem področju. ACTA CARSOLOGICA XXVI/2 19 197-201 LJUBLJANA 1997 A FAIRY PHANTOM DOES AGAPITO'S 1802 BOOK ON VILENICA EXIST? ALI OBSTOJA AGAPITOVA KNJIGA O VILENICI IZ LETA 1802? TREVOR R. SHAWi Izvleček UDK 551.44:929 Agapito G. TVevor R. Shaw: Ali obstoja Agapitova knjiga o Vilenid iz leta 1802? Avtor sklepa da pogosto omenjene Agapitove knjige o Vilenici "La Crotta di Corgnale" sploh ni. V prispevku je avtorjeva razlaga za to trditev. Ključne besede: zgodovina speleologije, Slovenija, Kras, Vilenica, Agapito. Abstract UDC 551.44:929 Agapito G. TVevor R. Shaw: A fairy phantom - does Agapito's 1802 book on Vilenica exist? It is concluded that the often-cited La Grotta di Corgnale, by Agapito, does not exist. A possible explanation for the error is suggested. Key words: history of speleology, Slovenia, Kras, Vilenica, Agapito. Old Rectory, Shoscombe, BATH BA2 8NB, U. K. A very early book about the cave Vilenica has been frequently referred to for nearly a century, but there has been considerable doubt whether it ever existed. This is the supposed La Crotta di Corgnale, written by G. Agapito and published in 1802. Girolamo Agapito was born in 1783 at Buzet in Istria and educated at Koper (Faraone 1994). Of his several pubhcations, Le Grotte di Adlersberg, di S. Canciano, di Corniale e di S. Servolo..., published in 1823, is the best known. The earliest reference traced to Agapito's 1802 book occurs in a bibliography of caves in and near the classical Karst, published in Alpi Giulie (Anon. 1897). Here it is listed as "Relazione, della grotta di Corniale, di Girolamo Agapito, in 16", Trieste, 1802". No part of this entry was printed in italics, as book titles elsewhere in the text were, so "Relazione, della grotta di Corniale" must be a description of its subject and not its actual title, indicating that the book itself had not been seen. The sources of the information in the list include, according to a footnote, "notizie vocali fornitaci gentilmente, de soci e non soci" (verbal information kindly suppHed by members and non-members [of the Societa Alpina delle Giulie]). Later in the same year Boegan (1897b) cited the 1802 book in the same words, "Relazione della grotta di Corniale - Girolamo Agapito", but this time itahcs have been used so that, by the convention of that article, the description of the book appears as a true title. When the book is next listed, in a bibliography for the Istrian region (Parona et al. 1923, p. iii), its title has become La grotta di Vileniza detta di Corniale, published at Trieste. A few years later Duemila Grotte (Bertarelli and Boegan 1926) referred to "Agapito, G., La grotta di Corgnale, Trieste, 1802", translating the former name into Itahan which is not normal practice in that book. This latest form of the title has continued to be cited to the present day (e. g. Kranjc 1995). Despite these many statements that the 1802 book by Agapito does exist, there are also many places where it might have been expected to be mentioned but was not. Agapito's own book of 1823 does not refer to it. Boegan (1897a) points out a measurement error in Agapito's 1823 description of the cave, but does not there mention any earlier book by him. Three bibhograp-hies do not include it. The Austrian Literatur-Anzeiger (Anon. 1880) does not contain it, but it has only two entries for the cave anyway. Gratzy (1897) omits the cave from his bibliography altogether. Herak et al. (1976) do not list it, but their references for that period are very sparse. Much more significant is its absence from the careful and comprehensive annotated bibliography of the cave by Faraone (1993). It is noticeable that none of those who refer to the book quote extracts from it or derive information from it. Nor is the total number of pages or any other physical fact about it given. Even the title is written in three forms in successive publications. In every case it is only its existence that is mentioned, with no indication that the book itself has been seen. So, does the book in fact exist? Was it ever written? This author has never met anyone who has seen a copy. The major national libraries and karstologi-cal libraries of the world have no copies. Neither the Biblioteca Civica nor any other library in Trieste has any record of the book (dr. Anna Rugliano, pers. comm. 1994). It may be noted also that in the year of its supposed publication Agapito was only 18 or 19 years of age, and so was unlikely to have written such a book. If Agapito's 1802 book does not exist, how can so many references to it be explained? L A CROTTA DI VILENIZA, DETTA Di CORNIALE. TRIESTE, PRESSO GASPARO WEIS i 8 o s. i 1 1 1 AL(.A SienOBA COSTKSSA MARIA VOliSIoVlCH NATA, DEL-ROSSO Francesco D"* Trevisani fra gli ^readi di Roma Mgintio Mpirfy dedi» e eonaaetsi I 1 1 ' 1 Fig. 1: The title page of Trevisani's book (reproduced by permission of the Biblioteca Civica, Trieste). Fig. 2: The author's name is given on the dedication page of his book, 'La Gratia di Vileniza, detta di Corniale' (reproduced by permission of the Biblioteca Civica, Trieste). First of all, another book about the Vilenica cave was pubhshed in 1802 -La Grotta di Vileniza, detta di Corniale, a poem by dr. Francesco Trevisani, published in Trieste as a small volume of 23 pages (Figs. 1 and 2). It was cited (with the title abbreviated) in Anon. (1897) and Boegan (1897b). Duemila Grotte (Bertarelli and Boegan 1926) did not include it, but it is listed accurately by Parona et al. (1923, p. cxliv), who also list Agapito's supposed book of the same year under the identical title. It does seem exceedingly likely, though unprovable, that the person who provided the information for the first entry for the Agapito book (Anon. 1897), was confusing Agapito, as the author of the 1823 book containing a section on Vilenica, with Trevisani's book of 1802. The references then gradually gained respectability and authority. In Boegan's (1897b) article the use of italics provided a quotable title, and Boegan's name in a citation implied reliability. One the book was listed in Parona's bibliography and in the standard reference book Duemila Grotte, its existence became widely accepted. While non-existence can never be proved, it does seem almost certain that there never has been a Vilenica book of 1802 by Agapito. If so, it is another phantom book of the karst, like Herberstein's De Admirandis Rebus Naturae of the 16th century (Shaw 1994). Perhaps, after all, it was produced by a vila (fairy) of Vilenica. REFERENCES Agapito, G., 1823: Le grotte di Adlersberg, di S. Canciano, di Corniale e di S. Servolo, la miniera di mercurio d'Idria, il lago di Cirknitz, le terme di Monfalcone, antichita Romane d'Aquileja e Pola, ed ahri notevoli oggetti nelle vicinanze di Trieste.- Vienna, A. Strauss; Trieste, P. Schubart. Anon. 1880: Literatur-Anzeiger.- Wien (5) (pp. 4-5). Anon. 1897: Cenno bibliografico per lo studio delle grotte e caverne nel nostro Carso.- Alpi Giulie 2 (1) : 8-10 (p. 8). Bertarelh, L. V. & Boegan, E., 1926: Duemila grotte...- Milano, Touring Club Itahano (p. 332). Boegan, E., 1897a: La grotta di Corniale (continuazione).- Alpi Giulie 2 (3) : 34-36 (p. 34). Boegan, E., 1897b: La grotta di Corniale (continuazione e fine).- Alpi Giulie 2 (5) : 57-58 (p. 58). Faraone, E., 1993: Agh albori del turismo speleologico Triestino: la Grotta Vilenizza di Corgnale (Vilenica jama - Lokev).- Simposio Internazionale sulla Protostoria della Speleologia, Citta di Castello - 13/14/15 Settembre 1991 : 51-60. Faraone, E., 1994: Girolamo Agapito: 150 anni dalla sua morte.- Progressione (31) : 59-60. Gratzy, O., 1897: Die Höhlen und Grotten in Krain,- Mitt, des Musealvereines für Krain 10 (5) : 133-174. Herak, M., Magaš, B., Saric, A. & Habe, F., 1976: Contribution to the bibliography of karst of Yugoslavia (1666-1974).- Krš Jugoslavije 9 (3) : 81-225. Kranjc, A., 1995: The beginnings of cave tourism in former hereditary lands Carniola and (Lower) Styria.- Caves and Man Proc. International Symposium on the occasion of the 70th anniversary opening to the public of the Demänovskä cave of Liberty 4 - 8 October 1994 Demänovskä dolina -Jasna, Liptovsky Mikulaš: 62-66 (p. 66). Parona, C. F., Sacco, F. & BattagUa, R., 1923: Materiali per la bibliografia geologica, idrologica, speleologica, paleontologica e paleoetnologica dell' Istria e regioni finitime. Mondovi. Shaw, T. R., 1994: Baron Herberstein on the Cerknica karst lake - a phantom book of the 16th century?- Acta Carsologica, 23: 349-357. Trevisani, F, 1802: La Grotta di Vileniza, detta di Corniale.- Trieste, G. Weis. ALI OBSTOJA AGAPITOVA KNJIGA O VILENICI IZ LETA 1802? Povzetek Že skoraj sto let pogosto citiramo staro knjigo o Vilenici, a že dolgo obstojajo tudi dvomi, da je bila v resnici sploh tiskana. To je domnevna "La Grotta di Corgnale" avtorja G. Agapita, izdana 1802. Girolamo Agapito je bil rojen 1783 v Buzetu v Istri in se šolal v Kopru. Izmed njegovih del je najbolj znana "Le Grotte di Adlersberg, di S. Canciano, di Corniale e di S. Servolo... ", tiskana 1823. Prva omemba njegove knjige iz 1802 se pojavi v bibliografiji o jamah klasičnega Krasa in soseščine (Anon 1897), torej 95 let po tem, ko naj bi knjiga izšla. Nekateri podatki, ki jih navaja bibhografija, so izrecno dobljeni od različnih pomočnikov in takrat niso bili preverjeni. Ta navedba iz 1897 je najbrž vir, po katerem je bila knjiga kasneje citirana, vendar pod dvema malce razhčnima naslovoma, Boeganovim (1897 b) in v bibliografiji Istre (Parona et al. 1923) ter 1926 v Duemila grotte. Tako je bila Agapitova knjiga iz 1802 sprejeta v strokovno literaturo, čeprav ni nobenih dokazov, da je kdo izmed teh avtorjev knjigo sploh kdaj videl Tudi z resnim iskanjem po narodnih in regionalnih knjižnicah ni bilo mogoče odkriti niti enega izvoda. Se več, Agapito je bil 1802 star šele 18 ah 19 let, razlog več, da ta knjiga ni bila nikoh napisana. Pač pa je izšla druga knjiga o Vilenici 1802. To je pesnitev dr. Francesca Trevisanija, izdana v Trstu, z omembo avtorjevega imena šele na strani s posvetilom. Na naslovnici ni imena avtorja, v čemer je morda vzrok, da so knjigo nepazljivo pripisah Agapitu, za katerega se je vedelo, da je kasneje pisal o tej jami. ACTA CARSOLOGICA XXVI/2 20 203-224 LJUBLJANA 1997 SKADAVNICA CAVE EXPLORED BY ENGLISH TRAVELLERS IN 1737 KAKO STA ANGLEŠKA POPOTNIKA 1737 RAZISKOVALA JAMO ŠKADAVNICO TREVOR R. SHAW Izvleček UDK 551.44(497.4)(091) TVevor R. Shaw: Kako sta angleška popotnika 1737 raziskovala jamo Škadavnico Majhno jamo Škadavnico sta raziskovala leta 1737 dva angleška potnika, Richard Pococke in Jeremiah Milles. Ta obisk pa je bistveno starejši od kasnejših raziskav te štajerske jame severovzhodno od Ljubljane. Njuni opisi Škadavnice so prvič objavljeni v tem prispevku, z nekaj poročili o krajših potovanjih po Sloveniji, na Cerkniško jezero in o obisku štirih jam iz okolice Postojne. Klučne besede: Pococke, Milles, speleologija, geologija, zgodovina, biografija, Slovenija, Škadavnica. Abstract ^ UDC 551.44(497.4)(091) TVevor R. Shaw: Škadavnica cave explored by English travellers in 1737 The small cave of Škadavnica was explored in 1737 by two English travellers, Richard Pococke and Jeremiah Milles, thus doubling the length of time since the first cave was reported in north-eastern Slovenia east of Ljubljana. Their descriptions of it are printed here for the first time, with some account of the rest of their short tour in Slovenia during which they visited Cerkniško jezero and four caves near Postojna. Key words: Pococke, Milles, speleology, history, biography, Slovenia, Škadavnica. ' Inštitut za raziskovanje krasa ZRC SAZU, Titov trg 2, SI - 6230 POSTOJNA, SLOVENIJA INTRODUCTION It had been thought that the eariiest record of a cave in Slovenian Styria, indeed of any cave in north-eastern Slovenia east of Ljubljana, was a mention of jama Pekel near Šempeter in 1860 (Štorman 1991). Habe et al. (1978) state that it was discovered in that year. Škadavnica, a small cave about 1,5 km north-west of Vransko and 42 km north-east of Ljubljana (Fig. 1) was thought to have remained unrecorded until 1902, when cave fauna was collected there. This paper shows that Škadavnica had, in fact, been explored and described by two English travellers, Richard Pococke and Jeremiah Milles, in 1737. VRANSKO LJUBLJANA 9''e|j _2pkm Fig. 1: Map showing location of Vransko. ŠKADAVNICA TODAY The name of this cave has been spelled in several ways. 'Škadavnica', as preferred here, is used in the Krajevni Leksikon Slovenije (Natek 1976a; b), by Radešček (1993) in his description of the cave, and in the unpubhshed Kataster folder in the Karst Research Institute at Postojna; it is also the form painted on the rock outside the cave entrance. Naraglav (1977) uses "Ško- jru ŠKADAVNICA X ŠIROKO POLJE Medvedi, ca Fig. 2: Škadavnica cave and its surroundings, showing also Podgrajska graščina (described by Pococke as "a Gentlemans house") and the rising at Pogreska jama. davnica" (which is also given as an alternative in the Kataster and used on the 1973 plan). Kocbek (1926) uses 'Škadovnica' and Radešček (1993) gives this also as an alternative. The entrance is approximately 1,5 km in a west-north-westerly direction from the church in Vransko. Part way up the north-east slope of the hill Medvedica (Fig. 2), it is best approached by the motorable track from Podgrad, through Široko polje towards Treska. The final 150 m from the track is done on foot through a plantation of conifers which makes the entrance very difficult to locate. The cave is some 700 m west-north-west of Tabor, the prominent white-painted church on the hill top above the buildings at Jeronim, and which is mentioned in the 1737 account. The 1973 survey (Fig. 3) makes detailed description of the cave unnecessary. The entrance (Fig. 4) is 5 m SKOOAVNICA -Vransko- Risäf-. tthragtav iv.jirmrM.FRi PRCsai/ Fig. 3: Survey of Škadavnica cave made in 1973 by members of the Jamarski Klub "Črni galeb" of Prebold, reproduced with their permission. wide and opens directly in the hillside, with no diff or other indication of its presence. The main chamber, the only chamber in fact (Fig. 5), is oval in shape and measures 41 m long by 34 m broad at its widest point. It slopes downwards from the entrance and its floor is entirely covered with boulders. There are many holes between and beneath these boulders, three of which are deeper than the rest; the largest of all is at the back of the cave and reaches its deepest point, 16 m below the entrance. A little flowstone remains on the walls near some of these holes. The cave is dry, and daylight penetrates, dimly, even to the back. Another small cave in the vicinity was also visited in 1737 and so is described here too. Immediately to the south of the church Tabor, at the foot of a steep wooded hillside, is a large house Podgrajska graščina (Fig. 6) together with its block of former stables. The building is now (1996) being restored but, as will be seen, it is much the same as it was 250 years ago. Behind it, close up under the cliff, is the rising of the Podgrajščica (or Pogrešca) stream which emerges from Pogreška jama (Fig. 7). The stream outside the cave is now confined in a concrete channel which may have raised the water level somewhat. The stream entrance is about 1,5 m wide and 1 m high above the water; a dry entrance close by (50 cm x 1,2 m high) leads to the water also. 20th CENTURY HISTORY OF ŠKADAVNICA The earhest reference to Škadavnica known until now has been that of Penecke (1904), who in 1902 discovered there and in Štabirnica cave the first cave beetles to be found in Štajerska (Slovenian Styria). Naraglav (1977) drew attention to this but did not cite the original paper. In 1926 Kocbek described Škadavnica briefly, saying that it was 40 m long and 30 m wide, with stalactites. He mentioned also the rising at Pogreška jama, which was said must be long because a draught can be felt at the entrance. Egon Pretner (1937) visited the Škadavnica cave in July and September 1937, just 200 years after Pococke and Milles, collecting beetles. The hillside around the entrance was overgrown with scrub at that time. His sketch plan and section are reproduced as Fig. 8, and he described the main chamber as 50 m long and 30 m wide. One of the holes in the floor was said to continue for a long way but he did not explore it. Some flowstone was noticed on the right hand side. Members of the future Jamarski Klub "Črni galeb" of Prebold made their first exploration of the cave on 25 May 1969, Tito's birthday holiday (Vedenik, pers. com., 3 Oct 1995). Some flowstone and dull stalactites on the roof were noticed. The Club returned on 6 November 1973 and made the survey printed here as Fig. 3 (Naraglav & Kvas 1973). A path then led to the entrance, around which was a more open mixed woodland than today. Both Skadavnica and Pogreska jama were made more widely known by Natek (1976 a; b) in the Krajevni Leksikon Slovenije but this contains no new information. The latest account of the cave appears in Rade-šček's (1993) "Guide to the Postman's Cave Route". Fig. 8: Sketch plan and section of Skadavnica, made in 1937 by Egon Pretner (from the Cave Kataster of the Karst Research Institute, Postojna. No scale). POCOCKE Turning now from the present to the past, an outline is given of the lives of the two men who explored Skadavnica in 1737. Richard'Pococke (Fig. 9) was born at Southampton in England in 1704. He went to Corpus Christi College Oxford in 1720 and graduated BA (Bachelor of Arts) in 1725 and DCL (Doctor of Civil Law) in 1733. Already in 1725 he was appointed Precentor, one of the Canons, at Lis-more cathedral in Ireland. Immediately after gaining his doctorate in 1733 he started on his series of foreign tours, which continued until 1741. These tours, together with those of Milles who accompanied him on some of them, are treated separately below. He was made a Fellow of the Royal Society in the year of his return from his travels, perhaps in recognition of their value. It is probable that he was awarded an honorary LL D Fig. 9: Richard Pococke in later life (from Pococke 1887). A younger portrait is reproduced in fig. 11. (Doctorate of Laws) for the same reason, for he uses this degree on the title page of his book in 1743, rather than DCL. In 1744, when his first series of travels was over and his book written, he was made Precentor of Waterford cathedral. Then in 1756 he became Bishop of Ossory, also in Ireland. In July 1765 he was appointed Bishop of Meath but a few months later he died, on 25 September (Anon. 1765; Kemp 1887; Foster 1891; Wroth 1896). MILLES Jeremiah Milles (Fig probably in Cornwall. In 1729 he entered Corpus Christi College, Oxford, becoming BA in 1733 just before his travels with Pococke, and DD (Doctor of Divinity) in 1747. From 1735 to 1745, as a priest, he was Treasurer of Lismore cathedral and for much of this time he was also Precentor at Waterford. In 1747 he was made Precentor of Exeter cathedral (England), a post he retained until he was appointed Dean there in 1762. Mihes was interested in archaeology from an early age, being elected Fellow of the Royal Society in 1742 and becoming president of the Society of Antiquaries in 1768. He died in London on 13 February 1784 (Courtney 1894). 10) was Pococke's cousin. He was born in 1714, Fig. 10: Jeremiah Milles in later life. An oil painting by Nathaniel Dance, or a later copy of it, in the collection of the the Society of Antiquaries of London and reproduced with their permission. His strange wig was apparently so notorious as to attract a humorous cartoon in The Gentleman's Magazine (Anon. 1782). Shaw R. Trevor: Škadavnica cave explored by English travellers in 1737 THEIR TRAVELS Before coming to their Slovenia visit of 1737 and their exploration of Škadavnica and other caves there, it is useful to summarize Pococke and Milles's other travels, and to review the extent of their interest in caves elsewhere. In this way the characters and interests of the two men should become apparent. Their first tour abroad was in France and Italy, from September 1733 to July 1734. Thus they were about 29 and 19 years old respectively when they set out from England. Milles had just left Oxford and Pococke had gained his doctorate in the same year. In the summer of 1735 Milles alone travelled in central and eastern England. Then came their major tour together which included Slovenia and from which Pococke (1743-45) continued alone to Egypt and the Middle East. They left England on 31 May 1736 and travelled through Belgium, Holland, Germany, Bohemia, Hungary, Austria, Italy, Slovenia and Istria to Italy again. From there Pococke sailed from Livorno for Alexandria on 18 September 1737, and MiUes (1737a; 1737b) returned over the Brenner Pass and through Austria, Germany and Belgium to Dunkerque (29 November 1737) and London. Pococke meanwhile landed in Egypt in October and spent the next four years travelling there and in the region which is now Israel, Lebanon and Syria, in Cyprus, Crete and the Greek islands, and then through Turkey, Greece, Italy, Germany, Switzerland, France, Holland and Belgium, reaching London on 10 September 1741. So enthusiastic had Pococke become after travelling in the Middle East that he had his portrait painted in Turkish dress (Fig. 11). At the time of these travels, dates were sometimes reckoned by the Old Style (Julian) calendar, and sometimes Fig. 11: Richard Pococke in Turkish dress. Probably painted in 1740 when he and the painter were both in Constantinople, it shows him three years older than when he was in Slovenia. An oil painting by Jean-Etienne Liotard in the Musee d'Art et d'Histoire at Geneva and reproduced with their permission. by the New Style (Gregorian) calendar used today which was not formally adopted in Great Britain until 1752. In the New Style calendar the same day had a date eleven days žlater' than it did by the Old Style. Pococke and Milles used both forms in their writings but in this paper all have been converted to New Style. Later in life Pococke (1887; 1888) made several series of tours in the British Isles visiting many parts that were little known and describing them accurately in his diaries. His travels in England were made mainly between 1750 and 1757, with a few later. Irish tours took place in 1749, 1752 and 1758; and he visited Scotland in 1747, 1750 and 1760. Milles (1735-43), too, explored parts of Great Britain, but less extensively than his cousin. Between 1738 and 1743 he made several tours in southern and western England and in Wales, but there is no record of his going further afield. THEIR INTEREST IN CAVES As will be seen shortly, the caves that Pococke and Milles found in Slovenia in 1737 occupied a great deal of their attention. The earlier parts of their European travels seem to have resulted in no such visits and it is likely that they had not, by that stage, seen any of the British caves. Not only had neither of them made any extensive tours in Britain, but they never compared what they saw in Slovenia with caves they had known at home, as travellers so often did. Cadell (1820), for example, likened Vilenica jama with Peak Cavern in Derbyshire; and Pococke (1751) in his later tours compared caves in the north of England with two he had seen previously in the Midlands. Nevertheless when they passed near the Drachenloch at Mixnitz on 13 June 1737, only a few weeks before arriving in Slovenia, they were sufficiently interested to comment on it and to regret that they were unable to explore it. In the later stages of his tour Pococke visited several caves and it seems that he made a point of enquiring if there were any to be seen. On 23 June 1738 he went into a cave 29 km south-east of Tripoh in the Lebanon, comparing the stalactites in it with those "in the grots of Carniola". In Crete the following year he explored a small cave on Mount Ida (7 September) and a larger stalactite cave near Hania on 24 September. The ice cave of Grace Dieu near Besangon in France was visited in June 1741. The very fact that the caves in Slovenia were described in such detail in Pococke's (1743-45) published book is evidence of the interest they held for him, for in this Description of the East, and some other countries only about 140 pages out of a total of 886 are devoted to his crossing the whole of mainland Europe, and many parts of his journey are not described at all. In England Pococke (1750; 1888, p.152-3) went into Wookey Hole in Somerset on 22 October 1750. On 24 and 28 May of the following year (Pococke 1751 ff.17-19; 1888 p. 192, 196-8) he visited several caves in western Yorkshire - Boreham Cave, Dowkabottom Cave, Weathercote Cave, Jingle Pot, Hurtle Pot, Yordas Cave and Tatham Wife Hole, though of these it was only Boreham and Yordas that he actually entered. Jingle Pot and Yordas he compared with Eldon Hole and Peak Cavern respectively, as if he had seen these previously. He may have done this when he was in Derbyshire in 1743 but his manuscript record of that journey, formerly "in the possession of an Irish gentleman" (Kemp 1887), cannot now be traced. The Scottish cave of Smoo, a limestone cave on the extreme northern coast of Sutherland, was seen at the end of June 1760 and the then celebrated stalactite cave at Slains in Aberdeenshire a month later (Pococke 1887). Milles did much less travelhng than Pococke after their two European tours together. In England he seems not to have visited the hmestone areas of Derbyshire and northern England, and when he was in Somerset his travel diary makes no mention of Wookey Hole. Nevertheless his name is coupled with early records of caves in Devon, the county surrounding his cathedral at Exeter. He accumulated information about Devon with the intention of producing a history and description of it. This was never published but the manuscript materials for it still exist in the Bodleian Library at Oxford. The answers to a series of questionnaires he sent out (Milles c.1750) are supplemented in the draft text written in his own handwriting (Milles c.1760). The latter includes references to caves which Milles himself had explored in Buckfastleigh and the nearby village of Dean Prior. His continuing interest in caves is again shown by two letters he wrote in 1775 and 1776 to George Catcott, commenting on the draft of Catcott's (1792) book on Penpark Hole at Bristol. The letters were printed with the book. SLOVENIA JULY 1737 The Sources As with much of the travels made jointly by Pococke and Milles between 1733 and 1737, there are four sources of information on the Slovene part of their tour. These supplement and complement each other, as well as (sometimes) copying one from another. The most accessible source is Pococke's published book (1743-45) (Fig. 12), most of which is devoted to his travels in Egypt and the Middle East, together with Cyprus, Crete and parts of Greece. Physically it is a large and impressive book, consisting of two foho volumes 42 cm in height and containing almost 900 pages besides maps and illustrations. As already mentioned, it contains a much fuller account of the visit to Slovenia than it does of most of the travelling in mainland Europe, but the dates of particular visits are often not stated in it. The Enghsh edition was followed by a German translation (Pococke 1754-55), a French translation (1772-73) and then a Dutch translation description o T H E east, A N D Some other Countries. V o I,. II PART It. OBSERVATIONS on the I s i a s b 5 of 1'., ÄBCHii'ELAGO, ASIA Mixoji, THK^CB, CSEECC, ssnti föine oilier Pcirt.'i of KiiKor;-:. By RiCUARD POCOCKE, LI.D. F.R.S. y. - LON t>0 N, Printed for the AUTHOR, by W. Bow?BR. Fig 12: The title page of the volume of Pococke's book which describes the journey in Slovenia. published at Utrecht in 1776-86. So the travels were widely known throughout Europe. Of the manuscript sources the most detailed is Pococke's 'Journal of Travels' between 1733 and 1741, in 19 volumes, of which volume 16 (Pococke 1737) describes the journey through Slovenia and includes the detailed description of the Skadavnica cave printed here as an Appendix (pp. 000-000). Again, though, precise dates are often lacking. The letters that Pococke (1736-37) wrote to his mother have far less detail but do furnish reliable dates. Milles's main travel diary (1736-37a) ends on 10 June 1737, just before arrival in Slovenia. But his volume of letters written to the Bishop of Waterford (Milles 1736-37b) covers the Slovene visit, providing considerable detail in places, and also dates. Although these sources differ in many ways it so happens that the descriptions of the caves around Postojna are almost identical in three of them, for the printed book is based on Pococke's journal, which in turn is copied from Milles's letters to the Bishop. Not so for the Skadavnica accounts, which are different (but not conflicting) in all the sources. Carmichael (1991; 1992) has commented on their principal interests in Slovenia which she regards as mainly botany and architecture, and on the different styles of their writing. The Journey The two men entered Slovenia from Gorica on 7 July 1737 and travelled through Vipava to the mercury mines at Idrija, as most travellers did at that time. Thence they continued to Vrhnika (10 July) and, because the road to Ljubljana was so bad, they went there by boat down the Ljubljanica river, arriving at Ljubljana on 11 July. It was in the course of a four day excursion from there to Celje and back (Fig. 1) that they visited the Skadavnica cave, Pococke's account of which (1737, ff.120-122) is considered later. Then they went to Cerknica (18 July) and stayed there for two days, giving a detailed description of the lake and its water sinks, followed by a short visit to Rakov Škocjan. At Planina (21 July) they saw the entrance of Planinska jama though the water was too high for them to enter, and on the same day they explored the main Predjama cave beneath the castle. On the following day they saw both Postojnska jama and Črna jama. Overall, five of the eighteen days they spent in Slovenia were occupied in visiting caves including those at Cerknica. Of the 45 pages of Pococke's diary devoted to Slovenia, eleven describe caves and karst phenomena. They left Slovenia and arrived in Trieste on 23 July, having travelled across the Classical Karst for most of the previous night "for coolness". Two days later they went by boat to Koper, and the next day on to Izola and Piran en route to Pula. Having returned to Trieste on 3 August, they visited Socerbska jama a few kilometres to the east, either the next day or the day after, noting the presence of stalactites and an altar (Milles 1736-37b, f.l20v). On 6 August they left Trieste for the last time, looking at the Timavo rising Duino on their way on into Italy. VISIT TO SKADAVNICA The description of Skadavnica cave and of their visit to it in Pococke's manuscript journal is printed complete as the Appendix to this paper, and one page is reproduced in facsimile as Fig. 13. The one fact which Pococke does not supply — namely the date of the visit — is provided from Milles's letters. They had left Ljubljana on 12 July and travelled via Trajaniberg [Trojane] to Frantz [Vransko] where they stayed the night. Then "the next morning [13 July] we saw a Grotto in the mountain pretty large and curious, but not abounding much with petrifactions." (Milles 1736-37b, f.92v). They went on to Celje the same day. The road from Ljubljana to Celje, then as now, Cou-nii^ CiL-t^^ "rv<- ca»w> M, & Uf -JiuiMcA M' ^ (kfwiU- hfcciUxi - ■!' HHnat: ■hi ^ Gli^tru th^ ^ i i'Ot^iuV fc. ktwc M Uf it^hfm^iC ihfH iM P-< iw^ hnui^ M in' ia Hi-v^rv/ wdup^ ižf ih aoki^ ' fy^l Am^ /^cl^äsÄc flUunA b/kihA cie^l 'ShiMA- l-wJ-m^. j (Ihinji- Am C4VMA. ftrf^^^^f^rt M a. tliH^K^OMl rrffvk K' ^^ j Fig. 13: Part of Pococke's detailed description of the Skadavnica cave on fl20 of his journal, vol. XVI, reproduced from the British Library Add. MS. 22993 with their permission. The date "July 1st - 12th" is given in both the old and new styles. suffered from heavy traffic and the road had been improved in 1728, just nine years before their visit (Natek 1976 b). Before considering Pococke's (1737) detailed description of the visit to the Skadavnica cave, the statements made about it in the other two sources are printed here for completeness. In his published book, Pococke just records: ... saw a grotto at Frantz, where there are some curious petrifactions; but we could not find that it had any communication with the rivulet below it ... (Pococke 1743-45 2(2), p.254) And in his letter to his mother he wrote: We went to see a natural Grotto in the side of a hill about 100 feet diameter and very curious, where we saw many stalactities or stone's like isicles formed by the dropping of the water; when broke it is like Alabaster, & one was large & rise up like a pillar to the top of the Grott. (Pococke 1736-7, f.64v) It is to be noted that this was written before he had seen the stalactities in Črna jama nine days later. Nevertheless the pillar, which is mentioned also in his fuller account, must have been quite impressive. It does not exist now. As Pococke's (1737) entire journal account is printed in the Appendix, it is necessary here only to note those points that require comment such as those by which the identity of the cave has been confirmed. (f.l20) ... we came to Frantz [Vransko] a small village on the hill above it is a church call'd Tabor, over a Gentlemans house call'd Bouchsdale behind which is a Stream that comes from under the mountain; The "Gentlemans house" is the house at Podgrad, Podgrajska graščina, shown on the map (Fig. 2). Its present appearance (Fig. 6), compared with the view engraved by Vischer (1681) (Fig. 14), shows that it has not greatly changed in three centuries. No doubt Vischer's picture is the closer representation of what Pococke and Milles saw. "Bouchsdale", recorded by Pococke as the name of the house, would be his understanding of the old German word Burckstal, which is what Vischer called it. The "Stream that comes from under the mountain" is the Podgrajščica, emerging from Pogreška jama. The position of the "natural cave or Grotto in a hill which rises still higher ... above the church to the west" (f.l20) is consistent with that of Skadavnica on the slope of Medvedica (604 m compared with 428 m for the church Tabor). The cave entrance is described as "about fifteen feet [4,6 m] wide & eight [2,4 m] high" (f.l21), which is not significantly different from the 5 m by 3 m of the 1973 survey, "the cave seems to be about a hundred feet [30,5 m] in diameter being round" compares quite well with its measured dimensions of Fig. 14: Podgrajska graščina in 1681. An engraving by J. M. Vischer. 34 m by 41 m. Again, the "confus'd heap of great stones" on the floor and the "rough [ceiHng], as if those stones had fallen from it" is a fair description of Skadavnica. The statement that "there are several holes & cavities round it especially three larger than the rest", matches with the holes shown in the 1973 plan (Fig. 3). The word "crow", to which Pococke likens some of the stalactites, is an obsolete English word meaning the membranes which secure the intestines within the abdomen of a pig or other animal. The evidently greater quantity of stalactites in 1737 than now is what would be expected of a cave known to the people of the local town, even if it were only occasionally visited by foreigners who brought away "one peice growing like a Coley flower [cauliflower] but in the shape of a Cone." (f.l22). CONCLUSION Pococke and Milles's exploration of the Skadavnica cave is significant for two reasons. Firstly, any previously unpublished information about a cave deserves being made accessible. It is particularly significant, at least in a local context, when it doubles the length of time since the previous earliest record of any cave in the region and more than doubles the period for which the cave itself has been known. More generally, the interest which Pococke and Milles showed in caves, visiting most of the recognized tourist caves in Slovenia and even going out of their way to see a small and not very impressive cave, demonstrates that there were some highly educated travellers who regarded such natural phenomena as important and worth their attention. In this way they were somewhat similar to Edward Brown (1673) whose description of the Cerknica lake and the Idrija mine are well known. Many of the better-known early reports of caves had been either as part of a deliberate regional survey, as in Valvasor's Die Ehre dess Hertzogthums Grain (1689) or compiled on royal instructions as were those of Strein in Austria in 1592 (Schallenberg 1592; Schmidl 1857), and Nagel (1747) in Austria and (1748) in Moravia and Carniola. Very many travellers had only the conventional interests of more conventional educated men, in art, architecture and antiquities — the subjects which were originally chosen to further the education of young men traveUing with their tutors on the Grand Tour of parts of Europe. It is the breadth of Pococke and Milles's interests which is important to the history of foreign travellers, while it is their specific interest in caves and other karst phenomena that is important for the historian of karst studies and of caves in Slovenia. ACKNOWLEDGEMENTS I am grateful to Tone Vedenik and members of the Jamarski Klub "Črni galeb" of Prebold for relocating the entrance of the Skadavnica cave and for taking me to it. They have also permitted reproduction of their 1973 survey with this paper. My colleagues in the Karst Research Institute at Postojna have helped, especially by accurate determination of the entrance position (Franjo Drole), taking photographs (Jurij Hajna), preparing the map for publication (Leon Drame) and for finding much of the 20th century literature (Andrej and Maja Kranjc). The staff of the British Library in London, which holds the 18th century diaries quoted here, have been their usual helpful and efficient selves. APPENDIX POCOCKE'S ACCOUNT OF THE VISIT TO ŠKADAVNICA CAVE ON 13 JULY 1737 FROM HIS MANUSCRIPT JOURNAL (BRITISH LIBRARY ADD. MS.22993) Came to Frantz a small village, on the hill above it is a church call'd Tabor, over a Gentlemans house call'd Bouchsdale behind which is a Stream that comes from under the mountain; above the church to the west is a natural cave or Grotto in a hill which rises still higher, the entrance to it is about fifteen feet wide & eight high, it is a descent & the cave seems to be about a hundred feet in diameter being round, it is at bottom a confus'd heap of great stones, & the top is rough, as if those stones had fallen from it by some accident as an earth quake or a unhingin of the ground under, there are several holes & cavities round it especially three larger than the rest into which we went & saw the furthest extent of 'em being not above 4 or 5 yards, all over the Grotto are Stalactites or Stone made by the droppings of the water, but there are more in the holes than in the other part of the Grot, & one always sees the water dropping in several parts; some of these are of the Stalagmate kind that on the stones rising up about an inch & look hke tallow growing cold. Some rise up like a cone, one to a good heigth, & large like a pillar broke off. & there is a pillar yt [= that] rises up to the very top as if it supported the arch, some are like Icicles hanging from the vault, & some hangs about six or eight inches deep for six or seven feet exactly like what is calld the crow in the entrails of swine, & is transparent, all this stone being of the nature of Alabaster is brittle & shining; we examin'd this Grotto very nicely because they said there was a hole which went down to the notch[?] by the Gentle mans house, before mentiond, & that a bull had fallen in & came out at that place, all which we found to be false, & concluded it was only a story to frighten children, & prevent the danger of breaking their legs or bones by going in which they might easily do; we brought away of the stalactites, particularly one peice, growing like a Coley flower but in the shape of a Cone. When we left Frantz the next day we came into the fine plain in which Ciley [Celje] stands. REFERENCES Anon. 1765 List of deaths for the year 1765. The Gentleman's Magazine, 35, 443-444 (p.444). Anon. 1782. Portrait of Turgott. The Gentleman's Magazine, 52, June, 288. Brown, E. 1673. A brief account of some travels in Hungaria, Servia, Bulgaria, Macedonia, Thessaly, Austria, Styria, Carinthia, Carniola, and Friuli... London, B. Tooke, [x] + 144pp. Cadell, W. A. 1820. A journey in Carniola, Italy, and France, in the years 1817, 1818. Edinburgh, Constable, 2 vols. (1, p.21). Carmichael, C. D. 1991. Angleška gentlemana na potovanju po slovenskih krajih leta 1737. Zgodovinski Časopis, 45, 41-46, Ljublijana. Carmichael, C. D. 1992. Two gentleman travelers in the Slovene lands in 1737. Slovene Studies, 13(1), 19-26. Catcott, G. S. 1792. A descriptive account of a descent made into Penpark-Hole, in the parish of Westbury-upon-Trim, in the county of Gloucester, in the year 1775... Bristol, printed by J. Rudhall, 51pp. C[ourtney], W. P 1894. Milles, Jeremiah' (1714-1784). Pp. 432-434 in The Dictionary of National Biography 37. London, Smith, Elder. Foster, J. 1891. Alumni Oxonienses: the members of the University of Oxford, 1715-1886... 3. Oxford, Parker (p.ll24). Habe, F. et al. 1978. Show caves in Slovenia. Postojna, Karst Association for Environment Protection, 31pp. (p.22). Kemp, D. W. 1887. Biographical sketch of Richard Pococke... Pp. [xxxi] - Ixx in Pococke (1887). Kocbek, F. 1926. Savinjske Alpe. Celje, Goričar & Leskovšec (p.201). Milles, J. 1735-43. Journals of his travels in different parts of England and Wales. British Library Add. MS. 15776. Milles, J. 1736-37a. Account of his travels in the Netherlands, Germany, Hungary, and Croatia, in company with Dr. Richard Pococke... British Library Add. MSS. 15764-15772, 9 vols. Milles, J. 1736-37b. Copies of letters to the Bishop of Waterford, vol. IL British Library Add. MS. 15774, 133ff. Milles J. 1737a. Copies of letters to the Bishop of Waterford, vol. III. British Library Add. MS. 15775. Milles J. 1737 b. Letters to the Bishop of Waterford. British Library Add. MS. 22977 (which includes letters not in Milles 1737 a). Milles J. c. 1750. Printed 'Queries for the County of Devon'..., with the answers received. Bodleian MSS. Top. Devon b.1-2. Milles J. c. 1760. [A parochial history of Devonshire in alphabetical order of parishes]. Bodleian MSS. Top. Devon c. 8-12. Nagel A. 1747. Beschreibung des auf allerhöchsten Befehl ihro Maytt: des Rom: Kaysers und Königs Francisci I. unter suchten Ötscher-Berges und verschiedener anderer im Hertzogthum Steyermarck befindlich — bisher vor selten und verwunderlich gehaltenen Dingen. Wien, Nationalbibliothek Hs. N.7920, ii+50ff. Nagel, A. 1748. Beschreibung deren auf allerhöchsten Befehl ihre Rom. keyserl. und königl. Maytt. Francisci I, unter suchten in dem Herzogthum Crain befindlichen Seltenheiten der Natur. Wien, Nationalbibliothek Hs. 7854. ii-h97ff. Naraglav, D. 1977. Zgodovinski pregled raziskav osamljenega krasa v Savinjski dolini. Naše jame (18) for 1976, 17-22, Ljubljana (p.l8). Naraglav, D. and Kvas, S. 1973. Škodavnica. unpublished report in Cave Kataster of the Karst Research Institute, Postojna, [5] pp. Natek, M. 1976 a. Jeronim. Pp. 495-496 in Krajevni Leksikon Slovenije 3, ed. R. Savnik. Ljubljana, Državna Založba Slovenije. Natek, M. 1976b. Vransko. Pp. 534-536 in Krajevni Leksikon Slovenije 3, ed. R. Savnik. Ljubljana, Državna Založba Slovenije. Penecke, K. 1904. Die ersten in Steiermark aufgefundenen Höhlen-Koleopter-en. Mitteilungen des Naturwissenschaftlichen Vereines für Steiermark 40 Jahrgang 1903, [lx]-Ixi, Graz. Pococke, R. 1736-37. Journal of travels, vol. XX [journal in the form of letters to his mother]. British Library Add. MS. 22997. Pococke, R. 1737. Journal of travels, vol. XVL the duchies of Styria, Carinthia, Göritz, Carniola, and Cilh. British Library Add. MS. 22993, 139ff. Pococke, R. 1743-45. A description of the East, and some other countries. London, printed for the author by W. Bovver, 2 vols. Pococke, R. 1750. Travels in England, in 1750. British Library Add. MS. 15800 (ff.83-83v). Pococke, R. 1751. Journal of travels in England and Wales. British Library Add. MS. 22999 (ff.l7-19v). Pococke, R. 1754-1755. Bescreibung des Morgenlandes und einiger anderer Länder. Erlangen, 3 vols. Pococke, R. 1772-73. Voyages... en Orient, dans l'Egypte... Neuchätel, 7 vols. Pococke, R. 1887. Tours in Scotland 1747, 1750, 1760 from the original MS. and drawings in the British Museum, ed. D.W.Kemp. Edinburgh, The Scottish History Society, Ixx -1- 375pp. Pococke, R. 1888. The travels through England during 1750, 1751 and later years, ed. J. J. Cartwright, I. London, Publications of the Camden Society, New Series, 42. Pretner, E. 1937. Škadavnica. unpubhshed report in Cave Kataster of the Karst Research Institute, Postojna, [5] pp. Radešček, R. 1993. Vodnik po poštarski jamski poti. Ljubljana (pp.80-82). Schallenberg, C. [1592]. Khuertze Relation wie der Perg Oetscher von der obersten höhe biss hinab zu den hollen cauernis uersus meridiem... Wien, Niederösterr. Landesarchiv Hs. 78, vol. 2, ff.488-503 (printed in Schmidl 1857, 199-213). Schmidl, A. 1857. Die Höhlen des Ötscher. Sber. Acad. Wiss. Wien, Math.- Naturwissen. Classe 24 (2), 180-230. Štorman, F. 1991. Turistični razvoj jame Pekel. Naše jame (33), 115-116, Ljubljana. Valvasor, J. W. 1689. Die Ehre dess Hertzogthums Crain. Ljubljana, 4 vols. Vischer, G. M. 1681. Topographia ducatus Stiriae. Gradec (plate 7). W[roth], W. 1896. Pococke, Richard (1704-1765). Pp.12-14 in The Dictionary of National Biography 46. London, Smith, Elder. KAKO STA ANGLEŠKA POPOTNIKA 1737 RAZISKOVALA JAMO ŠKADAVNICO Povzetek Manjša jama Škadavnica leži 1,5 km SZ od Vranskega, med Ljubljano in Celjem v Sloveniji. Sestavlja jo en sam podzemlejski prostor, velik 41 x 34 m. Do sedaj se je mislilo, da je prvi dokumentiran obisk jame iz 902, ko so v njej lovili jamske živalice. Enako se je verjelo, da je prva jama, ki je omenjena v literaturi iz SV Slovenije, jama Pekel okoli 1860. Ta prispevek predstavlja in tudi ponatisuje podrobni zapis o obisku dveh angleških popotnikov 13. julija 1737. To sta bila Richard Pococke (1704-1765), kasnejši škof v mestu Ossory in kasneje v Meathu na Irskem, in Jeremiah Milles (1714-1784), kasneje dekan v angleškem mestu Exeter. Popolnejši opis njunega obiska, ki je ponatisnjen v dodatku, je iz Pocockovega popotnega dnevnika v rokopisu (1737), je pa na kratko omenjen tudi v njegovi knjigi (1743-45) in v njegovih (1736-37) ter njegovega tovariša Millesa (1736-37 b) pismih. Moža sta že prej, od 1733 do 1734, potovala skupaj. Slovenijo sta obiskala med potovanjem, ki sta ga pričela 1736 in na katerem sta obiskala velik del celinske Evrope. V Sloveniji sta bila 20 dni, med 7. in 23. julijem ter ponovno 25. in 26. julija ter 4. ali 5. avgusta. Pot ju je vodila preko Gorice v Idrijo, Ljubljano, Celje, v Cerknico, v Postojno in iz Trsta v Koper, Izolo Piran in na Socerb. Posebej ju je zanimalo Cerkniško jezero in 4 jame v okohci Postojne, o katerih sta pisala veliko več, kot pa o drugih krajih, ki sta jih obiskala. Konec leta 1737 se je Milles vrnil domov, medtem ko je Pococke šel še v Egipt, Izrael, Libanon, v Turčijo, Grčijo, na Ciper in na Kreto, preden je odpotoval preko Evrope nazaj v London, kamor se je vrnil 1741. Da ga zanimanje za jame ni minilo, dokazujejo misli na jame tudi v drugih deželah. Tudi na kasnejših potovanjih po Angliji in Škotskije obiskal več jam daleč izven njegove poti. Tudi Milles je ohranil zanimanje za jame. Njuno zanimanje za jame ni pomembno le za krasoslovce. ampak tudi kot primer redkih popotnikov, ki so se zanimali tudi za druge zanimivosti, ne le ustaljeno za umetnost in starine. Pocockov opis Škadavnice je zelo podroben in natančen, tako da jame, ki jo je videl, ni težko določiti po legi, merah in opisu. Tak natančen opis je nenavaden za tedanje čase. Poleg tega je obiskal tudi razmeroma majhno jamo brez posebnosti zgolj v lastno zabavo. Poleg Škadavnice si je ogledal tudi kraški izvir Pogreško jamo ter omenja graščino Podgrad (Burgstall), ki je še vedno bolj ah manj taka, kot jo je videl Pococke. REMARK: In April 1996, after the above paper was written and while revising the plan for pubhcation, F. Drole of the Karst Research Institute ZRC SAZU found several fragments of pottery in a narrow passage leading from among the breakdown blocks at the NW side of Skadavnica Cave. After cleaning and treating them we estabhshed that they all belong to one pot. The partly preserved pot has a hp inchned outwards and its edge is shaped. The pot's shoulders are slightly embossed. The clay contains a lot of sand and is well baked. The colour outside and inside passes irregularly from grey-brown to black. The outer surface of the pot is decorated by a comb or twig brush before being baked. Due to its shape and decoration the pot may be dated as of Late Antiquity between the 4th and 5th centuries. (By Alma Bavdek, Museum of Postojna) r Fig. 4: The entrance of Škadavnica cave, October 1997 (phot. J. Hajna, IZRK collection). Fig. 5: The main chamber of Škadavnica (phot. J. Hajna, IZRK collection). Fig. 6: Podgrajska graščina, 3 October 1995 (phot. J. G. Shaw). Fig. 7: The rising at Pogreška jama, behind Podgrajska graščina, October 1997 (phot. J. Hajna, IZRK collection). ACTA CARSOLOGICA XXVI/2 21 225-247 LJUBLJANA 1997 ROBERT TOWNSON, TRAVELLER IN HUNGARY IN 1793 - HIS LIFE AND WORK ROBERT TOWNSON, POPOTNIK PO MADŽARSKEM LETA 1793 - NJEGOVO ŽIVLJENJE IN DELO TREVOR R. SHAW Izvleček UDK 55(439)(091):929 Townson R. IVevor R. Shaw: Robert Townson, popotnik po Madžarskem leta 1793 - njegovo življenje in delo Robert Townson (1762 - 1827) je študiral medicino, kemijo in naravoslovje na univerzah v Edinburgu, Parizu, Dunaju in Göttingenu in bil imenovan za častnega doktorja prava v Edinburgu leta 1796. Bil je na petmesečnem potovanju po Madžarski in Slovaški ter leta 1797 objavil knjigo Travels in Hungary. V tem delu opisuje jame pri Aggteleku, na Silicki planini ter brezna v Alsö-hegy. Dodana je tudi geološka karta, sestavljena na podlagi Townsonovih lastnih opazovanj. 1798 in 1799 je izdal še deli geološke in naravoslovne vsebine. 1807 se je izselil v Avstralijo. Ključne besede: Townson, speologija, geologija, zgodovina, biografija, objave, Madžarska, Slovaška, Baradla, helektit. Abstract UDC 55(439)(091):929 Townson R. Trevor R. Shaw: Robert Townson, traveller in Hungary in 1793 - his life and work Robert Townson (1762 - 1827) studied medicine, chemistry and natural history at the universities of Edinburgh, Paris, Vienna and Göttingen and he was made an honorary Doctor of Laws by Edinburgh in 1796. He made the 5-month journey in Hungary and Slovakia which resulted in his Travels in Hungary (1797). Besides describing the caves at Aggtelek and Silica, and mentioning the Also-hegy shafts, this book contained a very early geological map, prepared by Townson from his own observations of rocks. Other books on geology (1798) and natural history (1799) followed. Then in 1807 he emigrated to Australia. Key words: Townson, speleology, geology, history, biography, publications, Hungary, Slovakia, Baradla cave, helictite. ' Old Rectory, Shoscombe, BATH BA2 8NB, U. K. INTRODUCTION Robert Townson's book Travels in Hungary... (1797a) is well known in Central Europe for its account of his visits to caves in Hungary and Slovakia. The extracts containing the descriptions of Baradla cave at Aggtelek, the Silica ice cave and the open shafts in the Also-hegy plateau have frequently been reprinted (e. g. in Denes 1972; and Hadobas 1991; 1992) with topographical and speleological comment. For convenience, and to make Townson's text more widely accessible, they are reprinted here as Appendix I. There has previously been little written on Townson's geological background, and much of the biographical information provided has been incorrect. Indeed, Townson's life has hitherto remained something of a mystery. What has been published about him in Europe has been largely wrong and seriously incomplete. His place of birth, for example, is recorded in The Dictionary of National Biography (Carlyle 1899) as "probably... Yorkshire", with no year given. Britten & Boulger (1914; 1931), Desmond (1977) state that he was born in Shropshire, again with no year. Goodin (1967) has him born in 1763; Hadobas (1992) states "He died in 1799". None of these 'facts' is true. This paper therefore concentrates on his hfe, work and travels. In so doing it adds 28 years to the hfe previously recorded in European biographical dictionaries, takes him to a successful new career in another continent, and provides a portrait. A further intention is to provide a fuller picture of Townson himself - his interests, abilities and achievements - so as to throw more light on the man that travelled in Hungary, the quahty of his observations there and the authority with which he wrote on geological matters. BIRTH AND YOUTH, 1762-1782 The clue to new sources of information on Townson's life came to the present author when he was using the much revised second edition of A Biographical Index of deceased British and Irish Botanists (Britten & Boulger 1931). Here, unhke the entry in the first edition of 1893 (one of the sources of the erroneous entry in the Dictionary of National Biography), is the key phrase "d[ied] Australia". No date of birth was given and much of the other information was incorrect but that one simple statement led to the examination of Australian pubhcations and other sources in Australia. In the course of this, I learned that my friend Dr Hugh Torrens, geologist and historian of science at the University of Keele, was already aware of Townson's Australian existence and had done extensive research in the course of preparing a revised entry for The Dictionary of National Biography (as yet unpubhshed). Much of the biographical information in this paper is derived from his published work. Robert Townson was born, not in Yorkshire or in Shropshire, but in Richmond near London. Vallance & Torrens (1984) have investigated parish registers of baptisms, an act of parliament and family divorce papers, and establish that: Robert Townson was born between January and March 1762 at Spring Grove, Marshgate, Richmond, Surrey and baptised there on 4 April 1762. His parents were married well over four years later at Richmond on 23 December 1766. His father John (c. 1720-1773) was a London merchant and insurer; his mother Sarah Shewell (1731-1805) came from a family with... connections with London brewing and publishing companies. Robert's father died when he was only ten years old. He served an apprenticeship in Manchester and then, from 1777, lived with his brother-in-law, the Rev. John Witts (1750-1816), at Cardington near Church Stretton in Shropshire. UNIVERSITIES AND EUROPEAN TRAVEL, 1783-1795 From 1783 to 1787 Townson travelled on foot through France and Italy to Sicily, and on his return from there he attended lectures in Paris on chemistry and probably on mineralogy also. In December 1789 he enrolled as a medical student at the University of Edinburgh, where he remained for two years without taking a medical degree. Later, however, on 11 April 1796, he was made an honorary Doctor of Laws (LL. D.) by that University (Jo Currie, pers. comm. 1994, quoting the Senate Minutes). This is likely to have been in recognition also of his achievements elsewhere in Europe by the university of what had then become his 'home' town. This LL. D. degree was printed after his name on the title pages of all his books. While at the University he joined the student Natural History Society, appearing on the membership list of 7 January 1790 and presenting two papers on local geology which will be referred to again later, along with his other publications. In 1791 he was elected a Fellow of the Royal Society of Edinburgh, an honour he also used on his title pages. The influence on Townson of his friends and teachers at Edinburgh will be referred to at the end of this paper. In 1791 they recommended that he be appointed as naturahst to accompany a new Lieutenant-Governor to Canada. This did not happen so he travelled in Europe again, via Uppsala (Sweden) and Copenhagen (Denmark) to Göttingen (Germany). There he enrolled as a student in the Department of Natural History on 19 December 1791 (Seile 1937, and Ulrich Hunger, pers. comm. 1994). Although The Dictionary of National Biography (Carlyle 1899, Desmond 1977) credit him with becoming a Doctor of Medicine there in 1795, and the Australian Dictionary of Biography (Goodin 1967) states that he was made a Doctor of Civil Law (DCL) there in the same year, Hunger (pers. comm. 1994) says that there is no evidence for either degree; furthermore the absence of any leaving certificate suggests that he did not take any degree there at all. It is significant that neither MD nor DCL degrees are printed on the title pages of his books. During his three and a half years at Göttingen University, Townson spent the winter of 1792-93 in Vienna, where he studied the respiration of amphibia. A paper written there on that subject, and another completed later in Göttingen, where later published. Leaving Vienna on 5 May 1793, he set off on his Hungarian travels, returning in the middle of October. The Hungarian tour, his geological observations there, and the resulting book, are considered separately. WRITING, 1795-1806 In May 1795 Townson returned home from Göttingen to Edinburgh. He worked there on his Hungarian book and attempted, unsuccessfully, to get himself appointed by the East India Company to study the physical geography, mineralogy and natural history of India (Townson 1797a, p. vi; 1799, p. 150). It was at this time, as already mentioned, that his honorary LL. D. was awarded by the University of Edinburgh. His Travels in Hungary... was published in 1797 and two other books, also discussed later, in 1798 and 1799. After this he started preparing a "County History of Yorkshire", but it was never published. AUSTRALIA, 1807-1827 When his mother died in May 1805 Townson decided to emigrate to Australia. His elder brother John (1760-1835) had served in New South Wales as a military officer from 1790 (Austin 1967) and returned there as a settler in 1806. Robert followed him, arriving in July 1807. As a naturalist and scholar, and known to the influential Sir Joseph Banks who had accompanied Captain Cook's expedition round the world in 1768-71, he was promised grants of land and also given a sum of money to buy books and laboratory equipment for use in the still young colony (where the first settlers had landed only 18 years before). Strangely, the then Governor of New South Wales (WiDiam Bligh, who had been on Cook's third voyage and is known as victim of the Bounty mutiny at Tahiti in 1789) seemed opposed to Townson. The promised grants of land were not made and his scientific work was hindered (Goodin 1967). Thus alienated, he joined other influential and dissatisfied settlers in forcing the deposition of Governor Bligh. Bligh's replacement, Lachlan Mac-quarie was governor from 1808 to 1821 and his name is remembered in the Macquarie River and Macquarie Island. The grants of land were at last made in 1810, and Townson established a farm at Varroville, near Sydney, as described later. Perhaps still affected by the treatment he had received from Bligh, Townson seemed to lose almost all interest in scientific matters, and became discontented and unsociable. Many letters of this period are in the Mitchell Library in Sydney. He devoted himself almost exclusively to developing his farm, where he raised cattle and sheep, planted experimental crops and established a thriving vineyard (Anon. 1827; 1963: Leister, pers. comm. 1995). He was associated with the Philosophical Society in Sydney about 1820 (Finney 1993) but this was more a social club for those opposed to Governor Macquarie than a learned society. When Macquarie left in 1821, Townson became a more norm.al member of the community. He was vice-president of the Agricultural Society of New South Wales (Goodin 1967) and worked on its committees, he supported the foundation of a Sydney Dispensary to provide free medical attention for the poor, gave dinners at his home, and in 1826 was appointed a magistrate. He died at Varroville on 27 June 1827, aged 65, and was buried on 2 July at Parramatta. PORTRAIT An oil painting of Robert Townson in his later years (Fig. 1) was made by Augustus Earle (1793-1838), who a few years later was the artist in HMS Beagle during her South American voyage with Darwin. The picture is undated but must have been painted between 1825, when Earle arrived in Australia, and 1827 when Townson died. It was presented to the Australian Museum in 1873 and transferred to the Mitchell Library, in the National Library of New South Wales, in 1961. Although untitled, the recorded identity of the sitter is supported by the lettering on the spines of the books on the table by his right hand, all of which were written by him. Fig. 1: Robert Townson between 1825 and 1827, a portrait by Augustus Earle. Oil painting 81,3 x 64,5 cm. Reproduced by permission of the Mitchell Library in Sydney. VARROVILLE, HIS HOME IN AUSTRALIA The delayed grants of land near Sydney were made by Governor Macquarie in 1810 (Anon. 1963), but there still was some further administrative delay after that. The area granted, on which Varroville was built and the farm created in the present-day district of Minto on the south-west outskirts of Sydney, was 1000 acres (404,7 hectares) and there was more land near Botany Bay. Macquarie visited the place in 1810 and remarked in his diary that Townson's land and some more nearby "are by far the finest soil and best pasturage I have yet seen in the Colony" (Anon. 1963). Townson named his property Varroville after the Roman agricultural writer Marcus Terrentius Varro. Just what remains of Townson's house is not completely clear. There is no documentary evidence to prove that he built the [present] house at Varroville, but the two owners after Dr. Townson were not long in occupation, and it is reasonable to assume that Townson, a wealthy man, erected a comfortable house for himself on his land (Anon. 1963, p. 25) Recent information received from Campbelltown City Council (1995) is accompanied by a map (Fig. 2) in which one building is labelled "House, c. 1816 (Robert Town-son's)" and there is also, nearby, "Approx. site of house, c. 1810". A wooden 'slab hut' of about 1810 does exist but whether it was already on the land when it was granted to Town-son, or whether he had it built as temporary accommodation, is not known. The house of c. 1816 (Fig. 3) also survives and is still occupied. The main house, "Varroville" (Fig. 4), a little to the north, was formerly thought to have been built, or at least much modified, in 1859. Its main cha-Fig. 2: The buildings at Varroville. A recent map sup- racter, including the plied by the Campbelltown City Council cast iron columns on Fig. 3: The house of c. 1816-1820 at Varroville, which Townson probably occupied while the larger house was under construction. Photographed in 1950. Fig. 4: Part of the south side of the main house at Varroville. The cast iron veranda columns on the right were added in 1859, but at least part of the house was built in the 1820s. Photograph by Ian Leister 17 Sept. 1995. the east side (Fig. 4), are of that period. The present owners, Kenneth and Virginia Pearson-Smith, who bought the property from the National Trust, are both architects and they beheve that the basic building is older. The original wooden roof tiles exist under parts of the iron roof and that the practice of using these was discontinued in the 1830s. The two west wings, at least, therefore date from some time in the 1820s. Although the front section was probably modernised in 1859, Varroville was one of the houses in the area that was used for entertaining before that, so a sizeable house must have already existed (Ian Leister, pers. comm. 21 Sept. 1995). So, to what extent the present house was known to Townson, and whether he lived in succession in the c. 1816 building and then the present building before its later modification, is uncertain. A plan of the present house, and drawings of its appearance from all four sides, are printed in Anon. (1963). Later owners, after Townson's time, included Charles Sturt the explorer who in 1828 had been almost certainly the first person to explore the caves at Wellington, in New South Wales. THE 1793 TRAVELS IN CENTRAL EUROPE Townson's travels in Hungary and Slovakia during 1793 resulted not only in his classic descriptions of the Baradla and Silica caves, but also, and probably more importantly for the historian of geology, the very early geological map which accompanies the book and the observations on rocks which occur throughout. There are also accounts of towns and the people he met, travels over mountains, visits to mines and remarks on vine growing and wild plants. His route, described below, is marked in red on his map. Where the spelling of place names differs between those on the map and in the text, the latter are used here. The equivalent modern names are given in brackets. From Vienna he crossed the border into Hungary and passed through Oedinburgh (Sopron), Komorn (Komarom) and St. Andree (Szentendre) to Bude and Pest (Budapest). After a spell there he travelled east to Gyongyes (Gyöngyös) and through Debretzin (Debrecen) to Gross Wardein (Oradea in Transylvania). Turning back there, he passed through Debrecen and went on to Tokay (Tokaj) before crossing the present-day frontier to Caschau (Košice) in Slovakia (which was then a part of Hungary). It was while he was at Košice that he was told of the caves and consequently visited those at Akteleg (Aggtelek) and Szihtze (the ice cave at Silica, now in Slovakia). He also saw, near Nadaska (Tornanadaska), the entrances of some of the deep shafts on Also-hegy (not named in the book or on the map). From Rosenau (Rožnava) he travelled north to Poprad and across the High Tatra to visit the Wieliczka salt mine and the nearby city of Krakow in Poland. Returning south again across the Tatra, he was unable to make his planned visit to the Demänova ice cave and went on south to the mining towns of Schemnitz (Banska Stiavnica) and Kremnitz (Kremnica) which interested him particularly. On through Neitra (Nitra) to Presburg (Bratislava) and back to Vienna. THE BOOK "TRAVELS IN HUNGARY" AND ITS GEOLOGICAL MAP The resulting book, Travels in Hungary... (Fig. 5), is a substantial volume of xix + 506 pages, measuring about 27 cm by 21 cm. Besides the map, with the areas containing different rock types outlined in colours, there are 16 engravings, of hills, the entrance to the Silica ice cave, a section through the Wieliczka salt mine, minerals, insects and plants. The text provides not only a general account of his travels, including the visits to mines and an alum works, but throughout he is constantly describing rocks, soils, "pseudo-volcanic craters", etc. The cave descriptions (see Appendix I) show no particular geological insights. He remarks that they are "like all that I have seen, in a primitive or unstrati-fied compact lime-stone... I think they arise from the rock, whatever that might be, giving way which supports them." On another page he writes that the individual chambers in the Barad-la cave "have been formed by the falhng in of the rock"; so probably he means no more than that caves are enlarged by roof breakdown. When going into the Silica ice cave (Fig. 6), he is concerned to counter the common view, held by Bel (1739) and others, that ice caves are colder in summer than in winter and that it is therefore in summer that the ice is formed. Townson pointed out that the apparent cold of such caves in summer was due to the contrast with the warm air outside. When he visited the Sihca cave on 16 July the air temperature inside was 0° C and, TRAVELS H U N G A R Y, A SHORT ACCOUNT Ol» VIENNA IN THE YEAR 1793v ROBERT TOWNSON, L. L. D. ■ r. R. S. EDIXB. BTC. BTC, ETC. ILU!S.T&A.TEI> WITH A MAP AHD SIXTEEN OTHEt!, CQPPSR.fl.ATEÄ. LONDON^ PRINTSI) POR O, O. AND 3. ROBlJfSON, PATaaNOSTEIt-RO\r^ Fig. 5: The title page of the book describing Townson's tour in Hungary and Slovakia, Fig. 6: The entrance of the Silica ice cave, opp. p. 319 of Townson's book of 1797. although there were large masses of ice, they were wet and dripping as they very slowly melted. He believed that the ice is definitely formed in winter, though there is some delay before the low outside temperatures have an effect in the cave. Thus ice formation does not commence immediately with the beginning of winter, and the same slow reaction of the cave to external temperatures allows the ice to persist into the following summer. He held this common-sense and largely correct view fifty years before the theory of summer freezing was finally overcome. His idea had been put forward a century and a quarter earlier by Steno (1969) in 1671, but only in unpublished letters which Townson could not have seen. It is the map, with "Petrography... added by the Author" (Fig. 7), which makes the book of wider significance than just a regional description. On the map are distinguished 13 kinds of rock types, including 'granit', volcanic tufa, stratified and unstratified sandstone, 'shistus', sahne hmestone, unstratified compact limestone, stratified limestone, and calcareous tufa. It appears to be the first such map published in England. The somewhat similar "Mineralogical H N er K ' T, l>y tlie A TJ t h o B. . . ■ : Fig. 7: The title block of the map in Townson's 1797 book. map, of the western counties of England" was published later in the same year (Maton 1797) with the different rocks distinguished by cross-hatching instead of colour. In fact, Maton's whole book is rather similar to Townson's in that the text includes many geological observations made in the course of his journeys in south-west England in 1794 and 1796. Vallance & Torrens (1984) point out that an earlier German example of such a map occurs in a book by Charpentier (1778), which Townson had seen in 1792 in Göttingen. The arrangement of rock types in the key does not show any particular stratigraphic order, but some indications of this are given in the text where certain rock types are described as occurring between two others. Presciently he wrote: When mineralogy and physical geography shall be more cultivated, which one day they certainly will, these maps will become common, and their union will give an easy and visible representation of the coating of our globe, that is, of its rocks and strata and their relative situations. (Townson 1797, p. xii) He went on to say that this would be of practical use when particular minerals were recognized as occurring in certain strata. The basic map from which Townson prepared his modified version and then added to it the geological information, was pubhshed by Johann Matthias Korabinsky in 1791. This original Korabinsky map showed the location of more caves than the one produced by Townson (Plihal 1992), who had presumably decided to simphfy his in places so that it was able to receive his additional information without becoming overcrowded. His intention was evidently to produce a good 'petrographic' map from his observations throughout the tour, rather than a location map for the places he had visited. Thus, although the map in the 1797 book does have a cave symbol at "Szilitze", there is neither symbol nor name at Aggtelek. The influence of Townson's Travels in Hungary..., which in English appeared only in a single edition, was greatly extended by its translation into French and Dutch. Editions in French were published in Paris in 1799 (Voyage en Hongrie, 3 vols.) and 1803, and at Leipzig in 1800; Dutch editions (Reize in Hongarijen) were issued in 1800 and 1801 at Den Haag (Darvas 1964). It was the French language editions which made the book known in Hungary where little English was then spoken (Hadobas 1992). The description of the Baradla cave at Aggtelek, only, was translated into Hungarian and included in Almasi Balogh's (1820) study of the cave. It may have been from this that Imre Vass (1831a; b), who wrote an entire book about the cave, learned about Townson's visit. Contemporary reviews of Travels in Hungary... do not add to our knowledge of the book. Certainly, as was their purpose, they made it known to potential readers. They assess it from the point of view of the general reader, and not that of a geologist, speleologist or historian of science. The lengthy review by Thomas Beddoes (1797) in The Monthly Review is mainly descriptive of the journey, with many quotations; and a single-paragraph review elsewhere (Anon. 1798) laments that although the book covers "ground untrodden by any of our late tourists", its author has "unclassical taste" and was presumably considered at fault for examining rocks rather than the classical architecture of the Grand Tour. TOWNSON'S OTHER PUBLICATIONS All Townson's publications, both before and after his Travels in Hungary..., reflect his interest in natural history and especially mineralogy and the wider subject of geology. His lectures to the student Natural History Society at Edinburgh in 1790 were not printed until 1799, so his earliest pubhcation was a botanical paper read to the Linnean Society in London in 1792 and printed in their Transactions two years later (Townson 1794). It was reprinted in his book of 1799, but otherwise his interest in botany diminished with time, though there was a botanical appendix of 18 pages in the Travels..., as well as a slightly longer one on entomology. These publications justified his inclusion in the book, A Biographical Index of deceased British and Irish Botanists (Britten & Boulger 1931), which led to the writing of the present paper. Townson's papers on the physiology of amphibia, already mentioned as being written at Vienna and at Göttingen in 1793 and 1795 respectively, were published separately in Göttingen (Townson 1794, 1795). An English reviewer (Anon. 1796) comments that "These tracts contain, in a small bulk, a very interesting series of curious and accurate observations". Both were reprinted, in Enghsh, in Townson's book of 1799. An extract from his 1797 Travels in Hungary, describing a method of bread-making at Debrecen, was pubhshed separately as a short paper in the same year (Townson 1797b). The Philosophy of Mineralogy (Townson 1798) (Fig. 8) is a book of 233 pages overall and covers some aspects of what would now be called geology, as well as mineralogy. The 1790s were a particularly interesting time for anyone PHILOSOPHY OP - MINERALOGY. nr ROBERT TUfr'NsoN, I.L.I>. E. 2. S, E4iitl!. (H!.-—Auilitjf it Tr-Iiili tiirajjK ilaug^y. to study and write about these subjects. There were two conflicting schools of thought about how rocks had originally been formed. The Neptunists accepted Werner's belief, published in 1787, that all rocks had been formed by deposition from the primaeval ocean. The Plutonists, on the other hand, followed Hutton (1795) in thinking that the earliest rocks were the result of volcanic action, and that only later were fragments eroded from these laid down as sedimentary rocks in the sea. Townson was mainly a Neptunist, though with some reservations. The 1790s were also a period in which oxygen was being recognized and phlogiston rejected, and the significance of carbonic acid in dissolving limestone was being reahsed. Townson himself (1798, p. 114) wrote: Chemistry of late years has made a most rapid progress, and every branch of human knowledge within its reach has been advanced by it. Mineralogy should be the first to speak its eulogium... Chemistry has done much for mineralogy: it has raised it from a frivolous amusement to a sublime science... On page 26 of the same book he speaks of carbonic acid "being a constituent of limestones... and acidulous waters". He does not comment on its role in the formation of speleothems. In his Hungarian travels (1797) he was more concerned with description than explanation, and The Philosophy of Mineralogy is an outline of the subject rather than a treatise. A reviewer (Anon. 1799a) criticised it for just this, but its author explains (p. ix) that this was because there was insufficient support for the larger work, to be called "Elements of Mineralogy", that he had announced the year before (Townson 1797a, between pages 494 and 495). Stalactites are mentioned in The Philosophy... but only as examples of minerals of a particular colour (p. 122) and of one of the shapes in which minerals occur (p. 140). Tracts and Observations in Natural History (Townson 1799) (Fig. 9) is a collection of papers of various lengths. The first two parts of his "Physiological Observations on the Amphibia", already published in Latin in 1794 and 1795, LOXOOlV! puiy fRii jto 'rili: AyriiOK. soL!> My jeitx wHj-rr.j f[.iet-si-ttssT. im. Fig. 8: Townson's 1798 book on mineralogy and geology. Tracts and Observations NATURAL HISTORY PHYSIOLOGY. liV ROÜEST TOWNSON^ L.L.I). grrirtüfortbtSCiilliati S8tB 3V J. Klll/E, FLfII-iTRlI-T, are printed here in English together with a third part, previously unpublished. "Memorandums on the rocks in the immediate vicinity of the City of Edinburgh" is based on the two papers he read to the student Natural History Society at Edinburgh in 1790. The Linnean Society paper on the growth of plants is also reprinted. Besides these, the book contains 21 original papers of which the most important is "A sketch of the Mineralogy of Shropshire". There is also the short "Remarks on the Flos-ferri", reprinted here as Appendix II, to make it available to karst researches. Flos ferri is normally a fine quill-like form of ant-hodite occurring in clusters, but Town-son's description suggests that he is thinking of helictites. He is unable to explain their formation, though stalactites, he thinks, result from simple evaporation of water. A reviewer (Anon. 1799b) may have found most of the book too technical: the Shropshire mineralogy is appreciated, but the papers on amphibian respiration are considered too lengthy, and the rest is "unimportant matter". After this, Townson planned to write a three-volume "County History of Yorkshire" (Anon. 1802). He worked at it until 1805, when it was seen that there was insufficient demand to cover the cost of publication (Vallance & Torrens 1984). By then, too, he was planning to emigrate. A few years later it was recorded as having been an "unsuccessful attempt" (Anon. 1809). At the end of his mineralogy book Townson (1798, p. [220]) announced as žpreparing for the Press' a book to be called "Benevolence, considered as a source of happiness" but this too seems never to have appeared. It has been stated (Vallance & Torrens 1984) that "The Poor Man's Moralist", which reached a 3rd edition in 1799, was written by Robert Townson. The British Museum General Catalogue of Printed Books firmly attributes this to the Rev. Thomas Townson (1715-1792), but in view of the previous paragraph it might be questioned whether its identification of the "Dr. T." of the title page is correct. ICWDON. 'm- Fig. 9: Townson's 1799 book on natural history and geology, which includes his paper on flos ferri. CONCLUSION This paper provides information, not hitherto pubhshed in the field of karst studies, describing Robert Townson's hfe after he apparently "disappeared" from European view in 1799. He emigrated to Australia, became a successful vine-grower and farmer, and died in 1827. By drawing heavily on a paper published by Vallance & Torrens in 1984, together with other sources, it has been possible to provide more information about his earlier life in Europe, and to resolve some of the anomalies in the standard biographies. Throughout the whole of his life up to his emigration in 1807, it will have been seen that Townson's main and continuing interest was in natural history and especially in mineralogy and geology: a) 1789-91. The friends who influenced him when he was studying at the University of Edinburgh included Joseph Black (Professor of Chemistry), James Hutton (geologist), Alexander Monro (Professor of Anatomy), Daniel Rutherford (Professor of Botany) and John Walker (Professor of Natural History). Later he came to know Sir Joseph Banks, for 45 years President of the Royal Society. b) 1790. The two papers he presented as a student at Edinburgh were on local geology. c) 1791. He was recommended for a post as naturalist in Canada. d) 1791-95. He studied in the Department of Natural History at Göttingen. e) 1793. Geological observations were an important part of his travels in Hungary. f) 1795. The studies he proposed to carry out in India were to be on its mineralogy, geology and physical geography. g) 1797. Publication of Travels in Hungary... with its petrographic map. h) 1798. Pubhcation of The Philosophy of Mineralogy. j) 1799. Pubhcation of his "Mineralogy of Shropshire", for which much of the research had been done some ten years earlier, with a collection of other natural history papers including "Remarks on the Flos-ferri". k) 1802. Intention to publish on the geology of Yorkshire. The 1790s were a particularly active time in the development of geology, both because advances in chemistry were making it possible to understand more about rocks and minerals and because the fundamentally opposed ideas of the Neptunists (including Townson) and the Vulcanists explained their origin in totally different ways. So it was an exciting time to be a naturalist and geologist. Whether or not his geological background made Townson any better an observer or recorder of caves is open to question. His view that caves "arise from the rock... giving way..." certainly did not advance knowledge of speleogenesis. On the other hand, he measured temperatures deep inside the cave at Aggtelek "with a view to a scertain the medium temperature of this part of Hungary". And in the Sihca ice cave his observations and temperature measurements enabled him to refute Bel's (1739) statement, sent to the Royal Society, that the ice formed there during the summer. Nevertheless his purpose in the Travels in Hungary... was mainly to describe these caves and not to conjecture how they had been formed. It was in his observation of the different kinds of rock in the country he visited, showing them on his žpetrographic' map and occasionally noting their relative positions, that his geological experience was of benefit. At least the caves were seen by someone who was familiar with geological phenomena, and it may be that this was why he visited several during a relatively short visit. The shafts on the Also-hegy plateau would have been unlikely to attract the attention of a more conventional tourist. ACKNOWLEDGEMENTS I am particularly grateful to Dr Hugh Torrens of the University of Keele, who has been working on Townson's life for many years, for sending me copies of his publications. Kenneth and Virginia Pearson-Smith, the owners of Town-son's land at Varroville, Sydney, shared some of their historical knowledge and allowed photographs to be taken; they also sent me prints from some old photographs. Ian Leister of Canberra located more historical material and made contact with the Pearson-Smiths, visiting Varroville and photographing it. Biographical information came from Miss Broughton archivist of the Shropshire Record Office, Mrs Jo Currie of Edinburgh University Library, Dr Ulrich Hunger archivist of the Georg August University in Göttingen, and the staff of the Mitchell Library in Sydney who also arranged for the portrait of Townson to be copied. Chris Howes, FRPS, made the copy photographs for publication. I thank them all. REFERENCES Almasi Balogh, P. A., 1820: Baradla utazas 1818-dik esztendöben.- Tudomanyos Gyüjtemeny 1820 (1), 63-90, Pest (cited by Hadobas 1991). Anon. 1796: [Review of] Roberti Townson Observationes physiologicae, &c.- The Monthly Review [2nd ser.], 20, Appendix 494-495, London. Anon. 1798: Literary memoirs of living authors of Great Britain...- London, R. Faulder, 2 vols. (2 : 325). Anon. 1799a: [Review of] Philosophy of mineralogy. By Robert Townson.- The Monthly Review [2nd ser.], 30, 326-328, London. Anon. 1799b: [Review of] Tracts and observations in natural history and physiology... By Robert Townson.- The Monthly Review [2nd ser.], 30, 409-410, London. Anon. 1802: The Monthly Magazine, 14 (2), Sept., 162, London. Anon. 1809: [Review oi^ The history of Cleveland... by John Graves.- The Gentleman's Magazine 79 [2] Feb., 138-141, London (p. 138). Anon. 1827: Doctor Townson [obituary].- The Sydney Gazette, 2 July. Anon. 1963: Historic buildings 3. Liverpool and Campbelltown.- Cumberland County Council, 25-29. Austin, M., 1967: Townson, John (1760-1835). Pp. 536-537 in Australian dictionary of biography 1788-1850 2, Melbourne University Press. [Beddoes, T], 1797: [Review of] Travels in Hungary... By Robert Townson.- The Monthly Review, [2nd ser.], 24, Sept., 1-9; Oct., 169-176, London (author identified by H. S. Torrens, pers. comm. 1995). Bel, M., 1739: Dias antrorum mirabilis naturae, glacialis alterius, alterius halitus noxios eructantis.- Philosophical Transactions of the Royal Society, 41 (i) no 452, 41-56, London. Britten, J. & Boulger, G. S., 1893: A biographical index of British and Irish botanists.- London, West & Newman, xv, 222 p. (p. 170). Britten, J. & Boulger, G. S., 1914: Jonathan Stokes and his commentaries.-Journal of Botany 1914, 317-323, London (p. 323). Britten, J. & Boulger, G. S., 1931: A biographical index of deceased British and Irish botanists.- 2nd edn. London, Taylor & Francis, xxii, 342 p. (p. 303). Campbelltown City Council. [1995?]. Varroville. Unpublished, 2 p. C[arlyle], E. I., 1899: Townson, Robert (fl. 1792-1799). E 133 in The dictionary of national biography 57, London, Smith, Elder. Charpentier, J. F. W., 1778: Mineralogische Geographie der chursächsischen Lande.- Leipzig, xliv, xvi, 432 p. (cited by Vallance & Torrens 1984, p. 393). Darvas, I, 1964: Adalekok az Aggteleki (Baradla) barlang bejäräsa es felterke-pezese törtenetehez, irodalmähoz es bibhogräfiäjahoz.- Karszt es Barlang, 1964 pt. 1, 1-11, Budapest. Denes, G., 1972: Az elsö irodalmi adat a tornai-Alsö-hegy zsombolyairöl.-Karszt es Barlang, 1970 pt. 1, 19-20, Budapest. Desmond, R., 1977: Dictionary of British and Irish botanists and horticultura-lists." London, Taylor & Francis, xxvi, 747 p. (p. 615). Finney, C., 1993: Paradise revealed Natural history in nineteenth century Austraha.- Melbourne, Museum of Victoria (p. 18). Goodin, V. W. E., 1967: Townson, Robert (1763-1827). Pp. 537-538 in Australian dictionary of biography 1788-1850 2, Melbourne University Press. Hadobas, S., 1991: The first detailed description of Baradla Cave in Robert Townson's book pubhshed in 1797.- The International Caver Magazine (1), 32-35, Swindon. Hadobas, S., 1992: Passages concerning caves from Robert Townson's Hungarian travelbook.- Proceedings of the ALCADI '92 International Confe- rence on Speleo History, Budapest, 1992, Karszt es Barlang, 33-36, Budapest. Hutton, J., 1795: Theory of the earth, with proofs and illustrations.- Edinburgh, Cadell, Junior & Davies, 2 vols. Maton, W. G., 1797: Observations relative chiefly to the natural history, picturesque scenery, and antiquities, of the western counties of England, made in the years 1794 and 1796.- Salisbury, J. Easton, 2 vols. Plihal, K., 1992: Caves of the Carpathian basin on old maps.- Proceedings of the ALCADI '92 International Conference on Speleo History, Budapest, 1992, Karszt es Barlang, 95-98, Budapest. Seile, G. von, 1937: Die Matrikel der Georg=August=Universität zu Göttingen 1734-1837.- Hildesheim & Leipzig, A. Lax, [vi], 935, [vii], 176, [i] p. (p. 335) [Veröffentlichungen der historischen Kommission für Hannover, 9]. Steno, N., 1969: Geological papers.- Ed. G. Scherz. Odense University Press, 370 p. (pp. 235-248). Townson, R., 1794: Objections against the perceptivity of plants, so far as is evinced by their external motions...- Transactions of the Linnean Society 2, 267-272, London, (also reprinted in Townson 1799, p. 137-146.) Townson, R., 1794, 1795: Observationes physiologicae de amphibiis.- Parts 1, 2. Göttingen, 68 p. Townson, R., 1797a: Travels in Hungary, with a short account of Vienna in the year 1793.- London, G. G. & J. Robinson, xviii, [i], 506 p. Townson, R., 1797b: The method of making excellent bread without yeast; as practised at Debretzin in Hungary.- A Journal of Natural Philosophy, Chemistry, and the arts, London, 1. Sept., 267-268. Townson, R., 1798: Philosophy of mineralogy.- London, for the author, sold by J. White, xiv, 219, [iv] p. Townson, R., 1799: Tracts and observations in natural history and physiology.-London, printed for the author and sold by J. White, ix, 232 p. Vallance, T. G. & Torrens, H. S., 1984: The Anglo-Australian traveller Robert Townson and his map of Hungarian "petrography" (1797). Contributions to the history of geological mapping.- Proceedings of the 10th INHIGEO Symposium 16-22 August 1982, Budapest, 391-398. Vass, L, 1831a: Az Agteleki barlang...- Pest, Landerer, [vi], 82 p. Vass, L, 1831b: Neue Beschreibung der Aggteleker Höhle Gömörer Comitats in Ungarn...- Pest, Landerer, 88 p. Werner, A. G., 1787: Kurze Klassifikation und Beschreibung der verschiedenen Gebirgsarten.- Dresden, 28 p. ROBERT TOWNSON, POPOTNIK PO MADŽARSKEM LETA 1793 - NJEGOVO ŽIVLJENJE IN DELO Povzetek Robert Townson (rodil se je v bližini Londona leta 1762, umrl leta 1827 v Avstraliji) je študiral medicino, kemijo in naravoslovje na univerzah v Edinbur-gu, Parizu, Dunaju in Göttingenu. Čeprav ni dokončal študija na nobeni od univerz, so ga imenovali za častnega doktorja prava v Edinburgu leta 1796. Potoval je po Italiji in Skandinaviji, nato pa je odšel na petmesečno potovanje po Madžarski in Slovaški. Rezultat tega potovanja je leta 1797 objavljena knjiga Travels in Hungary. V tem delu opisuje jame pri Aggteleku, na Silicki planini ter brezno Alsö-hegy. Delu je dodana tudi geološka karta, sestavljena na podlagi Townsonovih lastnih opazovanj. Strani, ki vsebujejo njegove opise jam so ponatisnjene v dodatku. 1798 in 1799 je izdal še deli geološke in naravoslovne vsebine. 1807 se je izselil v Avstralijo, kjer je nameraval nadaljevati z znanstvenim delom. Zaradi nesporazuma z guvernerjem države New South Wales je to opustil, nato pa se je preselil v bližino Sydneya, kjer je kmetoval in se ukvarjal z vinogradništvom. V prispevku je tudi reprodukcija njegovega portreta iz šestdesetih let in ocena njegovih knjig. APPENDIX I THE CAVE DESCRIPTIONS IN TOWNSON (1797) SAturday, Jit'y la Ih. I left Cr.r.hnv 1 i but I ngnii, left t!.e dlroil road to the Carpathi an Alps, an J nre: :t oiT to 1 :i.c wed. I V, ■a, iii- iii;ccd to this from hearing Ca rdiau, and r.rt t roin tile vtii^^a r, intr from learned doitors r.nd profciTcrs, th at at tlic dillancc of ni iiont a day's journey there ■Tere tv.-o gr cat C.11 'erns; iti otic of wlsicit water frnz" dnrirg ti.e !\:nr ■„cr, nnd k e tlmx ■cd dtirips tl,e winter: witiitl rhe other was fo v^Al thst one ni :q!it V I'at.'Jcr about in it for a n-ceia wiiho-.it finding an niJ. Sson after : leaving C, afciiaii, I cr.nu : to a r-.iarry c: the Camera •fßKi of V( •alleiio !. At Cfc ■C!, ivlicrc I cii; injed horfes, the read beg r.n to draw itcarc T tit= aod t!,c CO untry hcca:r,c :r.orc plcafa:- tl.U is cl' i-lly.! cor.l ror ntry, indian'^ ;vlie.at gcod deal cuhi' Mtcd. in til = evening I reached Nat i»=tr, the fc^it of nctir-tc's Ci'.:la;s. T1 'le iiiii s here, \vi 'licl. are very iiivr. arc of iinflrcitillfd'cc mpa^t • iilioiit at ly ptttrifaclion! but 'n is full of JjoJes ; feme of rhcfe are To čecp, and at riie iame drac lb round, that they icok. as if they had been formed by arf. I p^lTed the evening in a vtry duil iiiunner ; a rciigli gloomy pricft was come liere to be rendy to perfcnn divir.e icrvku the ncx: cay ; and though he ate copioi iHy hunfclf, he aüoyvcd none o:" the family to do fo J and tiic Countcfs, ar.d her niece, .who was a very nice girl, and fpoke very good French, who were ali ilia.t fa: down to fupper,' fafted. I was a dreadful thorn in the fide of this fellow, and vexed hitn grievoully by eating a hefuty fupper, the whole of which he fceincd to wißi to poiTcfs. Next morning I fet out again for the caverns. I travelled at t])e foot of the fame chain of hills; now and then fome Schlßus made its appearance, but in general the lately mentioned limeftone prevailed. About half way I changed my horfcs fur oxen ; but as they were only to draw me, or rather niy bsggage, over a high hill, where horfes could have gone no fafter, I did not fuficr as in the lafl horned cattle expedirion. About one o'clock I reached Aktdcg, and I took up my quarters with the Calvinift parifli minifter: he Jcnew not a word of German, much lefs French or Englifii, only the Hungarian and the Latin. Though this was Sunday, and the villagers were Calvinifts, they were dancing and making meny. I procured a guide, and ihs iäme. evening I entered the cave j but it was chiefly vnth a view to afcenain the medium temperature of llis part of Hungary. The thermometer in the /hade, in the open air, flood at 15 al)0ve 0 of Re.-uumir, but in the cave, a good way from the mouth,-immerfcd in a running flreani in different places, it flood at feven degrees; yet out of tlie water by the fide of the rock it flood at feven and an half. Shall we fuppofe that nil, or part of this water, came from mcJting fnow, which, hid in fome deep hole or cavern, had now only begun to thaw ? this would render every experiment fallacious; or Hiall we fuppofe thai the rock, however thick, was nevertheiefs afle£ted by the heat of the atmo-fphcre? As I left my thermometer an hour, it certainly, asithadbiit -a fmai; bulb, had time to take the true temperature of the medium vl'.icli -.t was in. The water in the wells in the village was eiglit degrees. The above obfcrvations, though rendered Icfs declfive by this diiVerence, agree pretty well with thofe made by Mr. Haquet on tlie jnc'dlcinaJ warm of Banfcld ; he Cays, " .if fis. o'clock In ihe morning, the water was ten degrees of Reaumur colder than the atniofphere, wliich was then 16 degrees." This brings the temperature of the waters to fix degrees, which is a degree colder than that of this cavern ; but Banfeld is about half a degree of latitude further norih, and in a more elevated fituaUon. In the morning I returned to the cavenn, to fee how far I could pcneirate into it, and to repeat my'experiment with the thermometer, but by accident this was left behind. The report here is, that this cavern extends feveral miles under the hills, and that it would rerjuire fv'vera! days to fee the whole of it. The mouth of it is at the bottom of a precipice about 150 feet high, at the wefl end of a-compact unflratified llmeßonc hill, which ruas cail and weft. Th.is entrance is about two yards broad, but fo low that I was obliged to bend conftderably to get in. I defccndcd rapidly foirafhort diflanca, and then I found myfelf in an immenfe cave, with a very lofty vault; this lias in dilTerent parts communication with other caves and paflages, and tlieie again with others. Some of thefe caverns are-cver one another ; in fome places I came to confiderable flreams of water ; in one great cave my guide conduöed me over a hill- formed-of great blocks of ftone, which moft probably had fallen down from, the roof: in one placc I had to get down a hole like the funnel of a chimney; then 1 was led into a «ave where large ftalatJ^ites, as thick as.my body, hung pendent from the roof, and I was fiiowii others where (he iides were ornamenfod la the ef tk* meat' curious Gotliic wcrkmanfcip. In fome the (lalaililes were fo thick and clofe together, that we were in danger of lofing one another if" we feparated but a few yard?. Here aged Ralač^ites, overloaded with, tl'.eir own weight, had fallen down, and lay proflrate; and there an embryo ftalaöite was juft fhooting into exigence. The moft curious cavern was one apparently of modern date; the fides, and particularly the roof, feemed as if recently feparated : and it was probably fo, fur I think moft of chefe caverns have b^en fanned hy thcr falling in of the rock:, very white and flcnder ftalaÖites were only, found here. Auoc 1 had wandered about for three cr four hours m d-.U s.'^'^fvil g^oom, and liad reached die er^d of the caverns in one diredlon, I thought it time to come out, and I dcllred my guide to return. After we had returned, as we thought, ferne way, we found no palTage further ; yet the guide was fure he was right. I thought I re-c.-gnlfed the fame rocks we had juft left, and which had prevented our pi-occeding farther, but the guide was pofitive he was in a right dh-eaicn. ' Luckily forus I had written my name cn the foft clay of iioaoin of the c , whkh had been xIm irney; hi . the guide was as and knew not wh .0 be frightened, fci .nderftn :ahi us from tl\is h>!T),r» WU8 n OF the guide, wood could I to the people cavcra,' who As ih ot get L 3f the ' ao dou had our t. way out ; we by 01 c.\rncat!n .hauaesl. and wc had left a !own the far .dllnge being .bt would ha our afTiilance had wc 1 deal alarmed for o; ■ches gone out, we'fl: nor, had any accide ■felves, though we h re he to gf •ood which M I never i )Ove, who b ne'.-like hoh icquaiotcd % ,-e taken ev. c -Aayed much h fufety, and there xtent of our joi :k, and ran this way or what to do. I de- ly to ^ •e burn: verted aU; being cl-.a g 10 ne; th our being in the •y.poffible meaiis of igcr than ulual, I ^^•as good reafon ; aid never liave been a!)ie to nnd our have happened to our guide, could •had lights, have had any hopes of jrfclvss. ARci- inderi about ciil all our wood ' ily exiiaufled, we found a great ftalactite froTi which, on. a [fs, I had been indut recolleSed how I il and after walking c e, from w!ic te' homcwan to knock off a fpe-)cd, when^ nruck it :. litile further we made-n we gotfreui torches,; s without further difH.- cf its remarkable wh cirr.cn as I came by I this at once fet us right; ourfcives heard to the othi and we then continued c culty.' So complete a labyrinth as thefe caverns arc in feme piaces, is not l iVA fure to bd 'found buc ia fimilac caverns-, iarge open parages ' proved, citl dc facs, whihl our road was over and under, througii and. amongft grotto-work of th.e moft intricate nature.. I firmly believe,, tliat though a man iliould have lights and food enough to iaft him.a-mor.th, he would not be able to find his way cut. On the foil at the bottoai of the cavern, my imprclTions which, they faid, were from the whe thought immediately to have detečied the erro chftance of the marks of. the two wheels at differ was miilaken j the marks were througho.ut paral were really the marks of a carriage I cannot fay; I only obferved; them in the firft part of the caverns. ]f the foil at the bottom at ;he inouth of the cave was taken away, Ldo not fee any impofTibiiity,. through the affiftance of men, to -get fuch a-.thing irv thus far. It. is. known to have ferved as a hidfng-place ro the weak and l in time of war, and a fitter hiding-place there cannot be: guides llicwed mc-els of a carriage,. .(■ r by meafuring the. ;nt diüances: but I, lei. Whether thefe- infortiinace r thought it probable that I was the firft EngliOi traveller who had-e.xamined this iramenfe cavern; but Mr, Korabinfky fays that it is of fuch. aftoniiliing dtmenfions in length-, that two members of the RoyalSociety of London,,who were fent fomc years ago into Hungary by the Society,'to examine this and other curioficies, after-remaining in it three days^, could never get to. the end of ir, nor find an; opening-." ... After dining;-with tKe paftor, who feemed to poffefs but a fmall. poition of the good-things of this- world, I fct out for the other famous cavern near SzihTze. I traveled by a bye road through a-pleafanr, hilly, and woody country, chiefly ^vith paP^ure land. There 1 law again my favourite Utile animal tlie Earlefs Marmot, which 1 had not feen fince I left the great plain. I reached Sziiitze early m .the evening, and as before, 1 alked hofpicality of the Calvinift. mini 3 er, wlio likevijife. only knew his own language, the Hungarian, and the Latin. He feemed to. be in. more eaiy circumftances than> the Iaft, and:to be.a confiderable farmer? all this diftriil Is inhabited, by CaKiniils.. As the cavern is a mile from the village, I deferred: •feeing it till the next morning, wten my hoft,.who hadincthing-, of the four Calvinift about him, accompanied me. •• •Ti-.e. immenfe. vaults, and- the glittering, ftalaiflites-arranged, in-f Lexicon von Ungarn; p^g« Gothic ftyle, of the Iaft cavern, a; is only famed for poffeffing the i colder in fummer than in wintc winter blows, and tlie whole cou Tl-.ii 2 not tobe fought for liere. ;markable nature -of being rca. ; fo that when the north caft ury is defaced with ice and fno- then the ice within this cavern begins to thaw; but when the parching heat of the canicule rcignsj then its dripping rocks begin to be adorned with pellucid icicles. This is not the opinion of the vulgar alon of the learned llkewife ; it has even reached i its way into our Philofophical Tran factions, garian hiftorian Matthew Eell fent the followi Royal Society, who have inferced it in the tui-a Ahtri id liabeE pro.dlgll, yuod cum" ch riget, tepido fit intus "aei funt fervidüTmii fo'es. • N inire ca;pit, interior antri i objicit, aquanr limpidai: frigoris vi, in pellucidar tiuin dolioruin moiein miris illuCos fpeciebus.'' irgeni'jm, totum xftivi augefcit enitn cum inci hibernus il!e tepor cefTa tanti bur, in this country, ir country, and found The- celebrated Ilun-; account of it to. the volum«.- " Na-uüd cum otcii« i»iuiiib u>i«»nmt«s gido contra, imn\o gJaciaU, cura 1, funul dilTugientibus nivibus vcr i concameratio, qua ea nieridiano foli dorfo et paiTum dillilhintcm e.vfudat: c^ix, interni glacicm concrefcens, ftirias efficit, ad ingen-craiTas, ac pendulas, inque ramos abeuhtes And further adds, " Glaciale iftud fpecus n eft: qucd ideo admirationis habet plurium; ;fcenre folis ardore. Primo>. nimln:m, -s'ere, ;; mox, ubi id adolevit, intcndifrigus occipir. i acceflionibus, ut quo magis aer incalcfcit, eo r.i'.'.fuius. Ac ubi a^ilis ir.iir, jamq-je fsrvec canicula, in. glaclale;n l.-^main intua abcun: omnia." Tliis accoum agrees pci-fctil^ witli t;ic infonnation I received'ar Cülchau, and with whafl heard on the fpot likewife. Yet f know I ihall have no- di:T;cuky to 'pci-faadc Natural Philofophers of the pre-feat that there i> a iJlac)- in tlic obicrvaticns, and that this 'has arilcn ironi depjndhig too much on our fcehngs, ar.d negUd-ing'tho only proper gage of heat, and cold, the tiicrmomcter. TLib cavcni is about a hundred'feet broad, a hundred'and fifty deep or long, and twenty or thirty feet high at the ar.outh or entrance which f.ices the north : The deicent is pretty rapid, the lafi. third part of the hctton^ or fioor was covered' -wkh' ice j but this was fo thin tliat I could fee the rock under It. From the I'ool'ac the ftirther end, wliich -was here much lower than at the entrance, hung an Inimenfe icicle, or rather a congeries of icicles j and in a corner to the right, wliich was noc only depvivx-d of the influence of the fun, as the whole cavern is, but iikcwiis of light,'there was a-great mafs'of icc. It-was a'fine forenoon when I-vifited this natur?.! ice-houfe; and the air was heated by a -July fun ; -as - foon -as I approached the mouth cf the cave, I .felt a chill, which'-increaied tlie-further I. went ill, and which rendered'my continuance there, to obferve- the ftate of the theviv.omctiiv, very dlfagvssable.. ; -..-''':' ^ . '...'.. Icc I truly found here in abundance, and I: was ncir niidfamn-.cr, but ui a llatc of thaw: the bed of ice, which covered the noorof tlie cavcrn, was thinly cove.'ed wich water, and the icicles dropped : every thi;',g announced a thaw. I had no need co u/b :ny c]ivnno-meter; however, I placed it in the kc, and it fell to o of Reaunuir ; I then wiped it and placcd it in a niche in the rock, at the further part cf tire cavern, a yard above the ice, and here it remained near ati hour; when I returned I found it at o. Thinking i: Tnight not have h.ad time to take the reai degree of heat of the insdiiun in which it was in ; I tried this by breathing upon it till it rofe one degree above o ; I then left it for a quarter of an Iiour only, and when I returned I fo'und it again at o. Every thing liere, therefore, ice, water, and the atinofphere in the neigl'ibourhood of tl'.efe, ♦had the temperature, and that was the umperature of meeting ice, q of Reaumur. When the'n.b the ice which is found here, and in fuch qaantitics tl'.atthis cavei'nferves the few opulent nobihty in the neighbourhood .as an ice-houfe, formed? Surely ir. winter, tiioi^gh not by the firft frofr, not fo foon as icc is formed in the open air. No doubt, from the liüie communication tiiis cavcrn has with the atmofphcre, it will be hut httle and Howiy affedted by its changes. ShoulJ, therefore, Mr. Bell, or any of his.friends, have come here to verify the common report at the commenceraent of a fevere frofi:, when the whole country was covered with ice and fnow, they might ftiil have found here norhing but water, or the ice of the preceding winter in a ftate of thaw, and the cavern relatively warm ; and lifcewife, f?ioufd they have vifitcd it in a warm fpring, which had fucceedcd to a fevere winter, they jr,ight Iiave found nothing here but froft and ice ; and even the frefh nu-hcd fnow", percolating through the roof of this cavern, miglu again have been congealed to ice.-1 obferved frequently in Germany, in the fevere winter of 1794-5, ^ fudden thaw, that the walls of churches and other puhlic buildings, on the outfide were white, and covered with a boar froft., atid their windows on the fame f.de covcrcd with a rime. I cejtainly Hiould not have faid fo mucli on this fub-jefl, were not the opinion I have been combating fo very genera!. Tills cavern is like all that I have ieen, in a primitive or unllratified ijompaCt lime-ftone; and it is curious to obferve, that the moft fa. anov,s in the world arc^ in this kind of rock. I think tliey arlfe from the rock, 'whatever that maybe, giving way^ which fupports, APPENDIX II TOWNSON'S PAPER ON FLOS FERRI, FROM HIS 1799 BOOK Remarks on the Flos-ferri. The manner in which stalactites are formed, is, I believe, well understood. It is easy to conceive that by the gradual difsipa-tion of a solvent t!ie matter held in solution may be deposited, and afsume all the various forms that the solution at one or different times had been in. Thus we can account for the form of any stalactite wliicti has such a one as the dripping fluid can have existed in, either through its own natural gravitation or through the joint powers of gravitation and the attraction of some body in contact, but by no means of those forms in which we know a fluid body could not in any circumstanccs have been. Reasoning thus, I am unable to account for tlie formation of that beautiful fofsil the Flos-ferri, found in its greatest perfection in the iron mines of Eisen'artz in Styria, which not only differs from all other stalactites in its forms but in its texture. In regard to its form it is generally branched, but wiiether simple or branclied the parts are by no means straight but curvcd, and in the same specimen curved in very different directions. Wliere tlie branches shoot out, tliat is at tlie axillae., it is no thicker than in other parts, and frequently a simple tnidivided shoot, three inches long, is no thicker towards its base than towards its point. In the direction of its growth, tho Flos-ferri differs not lefs from the common stalactites, whose long cylindrical forms are never found in a horizontal situation, and in which direction we know they never can be formed. Yet in the great mine of spatous iron ore of Styria, I have seen both the sides of a vertical fifsurc covered W;ith the flos-ferri. The texture of this fofsil likewise greatly differs from the common stalactites. It is not compact, nor is it composed of concentric cylindrical plates, but of oblic^uely divergent fibres. These peculiarities lead ,mc to think that it is formed in a different manner from conunon stalactites, and I offer these remarks to those who have an opportunity of observing this fofsil in its birth-placc, that they may investigate its formation.—It is not foreign to tlic jircsent subjcct to mention that a few years ago I found on tlie side of a chalk rock on the turnpike road,sinncwhere between Portsmouth and Guildford, a fine white light body refem-filing very much in its sfrii< lurc, tlic aswa; being in haste I put a small specimen be-tweeft the afs-skin leaves of my pocket book, which,, where I went to examine, I found re-ducerf to powder. It was^ iBsoluble in water, bat soluble with effervescence in nitrous aciCJElj.yi MACY4E UNIVEKSiTASBELJ ra0FE5?SZ0B, m.T.Sb KÖTS.T, B a D J iV, a' KIEÄJ.YI UNIVEKSITABNAK EETfllVEI.. X y 9 6. ££ ft J ^tdh II t ttn e n f 0 n Ungarn, if! JC {f $ f m bif DDtjijii^IlM bež fiöttbes in alp|a6rttf#rt £)tfcnunä «flgEjebtn, ^tt Soge kftifflmt, unb mft turjeii ; tic im gefcüfc^nfH'cf^cti Umgänge atigeöS^Ht üiJini^ nnE), Botgqlellet icfi-bta. s ; « ^ gcSan« Slattlias ÄotabineE». Stt fintt «Doftfatte Hxdj Seren Jbc^fiilfe itiösj fd} eiuca tolIiloiibigeR ^beal« biifjS ffSf! tnttöecfsü laün. ¥ t t f 6 « t ä, SU ftifeftj inj SScSer Hiitt Äeca&tügh^fifcm SScrEüäf. I 7 8 fi. Fig 1 Fig 2 Volumes 2 and 3. As mentioned in its subtitle, one can find in alphabetical order the descriptions of all the counties, cities, villages, hamlets, mines, factories, smelting works, hot springs, bath houses, important mountains, rivers, lakes, islands and forests, as well as of some caves. Valyi Andras was born on the 30th of November, 1764 in Miskolc. He was the inspector of schools in the Kassa (Koške, Slovakia) educational district. Later, in 1792, he became the first professor of the Department of Hungarian Language and Literature at the University of Pest. His death was recorded in Pest on December 2nd, 1801. Due to the public interest, Valyi translated from German to Hungarian the Encyclopaedia of Geography published by Korabinszky Janos (Johan Matthias Korabinsky) in 1786 (Fig. 2), which he supplemented with data collected by himself. With his work, he laid the foundation for the detailed Hungarian dictionary of geography, where the well-known Hungarian caves are described under individual entries. Under the entry of Agtelek, Korabinszky described both the village and the cave (Baradla), but Valyi discusses them in two separate entries. The two cave descriptions are almost identical, except for the last sentence. Valyi does not include the information on utiUsation of finely ground dripstones as a paint substitute; instead of that he provides an important fact in the history of the cave, namely, that it was discovered by Janos Parkas in 1794. If the historians had paid attention to this new information, we might know the original of the first map of the cave, as well as the first Hungarian language description of the cave by Parkas, which were lost without a trace. Valyi's one-column description of the Cave of Benikova (Jaskyha Bemkovä, Slovakia) gives the general location and size of the cave as well as mentioning the dripstones therein. He also goes into details regarding "the dragon bones", the healing power of the cave springs, and the fact that the cave had been surveyed by Buchholtz and its map published by Bel Matyas (1723). In a much shorter description of Demenyfalva Cave (Demänovskä jaskyha, Slovakia), the most important information revealed is that the cave was explored and surveyed by Buchholtz at the request of Bel's. This map also was published in Prodromus. Under the entry for Ponatza or Funatzai Cave (Peftera de la Finale, Romania), the only information was that it was surveyed for 4 hours by Nedeczky Elek in 1772. His observations were published in the same year in Vienna and a summary was published in Hungarian Geography by Windisch (1780). The detailed description of the cave can be found under the entry of Bihar County, together with the description of Esküllö Cave (Romania). On numerous occasions when Valyi described counties, mountains, rivers, hamlets or forts; he also mentioned caves. In Borsod County, one can find three caves. First, he writes about Felete-lyuk (cave), which is one hundred steps long and sixteen steps wide - an ideal hiding place for the local popula- tion during the Rakoczi revolution. This cave's name is unknown now, and most likely is a misspelhng, but due to the to the given sizes it can be assumed to be Szeleta Cave. The other two caves, Kecske-lyuk Cave and Diösgyör Cave, are still called by the same names today. At the Gerets Mountains, he describes a cave without a name. According to the location, size and historical data, this cave can be identified as Szehm Cave. From among the settlement entries, at Borzova (Silickä Brezova, Slovakia) the ice cave and at Csobanka the Kis-Kevely Cave are mentioned. At the Boi stream (Romania) the entrance to the Cave of Boh is described. At the Castle of CseSznek three caves are mentioned: the first is under the fort, the second one is on the opposite side, and the third one is further away and has water which smells like snake and tastes bad but is healthy for bathers. It is interesting that some of the caves known at the time are not mentioned in the Encyclopaedia, namely the Abaliget Cave, Detrekö Cave (Plaveska jaskyna, Slovakia), and Veterani Cave (Pe^tera de la Pinza Curii, Romania). The second important hterary work is TELEKI Domokos, travel book published in Vienna and describing four visits to Hungary between 1793 and 1795 (Fig. 3). Teleki Domokos, the son of Teleki Samuel the Transylvanian Chancellor, was born in Transylvania on September 5, 1773. He was brought up in Marosväsärhely (Tirgu Mure?, Romania) and Nagyszeben (Sibiu, Romania) and he later studied at the universities of Pest and Vienna. Due to his poor health, he sought relief through travels. He became acquainted with Hungary from north to south, and with Transylvania and Saxony. During his stay in Jena he was elected a member of the Scientific Society, and in 1798 he became the first chairman of the Mineralogical Society. He died at the age of 25 on September 16, 1798 in the town of Marosväsärhely. During his Hungarian and Transylvanian travels he visited many caves such as Baradla Cave, Szilice Ice Cave (Silickä ladnica, Slovakia) Szkleno Cave (Jaskyna Parenica, Slovakia) and the Tor-ja cavities (Pe^tera Pucioasade la Turia, Fig. 3 Romania). Besides the detailed descrip- BGYNEflAMY H Ä Z A I UTAZASOK' LB-IRASA TOT ES HORVÄTH ORSZÄGOKNAK ' MÖTID ESMERTBtfasfeVBJb . EarOTOTTi G. T. Di itt(li futism, iibt&ratSi cus fsffis, mihi fisetes ^ i^mt mmTATTATOTT ISTSBO. MDCCXCVt Fig. tions of his visits to these caves, he also mentions the cave origin of the Golumbacs fly (Romania) in his book. In Teleki's 333-page book, we can find, beside maps, two engravings of Szilice Ice Cave (Silickä ladnica, Slovakia) and one of the entrance to Baradla Cave (Fig. 4-5). These engravings are the first pictures of the entrances of these caves. The book was also published in 1805 in Pest in German and it was used as a basis for the books of Sartori (Vienna, 1807-1810) and Engelhart (Vienna, 1816). In addition, in 1796 SZALLER György published the Geography of Hungary. The date and place of his birth is unknown; he died on October 30, 1807. The only other information about his life is found on the title page of his book. He was a surveyor in Pest and the Hungarian Language Instructor at the Pozsony College (Bratislava, Slovakia). Hungarian geographers honour him as the one of first persons to describe Hungary's geography in Hungarian, in which work he provided a map of the country, too. His work is a dry database listing of the counties and urban areas; it also reflects the country's people and economy. The first part of the 250-page book describes the natural environment of the country, where the ninth section discusses waterways and caves. The caves are mentioned by names such as the Okno Cave (Demänovskä jaskyna Okno, Slovakia), Szentivany Cave (Staniš-ovskä jaskyna, Slovakia), and the caves of Demenyfalva (Demäno-va, Slovakia), the perennial icy cave of Szilice (Silickä ladnica. Fig. 5 Slovakia) and Fonacza Cave (Pestem de la Finate, Romania) are discussed, and the presence of caves in Türöcz and Gömör Counties is mentioned. Under the counties one can read about the dragon bones of Demenyfalva Cave in Liptov county; the Mazarna and Dupna caves in Türöcz county (Mažarna a Diipna jaskyna v Turd, Slovakia)-, the cave on the hill at Dobsina and the bottomless Csörgölyuk (Zvonivä diera, Slovakia) at Pelsöc in Gömör county; the Szädelö (Zädielskä jaskyna, Slovakia), and SziHce and Borzova caves (Silicka ladnica a Brezovska jaskyna, Slovakia) in Torna county. It is interesting that Szaller does not mention Baradla, even though it was known to exist then. It is also interesting that the description of Dobsina rather fits that of Baradla. Here we can read the same as in the later Baradla descriptions: the water dripping down the walls and changing into stones, which were used for their clean white colour as paint and also as medicine for bovine. In 1796 Hungarian language geographic studies and publications began to replace the previously prevaiUng Latin and German publications. This development provided new, previously unknown facts and information regarding caves in Hungary. These Hungarian pubhcations were based not only on translations but also on new data and personal experiences. REFERENCES BENKÖ, F. (1784): Werner Abraham Urnak a köveknek es fotzeknek külsö megesmertetö jegyeikröl. - Kolosvär BENKÖ, F. (1786): Magyar mineralögia az az a kövek s ertzek Tudomänya. -Kolozsvär BEL, M. (1723): Hungariae antiquae et novae Prodromus... - Nürnberg ENGELHART, A. (1816): Prachtwerke der Unterwelt. - Vienna GVADÄNYI, J. (1792): Tizenkettödik Käroly Svetzia orszäg kirällyänak elete, es älmelkodäst felmulö vitezsegenek es több csudälkodäst okozö nagy dolgainak leiräsa, melyeken hazänk anyanyelven az olvasäsban gyönyörködök kedvekert irt. - Pozsony es Komärom KORABINSKY, J. M. (1786): Geographisch - Historisches und Producten Lexikon von Ungarn... - Pressburg LOSONTZI, I. (1788): Härmas kis tükör. - Vätz SARTORI, F (1807-1810): Naturwunder des Oesterreichischen Kaiserthumes. -Wien SZALLER, GY. (1796): Magyarorszäg földlei'räsänak rövid foglalattya. - Pozsony TELEKI, D. (1796): Egynehany hazai utazäsok le-iräsa Töt es horväth orszägoknak rövid esmertetesevel egygyütt. - Bets VÄLYI, A. (1796-1799): Magyar orszägnak lei'räsa. I-III. - Buda WINDISCH, K. (1780): Geographie des Königreichs Ungarn. - Pressburg ZAY, S. (1791): Magyar Mineralögia avagy az Asvänyokröl valö Tudomäny. -Komärom IZSLO V LETU 1796... Povzetek 1796 so izšle tri knjige v madžarskem jeziku, z zelo pomembnimi podatki o jamah na Madžarskem, Slovaškem in v Romuniji. Pred tem je bilo vsega skupaj omenjenih le nekaj jam v 90 rokopisih in knjigah, pisanih v latinskem ali nemškem jeziku, s prvo jamo, omenjeno leta 1037. 1796 je K. A. Valyi izdal prvega od treh delov svoje knjige "Opis Madžarske" ter prevod Korabinskyjeve "Geografske enciklopedije" (1786), dopolnjen z novimi podatki, kjer so tudi jamam namenjena posebna gesla. Istega leta je izdal D. Teleki svoj popotni dnevnik, kjer sta poleg opisov tudi gravuri dveh jam, to sta prvi upodobitvi znanih jam Baradle in SiHcke ledenice. Tudi "Geografija Madžarske" G. Szallerja, na 250 straneh, ki je izšla 1796, vsebuje opise številnih jam, ki so danes na Slovaškem in v Romuniji. ACTA CARSOLOGICA XXVI/2 23 I 257-264 LJUBLJANA 1997 I CAVES IN THE WORKS OF THE HUNGARIAN NOVELIST MÖR JÖKAI JAME V DELIH MADŽARSKEGA PISATELJA MORA JÖKAIA KATALIN BOLNER - TAKÄCS ' Izvleček UDK 82L511.141 Jökai M. 55L44(439):927 Jökai M. Katalin Bolner-Takäcs: Jame v delih madžarskega pisatelja Mora Jokaia V delih M. Jokaia (1825-1904) se kaže njegovo poznavanje geologije (vključno krasa in jam), mineralov, rastlin, živali, itd. Njegovi romani se dogajajo v odmaknjenih delih zgodovinske Madžarske ali tujine. Prizori iz jam vključujejo podzemeljske reke, kapniške jame, ledene in termalne jame ter lavine cevi. Med njimi opisuje tudi resnične, npr. Veterani, Örvenykö, Szkerisora in Modra jama na Kapriju. Enega izmed njegovih romanov so navdihnile Škocjanske jame. Jokai je 1853 obiskal jami Ho-morödalmäs in Torja, 1876 in 1883 jamo Balika ter 1883 Dobšinsko ledeno jamo. Ključne besede: jama v umetnosti, literatura. Madžarska, Jokai M. Abstract UDC821.511.141 Jökai M. 551.44(439):927 Jökai M. Katalin Bolner-Takäcs: Caves in the works of the Hungarian novelist Mor Jokai The books of the M. Jökai (1825-1904) incorporate scientific knowledge about geology (including karst and caves), minerals, plants, animals etc. The novels are set in remote parts of historical Hungary or abroad. The cave scenes involve underground rivers, stalactite caves, thermal caves and lava tubes. Real caves include those of Veterani, Örvenykö, Szkerisora and the Capri Grotta Azurra. Another book was inspired by Škocjanske jame. Jökai visited Homorödalmäs and Torja caves in 1853, Balika cave in 1876 and 1883, Dobšina ice cave in 1883. Key words: cave in art, literature, Hungary, Jökai M. ■ Institut for Speleology, Költö u. 21, H - 1121 BUDAPEST, HUNGARY Mor Jökai is one of the greatest personalities of Hungarian prose literature. Lasting already for one ,,. and a half century, his popularity I"-»'- A Ijk.' ] is based upon his poetic personal- ■ ity, his rich imagination, idiom and humour, and, above all, his unequalled talent for story-telling. Besides these literary merits, his works also represent an extremely rich collection of knowledge on history, ethnography, botany, and zoology, as well as on geosciences - geography, astronomy, meteorology, hydrology, mineralogy, paleontology and, last but not least, karstology and speleology. Mor Jökai was born in 1825 in Komarom, the prosperous commercial town on the Danube, as the third child of a noble family. He was educated in Komarom, Pozso-ny /Bratislava and Papa; then he studied law in Kecskemet and after a two years apprenticeship in Komarom and Pest, he took his degree in law in 1846. He evinced his wide-ranging talent at an early age: his first poem was published at the age of 9, at the age of 15 he spoke German, English, French, and Italian, and had a talent for drawing and painting as well; in Kecskemet he staged plays and acted in them, and his first stories were written also at that time. After the success of his first novel in 1846, he devoted his talent definitely to hterature, and took an active part in public life, too. He participated in the 1848-49 revolution as a popular speaker, then as a journalist, and after its failure he had to live in exile for a few months. Returning to Pest in 1850 he published under a pseudonym, but soon was active again not only as a novelist, but as editor and also founder of almost a dozen newspapers and periodicals. He was a hard-working writer throughout his long lifetime: he got up at 5 o'clock in the morning every day, and by 10 o'clock he was ready with his work running to 1 or 2 printed sheets. With his life-work consisting of 64 novels, some 300 novellas and short stories, dozens of poems and dramatic works, and several hundred articles and speeches. Mor Jökai is also the most productive Hungarian writer. His most popular works have been translated into Fig. 1: Mor Jökai (1825 - 1904). several languages: in his lifetime 137 of his novels and stories were published in German, 48 in Polish, 30 in Russian, 23 in English, 22 in Czech; and there are translations into Croatian, Danish, Estonian, Finnish, French, Italian, Rumanian, Serbian, Slovakian, Slovene, and Swedish languages, too. Jökai hed already gained exceptional recognition in his lifetime. The Hungarian Academy of Sciences elected him a corresponding member in 1858, an ordinary member in 1861, an honorary member in 1883 and a member of the board of directors in 1892. In 1861 he was elected Member of Parhament, and held this post for more than 30 years. On the occasion of the 50th anniversary of his hterary activity in 1894, he was overwhelmed with honours: the freedom of the capital and other cities was presented to him, Budapest University conferred an honorary degree on him, and a hundred-volume special edition of his works was published. He died at the age of 80 in 1904; at his catafalque in the hall of the National Musem, representatives of the king, the government, the judiciary, as well as delegations of all social strata and all regions of the country payed tribute to him. Jokai's art is a special mixture of romanticism and reahsm. Most of his works are historical novels, for which he took subjects from the most different centuries of the Hungarian and universal history; but his imagination was also inspired by legends, folk heroes and adventurers as well as by the national industrialization and the future of the country. Considerable merits of his novels and stories are the artistic and lively landscape descriptions, by which he guides the reader not only through the romantic scenes of historical Hungary, from Lake Ferto to the Great Hungarian Plain, from the Lower Danube to the Tatra Mountains; but to all the continents, from Italy to Siberia and China, from South America to the North Pole. These descriptions involve a number of karst features: sinkings streams and resurgences [e.g. 7: in Vargyas Valley /Cheile Virghi§ului/; 17: in the Karst Mts.]; periodical springs [e.g. 4, 17: in the vicinity of Kolozsvar/Cluj]; travertine deposition [e.g. 11: in a tributary of the Maros]; limestone gorges [e.g. 9, 17: Torda Gorge /Cheile Turzii]; dolines [e.g. 19: near Fiume/Rijeka]; karrenfelds [e.g. 17: at Trieste, 22: at Raguza/Dubrovnik]; and, of course, caves. Besides several unnamed and very probably imaginary caves and cavities mentioned when describing different sceneries in the ALCADI region, especially in Transylvania [e.g. 3] and in Dalmatia [e.g. 22], we find Veterani Cave /Pe^tera Veterani/ at the description of the Lower Danube [13], the Blue Grotto in a short paragraph concerning Capri [23], Szkerisora Ice Cave /Ghetarul Scäri§oara/ referred as the 'Gyetzar' among the sights of Transylvania [11, 15], as well as Örvenykö Cave in the Biikk Mts. [24], the caves of Szekelyko Hill at Torocko/ Rimetea [17], and the rock bridge in Stratenska Valley [21]. But caves are not only elements of the landscape in Jokai's works. He frequently cites caves, cavities and rock niches as hiding places for various animals (bear, wolf, lion, hyena, snake, panther, dragon, etc.) as well as for robbers, refugees, and hermits [e.g. 3, 4, 5, 17, 20, 22], It is strange, but all the caves well known in the last century within the boundaries of modern Hungary, such as Baradla Cave, Szelim-lyuk and Abaliget Cave are mentioned in this way only [4]. Some other actual or legendary caves — such as Szilice Ice Cave /Sihcka I'adnica/ [17], the crystall-lined cavities of the Alps [16], or the biblical cave of Saint Anthony [19] — are cited as analogues; and he often uses the word 'cave' for fortress, blocks of flats, gambling-clubs or ornamented rooms, too [e.g. 14, 15, 17, 19]. In addition to this list, there are at least 24 novels and short stories, in which caves are scenes for more or less important events in the plot. These cave scenes involve a surprisingly great variety of caves: stream caves offering not only refuge but also water supply [4, 9, 17] or used to drain a marsh [27]; through caves, that serve as pathways for escape or attack [6, 11, 18, 22]; a multilevel system, where the heroes have to fight not only against offensive troops, but the evil dwarfs living in the deeper levels, too [7]; caves decorated with dripstones [1, 17, 19] or ice formations [21] as solemn sites of tragic events and secret meetings; a shaft used for prison by pirates [19]; a water-filled cavern endangering coal mining activity [12]; thermal caves with warm lakes or hot springs in them [2, 22]; glacier caves [2, 8, 16] carved partly by warm springs into ice; a coral grotto providing tomb for the victims of a shipwreck [15]; a lava tube, through which Chilean aboriginals escape from Spanish conquerors [10]; other volcanic caves heated by solfatara-activity [26] or exhaling deadly sulphuric gas [20]; as well as crystal caves [25], or archaeological and paleonto-logical sites [14, 16, 22]. Though most of these caves are suspected to be fictions in the given location, Jokai's imagination has usually translated literary-hearsay data or personal experiences to the scene of the plot. It is documented that the writer has visited at least four caves — it is not by chance that his most detailed and valuable cave descriptions concern these caves. On the evidence of his travel notes, Jokai paid his first visit to a cave area in 1853, when he visited Homorodalmas Cave and Torja Cave during a three-weeks journey in Transylvania, and his experiences soon appeared in his books, too. Homorodalmas Cave (P. Mare de la Mere§ti), referred by Jokai as 'the cave of Nagy Mai Hill' is the scene of his 1854 short story "The Hargita" [7] based on local legends, according to which the inhabitants of the nearby village were hidden here during the Tartar invasion. The story also recalls the discovery of the inner parts of the cave by following the bats that disappear in a narrow passage, where a blockage had to be removed to go on; and describes the purposes for which certain rooms were used by the refugees, citing the rooms by numbers — as it is shown on the 1836 map of Istvan Fekete, who was Jokai's guide to the cave. In this story two more caves of the Vargyas Valley occur by name: Ugron's Cave and the Horse-Barn (P. Calului). The gas-exhaling Torja 'Stinking' Cave (P. Pucioasa de la Turia) is mentioned in several stories [7, 9, 14]; and its detailed description is presented in Jokai's Fig. 2: The writer's signature in the visitor's book of Dobsina Ice Cave. 1882 novel "The Castle of Idols" [20], that takes place in the 12th century. Here, the cave serves as an ideal background for the young hero to meet with an old woman who is thought to have a pact with the devil; whilst we get information on the surroundings of the cave, the sulphur deposition around its entrance, its length of ten yards, and the deadly effect of the sulphurous gas on animals in front of the cave, on the gas-level inside (defined as "not higher than ones head") so it can be visited on stilts and as far as the torch remains alight, and that the gas is believed to heal rheumatic diseases. Jokai's experiences in Torda Gorge during his 1876 journey in Transylvania are used in his 1877 novel 'There is a God' [17]. In this book, the gorge with its famed Balika Cave (P. Mare a lui Balica) — that had already appeared in some early works [4, 5], too — provides a safe way with night shelter for the heroes to by-pass the enemy troops during the 1848-49 revolution. Besides describing the environs and the fortified entrance hall of the cave, and recaUing a local legend about its last lord, a robber, the writer reports on its ground-plan and its ascending character; as well as on its counterpart (P. Micä a lui Balica) opening at the same level in the opposite wall of the gorge, and on the nearby dripstone-decorated Porlik Cave, where the stalactites — just like organ-pipes •— are suitable to play melodies on. Jokai's most artistic cave description concerns Dobsina Ice Cave (Dobšinska I'adovä jaskyna), that he visited in 1883. In his 1884 novel "The white lady of Locse" [21] Jokai devotes a whole chapter to this cave, referring it as the scene of a secret meeting during the Räköczy war of hberty. The section title itself is "The Ice Cave", where Jokai describes not only the different ice speleothems, comparing them to pillars, waterfalls, altars, mirrors, carpets, lacework and tents; but also mentions the cave's formation by carbonic acid and water; as well as the layered structure of the ice laid down year by year; and he describes the equipment by which one can climb the ice wall. He links the huge breakdown at the bottom of the cave with the collapse on the surface, and explains them by a thunderbolt; and his imagination creates another entrance to the cave from Hanneshöhe, which has been verified almost one hundred years later by the discovery of Stratenska Cave. A further, similarly detailed cave description can be found in Jokai's 1886 novel "Three heads of marble" [22]. This novel takes place in the 12th century in Dalmatia, and comparing the former scenery with the modern landscape of karst, the writer stresses the role of human impact by timberfelhng and the introduction of goats, which have resulted in deforestation, soil denudation and even change of local climate. The key scene of this novel is a river cave system, through which the hero gets from the inside of the country to a valley near the sea. The river, that re-appears at the sea under another name, enters the cave after a short surface course and forms waterfalls at the entrance. The cave is accessible through a dripstone-decorated, dry higher passage; the hero finds stairs cut into the rock wall; and the path runs high above the thundering river that ends in a lake with no visible outlet. Though the site is placed in the Raguza (Dubrovnik) area, these elements give a strong hint that this scene has been inspired by Škocjanske Jame, that Jokai might have seen — or at least heard about it — on his 1876 journey via Trieste to Italy. The investigation of Jokai's hfe-work from a speleological point of view is far from being completed, but the data obtained so far seem already to prove the potential speleohistorical importance of literary works. Jokai's novels and short stories are significant not only because of his artistic cave descriptions: considering the fact that almost all the well-known caves of his age are presented in his works, either directly or indirectly, and are enhanced by a wide range of information comprising almost all branches of speleology, his life-work can also be regarded as giving a summary of the speleological knowledge available in Hungary in the second part of the last century. WORKS BY JOKAI [1] Marcze Zare — 1845, Pesti Divatlap no. 37. [2] Erdely aranykora — 1852, Pest (1851, Pesti Naplo)-, Die goldene Zeit in Siebenbürgen — 1874, Leipzig; Midst the wild Carpathians — 1894, London; The golden age in Transsylvania — 1897, London. [3] A ketszarvu ember — 1852, Pest (1851, Pesti Naplo)-, Der Mann mit den zwei Hörnern — 1886, Berlin. [4] Török viläg Magyarorszägon — 1853, Pest; Türkenwelt in Ungarn — 1855, Wien; Slaves of the Padishah — 1902, London. [5] A nagyenyedi ket filzfa — 1853, Delibäb [6] Janicsärok vegnapjai — 1854, Pest; Die letzten Tage der Janitscharen — 1854, Leipzig; The lion of Janina, or the last days of the janissaries — 188?, London (3. ed. 1897) [7] A Hargita — 1854, Jökai Orszägos Nagy Naptära [8] A läthatatlan csillag — 1851, Losonczi Phönix-, In: Delviragok — 1856, Pest [9] Istenhegyi szekely leany — 1857, Vasärnapi Üjsäg-, Die Szeklermaid von Gottesberg — 1890 (?), Dresden. [10] Valdivia — 1857, Növiläg] Valdivia. In: Buch der Novellen — 1895, Wien; Valdivia. In: In love with the czarina and other stories — 1889, London/ New York [11] Szegeny gazdagok — 1860, Pest; Die armen Reichen — 1873, Berhn (1872, Berliner Roman-Zeitung); The poor plutocrats — 1874, New York; 1899, London. [12] Fekete gyemantok — 1870, Pest; Schwarze Diamanten — 1871, Pest; 1877, Berhn; Black diamonds — 1894, London. [13] Az arany ember — 1873, Pest (1872, A Hon); Ein Goldmensch — 1873, Berlin; Modern Midas — 1884, New York; Timar's two worlds — 1888, London. [14] A jövö szäzad regenye — 1872-74, Pest; Der Roman des künftigen Jahrhunderts — 1879, Pressburg (1873, Pester Lloyd) [15] Enyim, tied, öve — 1875, Budapest; Mein, Dein, Sein — 1875, Berlin. [16] Egesz az eszaki pölusig! vagy: mi lett tovebb a Tegethoffal? — 1876, Budapest (1875, Üstökös); 20.000 Jahre unter dem Eise — 1891, Berlin; Bis zum Nordpol, oder was geschah weiter mit dem Tegetthoff? — 1909, Berlin (1875, Pester Lloyd). [17] Egy az Isten — 1877, Budapest; Die nur einmal heben — 1878, Berlin; The Christian in Hungarian romance. There is a God, or the people who love but once — 1901, London; Manasseh — 1901, London. [18] Egy hirhedett kalandor a XVII. szazadbol—1879, Budapest (1878,^ Hon); Was der Todtenkopf erzählt — 1881, Berhn; Told by the death's head — 1902, New York; 1903, London. [19] Egy jatekos, aki nycr — 1882, Budapest; Ein Spieler der gewinnt — 1883, Budapest. [20] A bälvänyos var — 1883, Budapest (1882, Nemzet); Die Götterburg — 1884, Berlin. [21] A locsei feher asszony — 1885, Budapest (1884, Nemzet)-, Die weisse Frau von Leutschau — 1885, Budapest. [22] Härom märvänyfej — 1887, Budapest (1886, Nemzet). [23] A lelekidomar — 1889, Budapest (1888, Nemzet)-, Der Seelenbändiger — 1892, Berlin. [24] A tengerszemü hölg}' — 1890, Budapest (1888, Nemzet)-, Die Dame mit den Meeraugen — 1890, Leipzig; Eyes like the sea — 1893, London [25] Älmodäd — 1891, Pesti Hirlap. [26] Räköczy fia — 1892, Budapest (1891, Nemzet)-, Fürstenblut — 1893, Stuttgart. [27] Ahol a penz nem isten — 1904, Budapest JAME V DELIH MADŽARSKEGA ROMANOPISCA M. JÖKAIA Povzetek Dela Mora Jokaia (1825-1904), največjega madžarskega romanopisca, temelje tudi na njegovem poznavanju zgodovine, etnografije in tudi geologije (vključno krasa in jam), mineralov, rastlin, živali, itd. Njegovi romani in novele se dogajajo v skrajnih in odmaknjenih dehh zgodovinske Madžarske (Transilvanija, Višavje, Velika madžarska ravnina) ali eksotičnih celin: Daljni Vzhod, Južna Amerika, itd. Njegova najbolj znana dela so bila prevedena v tuje jezike, toda večji del njegovega opusa, ki vključuje 54 romanov, okoli 300 novel in stotine člankov, je dostopen le v madžarščini. Prizori njegovih del vključujejo jame kot skrivališča, puščavniška zavetišča in bivahšča raznih živali. V opise pokrajin vključuje kraške obhke in pojave, kot so intermitentni izviri, lehnjak, vrtače, škraplje, itd., kot tudi izmišljene in prave jame (Veterani, Örvenykö, ledenica Szkerisora, Stratenska kamenita vrata in Modra jama na Kapriju). V okoli 20 njegovih del so prizori iz jam, včasih je jama tudi vodilno prizorišče. V jamskih prizorih so opisane najrazličnejše jame: kapniške in vodne jame, jame v nadstropjih, ponorne, izvirne, ledene in termalne jame ter jame s strupenimi plini. Kot dokazujejo njegovi zapiski, je Jokal 1853 obiskal jami Homorodalmas in Torja, 1876 jamo Balika in sotesko Torda, 1883 pa Dobšinsko ledeno jamo. Opirajoč se na podrobne opise v enem izmed njegovih zadnjih romanov, ki se dogaja v Dalmaciji (in razpravlja o antropogenih vplivih na kraško denudacijo), je zelo verjetno, da ga je navdihnil obisk Škocjanskih jam, kar bi se lahko zgodilo med njegovim obiskom Italije 1876 ali 1887. ACTA CARSOLOGICA | XXVI/2 i 24 ! 265-275 LJUBLJANA 1997 | FEDERICO DE COMELLI: GLI STUDI IN MERITO ALL'APPROWIGIONAMENTO D'ACQUA POTABILE PER LA GITTA DI GORIZIA FEDERICO DE COMELLI IN NJEGOVA ŠTUDIJA O OSKRBI GORICE S PITNO VODO DI MAURIZIO TAVAGNUTTL Izvleček UDK 556.3(450,36)"18" Di Maurizio Tavagnutti: Federico De Comelli in njegova študija o oskrbi Gorice s pitno vodo V prejšnjem stoletju so v Gorici sklenili rešiti vprašanje pitne vode. Pripravljalnih raziskav se je lotil F. De Comelli (1826-1892). V zvezi z izkoriščanjem izvira Mrzlek je raziskoval jame v okolici Grgarja. Zaradi tega ga štejejo za pionirja tamkajšnje speleologije. 1887 je končal študijo, ki je bila tudi kasneje vedno upoštevana (Taramel-li 1903). Njegov projekt "Mrzlek" (to je danes najpomembnejši vodni vir v vsej regiji) ni bil odklonjen zaradi pomanjkljivosti, kot piše Boegan, ampak ker so ga šteli za predragega. Ključne besede: hidrologija krasa, zgodovina speleologije, Italija, Slovenija, Goriško, Mrzlek, De Comelli F. Abstract UDC 556.3(450.36)"18" Di Maurizio Tavagnutti: Federico De Comelli and his study of water supply of Gorizia In the 19th century the decision to settle the water supply problem was accepted. F. De Comelli (1826-1892) started the investigations. He proposed to use the Mrzlek spring and therefore he explored caves in the surroundings of the Grgar village. That is why he is considered the pioneer of the speleology of this region. In 1887 he finished his study which was also later considered as a basic one. According to Boegan the project "Mrzlek" (this is the most important spring of the whole region) was not rejected because of imperfection but it was too expensive. Key words: karst hydrology, history of speleology, Italy, Slovenia, Nova Gorica region, Mrzlek, De Comelli F CRC "C. SEPPENHÖFER" V. Diaz 13, IT - 34170 GORIZIA, ITALIA LA VITA E LE SUE RICERCHE La ricerca di fiumi e acque sotterranee in genere, e sempre stata una delle attivita principali dei gruppi speleologici. II Friuli Venezia Giulia, tra I'altro, vanta antiche tradizioni in questo campo: troviamo infatti giä nella seconda metä del 1800 studiosi ed appas-sionati che si dedicano attivamente a questa nuova scienza per la quale viene coniato il nuovo termine "speleologia". E' proprio dal nostro Carso che deriva, inoltre, il termine "carsico" universalmente impiegato per indicare il tipico paesaggio calcareo traforato da doline e grotte, mentre con il termine carsismo viene definita quella scienza che studia I'instaurarsi di tale fenomeno. Stimolato da tali premesse e grazie all'aiuto del Centro Ricerche Carsiche "C. Seppenhofer" di Gorizia per le ricerche storiche, ho riesumato una vicenda legata all'ambiente isontino del 1887 in cui spicca una singolare figura, quella dell'ingeniere gradiscano Federico de Gemelli. Verso la fine dello scorso secolo, Gorizia era alle prese con un problema di vitale importanza: quello della ricerca d'una fonte d'acqua potabile capace di soddisfare le esigenze della sua sempre crescente popolazione. E' vero che la cittä disponeva di un numero di pozzi artesiani pubblici sufficienti a garantire i bisogni igienici e alimentari della popolazione, ma i goriziani deU'epoca cominciavano a sentire in modo sempre piü insistente la necessita di un vero acquedotto. E' proprio in quegli anni che molti studiosi o addirittura semplici letterati, si occuparono di questo problema a dimostrazione che i disagi di doversi rifornire alle pubbliche fontane, anche per le piccole esigenze, dovevano farsi particolarmente sentire a tutti i livelli sociali. Una vicenda storica questa che ho voluto approfondire, in quanto avevo casualmente scoperto essere legata a dei risvolti della storia speleologica della nostra cittä, mettendo in luce, tra I'altro, I'opera di un ingegnere gradiscano che per gli studi di idrologia sotterranea eseguiti in quel periodo, deve essere senz'altro rivalutato e considerate, oserei dire, tra i piü grandi precursori della speleologia moderna. Gosi, sotto quest'ottica, dopo un'accurata ricerca sono riuscito a raccogliere una Serie di dati che, seppur frammentari, sono sufficienti a comporre parte della storia riguardante la travagUata vicenda della ricerca d'acqua potabile a Gorizia e soprattutto e venuta alia luce la storia di un personaggio affascinante e dalla cultura veramente pohedrica: Federico de Comelh. Federico de Comelh von Stuckenfeld nacque a Gradišča da nobile famiglia nel 1826 e vi mori nel 1892; suo padre Giuseppe fu ricco possidente terriero. Sposo Anna Galvagni da cui ebbe tre figli e tre figlie. Tra questi Attiho fu pittore di fama e lavoro soprattutto a Londra ove mori nel 1929. I de Gomelli abitavano a Gradišča dove un magnifico palazzo che porta ancora il loro nome, rimane a testimoniare la loro presenza in questa y/ r'( .......Elb vp<»»> UV. m \ iihv-n I • 'f-' ^Nv '1 ' / I >' isp.k'a argaro 'J k ^''KlUVCtti- cittadina. Federico studio e si laureo in ingegneria a Vienna ed inoltre fu uno scrittore di notevole pregio; dopo ii 1848 capeg-gio col Favetti il movi-mento patriottico goriziano, esprimcndo cosi tutta la sua vocazione irredentista al punto che dovette ab-bandonare il Friuli per-che perseguitato dall'Aus-tria. In giovane etä lo tro-viamo in qualita di redat-tore deir "Eco dell'Isonzo", un giornale la cui stampa viene effettuata dalla Ti-pografia Seitz a Gorizia, ma la cui redazione si tro-va a Gradišča in Casa Comelli. Nelle mani di Federico la pubblicazione diven-ta ben presto un'arma per diffondere il proprio pa-triottismo. Con gli stessi intenti pubblica la stren-na per il 1855, intitolata "il me pais", scritta quasi interamente da lui. Come scrittore ebbe in prosa uno stile sostanzioso, solido e ricco di pensiero; alcuni suoi articoli comparvero anche sul "Politecnico" diretto in quegli anni dal Cattaneo. La sua fama di poeta inoltre ci viene tra-mandata da quattro poesie pubblicate su "il me pais": Buona sera, II varda-fuc, II ciant dell'armentar e II ciazzador. Ebbe la stima e l'amicizia di noti letterati e studiosi dell'epoca quali il Cattaneo, il Prati, il Fusinato, il Crispi, il Correnti, il Martini, il De Guberna-tis, il DairOngaro, il Dupre cd altri. In esilio dircssc i lavori della ferrovia umbra, ed inoltre elaborö numerosi altri progetti, ma a noi piace ricordarlo soprattutto per la pubblicazione di uno studio riguardante l'approwigionamento d'acqua potabile per la cittä di Gorizia, opera che, dopo la sua morte, meritö il plauso da parte dello stesso Torquato Taramelli impegnato anch'egli a risolvere l'analogo e spinoso problema. Dopo trenta anni di esilio Federico ritorna finalmente nella sua cittadina natale. Ad un primo esame ci sorprende che una mente abituata al calcolo ed al pensiero razionale come quella di un ingegnere, possa conciliarsi con l'attivitä di scrittore, poeta e non da ultimo ricercatore d'acque sotterranee. Ma se facciamo un'attenta analisi della vita di questo illustre personaggio, possiamo constatare come, nel corso di tutta la sua frenetica attivitä, la parte emotiva emerge quasi sempre su quella raziodnante dell'ingegnere. Possiamo infatti notare proprio nel suo lavoro, sullo studio dclle acque sotterranee del Merzlek (Mrzlek), come egli si sia dedicato con vero e proprio entusiasmo al problema deU'approwigionamento d'acqua potabile per la cittä di Gorizia; dagli studi eseguiti risulta evidente che egli va ben oltre il proprio compito professionale. Si trasforma percio in uno speleologo e con pochi amid esplora sistematicamente numerose cavita nei pressi di Gargaro (Grgar) (ora in Slovenia). Furtroppo non ci sono molti dati che documentino l'attivitä di Federico Comelh nel campo speleologico ma presumiamo che sia stata notevole. A tal proposito ricordiamo una dettagliata relazione sull'esplorazione della Grotta di Gargaro, esplorazione che egli compie in merito agli studi sulle acque sotterranee del Merzlek e che pubblicherä nella sua pregevole opera, presentata aH'Amministrazione Civica di Gorizia, riguardante il prowedimento d'acqua per la cittä. Questa relazione a mio awiso č un raro esempio di studio speleologico condotto con cognizione, scrupolo e metodi professionali, ben difficilmente riscontrabih in altri analoghi lavori apparsi in quell'epoca. La pubblicazione di questo lavoro, infatti, sarä presa per molti anni come punto di riferimento da numerosi autori, che, come il Comelh, hanno cercato di risolvere I'annoso problema dell'acqua potabile a Gorizia. Tutti pero confermano Ic ipotesi che da tempo I'ingegnere gradiscano aveva formulato nel suo lavoro, e doe della non convenienza finanziaria e impossibilita pratica a realizzare tale impresa. Pertanto il progetto di alimentäre I'acquedotto goriziano con le aqcue sotterranee del Merzlek fu definitivamente abbandonato per ragioni pratiche e non perche gh studi fossero stati eseguiti poco correttamente come sosteneva il triestino Boegan. Infatti, tra gli autori che si occuparono del problema, il piü autorevole, Torquato Taramelli, in un suo lavoro (1903) riferendosi alio studio eseguito dal Comelh sul Merzlek afferma: - Devo pero ossei-vare che allora Piaata M sottermei ii Gargaro. Spiesaziotie della ptanta e del riepettivl settepitinei. a lagttjiso alia foWa, AtUsza <»r litnno di ctmpttffna m. S7H sttl tivelo dd mare. ft Foiha scop«^: jn-of, m. 11.30 ; inaca^ihüe dull'alto, ma in comunicazione, mediants «« pmsaggif* col pimio b- a — b Discesa erta ma praticabiie, « cielo hbero, fino u m. ll^a sottn i{ piano rU cnmpagna. b Altesza sul livetin del mare vr 366.70. b — C Piano iiicliiintif sotteyyaneo, ri-pidissimo^ t:i. 6 liisiriiigini^Hti) detUi ffrotta. d — e Partft jtih depresm. S/öjtho aequfi, in ctti guizjuno de^ ra-Hoechii prof. o^h r PuntoiiitkiUu; asciaito illSiT. Peiiii^to ijrnticabHc rerso g Indhiaiioiie de//h sfrati dip6- ndui-ii icy" TO - n — 0 Acmta; pro/'unditä media 0.50. 'J cinpcmiitra dcir ucqnit t'f 1. n Bntccw Morlfj. pm-iityitj di scurico dtiUv tteqiie. II I-fj7 Uonbit'f dtdie ncqne }mi> alhi noijlkt. OUrc il pa-tii'jio ccdai umi pic-caki gratiti ri&dicntt. 2^u.isaieo. K^izn cnntinnazione v-mbile. JDireziotie vernf* il Motita Santo, „ aUa vetta del monte Kobllih (Veggasi hi carta miUlurc). Le punicggiale segnuino le dirszioiii riferiie mjirufei-ra. Ji^tese: Ramo ^jriiictpftZp b — I, lungliezza sr.ihtppatrf sulV nssc j/i. C4.Ö0 Mamo Parne ' — o, sviluppo C. Ä. C — r. « liiasmmto delte altezse barovietriche: iü -pianif di cainpagna .... jfj'iucipiu del pf/zztr d i disce$s(i (b. nllczso rilevidu) putito C - 4i\00 sao.7o 2o5.(M} aöü.cAf Tetnpenthtre sollcn^mee: ptmto f S m — o t ž»*" U B (icqtuc. 110" ^ „ ariu \ \10° 1 „ mancava uno studio diligente della Merzlek; e questo fu eseguito ed esposto nel miglior modo dal compianto ingegnere Federico Comelli, autore di una relazione molto pregevole, pubblicata nel 1887, sulla quale e indispensabile che richiami l'attenzione della spettabile Amministrazione Civica, poiehe, non avendo potuto trattenermi a lungo nella regione, debbo far tesoro delle osservazioni e delle considerazioni di questo Autore, che ben a ragione dichiara di "aver studiato con passione e giudicato senza passione" e che ha considerato l'argomento della provvista d'acqua per Gorizia con larghezza di concetti, estendendo le sue ricerche a motte altre fonti,... -. Lo stesso Autore, sempre nella sua relazione presentata aH'Amministrazione Civica di Gorizia, nel precisare i rapporti stratigrafici tra il Monte Santo e l'opposto Monte S. Valentino, cita nuovamente il Comelli avendo quest'ultimo affermato: - ... le condizioni idrografiche interne della Merzlek non mi sembrano tali da potersi con asservanza assicurare la riuscita d'un lavoro, nel quale siano i mezzi meccanici eliminati. -. E poi aggiunge: - Sebbene non abbia a lamentare di aver incoraggiato la ricerca della fönte ad altezze tali da non richiedere l'innalzamento meccanico, tuttavia, se avessi allora avuto in mente il concetto che mi sono fatto dappoi dell'andamento delle acque sotterranee nei terreni permeabili e particolarm-ente nei calcari, non mi sarei nemmeno azzardato a proporre lo scavo del breve cunicolo di presa alio scopo di tentare un leggero sollevamento di una parte dell'acqua della fönte.-. II Taramelli, nel corso di tutto il suo lavoro, cita continuamente il Comelli dimostrando l'estrema validitä dell'opera di quest'ultimo. Bisogna inoltre ricor-dare che Federico Comelli, pur non essendo stato uno speleologo nel senso stretto della parola, si dedicö attivamente alia esplorazione delle cavitä circos-tanti il paese di Gargaro. Sebbene queste esplorazioni siano strettamente collegate con lo studio del percorso sotterraneo del Merzlek, dimostrano come quest'uomo, oltre ad essersi dedicato con vero amore a questo tipo di ricerche, abbia precorso i tempi, impegnandosi con criteri rigorosamente scientifici in una disciplina nuova per l'ambiente isontino dell'epoca, anche se per la veritä il goriziano Carlo Seppenhofer, suo contemporaneo, aveva giä esplorato alcune cavitä vicino alla nostra cittä ed aveva cominciato un'attenta opera di sensibi-lizzazione presso la cittadinanza. Ritornando alio studio del Merzlek, il Taramelh aggiunge: - Secondo ogni probabilitä le acque che si perdono nelle fratture del calcare, entrando nella massa di questo a preferenza per quelle numerosissime foibe che appunto si osservano nell'altopiano di Laschik, nel raccogliersi per originäre la Merzlek e le fonti che la fronteggiano, si abbassano rapidamente in corrispondenza alio stesso altipiano; epperö il Comelli giudica che "l'andare sottoterra alla ricerca di quelle acque sarebbe uno sprecare tempo, lavoro e quattrini" (pag. 22). L'autore (il Comelli, n.d.a.) non ommise di studiare accuratamente le foibe della valle del Gargaro, cosi nella loro topografia come per la temperatura delle acque; traendone sicura dimostrazione che da quelle foibe non pud essere alimentata la Merzlek, dicui le O S- cä o s-ns CS u xz vi L. S^ 03 ti O CO "as B O H-« g «O L. ^ L. 0) su s CD O S •mam O t. a> B fS v ' \ •■•'A ' _ - Fig. 6: The rough rocky face in the disclosed neighbouring pit proves stagnant water solution as the process of void enlargement. Then follows the phase of filling with loam, its erosion and its remains where the flowstone accumulation stuck them on the wall. The dripstone formation is the last developmeitt phase, attributed to the Holocene period. SI. 6: Robata skalna površja v sosednjem razkritem jašku dokazujejo korozijo stoječe vode kot proces razširjanja votline. Sledi faza zapolnitve votline z ilovico, njene erozije, kar pričajo ostanki, ki jih je na skalo prilepila siga. Tvorba stalagmitov je poslednja razvojna faza, pripisana holocenu. Ali photographs taken by L Gams. ACTA CARSOLOGICA XXVI/2 29 337-350 LJUBLJANA 1997 A STUDY OF SOLUTION PIPES PRESERVED IN THE MIOCENE LIMESTONES (STASZÖW, POLAND) PREUČEVANJE ZAPOLNJENIH KOROZIJSKIH BREZEN (GEOLOŠKIH ORGEL) V MIOCENSKIH APNENCIH (STASZOW, POLJSKA) IWONA MORAWIECKA & PETER WALSH' Izvleček UDK 551.4(438) Iwona Morawiecka & Peter Walsh: Preučevanje zapolnjenih korozijskih brezen (geoloških orgel) v miocenskih apnencih (Staszöw, Poljska) V sarmatskih karbonatih Jarostawske formacije (miocen) pri Staszöwu so stotine korozijskih brezen (geoloških orgel), zapolnjenih s sanskim morenskim gradivom. Volumen brezen je 1 - 15 m"', povprečna globina 1,9 in premer 0,6 m. V kamnini so vodilne tenzijske razpoke, toda niso vplivale na nastanek in razporeditev brezen. To naj bi bilo odvisno od stika kamnina - pokrov, v kemizmu pokrova in v naravi hidrološkega ali kriološkega režima. Staszöwski paleokras predstavlja pokriti kras, nastal zaradi deglaciacije in "depermafrostizacije" konec sanske mrzle dobe. Ključne besede: speleogeneza, korozijsko brezno, kvartar, Staszow, Poljska. Abstract UDC 551.4(438) Iwona Morawiecka & Peter Walsh: A Study of solution pipes preserved in the Miocene limestones (Staszöw, Poland) Hundreds of solution pipes are in quarries near Staszöw. The pipes are in Sarmatian carbonates of the Jaroslaw Formation and are filled with sediment from Sanian till cover. The pipes have the volume of 1 to 15 m\ the average depth is 1.9 m, the diameter 0.6 m. In the host rock are tensional master joints but the structure of the host rock had no influence in determining pipe locus and form. These has to be in the nature of the interface host - cover, in the chemistry of the cover, and in the nature of the hydrologic or cryologic regime. Staszöw piping palaeokarst represents a covered karst system, developed as the product of deglaciation and "depermafrostisa-tion" at the end of the Sanian cold period. Key words: speleogenesis, corrosion pipe. Quaternary, Staszöw, Poland. ' Department of Geomorphology, Faculty of Earth Sciences, University of Silesia ul. B?dzinska 60, 41-200 SOSNOWIEC, POLAND INTRODUCTION A solution pipe may be defined as a cylindrical, vertical, suberosional landform* produced by the removal of a soluble host beneath an insoluble cover. Most often, pipes are exposed only in profile, such as in quarry walls (Harasimiuk et al. 1975) or in natural cliffs (Coetzee 1975; Morawiecka 1993), where they are often difficult to access. Occasionally, they are visible in plan on erosional features such as intertidal beach platforms (Ka-ye 1959; Baughen, Walsh 1980; Morawiecka et al. 1996). If they are developed at all, it is uncommon to find them as isolated forms and their occurrence in large pipe populations is very characteristic. At Staszow, in SE Poland, the large pipe population contained in a Miocene limestone host is well exposed in low quarry walls and also on near-horizontal quarry floors. In these respects, the Staszow area must represent one of the most favourable situations in the world in which to study this little-understood karstic phenomenon. FIELD SETTING AND GEOLOGY The pipes of the Staszow system are exposed in about 15 small limestone quarries situated N and NE of the town (Fig. 1) near Podmaleniec, Kopa-nina, Dobra, Sztombergi, Karolinow and Smerdyna. Only some of the quarries are currently worked; about half are disused. The quarries are situated within the outcrop of Sarmatian limestones known as the Jaroslaw Formation (Jurkiewicz, Wolihski 1981) which outcrop in an E-W band along the southern borders of the Holy Cross Moun- Fig. 1: Map of the study area to show the outcrop of the Jaroslaw Formation reef limestones (after Jurkiewicz and Wolinski 1981) and the location of the quarries which display pipes. Fig. 2: Geomorphological sketch of the north-western wall of the Podmaleniec II Quarry. tains of SE Poland. The general elevation of this piped, plateau-like area is c. 230-240 m a.s.l. The thickness of the host limestone is up to 40 m. It is a cross-bedded, bioclastic forereef limestone, constructed mostly from Lithothamnium (Rut-kowski 1969). The CaCO, content of the hostrock is 93% and the porosity is about 35% (Bugajska-Pajak 1974). The Sarmatian limestone is riven by numerous sets of tensional master joints. Two sets are usually dominant, the one close to regional strike and the other, the dip. The open master joints are seldom wider than 2 cm or so. Many are iron-stained; however, very few of them show any evidence of solution widening by karstic fluids or infilling with insoluble residue from above. The limestone is overlain by a till of the Sanian (Mindel) glaciation (Rozy-cki 1980). The till is up to 4 m thick locally and is formed by a sandy-clay diamict containing a suit of far-travel-led erratics. No pipe so far surveyed was observed to have any surface expression, whether topographical, pedo-logical or vegetational. In this respect, we presume that piping was an event which took place before the Holocene erosion cycle was instituted; the Staszow piping karst may thus reasonably be regarded as a covered (or subjacent) palaeokarst system. THE NATURE OF THE PIPES About 300 pipes have been mapped so far in the quarries studied. Most are exposed only in the quarry walls, where they occur as vertical or near-vertical funnel-shaped hollows (Fig. 2). Fig. 3: Types of the Staszow pipes according to their shape. 1 - vertical-cylindrical, 2 - inverted conical, 3 - inclined, 4 - doubly inclined, 5 - bulbous. The largest pipe so far observed is about 8.2 m deep and has a diameter of about 1.5 m (Photo 1). On average, however, pipes are about 1.5 m deep and 0.5 m in diameter. The walls of the pipes are generally smooth and laminations of the hostrock are not usually visible. Sometimes, a well-developed crust about 2 cm thick is present on the pipe walls. In terms of their shape, 5 types of pipe have been distinguished: vertical-cylindrical, inclined, doubly inchned, inverted conical and bulbous (Fig 3); however, the three first predominate. Additionally, about 170 pipes have been mapped in cross-section. These were exposed in a scraped surface of about 700 m^ in one of the quarries studied, Smerdyna I (Fig. 4). The pipes here were revealed to be both circular and ovate in plan and appeared to be quite randomly distributed. Preliminary analysis to try to determine whether there is any positive relationship between the alignments of nearby vertical joints and the long-axes of ovate pipes (Fig. 4) indicated that this is not possible, because the master joint systems lO Readings Alignments of vertical and ^ near-vertical master joints Alignments of the x-axes of ovate pipes (x:y =or>3;2) O Pipe outcrop x-axis alignments of markedly ovate pipes Survey boundary No. of pipes: 113 Area:A2.3m^ Area surveyed ; 69A m^ Pipe density : 0.16 / m^ Piping Index : 16,A Area piped : 6.1 Mean depression relief : 0.37 m^ Base line Fig. 4: Survey of a selected area of Smerdyna I Quany. (as revealed on Fig. 4) are themselves fairly evenly distributed at this particular locality. The field evidence is unequivocal that pipes are not usually associated with master joints. Certainly, less than 10% of the pipe population showed any coincidence with joints, when seen in profile. In many instances, it was noted that a pipe had developed in "solid" limestone only a few centimetres away from an open master joint (Photo 2). It is, therefore, very difficult to avoid the conclusion that the locus of master joints at the interface with the till cover was not one of the major controls which determined the locus of pipe development. Only some of the pipes at Staszow now contain fills. It is presumed, however, that all the pipes once contained a fill, and, in most cases, the fill has been removed as a result of quarrying. In all pipes where the fill has been preserved, two components are easily recognized (Photo 3): a cortex, forming the lining, which consists of brown silty clay, and a central core which consists of sandy-clayey-stony material, megascopically identical to the till overlying the limestone. In case of the larger pipes, the brown clay is up to 30 cm thick and it is presumed to be a mixture of both a solutional residue and illuviated finegrained till sediment. Diffractometric analysis showed that it comprises 87% quartz, 9.5% illite and 3.5% montmorillonite. The core matrix comprises 90% quartz, 7% illite and 3% montmorillonite (Morawiecka 1994). Piping is certainly not evenly developed across the outcrop of the limestone hostrock. In the study area, some of the quarries display hundreds of pipes; in others there is no trace of piping whatever. Where piping is present, it seems to be fairly evenly developed. Morawiecka (1994) demonstrated that, in one section, Podmaleniec II, which exposes 37 pipes (Fig. 2), the linear density of piping is about 1 pipe/2.5m. Field mapping reveals a marked relationship between the piping and the cover sediment: (1) piping is very closely coterminous with the existing till cover; (2) piping is only very rarely found without a cover of till being present; (3) whenever a till cover is present, some degree of piping is usually evident. THE ORIGIN OF THE STASZOW PIPES There is no evidence that piping ever took place in the Staszow area more than once, i.e. during or after the Sanian tills were deposited. There is no trace whatever of pre-Sanian solution subsidence (though, of course, it is possible that this was once present and evidence for it has been entirely removed by the Sanian ice); nor is there any evidence to hand to indicate that the same source sediment (the Sanian till) was involved in two or more phases of piping (it is acknowledged that it might be difficult to establish criteria on which to recognize separate phases of piping). But the exact relationship between piping and the Sanian till is by no means obvious; in our present State of knowledge, two hypotheses must be considered: firstly, that the piping was a Neopleistocene event and developed only at a time when the Sanian till cover was worn back more or less to its present hmits. Alternatively, the piping is a process contemporaneous or penecontemporaneous with deglacia-tion and that the present-day limits of the Sanian till sheets are, therefore, little different from those resulting from deglaciation of the area. With respect to the first alternative, there is no positive evidence to support this view, which is based solely on an intuition that, after 500 ka, it would be extremely unlikely for the Sanian tills to have exactly the same distribution as that in which they were originally formed. Certainly, if the piping at Staszow was exclusively a Neopleistocene event, this then begs the question why hundreds of cubic meters of rather cold meltwater per square metre of host limestone surface failed to produce some piping effect here at the end of the Sanian cold period. For the present, we have not rejected either of these working hypotheses. That the pipe-forming fluids have "ignored" the multipHcity of open master joints during pipe formation is a feature of the Staszow palaeokarst which, at present, is not easy to explain. The most obvious explanation for this is that the master joints (or at least their openness) were formed after the pipe-forming processes had ended. However, given the antiquity of the host and the youthfulness of the till cover, such a notion seems very unlikely. Another explanation we are at present considering is that, at the time when the piping was initiated, the joints existed in much their present form, but were then filled with something which precluded their utilisation by groundwater fluids; in which respect, sealing of the joints by ground ice seems to be the only reahstic possibility. Because the rock cover in this karst system is clearly a cold-climate sediment, this notion seems to be quite reasonable. Moreover, it is well known that water which has a temperature only a little above freezing point is a much more effective solvent of carbonates than one of temperate nature (Pulina 1974). Indeed, it is hard to see how any attempt to explain the development of the Staszow piping karst can avoid considering the possible effects of chmatic amehoration at the end of Sanian period, which certainly produced a deglaciation, and, probably, a concomitant "depermafrostisation", as a likely major influence. Therefore the following working hypothesis concerning the origin of the Staszow piping system and the sequence of subsequent events in this area has been formulated: During the PHocene, the area of Staszow was upUfted above sea level. Denudational processes of various kinds affected the area but no pipes developed in the Sarmatian limestones for no insoluble cover was yet present (Fig. 5A). Towards the end of the Sanian cold period, the area studied was overwhelmed by a continental glacier. It is envisaged that, at the time it was overridden by the ice, the permafrost zone extended down to below the Fig. 5A: The Staszow area in the Pliocene. Fig. 5B: The Staszow area near the end of the Sanian cold period. Sarmatian limestone (Fig. 5B). As a consequence, any open joints present in the Iiost limestone were sealed up by ground ice, both before and during the glaciation. At the end of the Sanian cold period, possibly about 5 ka later, the decay of the ice sheet began, consequent upon the climatic amelioration. Within the decaying glacier body and associated tills, zones of local vertical percolation developed, possibly associated with zones of relatively coarse and relatively permeable moraine material (Fig. 5C). In our provisional model, at the beginning of the post-Sanian warm period the glacier decay left behind rafts of dead ice, themselves underlain by local blocks of discontinuous permafrost. We envisage that piping was controlled initially by combinations of relatively permeable till above, with avenues of first-to-decay permafrost below, and that, once started, the piping process was extremely rapid, piping outlets in the sub-glacial drainage system capturing the percolation selectively (Fig. 5D). We speculate that piping may have been enhanced by the presence of any depressions in the limestone surface, such as kamenitzas, which may have survived the initial glacial advance over the area (these would presumably have been destroyed by the piping process); we also speculate that piping may have been enhanced by the former presence in the local moraines of organic material such as frozen peat, which, during deglaciation, for a time released aggressive acid radicals into descending meltwater. In our provisional model of pipe development, piping would have ceased (or at least very much diminished) when either the flush of meltwater had ceased or when the acid radicals in the till had all been leached out. It must be stressed, however, that there is not, so far, any positive evidence for the former existence of either organic material in the till cover, significant depressions in the surface of the limesone host, or selectively permeable zones in the till sediment. On the other hand, our CS'? of pe-mafrost ,pecfs zones i- Fig. 5C: The Staszow area when covered by the Sa-nian ice sheet. s Side chanrc'.s F Pipes C Te.TiporGry crote" r,orkir.g loci ot pipe axes 3 Decaying ice rrasses Sübros'on res'duz Fig. 5D: The Staszow area at the beginning of the post-Sanian warm period. "depermafrostisation" model does, at least, have the advantage of explaining why some pipes are non-vertical or doubly-inclined - these features are neatly explained by the presence of permafrost blockages to vertical percolation, any development out of the vertical denoting the former presence of a lens of ground ice which acted as an umbrella to the percolation which created the pipes (Fig. 5D). PROVISIONAL CONCLUSIONS At present, we consider that the piping karst at Staszow has been produced by quasi-catastrophic geomorphic agencies, clearly related to deglaciation and probably also to "depermafrostisation" at the end of the Sanian cold period. In our view, the whole of the piping karst development probably took place in not more than a few hundred, and certainly not more than a thousand years. The field and laboratory programmes in this study are to continue. Work in the immediate future will concentrate on gathering data about the nature of the interface between the till cover and limestone host, the brown clay lining of the pipes and about pebble fabrics in the till cover and pipe cores. ACKNOWLEDGEMENTS The University of Silesia internal research grant nr BW13/93 is acknowledged for providing financial support for the field work in the Staszow area. REFERENCES Baughen D. J., Walsh P.T., 1980: Palaeokarst phenomena in the Carboniferous Limestone of Anglesey, North Wales. Trans. Brit. Cave Reser. Ass., vol. 7, p. 13-30. Bugajska-Pajak A., 1974: Charakterystyka surowcowa wapieni lekkich miocenu poludniowego obrzezenia Gor Swi^tokrzyskich. Przegl. Geol. vol. 61, p. 226-241. Coetzee E, 1975: Solution pipes in coastal aeolianites of Zululand and Mozambique. Trans. Geol. Soc. Africa, vol. 78, p. 323-333. Harasiumiuk M., Henkiel A., Pekala K., 1975: Nieznany typ form krasu kopalnego na Roztoczu. Speleologia, vol. 8, p.98-108. Jurkiewicz H., Wolinski J., 1981: Mapa utworow powierzchniowych 1:50000 -arkusze: Staszow, Klimontow. Wydawnictwa Geologiczne. Kaye C. A., 1959: Shoreline features and Quaternary shoreline changes of Puerto Rico. Prof. Pap. U.S. Geol. Surv., vol. 317-B, 138 pp. Morawiecka I., 1993: Palaeokarst phenomena in the Pleistocene raised beach formations in the South West Peninsula of England. Kras i Speleologia, vol. 7, p. 79-93. Morawiecka I. 1994: The nature and origin of palaeokarst phenomena in late-Quaternary calcareous sandrock with special reference to the coasts of SW England and S Wales. (PhD thesis - unpublished). Morawiecka I., Slipper I., Walsh P., 1996: A palaeokarst of probable Kainozoic age preserved in Cambrian marble at Cemaes Bay, North Wales. Z. Geomorph. N.E, vol. 40, p. 47-70. Pulina M., 1974: Denudacja chemiczna na obszarach krasu weglanowego. Prace Geogr. IG PAN, vol. 105, 155 pp. Rozycki S. Z., 1980: Principles of stratigraphic subdivisions of Quaternary of Poland. Quater. Stud. Poland 2, p. Rudkowski J., 1969: Uwagi o sedymentacji detrytycznych osadow sarmatu na obrzezeniu Gör Šwi?tokrzyskich. Kwart. Geolog., vol. 13, p. 177-184. PREUČEVANJE ZAPOLNJENIH KOROZIJSKIH BREZEN (GEOLOŠKIH ORGEL) V MIOCENSKIH APNENCIH PRI STASZÖWU NA POLJSKEM: PREDHODNI IZSLEDKI Povzetek V sarmatskih karbonatnih kamninah Jaroslawske formacije (zgornji miocen) pri Staszowu na osrednjem Poljskem so v kamnolomu prerezane stotine korozijskih brezen (geoloških orgel), zapolnjenih s sanskim (srednjepleistocenskim) morenskim gradivom. Volumen brezen znaša povprečno 1 m^, vendar dosežejo največja 15 ml Povprečno globino teh brezen je 1,9 m, povprečni premer pa 0,6 m. V matični kamnini so gosto razporejene vodilne tenzijske razpoke, toda terenske raziskave jasno kažejo, da je igrala struktura matične kamnine zelo majhno ali sploh nobene vloge pri nastanku in razporeditev teh brezen. To naj bi bilo odvisno od stika matične kamnine in morenskega pokrova, v kemizmu pokrova in oziroma ali v naravi hidrološkega ali kriološkega režima, ki je vladal takrat, ko so ta brezna nastajala. Staszöwska paleokraška brezna predstavljajo pokriti kras. Ta naj bi predvidoma nastal "nenadoma" zaradi taljenja ledu oziroma izginotja permafrosta konec sanske mrzle dobe. Cl s Co a, --a p I a o CA m rC o\ o\ a e S a 00 ' caves b. Shafts Limestone 1km K K-| 2 Dolomite The motorway is 4 times enlarged Fig. 1: Caves in the laying-out. SI. 1: Jame na trasi. walls or floor. The ceilings above such caves are thin, from 1 to 2 m at the most. The network of pasages, their form and the rocky perimeters of these caves indicate that they were mostly controlled by slow water drainage in the phreatic zone. Many old caves filled up by fine-grained sediments are already without roof (Fig. 3). The pasages wind like shallow indentations over the karst surface. They may be perceived even before the earthworks start. In road cuttings and tunnels the passages, filled up by fine-grained sediments, are seen in cross-section. The caves are filled up by layers of yellow loam and sand, frequently consolidated, and above them are ususally red loams and brown soil. The deposits cover the speleothems and calcite formations rarely is the deposit covered by flowstone. Relatively rare are traces of faster flows, such as small scallops; there were no pebble deposits found in these caves though they are frequent in old caves near Divača. The passages of old caves are frequently intersected by shafts and the sediments are there removed in a funnel shape. Old caves may be intersected by dolines also. A modest amount of water meandered in the bottom of some, usually smaller, passages (Fig. 4). The ^rezno v profilu 1120 Ac Dane Sežana 3 4 5nn DROLE, GABROVŠEK 25.7.1997 IZRKZRC SAZU cave. / patches of flysch remained on some places on the surface for a longer time and water drained off them into the limestone. Parts of newly discovered passages are filled up by coarse rubble (Fig. 5). Rubble, with sides mostly 5 cm in length, is due to weathering of the karst surface in one of the Pleistocene cold periods. Mostly it is found in parts of caves from where the fine-grained sediments were removed due to vertical permeability of the aquifer, and the thin roof collapsed just before the infill by rubble. In the passages the sections filled by loam and rubble alternate. It seems that some newly discovered and relatively large old caves, either void or filled up by fine-grained sediments or rubble, in the western part of the motorway actually make part of a larger horizontal and vertical cave system that was unearthed during motorway construction over slightly undulating karst surface. The water from the surface infiltrates underground by shafts and fissures. On the planned motorway two shafts were already known, the deeper one reaching 20 m deep. By denuding the surface during the earth works several other shafts (46) were discovered in relatively cavernous limestone, up to 110 m deep (Fig. 6). They may be divided into shafts with distinctive traces of percolation water, having ususally circular cross-sections and cracks of various dimensions that developed along the fissures, and with their walls often covered by flowstone; larger cracks developed along wrench-faults in fissured zones (Čar 1981). A lot of cracks are filled by flowstone, some of them widen in the shafts. Spacious, well decorated shafts make part of old cave systems that supposingly developed in a phreatic zone (cross-section 1122). Hollows, similar to shafts, developed among the breakdown boulders within disintegrated old caves. The most frequent were newly discovered shafts through which the water percolates into the aquifer. Most of them are located in the slopes or in the bottom of larger, funnel-shaped dolines. Most of shafts were without visible natural entrances. Narrow openings of difficult access appeared when the earth was removed. On the other hand spacious shafts were discovered and explored when digging the road cuts and tunnel, some 10 to 30 m below the surface. This is the consequence of water accumulation coming from a scattered infiltration through the permeable surface, which is being considerably lowered (Slabe 1996), and shafts are, also those with a natural entrance, collectors of this water. Klimchouk (1995) also assessed the diffuse water percolation into epikarst and converging of this water at the contact with vadose zone. THE INFLUENCE OF THE MOTORWAY CONSTRUCTION ON CAVES The deepest known shaft remained untouched at the border of the tunnel. By revealing the karst surface numerous smaller entrances into shafts appeared. Most of them were in the bottom of dolines. The workers blocked them Brezno pri Danah Sežana 330m ENTRANCE OIL COLLECTOR ENTRANCE 'J OIL COLLECTOR 10 20m -109m DROLE, GABROVŠEK 13.5.1997 IZRK ZRC SA2U Fig. 6: Shaft. SI. 6: Brezno. by large rocks cemented by a concrete. Dolines were later filled up by layers of stones and rubble and consolidated by a vibration roller. Also the finegrained deposits and rubble were removed from the old caves and they were filled up by rocks and concrete. Larger shafts frequently opened in roadcutings. The exploration was a demanding task as the perimeters of the entrance parts were very crushed and the rocks unstable due to blasting. Smaller shafts below the laying-out were filled up by rocks and consolidated by concrete. One of bigger shafts was unaccessible (cross-section 1048) because larger rocks collapsed in it. During the earth works the shaft was filled up. We suggested consolidating the area above it by strong concrete. Fine-grained sediments from old caves located in the sides of road-cuts were washed to the roadway. The caves were sealed by walls. During the digging of a tunnel several old caves and shafts opened. As they were of smaller dimensions they were closed by the concrete arch of the tunnel. The caves in the ceiling of the tunnel were unaccessible. The rocks of their perimeter were crushed due to blasting, rocks and rubble poured out and the perimeter was disintegrating. CONCLUSION A large share of the surface of this part of the Kras aquifer is occupied by old caves, filled up by fine-grained sediments and rubble and already unroofed. The upper parts of the aquifer have been affected by infiltration water for a long time. Mostly large old caves evidence the time when the ground water was close below the actual surface. Supposedly close to them a flysch nappe remained and from it smaller superficial waters drained. The ponor properties of some caves indicate the same. Their bottoms are meandering and deepened by smaller water flows. Flysch remained over the limestone long after the lowering of the underground water table, yet the water reached the caves during high waters and finally filled them with fine-grained sediments. During cooler periods of the Pleistocene some of old caves were filled up by rubble. The great cavernosity of this part of Kras is evidenced by the numerous shafts and fissures that were discovered during the earth works. Also in this part of the karst there were no traces of superficial water flows that could belong to the time when the hmestone was still dammed. The same was noted on the section of the motorway between Čebulovica and Dane. All the discovered sediments are of cave origin. Great cavernosity is one of the most rehable indicators of permeability, warning us again how carefully the rodas must be constructed and later used. The roadway should be impermeable in order to assure that only treated waters drain off it each day, and the road surface should be protected against accidental spills of harmful substances. When the rubble on the roadway had been consolidated by a vibration roller some sinkholes appeared. The roof above smaller caves collapsed. Considering this great cavernosity, there exists the possibility that some larger cave is hidden underneath. This it means that the georadar survey is very important for safety of the roads. REFERENCES Čar, J., 1982: Geološka zgradba požiralnega obrobja Planinskega polja.- Acta carsologica 10, 1981, 78-105, Ljubljana. Gams, L, 1974: Kras.- Slovenska matica, 360 pp, Ljubljana. Klimchouk, A., 1995: Karst Morphogenesis in the epikarstic zone.- Cave and Karst science vol. 21, No. 2, 45-50. Melik, A., 1960: Slovensko Primorje.- Slovenska matica, 547 pp, Ljubljana. Radinja, D., 1972: Zakrasevanje v Sloveniji v luči celotnega morfogenetskega razvoja.- Geografski zbornik 13, 197-243. Slabe, T, 1996: Karst features in the motorway section between Čebulovica and Dane - Kraški pojavi v trasah avtocest med Čebulovico in Danami. Acta carsologica 25, 221-240, Ljubljana. JAME V TRASI AVTOCESTE DANE - FERNETICI Povzetek Na slovenskem krasu se hitro gradijo avtoceste. Krasoslovci sodelujemo pri načrtovanju avtocest, ko se izogibamo površinskim kraškim pojavom kot so večje vrtače, udornice in kraške stene ter značilno oblikovane večje skalne površine, in večjim jamam. Sodelujemo tudi pri gradnji avtocest, ko se odkrivajo številne in raznolike kraške jame. Del sem jih že predstavil (Slabe 1996). To so stare jame, ki so votle ah pa zapolnjene z drobnozrnato naplavino in gruščem, ter brezna, skozi katera prenika voda s prepustnega kraškega površja. Novoodkrite jame nam veliko povedo o razvoju osrednjega dela vodonosnika Krasa. Skozi kraški vodonosnik se pretakajo vode s flišnih Brkinov, Senožeške, Vipavske doline in Pivške kothne ter iz proda Soške doline. Na stiku s flišem so večje ponorne jame. S prepusnega površja vode razpršeno prenikajo do podzemeljskih voda, ki so danes več kot 300 m globoko pod površjem. Krasoslovci (Gams 1974, 197) menijo, da je kras dobil glavne reliefne značilnosti, ko je bil nižje od brkinskega in vipavskega fliša. O sledeh prvotnega površinskega odtoka po zajezenih apnencih sklepa Melik (1960, 201) po obliki površja in njegovih strmcih, Radinja (1972, 13) pa po naplavinah na površju. Trasa med Danami in Fernetiči predre kraški hrbet pri Sežani in nato poteka po ravniku do italijanske meje. Kras se je oblikoval v krednih apnencih, presekanimi z manjšimi prelomi, ki so najlepše razvidni pri kopanju predora. V kraški ravnik se zajedajo večinoma večje, lijakaste vrtače. Tudi na ostalem, večinoma poraslem površju je le malo zemlje. Površje prepredajo tudi večje zajede, v katerih je ilovica. Ugotovili smo, da so to stare jame, ki so že brez stropa in zapolnjene z drobnozrnato naplavino. Presenetljivo velik delež površja tega dela vodonosnika Krasa zavzemajo stare jame, ki so zapolnjene z drobnozrnato naplavino in gruščem in so že brez stropov. Zgornji deli vodonosnika so že dolgotrajno preoblikovani s prenikajočo vodo. Stare jame so torej sledi časa, ko je bila podzemeljska voda še tik pod današnjim površjem. To je seveda zaradi stalnega nižanja kraških predelov nižje od prvotnega. Velikost rovov priča, da so se skozi njih pretakali večji vodni tokovi, ki so rove sprva povsem zalivali. V bližini pa je bil verjetno tudi ostanek flišnega pokrova, s katerega so se stekale manjše površinske vode. Na to kažejo ponorne značilnosti nekaterih jam. Njihova dna so namreč vijugasto poglobljena z manjšimi vodnimi tokovi. Fhš se je na apnencu ohranil še dlje časa po znižanju gladine podzemeljske vode, ki pa je jame ob izjemnih poplavah še dosegala in končno celo zapolnila z drobnozrnato naplavino. Del starih jam je bil v hladnejših obdobjih pleistocena zapolnjen z gruščem. Veliko prevotljenost tega dela krasa dokazujejo tudi številna brezna in špranje, ki so bila odkrita pri zemeljskih delih. Tudi v tem delu krasa ni bilo najti sledi površinskih vodnih tokov iz časa, ko je bil apnenec še zajezen. To smo ugotovili tudi na trasi med Čebulovico in Danami. Vse odkrite naplavine so jamske. Velika prevotljenost eden izmed najbolj zanesljivih kazalcev prepustnosti, kar nas še enkrat opozarja na izredno pazljivost pri gradnji ceste in nato pri njeni uporabi. Cestišče bi moralo biti neprepustno, tako da bi se z njega resnično stekale le prečiščene vsakodnevne vode, površje pa bi moralo biti zavarovano tudi pred morebitnimi nesrečnimi razlitji škodljih snovi. Tudi pri utrjevanju grušča na cestišču s tresočim valjarjem so nastajah grezi. Udrli so se stropovi nad manjšimi jamami. Ob veliki prevotljenosti pa bi bila lahko tik pod površjem še kakšna, tudi večja jama. Pregled takšnih tras z georadarjem je torej zelo pomemben za varnost cest. I 1 Fig. 3: Roofless cave. SI. 3: Jama brez stropa. Fig. 4: Old swallow-cave without roof. SI. 4: Stara ponorna jama brez stropa. Fig. 7: Collapse can occur even when the earth-works are finished. SI. 7: Do udora lahko pride tudi po zaključku zemeljskih del Fig. 5: Cave filled up by rubble. SI. 5: Jama zapolnjena z gruščem. ACTA CARSOLOGICA XXVI/2 32 373-385 LJUBLJANA 1997 SPRING CHEMOGRAPH ANALYSIS - THE INFLUENCE OF THAW EFFECT AND DISPERSED POLLUTION IMPULSES (CRACOW-CZESTOCHOWA UPLAND, POLAND) ANALIZA KEMOGRAMOV IZVIROV - VPLIV EFEKTA TALJENJA SNEGA IN IMPULZOV RAZPRŠENEGA ONESNAŽEVANJA (KRAKOWSKO-CZESTOCHOWSKO VIŠAVJE, POLJSKA) ANDRZEJ TYC' Izvleček UDK 556.33/.34(438) Andrzej Tyc: Analiza kemogramov izvirov - vpliv efekta taljenja snega in impulzov razpršenega onesnaževanja (Krakowsko-Czestochowsko višavje, Poljska) Napajanje, tok in vskladiščenje podzemne vode so v karbonatnih vodonosnikih zelo spremenljivi. Skladno z različnimi stopnjami zakraselosti je napajanje v razponu od koncentriranega do razpršenega. Članek predstavlja rezultate proučevanja onesnaženja glede na različne načine napajanja v karbonatnih vodonosnikih, s pomočjo monitoringa temperature vode in koncentracij glavnih ionov. Na podlagi analize kemogramov kraških izvirov in ocene tradicionalnih modelov napajanja, avtor predlaga nov model. Taljenja snega se odraža v kemizmu voda SO/" in NO^", celokupna trdota, specifična električna prevodnost). Ključne besede: hidrologija krasa, kraški izvir, kemograf, Poljska. Abstract UDC 556.33/.34(438) Andrzej iyc: Spring cheniograph analysis - the influence of thaw effect and dispersed pollution impulses (Cracow-Czestochowa Upland, Poland) Groundwater recharge flow and subsurface water storage can be extremely variable in carbonate aquifers. Owing to different degrees of karstification, recharge can range from concentrated to dispersed. The paper outlines the results of an investigation of pollution in respect of different recharge situations in carbonate aquifers including of monitoring of water temperature and ion concentration. According to the chemograph analysis, the author suggests modifications to the traditional models. The thaw effect is demonstrated by water chemistry (Ca^+, SO/", NO^", total hardness, specific conductivity). Key words: karst hydrology, karst spring, chemograph, Poland. ' Department of Geomorphology, University of Silesia, ul. B^dzinska 60, 41-200 SOSNOWIEC, POLAND INTRODUCTION For several decades, karst hydrology has used different indirect methods to investigate groundwater systems in karst aquifers. These have included analysis of karst spring hydrographs and chemographs (Mangin 1975; Bakalowicz 1979; Bonacci 1987; Ford & Williams 1989; Bonacci 1993). The analysis of a spring runoff hydrograph during individual flushes has successfully been applied in hydrology, in respect that it enables us to classify karstic aquifers according to the degree of karstification they exhibit and to the state of development of the groundwater circulation system. With the general growth of hydrochemical investigations in karst areas, this kind of analysis has advanced to a stage where detailed spring chemographs have been drawn up for short spring flushes (Jakucs 1959; Bonacci 1987). Certainly, this method of indirect hydro-logical investigation has gained many advocates in recent times and its popularity is, no doubt, due to the increasing availability of automatic measuring stations in the field and the computer in the laboratory. Spring chemographs may be used in the cases of both a single flush and in the analysis of seasonal variability of spring hydrochemical conditions (see also, e.g. White & Stellmack 1968; Shuster & White 1971; Tyc 1992; Reeder & Day 1993; Tyc 1994; Lackey & Krothe 1996). Research into changes of karstic water chemistry where influenced by anthropogenic pollution, which have been carried out in several karst areas, has provided much new data for the interpretation of spring chemographs. On the one hand, pollution represents a valuable chemical marker, whereas, on the other, it makes the evaluation of karst aquifer activity even more complicated than it usually is. In cold-temperate karst areas, where there is a regular annual snow cover, thaw flushes are an important factor in influencing the hydrological and hydrochemical regime of a karst aquifer. With respect to the author's own observations carried out in the central part of the Cracow-Czestochowa Upland, and by analysing the results of the research from other areas (e.g. Reeder & Day, 1993; Lakey & Krothe, 1996), it became apparent that the generally accepted interpretation of karst spring chemographs should be modified for those areas where thaw flushes occur and where the groundwater environment is considerably polluted. Classical chemograph analyses Long-term research in different karst areas all over the World shows that there is a positive relationship between spring regimes, the types of circulation in the aquifer and the temporal variability of some physical features and chemical composition of spring water. The theoretical basis for the application of spring hydrographs analysis gave L. Jakucs (1959) (who investigated springs in Kolmos, Hungary); W.B. White & J.A. Stellmack (1968), W.B. White (1969), and E.T. Shuster & W.B. White (1971) (the Nittany Valley, Pennsylvania); R. Gospodaric & P. Habič (1976) (the Dynaric karst); S.R.H. Worthington (1991) (the Rocky Mountains of the U.S.A.) and, particularly, A. Mangin (1975), M. Bakalowicz (1979) and M. Bakalowicz & A. Mangin (1980) (the Aliou, Baget and Fontestorbes systems in the Pyrhenees, France). Recently, the latter investigation has been enlarged by A. Pulido-Bosch in the Torcal de Antequera System of Spain (e.g. Padilla et al. 1995). These authors all assume that karst aquifers are heterogeneous and represent all possible combinations and organisational stages of runoff which can range between the diffuse flow and conduit flow systems. The hydrological and hydrochemical regimes of springs (spring yields, temperature and specific conductivity and the temporal variability of the chemical properties of spring water) are in a direct relationship with the structure and condition of water circulation in the karst aquifer. This regime is modified by the hmiting conditions of the aquifer. The variability of karst spring discharge relates to the variabihty of precipitation, the intensity of thawing and the volume of aquifer recharge by allochthonous surface streams. Therefore, the hydrological and hydrochemical regime of springs is mainly dependent on the recharge conditions. According to L. Jakucs (1959), it is important to recognise the relationship between the nature of the karst aquifer recharge and the spring response; springs of small variability are associated with autochthonous recharge (percolation and infiltration) whereas there is another type represented by springs of great variability, where, usually, allochthonous recharge by surface streams is a strong influence. According to S.R.H. Worthington (1991), the location of a spring at a particular altitude in relation to neighbouring springs which drain the same karst system, may also be an important factor in influencing variability of discharge. From these considerations, it follows that any classification of springs in a karst area must contain the foUowing: (1) full-flow springs, which drain the whole aquifer (2) underflow springs, which mainly drain basic underground runoff (3) overflow springs, which mainly drain flush runoff, and (4) underflow-overflow springs, which represent a transitional type. Springs which drain a whole aquifer are very rare in carbonate karst areas; they normally occur only in those areas where there are no overflow springs and the single spring is then situated at the lowest topographical point in the whole catchment. S.R.H. Worthington (1991) also assumed that each overflow spring must have a complementary underflow spring; however, in as much as these are seldom recorded in any survey of a karst area, they are often difficult to find. In such cases, the basal runoff goes beyond the aquifer, without surface discharge (therefore it is not possible to measure it). Thus, it is the overflow springs which tend to be the most frequently investigated (and, also, supposedly, the commonest) in carbonate karst terrains. The best-known and commonly apphed analysis of karst spring chemograph Rain [mm] Q [m'/s] C [mS/m] CaCOs [mg/l] Turbidity [mg/l] l)i.spl5o>ö>a)oj Q [l/s] 19,0 1S.0 17,0 16,0 15,0 14,0 13,0 12,0 11,0 lO.O 9 9 9 5) o) 5 s 8 8 $80 cj) O) O) a> g g ro uo ? 8 i i i O) ö> O) ' 0> 0> Fig. 4: Variability of specific conductivity (C rnS/rn) and nitrates (NO^^' mg/l) in water of Klucze II (a), Klucze I (B) and Ryczowek II (C) springs during thaw season of 1991. Q-mean daily discharge in Ryczowek II. In the karst areas which are not influenced by human activity, an increase in the yield is accompanied by a decrease of TH values and mineralisation. In the case of the Cracow-Czestochowa Upland, the spring chemographs are more complicated. Maximum discharge takes place during thaws and, at these times, there is an obvious increase in the values for specific conductivity, total hardness and ionic content which come mainly from pollutants. Detailed measurements during the thaw period were made at the Ryczowek II (a spring which has a fairly consistent flow), Klucze I (one with variable flows) and Klucze II (one which has consistent all-year-round flows) in the thaw period of 1991 (Fig. 4). This chemograph showed that the accepted view concerning changes of mineralisation and the amount of dissolved and salts during thaws is not wholly acceptable. The traditional view holds that, only in the case of Summer precipitation recharge does meteoric water infiltrate into the karst aquifer quickly. However, this does not adequately relate to the minerahsation and chemical composition of spring water which comes from thaw or thaw-rain recharge, which is an important element of spring discharges in such situations. This may be explained by considering in detail the relationship between the runoff hydrograph and the zones of the carbonate aquifer which are drained during the individual phases of a flush. During thaws, when a spring flush is preceded by the long contact of the water (i.e. that which comes from melting snow covers) and the ground, the increase of minerlaisa-tion and total hardness is associated in the spring recharge with water from the the epikarst zone and the upper part of the vadose zone (this is the converse of previously accepted interpretation of spring chemograph). In the early phases of thawing (and also during winter thaws), water which migrates through the epikarst zone has a specific chemical properties, which, later, influences the "thaw effect" in water which discharges from the springs. This is well illustrated by the analyses of the soil water and water from weathered zone below soil cover at Ksi^ža Gora, in Ryczowek (456.2 m a.s.l.), which forms the recharge zone of the Ryczowek II Spring. The water sampled directly after the melting of an unusually thin snow cover here in February 1990 shows physical and chemical properties which are quite different from those exhibited by water which percolates through the soils and remains in the epikarst zone in a late spring (Tyc 1994, 1996) (Table 1). In case of the water sampled in Fubruary 1990, very large levels of Ca-+ (5.5 mv/1), total hardness (5.9 mv/1) and mineralisation (C = 69.1 mS/m) were recorded; these are all considerably larger than the maximal values noted during the whole study period at the Ryczowek Springs, whereas the content of hydrocarbonates in the water studied was small (0.4 mv/1) and the contents of other anions very large (SO/-, 2-4 mv/1; NO^', 1.1 mv/1). These are much larger than the values obtained from the Upper Jurassic Aquifer groundwater in other periods, whether before or after thaws. It is concluded, therefore, that content and total hardness of the epikarst water in these periods are more closely associa- C [mS/m] TH [mg/11 Ca^^ fmg/l] [mg/11 HCO3 fmg/ll SO/ fmg/n CI [mg/ll NO,-rmg/11 THAWING SEASON Snow 5,3 8,0 8,0 0,0 17,1 11,0 2,5 3,2 Epikarstic zone (dispersed flow) 69,1 118,0 110,0 4,8 24,4 194,8 14,0 69,3 Spring water (fed by dispersed flmv) 50,8 108,0 100,0 4,8 210,5 60,5 16,8 31,5 LATE SUMMER Rain water 6,0 8,4 6,8 1,0 3,1 10,1 3,5 5,7 Epikarstic zone (dispersed flaw) 31,0 54,0 48,0 3,6 48,2 75,4 3,5 23,9 Spring water (fed by- dispersed flmi<) 47,4 92,0 88,8 1,92 208,6 32,2 13,0 18,3 Table 1: Chemical comosition of water in recharge and discharge zones of Ryczowek II spring. Water samples represent thawing and late summer seasons of 1990 (after A. Tyc, 1996). ted with sulphates and nitrates than with the CaCO, forthcoming from rock dissolution. This, in turn, shows that the spring water of a thaw flush maximum contains mainly and Mg^^ salts (probably sulphates and nitrates) which are associated with processes taking place in the soils and in the epikarst zone, and which are not the results of solution processes. One result of the research described is the realisation that there is an artificial variabihty of the total hardness in the hydrological cycle. The natural changes in total hardness, which are influenced by environmental factors associated with solution of carbonates, overlap with the changes influenced by the cycles of pollution supplied to the aquifer. In a cold-temperate climatic zone, spring thaws play an important role. Fig. 5 shows the changes of total hardness values (TH) against a background of pH for the Ryczowek Spring.This shows that the pH-TH relationship takes two forms: (i) the pH and the TH both increase or decrease concomitantly, (ii) a pH decrease is accompanied by a TH increase. The first form is typical of groundwater in carbonate rocks. The reaction of the water reflects the level of saturation of dissolved carbonates; an increase of CaCO^ reflects a more alkaline environment and vice versa. The second type of relationship shows that there are cases in the hydrological cycle when a decrease in the water reaction is demonstrably associated with an increase in the total hardness. This is probably caused by an increase in the amount of pollution in the groundwater and the content of calcium salts which come from outside the local H^O—»CO^^CaCO^ system. This phenomenon Fig. 5: Variability of pH and total hardness (TH) in water in Ryczowek II spring in the period of 1989-1990. occurs during the runoff of the water from thaw recharge (and also during the Winters). This is also an element of the so-called "thaw effect" where human influence on the karst system is considerable. This research suggests that the natural hydrochemical regime of the groundwater in the karst of the Cracow-Czestochowa Upland is influenced by human impact during periods of thaw and thaw-rain recharges in the epikarst zone and in associated soil covers (the "thaw effect"). This is illustrated in the chemograph of the thaw period for 1991 and the third week of December 1988, when a sudden thaw took place (thereby increasing the values of some chemical components in most of the springs studied (see Fig. 3). CONCLUSIONS The analysis of spring chemographs in the area of the Cracow-Czestochowa Upland shows that previously held views on changes of the dissolved calcium and magnesium salts during thaw discharges should be modified. This view seems also to be true in the case where spring recharge by summer rainwater takes place following meteoric water infiltrates relatively quickly into the karst aquifer and when the conduit system of water circulation predominates. However, it does not apply in the case where mineralisation and chemical composition of that spring water which comes from thaw or thaw-rain recharge takes place, i.e., normally in the Spring seasons of cold-temperate climates. It is emphasised here that, hitherto, classical elaborations of this problem concerned mainly the areas where rapid thaws have not occurred. Moreover, the karst in those areas was not significantly affected by human impact, a factor which appreciably affects the interpretation of karst aquifer behaviour. The monitoring of karst springs using automatic recording devices, which is being carried out in many parts of the World, should provide much new information about this problem. The springs of the Cracow-Czestochowa Upland arc currently being monitored in this way. REFERENCES BAKALOWICZ M., 1979: Contribution de la geochemie des eaux ä la connaissance de I'aquifere karstique et de la karstification. These Doct. Univ. Pierre et Marie Curie - Paris 6, 269 p., Paris. BONACCI O., 1987: Karst Hydrology. With special reference to the Dinaric Karst. Springer, 184 p., Berhn-Heidelberg-New York. BONACCI O., 1993: Karst springs hydrographs as indicators of karst aquifers. Hydrological Sciences Journal, 38, 1,2, pp. 51-62, Amsterdam. FORD, D., WILLIAMS, P, 1989: Karst Geomorphology and Hydrology. Unwin Hyman, 601 p., London. GOSPODARIČ R., HABIČ P, (editors) 1976: Underground water tracing. Investigations in Slovenia 1972-1975. Inst. Karst Research, 312 p., Ljubljana. JAKUCS L., 1959: Nue Methoden der Höhlenforschung in Ungarn und ihre Ergebnisse. Die Höhle 10, 4, pp. 88-98, Wien. LAKEY B., KROTHE N.C., 1996: Stable isotopic variation of storm discharge from a perrenial spring, Indiana. Water Resources Research, vol. 32, no. 3, pp. 721-731. MANGIN A., 1975: Contribution ä I'etude des aquiferes karstiques ä partir de I'analyse des courbes de decrues et tarissement. Ann. Speleol., 29, 3: pp. 283-332; 29, 4: pp. 495-601; 30, 1: pp. 21-124, Moulis. PADILLA A., PULIDO-BOSCH A., 1995: Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. Journal of Hydrology 168, pp. 73-79, Amsterdam, REEDER Ph.R, DAY M.J., 1993: Seasonahty of chloride and nitrate contamination in the Southwestern Wisconsin karst. ApHed Karst Geology, Beck (ed.), Balkhema, pp. 53-61, Rotterdam. SHUSTER E.T., WHITE W.B., 1971: Seasonal fluctuations in the chemistry of limestone springs: a possible mean for haracterizing carbonate aquifers. J. HydroL, vol. 14, pp. 93-128, Amsterdam. TYC A., 1992: Action actuelle des processus karstiques dans le karst polygonal du Pan de Guajaibon (Sierra del Rosario, NW de Cuba). [W:] R. Maire, J.N. Salomon: Karst et evolutions chmatiques. Presses Universitaires de Bordeaux, pp. 135-144, Bordeaux. TYC A., 1994: Anthropogenic Impact on Karst Processes in the Olkusz-Zawiercie Karst Area (Silesian-Cracow Upland, South Poland). Wplyw antropopresji na procesy krasowe na przykladzie obszaru Olkusz-Zawier-cie (Wyzyna Slasko-Krakowska). PhD thesis, the University of A. Mickie-wicz, Poznan. TYC A., 1996: The nature of epikarst and its role in dispersed pollution of carbonate aquifers. International Conference on Karst-Fractured Aquifers - Vulnerability and Sustainability. Katowice-Ustroii, June 10-13, 1996, pp. 270-281, Katowice. WHITE W.B., 1969: Conceptual model for carbonate aquifers. Ground Water, 7, 3, pp. 15-21. WHITE W.B., STELLMACK J.A., 1968: Seasonal fluctuations in the chemistry of karst groundwater. Actes 4e Congr. Int. Speleol., Yougoslavie, Ljubljana, 3, pp. 261-267, Ljubljana. WORTHINGTON S.R.H., 1991: Karst Hydrogeolog>' of the Canadian Rocky Mountain. PhD Thesis, Department of Geography, McMaster University, Hamilton. ANALIZA KEMOGRAMOV IZVIROV V PRIMERU VPLIVA EFEKTA TALJENJA SNEGA IN IMPULZOV RAZPRŠENEGA ONESNAŽENJA (NA PRIMERU IZVIROV V KRAKOWSKO-CZESTOCHOWSKEM VIŠAVJU) Povzetek Napajanje, tok in vskladiščenje podzemne vode so lahko v karbonatnih vodonosnikih ekstremno spremenljivi. Skladno z različnimi stopnjami zakraselo-sti je lahko napajanje v razponu od koncentriranega do razpršenega. Članek predstavlja rezultate proučevanja onesnaženja glede na različne načine napajanja v karbonatnih vodonosnikih. V ta namen je bil izpeljan monitoring temperature vode in koncentracij glavnih ionov v nekaterih izvirih višavja Krakow-Czestochowa v južni Poljski. Analize kemogramov kraških izvirov, ki jih običajno srečujemo v mednarodni literaturi, so bile pregledane in ponovno ovrednotene. Tradicionalni modeli napajanja zaradi taljenja snega na kraških območjih zmernega podnebja in človeškega vpliva v zmerno-hladni klimi so bih ocenjeni in predlagane so bile nekatere spremembe. V predlaganem novem modelu se efekt taljenja snega in impulzi onesnaženja odražajo na kemizmu voda - značilna povečanja koncentracij Ca^+ , SO/' in NO,;, celokupne trdote in specifične električne prevodnosti vode v tleh, epikraške vode in vode na izvirih - pri maksimalnih vrednostih napajanja zaradi taljenja snega. To spremlja še relativno nizka vsebnost bikar-bonatov. Koncentracija kalcija in celokupna trdota v staljeni vodi sta bolj povezani s sulfati in nitrati iz onesnaženja kot pa z efektom raztapljanja v sistemu CaCO, - H,O - CO,. A COMPARISON OF RED SOILS FROM SOUTH AUSTRALIA AND JAPAN PRIMERJAVA RDEČIH PRSTI IZ AVSTRALIJE IN JAPONSKE KAZUKO URUSHIBARA-YOSHINO ' Izvleček: UDK 631.44(94+520) Kazuko Urushibara-Yoshino: Primerjava rdečih prsti iz Avstralije in Japonske Avtorica je vzorčevala prsti s karbonatnih peskov in terciarnih apnencev v južni Avstraliji, kjer je tipično mediteransko podnebje. S starostjo peščin se manjšajo kaicitna zrna v prsti, s starostjo pa upada tudi aktivnost železa. Po drugi strani pa s starostjo narašča kristahzacija železa. Aktivnost železa postane izredno majhna v istem starostnem razredu, a v monsunskem podnebju otočja Nansei (Japonska). Tudi tekstura B horizonta se spremeni, namesto grobega peska je visoka vsebnost gline. Drugi namen prispevka je tudi primerjava hitrosti razvoja lastnosti prsti na Kitajskem. Ključne besede: krasoslovje, pedologija, rdeča prst, Avstralija, Japonska. Abstract UDC 631.44(94+520) Kazuko Urushibara-Yoshino: A comparison of red soils from South Australia and Japan The soils formed from calcareous sands and from the Tertiary limestone in South Australia were sampled. The climate in the area is a typical Mediterranean. The calcite grain in the soils decreases with the age of the sand dunes. The iron activity in the soils decreases with age. On the other hand, the iron crystallinity increases with age. The iron activity became extremely small during the same age under Monsoonal climate of Nansei Islands (Japan). The texture of B horizons also change from rich coarse sand to high clay contents. Second purpose is to compare the development speed of soil properties in the Karst areas in China also. Key words: karstology, pedology, red soil, Australia, Japan. ' The Komazawa University, Department of Natural Sciences, Komazawa 1-23-1, Setagaya-ku, TOKYO 154, JAPAN INTRODUCTION In areas of calcareous rocks, the rate of soil development is extremely slow, when we compared it in areas with non-calcareous rocks. The dating of soils is very difficult in karst areas. In this paper the dating of mother materials is used to make a relative time scale for the soils. Of course, it must have some time lag in forming soils from the mother materials. The first purpose of the present paper is to find better indices of soil properties that change with time. The study areas are, therefore, very Hmited, because the mother materials have to be dated. As examples, the Nansei Islands of Japan and the south-east coastal region of South Australia have been chosen as study areas. The second purpose of the study is to compare the development speed of soil properties under the influence of different climates - the Monsoon chmate areas of Japan as an example of rather wet climate areas, and the Mediterranean chmate area of South Australia as rather dry chmate areas. The results of previous studies have made clear the following. The younger processes of the soil developments (A/C) are similar, and have been named Rendzina in areas of different climate. Rich humus can remain for a longer time, because of the combination with rich calcium ion. After the soils were matured as (A/B/C) profile, the clay contents became higher. The heavy soil was called as Terra Rossa in the Mediterranean climate. The rich bases have been kept for a longer time in soil profiles in the dry and summer season. In the Nansei Islands of Japan, local people called the clayish soils on the uplifted coral reefs Shimajiri Maji. However, the properties of mature soils in limestone areas in Japan may not accurately correspond to Terra Fusca and Terra Rossa in the Mediterranean climate areas. Kato (1989) describes the progressive series from Rendzina-like soil. Terra Fusca-like soil. Terra Rossa-like soil (dark red soil) to ferrallitic red soil in East and South-East Asia. The reaching of bases and de-silicification and aluminisation also occur predominantly in the older soils in the karst areas in China (Nanjing Institute of Soil Sciences, Academia Sinica, 1978). The South-East of South Australia The study area chosen is from Naracoorte to Robe (about 100km) in the south-east of South Australia, in where Schwebel (1983, 1984) had done the sequence dating of calcarenite dunes using '^C dating. Uranium Series, "^O and Palaeomagnetism. The study area is shown in Fig. 1. The climate of this area is Cs by Köppen's classification. The annual precipitation is 580 mm, and the annual mean air temperature 8,1°C. Original vegetation with Eucalyptus and Acacia remain on the ridges of the dunes, but the other flat lands are used for pastures. A soil map has made by Blackburn (1983). In the coastal sand dune Fig. 1: Study areas of south-east South Australia. areas, '"C dating has done by Ohmori et ai. (1987). The results are from 1,500 yr. B.P. to 5,000 yr. B.P.. Schwebel (1983, 1984) dated sand dunes as follows. The soil sample places and dating points are shown in Fig. 2. Dating as BMR 2 RI (4,300±100 yr. B.P.) :Soil sample Locality 1 BMR 2, RII, RIII (83,000-93,000 yr. B.P) :Soil sample Locality 2 BMR 4 (125,000 yr. B.P) :Soil sample Locality 3 BMR 8 (248,000 yr. B.P) :Soil sample Locality 4 BMR 24, ED (309,000 yr. B.P) :Soil sample Locality 5 BMR 10, WA (347,000 yr. B.P) :Soil sample Locality 6 BMR 34, WNIV (690,000 yr. B.P) :Soil sample Locality 7 Miocene, Tertiary limestone :Soil sample Locality 8 The calcite contents of Aj horizon in Locality 1 is higher than the quartz. But in the B horizon at Locality 2, where the dune is dated as 83,000-93,000 yr. B.P, the calcite contents is only 1%. Especially, calcite is non-existent in the B^ horizon at Locality 7 (690,000 yr. B.P.) and Locahty 8 in the area of Tertiary hmestone. The texture of B horizons also changes from rich coarse sand to high clay contents with increasing age of the sand dunes. The iron in a typical horizon in each soil profile has been analysed by three methods (Nagatsu-ka 1975), as follows: Fig. 2: Profile of sand dunes by Schwebel, 1983 and the Locality numbers of soil samples. Robe Da r j- i c r •'.V.';Wo a kw i ii c Daj-i-ior It c c d y C ]■ e e k D a ]- r i We st Avenue B a r r i e r Eas t Dairy Barrier Fig. 2a: Map of sand dunes by Schwebel, 1983 and the Locality numbers of soil samples. Fe^: Tamm solution (Tamm 1934), was used for extraction. This solution can extract free irons of absorbed states, free iron combined with organic matter, amorphous ferric hydroxide and almost all of lepidocrocite, magnetite and some goethite. Feji Free iron oxide extracted by the dithionite-citrate-bicarbonate solution is expressed as Fe^, (Mehra and Jackson 1960). Fe: Total iron, which is expressed as Fe,, is extracted in a specially designed vessel made of Teflon by hydrochloric acid, nitric acid and hydrogen fluoride. FeyFCj is expressed as activity ratio of free iron oxide. (Fe^ - Fe^)/Fe, shows the crystallinity ratio of iron oxides. The iron activity (Feo/Fed) shows a high value in younger dunes. On the other hand, iron activity decreases with the age of sand dunes. The iron crystallinity, (Fe^ - Fd^)/Fe,, ranges from 0.3 to 0.55 according to age. However, the value from 125,000 yr. B.P. shows an anomalous positive deviation from the general trend curve. Fe^/Fe^i 0.7 n > : - 0,4 ^4.3 83' ^ Southeast of South Australia 38 38,000yrB.P, O - C.2 248^.;.®^ A 309 A125 C.3 0,5 0.6 0.7 0.8 0.9 IRON CRYSTALLiNITY (Fe^ - Fe^jj/Fe^ Fig. 3: The iron activities and iron crystallinities of typical horizons in south-east South Australia. Fig. 4: The distribution of prevailing Koppen's climate in Nansei Islands in Japan and the location of the study islands. The relationship between iron activity and iron crystallinity with age is shown in Fig. 3. An anomalous value for 125,000 yr. B.P., as mentioned above, is clearly seen in this figure. It is estimated that calcite increases and quartz amounts decrease around 125,000 yr. B.P. The soils iron activity decreases and iron crystalhnity increases under the local conditions, especially under the wetter conditions of the soils rather than the other calcareous dunes. Nansei Islands in Japan In the Nansei Islands, the highest uplift rate is 1.8-2.0 mm/year, which is estimated by the sequence of uplifted coral terraces on Kikai Island. The soils have been taken on each terrace, of which corals were dated as 125,000 yr. B.P., 90,000-80,000 yr. B.P., 65,000-55,000 yr. B.P, and 38,000 yr. B.P (Konishi et al. 1974). Then the soils were analysed. Furthermore, soils on terraces older than 125,000 yr. B.P. had been taken from Minamidaito Island. The oldest part of this island is estimated as at least one million years old. Both islands are shown in Fig. 4. These areas belong to the subtropical Monsoon climate. In Koppen's climate classification, Cfa appears dominantly (Urushibara 1980). The Nansei Islands are relatively humid in contrast to the surrounding areas, because the Pacific Polar Frontal Zone is located over these islands in winter. The annual temperature is 22.9°C and the annual precipitation is 1673 mm in Minamidaito island. The soil profiles on the old terraces are thicker than on the younger terraces. The results of iron activities and iron crystalhnities of soils were analysed and considered with the age of terraces (Urushibara-Yoshino 1989, 1992). The crystallinity of iron in B^ horizons increases with decreasing iron activity in accordance with the age of terraces as shown in Fig. 5. The free iron oxides in the soils decreased rapidly with the age of the terraces. These conditions were thought to result from the Monsoon, wet and hot climate. Comparison of Red Soils Iron crystalhne properties of red soils formed from calcareous materials were compared in the south-east of South Australia and in the Nansei Islands of Japan. The iron activities of soils are very high in south-east South Australia, and the iron crystallinities are smaUer than that of the Nansei Islands. The trend curve of both indices is more steep in south-east South Austraha than in the Nansei Islands. The soils, whose mother materials were dated as around 80,000 yr. B.P, were compared in both areas. The iron activities of soils in south-east South Australia are about 10 times higher than that of the Nansei Island's soils. The crystalhnity of iron in soils in the Nansei Islands, of same age, is twice that of Fe„/Fe, 0.7 r 0.5 h • Kikai Island Minamidaito Island 38 38,000yrB.P. > o.^L h-U 38' 60 0.3 0.4 0.5 0.6 0.7 0,8 0.9 IRON CRYSTALLINITY (F^o" Fig. 5: The iron activities and the iron crystallinities in B^ horizon in Nansei Islands. Fe^/Fej 0.7 1-> — 0.4 1- U < 0.3 Z o a: - 0.2 14.3 83'* ^ Southeast of South Australia # KIkai Island ^ Minamidalto Island 38 38,OOOyrB.P. 0.1 i A 309 38" A125 60' ^»„.,„.100 125 0.3 0,4 0.5 0.6 0.7 0,8 0.9, IRON CRYSTALLINITY (Fe,," Fe^j/Fe^ Fig. 5a: The iron activities and the iron crystallinities in B^ horizon in South AustraUa. the South Australian soils. The trends of both indices is same in the other ages also. From these results, it can be concluded that free iron can keep for a longer time in the Mediterranean chmate than in the Monsoon climate. On the contrary, the iron crystallinity of soils increases more rapidly under the Monsoon climate than the Mediterranean climate. It should be stressed that the speed of the soil formation process is different under different climate conditions, even though the shape of the trend curves is almost similar. REFERENCES Blackburn, G., 1983: Soils, in "Natural history of the South East" edited by Tyler, M.J., Twidale C.R., et al. Royal Society of South AustraUa Inc., 40-48. Kato, Y., 1986; Red and yellow colored soils in huraid tropical, subtropical and warm- temperate Asia. Pedologist, 30 (1), 20-35. Konishi, K., Omura, A., Nakamichi, O., 1974: Radiometric coral ages and sealevel records from the Late Quaternary reef complexes of Ryukyu Islands. Proc. 2nd International Coral Reef Symposium, 595-613. Mehra, O.P., Jackson, M.L., 1960: Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7, 317-327. Nagatsuka, S., 1975: Genesis and classification of yeUow-brown forest soils and red soils in Southwest Japan. Bulletin of the National Institute of Agricultural Science, B(26), 133-257. Nanjing Institute of Soil Science, Academia Sinica, 1978: Soils of China (in Chinese). Science Press, Beijing, 728 p. Ohmori, H., Iwasaki, K., Takeuchi, K., 1983: Relationship between the recent dune activities and the rainfaU functions in the southern part of Austra-ha. Geographical Review of Japan, 56(3), 131-150. Schwebel, D.A., 1983: Quaternary dune systems, in "National history of the South East" edited by Tyler, M.J., Twidale C.R., et al. Royal Society of South Austraha Inc., 15-24. Schwebel, D.A., 1984: Quaternary stratigraphy and sea-level variation in the southeast of South Australia. In "Coastal geomorphology in Australia", edited by Thorn, B.G., Academic Press, 291-311. Tamm, O., 1934: Über die Oxalatmethode in der chemischen Bodenanalyse. Medd. fr. Statens Skogsförsöksanstalt, 27, 1-20. Urushibara, K., 1980: The year climates by the chmatic types of Koppen and Thornthwaite on the Nansei Islands in Japan. Annals of the Tohoku Geographical Association, 32(3), 110-119. Urushibara-Yoshino, K., 1989: The red soils on a hmestone area in Nansei Island, Southwest Japan. In "Resource management in limestone lands- capes: International perspectives". Special Publication No. 2. The Australian Defense Force Academy, Canberra, Australia, 183-189. Urushibara-Yoshino, K., 1992: The red soils on a limestone area on Kikai Island of Nansei Islands, Southwest Japan. Tübinger Geographische Studien, H 109, 71- 81. PRIMERJAVA RDEČIH PRSTI IZ AVSTRALIJE IN JAPONSKE Povzetek Avtorica je vzorčevala prsti s karbonatnih peskov na koralnih grebenih japonskega otočja Nansei (domače ime zanje je Shimajiri Maji), dvignjenih nad morsko gladino, in s terciarnih apnencev v jugovzhodni Avstraliji, kjer je tipično mediteransko podnebje. S starostjo peščin se manjšajo kalcitna zrna v prsti, kvarcitna zrna so vedno bolj zaobljena, s starostjo pa upada tudi aktivnost železa. Po drugi strani pa s starostjo narašča kristalizacija železa. Prsti s karbonatnih sipin so stare med 4.300 leti B.P. in 690.000 leti B.P. V monsunskem podnebju otočja Nansei, postane aktivnost železa izredno majhna v istem starostnem razredu. Tudi tekstura B horizonta se spremeni, namesto grobega peska je visoka vsebnost ghne. S starostjo se v vlažni in vroči khmi delež prostega železa zelo hitro manjša. Bogatenje z bazami, desilifikacija in aluminizacija so procesi, ki prevladujejo tudi v starejših prsteh na kitajskem krasu. ACTA CARSOLOGICA XXVI/2 34 397-407 LJUBLJANA 1997 KARST DEPRESSIONS WITH PRECIPICED WALLS ON THE SOUTHERN SLOPE OF SNEŽNIK MOUNTAIN, SLOVENIA KRAŠKE DEPRESIJE S PREPADNIMI STENAMI NA JUŽNEM POBOČJU SNEŽNIKA, SLOVENIJA NADJA ZUPAN HAJNA' Izvleček UDK 551.4(497.4) Nadja Zupan Hajna: Kraške depresije s prepadnimi stenami na južnem pobočju Snežnika, Slovenija Snežnik (1796 m) je visoka kraška planota, s kopastimi vrhovi in velikimi depresijami, s številnimi vrtačami in snežnimi kotliči. Na nagnjenih apnenčevih plasteh so žlebiči. Med jamami prevladujejo brezna. Snežnik gradijo jurski in kredni apnenci ter dolomiti, veliko je ledeniškega in periglacialnega gradiva. Kraške depresije s prepadnimi stenami so tipične za področje Ždrocel, južno od vrha Snežnika, na nadm. v. 1300 - 1400 m. Oblikovane so v spodnjekrednih apnencih z dolomiti in dolomitnimi brečami. Prepadne stene so izoblikovane v razpoklinski coni v smeri N-S. Ključne besede: speleologija, speleomorfologija, kraška depresija, Zdrocla, Snežnik, Slovenija. Abstract UDC 551.4(497.4) Nadja Zupan Hajna: Karst depressions with precipiced walls on the southern slope of Snežnik Mountain, Slovenia Snežnik (1796 m) is a high dissected karst plateau with cone summits, large depressions, and snow kettles. On some limestone surfaces are grooves. The shafts prevail. The Snežnik region consists of Jurassic and Cretaceous limestones and dolomites, yet there is glacial and periglacial material. Karst depressions with steep and precipiced walls are typical of the area of Zdrocle, south of the Snežnik summit at 1300 - 1400 m a.s.l. They developed in Lower Cretaceous limestones with dolomites and dolomitic breccias. The precipiced walls are controlled by fissured zone trending N-S. Key words: speleology, speleomorfology, karst depression, Ždrocla, Snežnik Mt., Slovenia. ' Inštitut za raziskovanje krasa ZRC SAZU, Titov trg 2, SI - 6230 POSTOJNA, SLOVENIJA INTRODUCTION Snežnik is a high karst plateau in the south of Slovenia, near the border with Croatia. The massif of Snežnik mountain is a prolongation of Javorniki mountain, which starts E from Postojna. Snežnik's highest peak is 1796 m. At its dissected elevations cone summits with, large depressions among them are very frequent (Habič 1981). It is generally valid that the formation of deep karst depressions depends upon how much the carbonate rocks are fissured and crushed (Habič 1986). Large depresions were influenced by glaciation during the last Ice Age (Habič 1978). On levelled areas there are numerous dolines, snow kettles and larger gently sloping dolines. There are also caves, and them shafts prevail. There are almost no superficial flows, just very short ones from small local springs. The springs are at about 600 m a.s.i., so the vadose zone may be about 1000 m deep. Almost all area is covered by forest, except the slopes of highest peak and some grassy areas (Fig. 1). This paper will represent the interesting geomorphological feature from Snežnik mountain, the so called Ždrocle (Ždrocla, in the singular). Ždrocle are karst depressions with steep and precipiced walls. They are typical of the area of Ždrocle, in the south from the Snežnik summit at 1300 to 1400 m a.s.L. Southwest from the small source "Andrejev Studenec", the area takes its name from the 1478 m high summit called Ždrocle, and the same name is in local use for big depressions (Šušteršič 1977). Snow that may stay all the year round is additionally reshaping their bottoms. Andrejev Studenec is located on the north part of a bigger grassy area. Traces of periodical water flows and some small sink holes are situated at the south part of it. By aerial photography at scale 1:30000 the location and shape of large depressions were registered as well as the main fault directions of the Ždrocle area. During the field work in 1995 and 1996 the positions of depressions were defined and measurements of geological structural elements were done. I am grateful to colleagues from the Karst Research Institute who did the field work with me, because the area is unusually wild, covered by untouched forest and inhabited by bears. SPELEOLOGICAL RESEARCHES IN ŽDROCLE The area was first researched by Italian speleologists before World War II. About 20 years ago same research was done by Karst Research Institute SAZU from Postojna. Big depressions with precipice walls were found and they named them Ždrocle (Šušteršič 1975). After that a lot of caving exploitation of the area was done by caving clubs from Rakek, Ljubljana, Postojna and others. According to data from the Cave Register there are about 20 caves, all of them vertical shafts 10 to 30 m deep on average. The deepest shaft is of U-profile and is more than 100 m deep, but has no plan in the cave register. The second is Andrejevo Brezno which is 70 m deep. Karst depressions with precipice walls are big snow kettles or shafts and they are about 30 to 50 m deep. According to the Cave Register five of them are recorded. Only two have ground plans and cross-sections; these are Ždrocla 1 and Ždrocla 3. Ždrocla 3 is a shaft about 65 m deep. The others have only registration numbers and descriptions of their location. For the determination of positions of the depressions I have used topographical and aerial-photo maps. From the topographic map and the co-ordinate system I have determined position of Ždrocla 1, 2, 3 and. 5, but the position and even the existence of Ždrocla 4 is in doubt. Descriptions of depressions from the cave register are as follows: Ždrocla 1: Reg. No.: 4261; a.s.L: 1401 m; depth: 54 m; type: 6.6 - shaft with permanent ice; lithology: Kj^ - limestone and dolomite and breccia; genesis: obvious connection to a N-S fissure zone; Ždrocla 2: Reg. No.: 4262; a.s.L: 1405 m; depth: - m; type: 6,4; hthology: K,^ - limestone and dolomite and breccia; genesis: obvious connection to a N-S fissure zone; Ždrocla 3: Reg. No.: 4263; a.s.L: 1398 m; depth: 89 m; type: snow kettle with shaft 6,4; lithology: K^^ - limestone and dolomite and breccia; genesis: obvious connection to a N-S fissure zone; Ždrocla 4: Reg. No.: 4297; description of its shape and location is bad; there is no such depression in the area. Ždrocla 5: Reg. No.: 4298; a.s.L: 1395 m; depth: - m; type: 6,4; lithology: K,^ - limestone and dolomite and breccia; genesis: obvious connection to a N-S fissure zone; other: without ground plan. GEOLOGY OF THE AREA According to Placer's (1981) the explanation of the geologic structure of south-western Slovenia, Snežnik is a thrust sheet of carbonate rocks over flysch rocks. The plateau is built of Jurassic and Cretaceous limestones and dolomites and their breccias. Also periglacial and glacial material can be found on its surface. According to the Basic geological map, sheet Ihrska Bistrica (Šikič, Pleničar and Šparica 1972), the area is built in Lower Cretaceous limestone, dolomite and breccias. On the southern slope of Snežnik on the surface are: Kj- hmestones, dolomitic and hmestone breccia, mostly recrystalized; Kj^ -limestone, dolomite and dolomitic breccia; J,-' - hght and dark grey limestone with clipeinas and salipingoporelas. All over the plateau a lot of glacial material could be found, first mentioned by Pleničar in 1956. The detailed research of glacial material from Snežnik was done in 1959 by Šifrer. He described the glacial material from its slopes and he defined the location of the ice and snow line and also the routes of glacier movements. From this area the glacier flowed probably towards E and SE. It is important that during Fig. 2: Photo aerial interpretation of locations of the faults and depressions, Ždrocle, Snežnik Mt. (1. depression, 2. summit, 3. fault, 4. spring). SI. 2: Fotoaero interpretacija položaja prelomov in depresij, Ždrocle, Snežnik (1. depresija, 2. vrh, 3. prelom, 4. izvir). the last glaciation the area of Ždrocle, at 1400 m a.s.l., was higher above the perpetual snow line and that it was covered by permanent ice. By aero-photography at scale 1:30000 the location and shape of the larger depressions was registered as well as main tectonic directions (Fig. 2). The most distinctive are Dinaric trending faults yet there are also transverse faults. Less distinctive, but traced by a series of depressions, is N-S direction; the same trends were defined by mapping in the field. RESULTS OF TECTONIC MEASUREMENTS IN THE AREA For better explanation, why these big depressions with vertical walls are situated in this area I did some geological research during July and September 1995 and in June 1996. In the area hmestone beds generally dip toward N - NE; measured directions of dips are from 10° to 40", with dip angle from 10" to 30"; at some places they are almost horizontal and at others their dips are very steep. Just at the most east part of the area I measured the dip toward NW, with dip angle 20". The thickness of the beds is half a meter on average. More dolomitic breccia located on west side of the area is not stratified. After Čar (1982) and Šebela (1995) I have distinguished three different types of fractured carbonate rocks: crushed zone, broken zone and fissured zone (Fig. 3). Very well expressed are fauhs and crushed zones in Dinaric (NW-SE) direction. On the west side of Ždrocla 1, directly through Ždrocla 2 and 3, is situated, a strong crushed zone in cross Dinaric (NE-SW) direction. The same type of crushed zone goes through Ždrocla 5. A wide crushed zone is also situated south of Andrejev Studenec in N-S direction. But in other places the N-S direction is represented by fissures in more or less wide zones. At a levelled surface at about 1400 m a.s.l., north from source Andrejev Studenec, really interesting rough karst terrain is situated. The closest to the road and easiest to reach is the smallest Ždrocla - Ždrocla 3. Ždrocla 3 is snow kettle about 30 m deep connected to fissured zone in N-S direction. The fissured zone is a series of parallel fissures where no displacement is seen. Also the fault in E-W direction is well expressed and it crosses Ždrocla on the north side. Limestone beds are almost horizontal with slight dip towards NE. The north slope is not so steep and the bottom, which is covered by snow, is easily reached by it. In the east wall the entrance to a shaft about 60 m deep. In the middle of south wall a big fissure is located. The wall is opened by it from the top to the bottom. The fissure is a few cm wide and it is prolonged to the Ždrocla 2 which is located close towards the south. Ždrocla 2 is a depression about 40 m deep, all walls are vertical. At a depth of 30 m is a small almost horizontal step and after this there is precipiced wall down to the bottom, where snow lies during whole year (Fig. 4). The N-S fissured zone is well expressed in the south and north walls and N 1. 2. J. 7. • s.O ^ /N 10. •>■ 100 m ZUPAN HAJNA, IZRK ZRC SAZU 1996 Fig. 3: Geological structural elements of the Ždrocle area. 1. dip and strike of the strata, 2. dolomitic breccia, 3. fault, 4. crushed zone, 5. broken zone, 6. fissured zone, 7. cave, 8. depression, 9. summit, 10. spring. SI. 3: Geološki strukturni elementi na področju Zdrocel. 1. vpad in smer plasti, 2. dolomitna breča, 3. prelom, 4. zdrobljena cona, 5. porušena cona, 6. razpoklinska cona, 7. jama, 8. depresija, 9. vrh, 10. izvin along the east and west walls. At the surface above the east wall of Ždrocla 2 big grikes from 0,5 m to about 2 m high are well expressed. They are also developed in a N-S direction. South of Ždrocla 2 is located Ždrocla 1. With its 54 m depth and about 80 m width, it is the largest Ždrocla. All its walls are vertical; just at the SW slope the bottom can be reached without ropes. This slope is cut by a zone some meters wide of very crushed rocks. From this slope also a lot of gravel is sliding towards the bottom and the slope is covered by it. The bottom of Ždrocla f is covered by snow long into the summer. The most southern depression with precipiced walls is Ždrocla 5. This one is not so deep; just one wall is really vertical but its bottom also was still covered by snow in June. CONCLUSIONS Four depressions with precipiced walls to the South of the spring Andrejev Studenec display the most prominent features. All of them are developed in Lower Cretaceous limestones with dolomites and dolomitic breccias. The precipiced walls are controlled specially by fissures trending from N to S. By aero-photography the most distinctive are Dinaric-trending faults, yet there are also transverse faults, less distinctive, but traced by a series of depressions in N-S direction. In conclusion I can say that big depressions with vertical walls are developed in Lower Cretaceous well-bedded limestones with dolomites and limestone breccias and that precipiced walls are controlled specially by a fissured zone trending from N to S. But in more dolomitic breccias north of Andrejev Studenec, where karst terrain is not so rough, the surface is more gentle, and the depressions and grikes are not developed. Their connection with lithology and tectonic structure is obvious. Genesis of depressions is linked with corrosion along N-S fissure zone, where limenstone is more crushed and with this more prepared for solution. Corrosion is forced also by snow which may stay in the bottoms of depressions aU the year and it can strongly reshape their bottoms. And we also have to take into account that during last glaciation this area was covered by ice (Šifrer 1959). Arguing against the possibility that they are collapse dolinas is fact that the origin of collapse dolines is attributed to collapse of large horizontal passages above underground water flows (Mihevc 1995), and in this area no horizontal galleries were found. But the question of they are shafts or snow kettles is still open. REFERENCES Čar, J., 1982'. Geološka zgradba požiralnega obrobja Planinskega polja. Acta carsologica, 10 (1981), 75-105, Ljubljana. Habič, P., 1978: Razporeditev kraških globeli v Dinarskem krasu. Geografski vestnik, 17-31, Ljubljana. Habič, P, 1981: Nekatere značilnosti kopastega krasa v Sloveniji. Acta carsologica 9 (1980), 5-25, Ljubljana. Habič, P., 1986: Površinska razčlenjenost Dinarskega krasa. Acta carsologica 14-15 (1985-1986), 39-58, Ljubljana. Mihevc, A., 1995: The Morphology of shafts on the Trnovski gozd plateau in west Slovenia. Cave and Karst Science, Vol. 21, No. 2, 67 - 69. Placer, L., 1981: Geološka zgradba jugozahodne Slovenije. Geologija, 24 (1), 27-60, Ljubljana. Pleničar, M., 1956: Geološki izlet na Snežnik. Proteus, XIX, št.l, 16, Ljubljana. Šebela, S., 1995: Aerophoto interpretation of geological structures on the surface above the Predjama Cave. Acta carsologica 24, 511-521, Ljubljana. Sifrer, M., 1959: Obseg pleistocenske poledenitve na Notranjskem Snežniku. Georafski zbornik 5, 27-80, Ljubljana. Šikias, D., Pleničar, M. & Šparica, M., 1972: Osnovna geološka karta SFRJ, list Ilirska Bistrica, 1:100000, Zvezni geološki zavod, Beograd. Šušteršič, E, 1975: Osnovna speleološka karta Slovenije. Cerknica 3, 1-173, Postojna. Šušteršič, F., 1977: Kraški pojavi na Snežniku. Snežnik, PD Ilirska Bistrica, 46-50, Ilirska Bistrica. KRAŠKE DEPRESIJE S PREPADNIMI STENAMI NA JUŽNEM POBOČJU SNEŽNIKA, SLOVENIJA Povzetek Snežnik je visoka kraška planota, ki ima razčlenjene povprečne višine, z najvišjim vrhom 1796 m. Velika večina površja je porasla z gozdom (Si. 1). Področje Snežnika gradijo jurski in kredni apnenci ter dolomiti, veliko je pa tudi ledeniškega in periglacialnega materiala. Poledenitve na področju Snežnika je opazil že Pleničar (1956), podrobneje jih je pa opisal Sifrer (1959). O preoblikovanju kraških depresij z ledom, je na področju visokih kraški planot v Sloveniji pisal tudi Habič (1978). Kraške depresije s prepadnimi stenami so tipične za področje Ždrocel, južno od vrha Snežnika, na nadmorski višini med 1300 in 1400 m. Globoke depresije so oblikovane v spodnje krednih apnencih z dolomiti in dolomitnimi brečami. Italijani raziskovali tu pred II. svetovno vojno. Velike snežne kotle so našli člani Inštituta za raziskovanje krasa ZRC SAZU pri pripravi Speleološke karte, ko so iskali udornico že s prej obstoječe italijanske specialke, in so jih poimenovali Zdrocle (Sušteršič 1975). Na tem področju je raziskanih tudi veliko brezen, nekatera od njih imajo vhode v samih Zdroclah, na njihovem, robu ali pa v neposredni bližini. Po Jamskem katastru je tu registriranih 20 jam, načrte pa jih ima 13. Vse so brezna globoka med 10 m in 30 m, najgloblje pa je brezno U-profil z več kot 100 m, vendar njegovega načrta ni v katastru. Ker je sama orientacija na terenu otežena zaradi prekritosti z gozdom in slabih kart, sem si pomagala s fotoaero posnetki v merilu 1:30000. Tako sem lahko določila lego večjih globeli in njihovo število ter glavne smeri prelomov (SI. 2). Najlepše so izraženi prelomi v dinarski smeri in prečno nanje. Slabše opazna, vendar sledena z nizom globeh, je smer N - S. Vse smeri prelomov opazne na aero posnetkih so bile določene tudi na terenu. Po Čaru (1982) in Šebeli (1992) sem na terenu ločila tri različne tipe tektonsko pretrtih karbonatnih kamnin: zdrobljeno cono, porušeno cono in razpokhnsko cono (SI. 3). Po podatkih iz Jamskega katastra, foto-aero posnetkih in terenskem kartira-nju sem določila lego Ždrocle 1, Ždrocle 2, Ždrocle 3 in Ždrocle 5. V obstoj Ždrocle 4 pa glede na podatke dvomim, možno je, da obstaja, vendar precej drugje kot je opisano. Največja je Ždrocla 1, Ždrocla 2 in 3 pa sta povezani skozi nekaj centimetrov široko razpoko. V vzhodni steni Ždrocle 3 se odpira vhod v okrog 60 m globoko brezno. Ždrocle so globoke med 30 in 50 metri, različno široke, za vse pa so značilne prepadne stene vsaj s treh strani. Prepadne stene so kontrolirane z razpoklinsko cono v smeri N-S, vzhodna in zahodna stena, in s prelomi v dinarski smeri (NE-SW), južna in severna stena. V dnu Ždrocl se zadržuje sneg, včasih tudi čez vse leto in tako preoblikuje njihovo dno. Proti možnosti, da so te depresije po svojem nastanku udornice, govori dejstvo, da je nastanek udornic povezan z velikimi vodoravnimi jamami nad vodnimi tokovi (Mihevc 1995), na tem področju pa ni znanih večjih vodoravnih jam. Vprašanje ali so te depresije s prepadnimi stenami po svojem nastanku brezna ali snežni kotliči pa še vedno ostaja odprto. Fig. 1: Snežnik is a high karst plateau; it has a dissected average elevation; the highest peak is 1796 m; almost all area is covered by forest. SI. 1: Snežnik je visoka kraška planota; ima razčlenjene povprečne višine, z najvišjim vrhom 1796 m, skoraj vsa povrišna je pokrita z gozdom. Fig. 4: Ždrocla 2, about 40 m deep depresion, with snow at the bottom and with fissures in N-S direction. SI. 4: Ždrocla 2, okrog 40 m globoka depresija s snegom v dnu in razpokami v smeri N-S. in ^ W % m W H O m P£5 § m H O ACTA CARSOLOGICA XXVI/2 35 411-430 LJUBLJANA 1997 PONOVNO O LUKNJAH V NOSOROGOVIH KOSTEH IZ DOLARJEVE JAME NEW DISCUSSION ABOUT THE HOLES IN RHYNOCEROS' BONES FROM DOLARJEVA JAMA PAVEL JAMNIK^ Izvleček UDK 902.035(497.4) Jamnik Pavel: Ponovno o luknjah v nosorogovih kosteh iz Dolarjeve jame V članku so ponovno obravnavane luknje v fosilnih nosorogovih kosteh iz Dolarjeve jame pri Logatcu. V ohranjeni zbirki kosti iz te jame je bilo odkritih še pet lukenj, tako da jih je sedaj skupno enajst na devetih kostnih fragmentih. Obravnavan je vnos ilovnatega sedimenta in kosti v jamo, opravljena je bila kemična analiza obloge na kosteh in ugotovljeno, da v oblogi prevladujejo fosfati. Izražena je možnost, da bi te specifične luknje, ki jim je podobna le še luknja v mamutovi petnici iz Nevelj, izdelali polži. Dokaza za enkrat še ni, vendar polži dolbejo tem primerljive luknje tudi v apnenec in gobe. Ključne besede: luknje v kosteh, fosilne nosorogove kosti, mamutova petnica, polži, Dolarjeva jama, Nevlje. Abstract: UDC 902.035(497.4) Jamnik Pavel: Once more about the holes in the rhinoceros' bones from Dolarjeva jama cave (Logatec) Holes in the fossil rhinoceros' bones from Dolarjeva jama cave (Logatec) are discussed. The author found 5 another holes, so they are known 11 altogether in 9 bone fragments. The transport of bones and clay material is discussed; the chemical analysis of bones' crust was made and the phosphates were found prevailing. The author suppose that the holes could be made by snails. Similar hole to those one from Dolarjeva jama was found in the mammoth's heel-bone from Nevlje (Kamnik). There is no proof, but the snails are making holes in limestone as weil as in mushrooms. Key words: palaeontology, speleology, hole in bone, snail, rhinoceros, mammoth, Slovenija, Dolarjeva jama cave, Nevlje. Kočna 5, SI - 4273 BLEJSKA DOBRAVA, SLOVENIJA UVOD Leta 1933 je Rakovec objavil najdbo fosilnih ostankov nosoroga (Coelodon-ta mercki Jag.) iz Dolarjeve jame pri Logatcu (Rakovec 1933). Takrat je opisal tudi nekaj "lepo izvrtanih lukenj". Leta 1985 je Brodar podal pregled zbirke 83 lukenj v kosteh z slovenskih najdišč in navedel tudi vzroke nastanka lukenj (Brodar 1985). Ker so bile ob tem pregledu prezrte luknje na kosteh iz Dolarjeve jame in luknja v mamutovi kosti z Nevelj je Brodar čez nekaj let podrobno obdelal še ti dve najdbi in obenem analiziral možnosti, ki bi prišle v poštev kot vzrok za nastanek teh lukenj, ob tem pa zapiše, da tak pojav, "drugje ni bil registriran in je ugotovljen samo v teh dveh najdiščih" (Brodar 1989, str. 100). Polži pogosto izjedo v gobe tudi luknje, ki so tako po obliki kot po velikosti identične tem v nosorogovih in mamutovi kosti. Do neke mere se je zdela misel, da bi polži lahko naredili luknje tudi v kosteh, verjetna, oziroma vsaj vredna preverjanja. Ponoven pregled zbirke kosti, obisk jame, flotacija ilovice, kemična analiza obloge na kosteh, rentgensko slikanje in poskusi z polži ideje niso neposredno potrdili, niso pa je niti ovrgh. Vseeno pa je vse našteto prineslo nekaj rezultatov, ki jih bo pri nadaljnem ukvarjanju z temi luknjami potrebno upoštevati. Najdeno je bilo nekaj novih lukenj, nekatere dosedanje domneve pa se ne zdijo več povsem prepričljive. NOVE LUKNJE IN UGOTOVITVE Rakovec razmišlja o vzrokih nastanka lukenj le na treh fragmentih, ob tem pa omeni, da je "na odlomkih še nekaj bolj plitvih lukenj oziroma jamic, ki pa so povsem nepravilne oblike" (Rakovec 1933, 26). Ko v nadaljevanju obdeluje možnost nastanka lukenj zaredi kapljajoče vode, zapiše: "Za tovrsten nastanek pa govore nadalje tudi še druge luknje in vdolbinice oziroma jamice v kosteh, ki so mnogo bolj plitve od zgoraj naštetih. Pri slednjih je celo dobiti vtis, kot da bi predstavljale začeten stadij nastajanja lukenj po kapljajoči vodi" (prav tam, 26). Brodar v svojem članku omenja le tri kostne fragmente z luknjami. Na podlagi tega je bilo slutiti da je, poleg treh dosedaj objavljenih kostnih fragmentov z luknjami, imel Rakovec v rokah še več kosti iz Dolarjeve jame, ki imajo "luknje, vdolbinice oziroma jamice." Zaradi tega je bilo treba najprej ugotoviti koliko in kakšnje luknje so še v depoju, pa še niso bile objavljene. Na tem mestu se zahvaljujem ga. Katarini Krivic iz Prirodoslovnega muzeja Slovenije, ki mi je omogočila ogled najdb v depoju muzeja. Ugotovljeno je bilo, da je lukenj res več. Niso tako izrazite kot na že objavljenih fragmentih, vendar sta dve identični z največjo, podolgovato oziroma ovalno luknjo, ki jo Brodar obravnava kot fragment a (Brodar 1989, 93), v dveh primerih pa gre za manjše luknjice. Fragment d) Luknja se nahaja na stranskem, odlomljenem robu, po vsej verjetnosti metakarpalne kosti. Luknja je narejena v spongiozo in kompakte ne načenja. V globino prehaja ovalno oziroma poševno (SI. 1). Za ugotovitev, da gre za identično luknjo s tisto na fragmentu a, je v tem primeru indikativno dno. Je lepo zaokroženo in z vseh strani poševno preide v stene luknje. Stene so tako kot pri fragmentu a gladke oziroma je spongioza enakomerno odstranjena, zato, če po steni luknje potegnemo z prstom ne čutimo grbinic spongioze, ki bi jo čutili v primeru, da bi bila luknja posledica poškodbe kosti, ob kateri bi se odlomil tudi del spongioze. Luknja je v kost narejena v delu kjer se je ob nekem starejšem odlomu kosti pokazalo največ spongioze. Smer luknje sledi spongiozi in ni orientirana na kostni fragment (smer nakazuje merilo na si. 1). Ne da se ugotoviti ali je bila kost po tem, ko je bila v njej že narejena luknja še dodatno poškodovana ali je bila luknja narejena v tak fragment kot je ohranjen danes. To je pomembno zaradi ugotavljanja kakšen je bil prvotni rob luknje. Na dveh straneh luknjo omejuje kompakta, na dveh pa spongioza. Ostrih robov začetka luknje ni, temveč gre prehod v globino enakomerno poševno. Ker je zaradi opisanega višina robov razUčna, najlaže rečemo, da je luknja globoka okoli 2 cm. Fragment e) Naslednja na novo najdena luknja je na robu prečno odlomljene desne strani diapofize ali krila nosorogovega atlasa. Narejena je v spongiozo in jo lahko uvrstimo med ovalne luknje. Tako kot pri fragmentu d tudi to z dveh strani omejuje kompakta, z dveh pa spongioza. Dve tretjini luknje ima spongiozo enako gladko zaokroženo kot luknje na ostalih fragmentih, na eni strani pa luknja preko manjše grbine v spongiozi prehaja v drugo poglobitev spongioze. Ta druga poglobitev se od luknje razlikuje v tem, da spongioze nima gladko zaokrožene, prav tako pa se dno ne konča polkrožno temveč razbrazdano. Pri pregledu z vrha je jasno zaznati, da je del spongioze, ki ločuje luknjo od sosednje poglobitve odlomljen. Še vedno pa se vidi, da se zaokrožena stena luknje malenkostno nadaljuje v del, ki manjka, zato ni dvoma, da je bila to nekoč v celoti zaokrožena luknja. Globina luknje, merjena glede na najvišji ohranjen rob je 2,1 cm, široka, ob upoštevanju mankajoče stene je z ene strani najmanj 2,8 cm, z druge, kjer sta ohranjeni obe steni pa 1,9 cm (si. 2). Poleg teh lukenj sta bila najdena še dva kostna fragmenta z luknjami, ki jih je verjetno omenjal Rakovec kot luknje, ki zbujajo vtis, kot bi bile začeten stadij nastajanja lukenj, po njegovem poskusu razlage, zaradi kapljajoče vode. Fragment f) V nekaj več kot polovici ohranjene epifize sta ne zgornjem delu, v kompakte narejeni dve precej okrogli luknjici. Večja ima premer okoU 1,5 cm in je globoka okoli 0,5 cm, druga je nekoliko manjša in tudi nekoliko manj izrazito okrogla. Luknjici nista mogli nastati zaradi poškodbe kosti, ker bi bila v tem primeru kostna struktura poškodovana, kar pa ni. Te vdolbinice bi še najlaže označili kot izjedenje ali izpraskanje v kost. Obe luknjici, predvsem pa večja resnično dajeta vtis, da gre za začetek večje luknje. Luknjici sta narejeni v kompakto, zato je rob prehoda luknje v globino oster, le na manjšem delu, kjer je kompakta poškodovana tega ostrega robu ni, ni pa moč ugotoviti ali je do poškodbe prišlo ko sta bili luknjici že narejeni ali že prej (si. 3). Fragment g) Na sredini odlomka metakarpalne kosti je ovalna luknjica globoka okoli 0.5 cm. Nahaja se na delu kosti kjer je kompakta najbolj odstranjena. Dno luknjice ni tako izrazito zaokroženo, kot pri ostalih primerkih. Tudi rob luknjice ni popolnoma oster in ni značilnega poševnega prehoda proti dnu. Luknjica se ne začenja zaokroženo temveč bolj "kvadratno". Na desni strani se luknjica poglobi in preide v slabše zaokroženo dno. (si. 4) Čeprav se še najbolj razlikuje od vseh do sedaj opisanih lastnosti lukenj, pa tudi ta nima stlačenega dna kakršen bi nastal ob mehanski poškodbi kosti. Kot zanimivost in v prid uvrstitve tudi te luknjice k ostalim je treba povedati, da tudi luknja na fragmentu c, čeprav ima stene lepo zaokrožene, robu luknje nima okrogle temveč bolj nekakšne "kvadratne" oblike. Izgleda kot bi šele poglabljanje dalo značilen okrogel oziroma ovalen izgled (si. 5). Poleg zgoraj opisanih lukenj je bil ob ponovnem pregledu kosti na enem od prstnih členkov najden podoben pojav kot ga je opisal Brodar s fragmenta b: "Na kostnem odlomku, ki ima dve luknji opazimo še nekaj nenavadnega. Gre za 3.5 cm dolg žleb, ki je do 2 mm globok... Ne gre za zarezo, ki bi se na dnu ostro zaključila, torej za obliko črke V. ...vidimo da je na dnu okroglo zaključen." (Brodar 1989/98) Bližnji posnetek žleba na fragmentu b kaže si. 6. Fragment h) Gre za 4.8 cm dolg žleb, na prstnem členku, ki pa dna nima po vsej dolžini tako enakomerno zaokroženega v obliku črke U, kot žleb na fragmentu b. Novo odkriti žleb ni nastal kot poškodba ob izkopavanju, saj po barvi žleb ne odstopa od okoliške fosilne kosti. Nove poškodbe so videti drugače. V smeri proti debelejšemu koncu kosti je žleb najglobji in tudi nekoliko širši kot v ostalem delu. Čeprav žleb ni popolnoma raven, pa poteka vsaj približno v isti ravnini, zato je globina žleba odvisna od višine dela kosti ki ga seka. Na sprednjem in zadnjem delu, kjer je kost najvišja je žleb poglobljen do spon-gioze (si. 7). Tu so stene žlebu zaradi mehkejše spongioze, celo nekoliko pomaknjene pod vrhnjo kompakto. V sredini žleb poteka preko kompakte in tu je dno popolnoma identično dnu žleba na fragmentu b. Koliko in kakšne luknje imamo torej iz Dolarjeve jame? Najdbe lahko razvrstimo v štiri skupine in sicer: 1) Luknje z okroglo odprtino in z relativno ostrim robom prehoda v globino ter zaokroženim dnom (fragment b, c). 2) Ovalne luknje brez izrazitega prehoda v globino temveč s poševno spuščajočimi se stenami proti zaokroženemu dnu (fragment a, d, e). 3) Manjši luknjici, ki bi lahko predstavljali začetek večjih lukenj z relativno ostro mejo prehoda v globino (fragment f). 4) Manjša luknjica, ki bi lahko predstavljala začetek večje luknje z neizrazitim prehodom v globino (fragment g). Poleg teh štirih skupin pa je treba v posebno skupino uvrstiti še oba žleba na kosteh (fragment b, h). Ob na novo najdenih luknjah na kosteh se postavlja še eno vprašanje. Ko Rakovec opisuje izkopavanje, omeni, da so "odkopali tudi nebroj kosti raznih manjših živah..." (Rakovec 1933, 6) Drugega o teh kosteh ne zapiše. Danes se ne ve kje so, ni pa bilo moč najti niti načrtov v katere Rakovec pravi, da so vsako najdbo točno zarisali. Ker je v 111 kostnih fragmentih nosoroga sedaj znanih kar 9 lukenj na 7 fragmentih bi bilo zanimivo pregledati tudi ta žal izgubljeni "nebroj" kosti. Ker je za razmišljanje o nastanku lukenj v kosteh pomemben podatek, kako so nosorogovi ostanki prišh v jamo, smo J. Broder, T. in P. Golja ter avtor 21.4.1996 jamo obiskah. Rakovec domneva, da so nosorog ali že samo njegovi ostanki popadali v jamo skozi danes zaprt vhod v jamo, ki naj bi bil tik nad najdiščem kosti. Za potrditev svoje ideje je celo izkopaval nad jamo in prebil strop nad noso-rogovim rovom (Rakovec 1933, 7). Brodar za Rakovčevo domnevo pravi: "Pri ogledu jame se vidi, da ne more biti govora o dovolj veliki luknji v stropu skozi katero bi mogel pasti nosorog. Rakovec je naletel le na špranjo v stropu." (Brodar 1989, 93) V nadaljevanju Brodar postavi hipotezo, da so kosti prišle v jamo s spiranjem s površja skozi razpoke v stropu jame. To utemeljuje še z Rakovčevo navedbo, da so našli kosti celo v steni rova 2 in 2,30 m od tal, kar je "razložjlivo samo z omenjeno hipotezo." (prav tam). Po ogledu jame se mi zdi potrebno Brodarjevi hipotezi dodati še nekaj podrobnosti v zvezi z samim vnosom kosti v jamo. Se enega vhoda v jamo, nad najdiščem kosti ni bilo nikoli. V prid tej trditvi govori predvsem velik nasipni stožec pod današnjim vhodom. Zapolnil je že tudi del rova kjer so bile najdene kosti. Odsotnost kakršnih koli sledi nasipnega stožca na mestu, kjer vhod domneva Rakovec, dodatno govori proti taki mish. V jami se dobi vtis, da je nasipni stožec že zelo star in da je zasul že precejšen dal jame. Ob večanju je drsel v oba kraka jame, ker pa je desni, ta z nosorogovimi kostmi, manjši predvsem pa ožji, ga je nasipanje zapolnilo več kot levega. V nekem obdobju je začelo skozi razpoke v stenah ah stropu, s pomočjo meteorne vode v jamo prihajati več ilovice. Odlagala se je na dnu, v obeh krakih, jame. Ob tem se ja v desnem kraku dokončno zaprla ožina v SI. 8: Načrt Dolarjeve jame (povzeto po načrtu Mihevca, v Brodar, 1989, 91). nadaljevanje rova, ki se je ponovno pokazal ob izkopavanju kosti (si. 8). Rakovec za ilovico na mestu izkopavanja pravi: "Ugotovilo se je, da je ilovica, ki prekriva tla desnega rova debela 80 cm do 1 m. Do globine pol do tričetrt metra je bila še precej čista, nato pa je bila pomešana z gruščem in z odbitimi kapniki, končno so sledile večje skale, ki izhajajo brez dvoma od večjega podora. Pod temi skalami se je na več mestih pokazala odprtina, ki je vodila v spodnji rov. V zgornjem delu t.j. nekako do globine 10-15 cm je bila ilovica zelo mastna... V nižjih plasteh je bila ilovica že precej prhka, mestoma pa celo skrilova, tako da se je luščila v tankih plasteh." (Rakovec 1933, 6). Te t.i. varvaste plasti ilovice pomenijo večkratno zaporedno odložitev, osušitev in ponovno odložitev ilovice. Ker se spodnja plast ilovice pred odložitvijo nove že toliko osuši in strdi med njima ne pride do popolnega zlepljenja, temveč do plastovitosti. Tak način sedimentacije ilovice pa v konkretnem primeru pomeni daljše časovno obdobje odlaganja in ne enkraten nanos. Edino dotok ilovice v jamo v zelo kratkem času bi dovoljeval misel, da je z spiranjem ilovice, neposredno s površja nad jamo, istočasno prineslo v jamo tudi kosti. Kosti so bile najdene v razhčni globini. Rakovec pravi, da so: "... največ kosti dobili v zgornjih plasteh povprečno do globine 20 cm, navzdol so bile kosti čedalje bolj redke, najglobje ležišče kosti smo ugotovili v globini 90 cm." (Rakovec 1933, 6). Ko pa v nadaljevanju opiše še kasnejše Dolarjevo izkopavanje in pove, da je prišel do globine 2 m. " Pri tem kopanju je našel Dolar 5 zobnih in 4 kostne odlomke in to približno v sredini rova v globinah 84 cm, 95 cm, 108 cm, 150 cm in 180 cm. Zobne odlomke je našel le v zgornjih plasteh t.j. 84 do 96 cm globoko." (prav tam, 7). Za del kosti v različnih globinah je logično pričakovati, da so med podornimi skalami, gruščem in odlomlj enimi kapniki skupaj z ilovico drseli navzdol, saj naj bi bilo takih sedimentov več pod gornjim enim metrom ilovice. Vendar pa imamo nad spodnjima, podorno in bolj gruščnato plastjo, plast plastovite ilovice, skozi katero pa kosti niso mogle spolzeti niže. Premik navzdol bi bil sicer mogoč, kot posledica krioturbacijskih in denudacijskih procesov, vendar se zdi, da ti procesi ilovice niso mogli kaj dosti premikati. V tem primeru bi drsela proti rovu, ki se je odprl ob izkopavanju in s tem rov zasipavala. Rov pa je bil z odstranitvijo zapore prehoden. Če ni pod dnom tega desnega kraka jame še kakšen rov, za katerega ne vemo, se zdi, da se ilovica zaradi ozkega in nasploh majhnih dimenzij rova ni imela kam premikati. Sedimentacija ilovice govori bolj v prid odlaganju skozi daljše časovno obdobje. Ob sprejeti tezi, da so kosti v jamo prišle skupaj z ilovico, pa to pomeni, da ilovica v jamo ni mogla pritekati neposredno s površja nad jamo. Kosti namreč tako dolge direktne izpostavitve ostalim naravnim procesom, ki kosti uničujejo v naravi ne bi vzdržale. Proti direktnemu naplavljenju kosti s površja govori tudi čistost ilovice. Vsaj v zgornjem delu je zelo čista, pa tudi v spodnjem delu ni zaobljenega grušča, ki bi bil izpostavljen transportu, temveč le skale, ostrorobi grušč in odpadli kapniki. Vse to je popadalo s sten in stropa jame. To lahko pomeni dvoje. Ah so bile razpoke skozi katere je prihajala ilovica v jamo tako majhne, da večji material ni mogel skozi ah pa je bila v okolici jame le čista ilovica brez skal in kamenja? Če bi bile razpoke dovolj velike le za ilovico, tudi kosti ne bi mogle skozi. Če pa so razpoke dovolj velike za prehod kosti, bi z kostmi prihajal v jamo neposredno s površja tudi drug material, ki je bil tam, glede na geologijo okohce, nedvomno prisoten. Ker so bile kosti pri transportu zaobljene bi bilo pričakovati, da bi bil v jami tudi vsaj delno zaobljen grušč, ki ga pa ni. Ilovica v razgaljenem profilu je zelo mastna, zato se samo z vizualnim ogledom ni dalo ugotoviti, koliko je čista in če vmes le ni tudi kaj zaobljenega materiala. S tem namenom je bila opravljena flotacija skupno 5 kg ilovice, vzete z dveh mest v razgaljenem profilu. VZOREC A 1,60 kg ilovice je bilo sprane skozi sito 0,4 cm. Na situ ostane 0,17 kg sedimenta. To so redki največ 4 - 5 cm veliki koščki od stropa in sten odpadlega grušča in sige. Kar je ostalo je bilo ponovno sprano skozi sito 0,1 cm. VZOREC B 3,40 kg ilovice je bilo spirane skozi sito 0,1 cm. REZULTAT A 1,60 kg sito 0,4 sito 0,1 B 3,40 kg SKUPAJ 5 kg sito 0,1 nad 0,1 pod 0,1 ostanek 0,17 kg ostanek 0,14 kg 0,31 kg ostanek 0,57 kg 0,87 kg 4,13 kg 10,65 % 8,75 % 19,40 % 16,47 % 17,40 % 82,60 % Zaobljenega materiala ni. Edini sediment poleg ilovice in organskih ostankov so manjši kosi sige in droban grušč odpadel z sten in stropa jame. Poleg do sedaj opisanega pa je treba upoštevati,da se ta svetlo rjava ilovica odlaga še danes in, da zato proces odlaganja še ni končan. Če odlaganje ne bi več potekalo, bi bila nad ilovico odložena že plast sige, tako kot je zasigan ostali del jame, celo nasipni stožec. Kosti, ki so gledale iz ilovice, ko jih je leta 1933 v jami našel Dolar, niso mogle biti, v smislu sedimentacijskega časa v jamah, tam prav dolgo. Nanje bi se drugače že odložila nova ilovica ali siga. Na nosorogovih kosteh skorje sige ni, čeprav se drugače v sigotvornih jamah siga na kosti odloži relativno hitro. V prid temu, da se je ilovica odložila v jami kot zadnja govori tudi sledeče. Ob izkopavanju kosti je bila ilovica odstranjena po ceh širini rova. Ob tem sta bili razgaljeni steni rova. Na eni se vidi, da so šle kapniške tvorbe pod ilovico. Ti kapniki niso stari saj se na tej steni siga odlaga še danes in je verjetno večina kapniškega okrasja v jami nastala po koncu zadnje ledene dobe. V tem primeru bi bila ilovica od nekje presedimentirana šele v holocenu. Pri flotaciji ilovice so bili najdeni tudi kostni ostanki malih sesalcev, ki jih je določil B. Krystufek iz Prirodoslovnega muzeja Slovenije, za kar se mu najlepše zahvaljujem. Ugotovil je naslednje vrste in najmanjše število osebkov: Sorex araneus 1 (gozdna rovka) Glis glis 1 (polh) Arvicola terrestis 1 (veliki voluhar) Clethrionomys glareolus 2 (gozdna voluharica) Microtus arvalis/agrestis 1 (travniška/poljska voluharica) Dinaromys bogdanovi 1 ( Dinarska voluharica). Najdba ostankov Dinarske voluharice je pomembna, ker je bila do sedaj poznana le iz dinarskega in šarsko-pindskega gorstva, od Velebita na severu do Galičice na jugu. V pleistocenu je živela tudi na ozemlju današnje Slovenije (Krystufek 1991, 262). Ker so vse ostale najdene vrste recentne, so verjetno recentni tudi ostanki Dinarske voluharice. Ti sesalci so lahko poginili v sami Dolarjevi jami in jih je ilovica s časom prekrila ali pa so bile z ilovico in nosorogovimi kostmi vred presedimentirane od drugod. Poleg ostankov malih sesalcev je bilo v ilovici tudi nekaj celih in polomljenih polžjih hišic, za katere je Velkavrh s fakultete za biologijo, ki se mu za pomoč prav tako najlepše zahvaljujem, ugotovil, da pripadajo recentnim površinskim vrstam. Pri vizualnem pregledu ilovice v profilu, in na izkopanem materialu v jami je bil poleg deset od 1,5 do 5 cm velikih zaobljenih fragmentov kosti, najden tudi 15 cm velik kos odlomljenega kapnika, ki je imel po eni strani črno oblogo. Na nekaterih mestih se je videla le še sled, ponekod pa jo je bilo še dovolj. Obloga je bila na videz identična oblogi na kosteh, o kateri je pisal tudi Rakovec (Rakovec 1933, 25). Pričakovati je bilo, da sta oblogi na kosteh in kapniku sorodni tudi kemično, kar bi pomenilo, da sta bila verjetno blizu eden drugemu, ko se je obloga ustvarila. Za opravljeno kemično analizo se naljepše zahvaljujem J. Legatu iz kemijskega laboratorija Železarne Jesenice. KAPNIK KOSTNA OBLOGA Fe(total) Fep, Ca CaO Mg MgO Mn MnO SiO^ C Al PO. 0,68 0,98 32,75 45,90 0,13 0,28 0,09 0,12 4,40 7,00 0,96 13,05 % % 1,35 % 1,93 % 30,64 % 42,90 % 0,14 % 0,24 % 4,10 % (izračunan iz CaO) 41,39 % 13,50 % (izračunan iz POJ Rezultat potrdi Rakovčevo analizo in pokaže, da tako na kosti kot kapniku prevladuje fosfatna obloga. Razlika v % gre na račun različne možnosti odstraniti oblogo s podlage. V posušeni ilovici, ostanku flotacije je bilo opaziti tudi do 0,1 veliko granulirano črnorjavo snov. Če bi bila to fosfatna snov, bi kazalo, da je obloga na kapniku in kosteh nastala zaradi ležanja v s fosfati nasičeni ilovici. Nabrana sta bila dva vzorca, ki sta po sestavi sledeča: VZOREC 1 VZOREC 2 Fe(total 37,07 % 31,50 % Fep, 53,00 % 45,10 % Ca 2,30 % CaO 3,22 % 3,40 % Mg 0,22 % MgO 0,47 % 0,35 % Mn 2,59 % MnO 3,34 % 3,30 % Ni 0,02 % < 0,01 % Cu 0,01 % < 0,01 % Cr 0,03 % < 0,01 % Zn 0,015% < 0,01 % Pb > 0,01 % < 0,01 % PO4 0,83 % SiOj 14,10 % 10,50 % Al 5,15 % C 6,70 % 9,00 % Nap 0,08 % K^O 0,31 % Kemična sestava granulatnih zrnc je podobna rezultatom analize bobovcev v Triglavskem pogorju, ki sta jih opravila R. Gospodarič in J. Pohar (1966, 7-25), zato teh granulatnih zrnc in fosfatne obloge na kosteh ter kapniku ne moremo neposredno povezovati. Pri nas je fosfatne vključke v sedimentih raziskoval I. Turk s sodelavci in sicer na primeru paleohtskega najdišča Divje babe I (1988). V tekstu podajo razhčne možnosti akumulacije in koncentracije fosfatov v zemlji in sedimentih različne starosti. Ugotovijo, da so v primeru Divjih bab I glavni prispevek fosfatov v sedimentih dah mehki deli mrtve združbe jamskega medveda, ki niso bili konzumirani (prav tam, 124). V našem primeru je fosfatna obloga le na večini kosti in na fragmentu kapnika in ne tudi kot poseben element v sedimentih. Ob upoštevanju kemične analize, se zdi verjetno, da je v tem primeru glavni vzrok oblogam razpad kadavra nasoroga. V tem primeru, bi moral biti kapnik v času razpadanja nosoroga v stiku ali vsaj v neposredni bližini tanatomase. Na podlagi vsega opisanega, se mi zdi verjetnejša možnost, da so bile kosti prenešene neposredno s površja na današnje mesto v jami takoj po razpadu trupla, in sicer tako, da je bila v neposredni bližini Dolarjeve jame še neka manjša jama ali vsaj večja skalna razpoka v katero so se na nek način ujele nosorogove kosti. Lahko celo, da se je nosorog v taki razpoki zagozdil in tam poginil, potem pa je del kosti popadal nižje, del kosti pa je propadel ali so jih uničile druge živali. V tem primeru bi kosti popadale na ilovico na dnu, ki pa je, ko so bile kosti že na mestu, še naprej počasi zasipavala razpoko ali manjšo jamo in s tem tudi kosti. Za ilovice rjavih in rdečih odtenkov, ki so bile včasih poimenovane tudi jamske ilovice, danes prevladuje mnenje, da so produkt kemičnega preperevanja apnenca (Osole 1986, 8). Ta manjša jama ali razpoka se je kasneje s podorom v Dolarjevi jami, katerega ostanke je Rakovec našel kot najnižjo odkopano plast, preko razpok povezala z Dolarjevo jamo. Takrat se je začela, skozi to na novo ustvarjeno povezavo, v Dolarjevo jamo s pomočjo meteorne vode periodično odlagati ilovica, ki je bila prej akumulirana na dnu razpoke ali manjše jame. Ob tem so v Dolarjevo jamo popadale tudi noso-rogove kosti, ki pa so se na tej poti zaradi transporta in težje prehodnosti ogladile, zdrobile in polomile. Vse to je potekalo skozi daljše časovno obdobje, zaradi česar so kosti v različni globini ilovice. Ker se v jami odlaga siga so se s časom razpoke zmanjšale, tako da jih danes ni mogoče z zanesljivostjo najti. Lahko bi bile prav na mestih, kjer je Rakovec našel kosti 2 in 2,30 m nad dnom desnega kraka Dolarjeve jame. DISKUSIJA O MOŽNEM VZROKU NASTANKA LUKENJ Ko Brodar obdela možnosti nastanka lukenj v kosteh (Brodar 1985, 1989), poudari, da se je med pregledom skoraj 400 lukenj iz vse Evrope, pokazalo presenetljivo dejstvo, da ni med njimi niti ene, ki bi jo bilo mogoče primerjati s temi iz Dolarjeve jame in Nevelj. Že prej pa za luknje iz Dolarjeve jame pravi; "Kakor je nastala ena, tako so nastale tudi druge luknje." (Brodar 1989, 79). Novoodkrite luknje tega dejstva ne spreminjajo, nasprotno še dodatno prepričujejo, da gre v tem primeru za nekaj izjemnega in karkoli je že naredilo luknje tega drugje ne počne pogosto. Ta izjemna situacija mora biti vzrok, da je ravno v tej jami, na samo 111 kosih, kosteh narejenih najmanj 6 večjih lukenj. Brodarjevi argumenti, s katerimi izključuje možnosti, da bi luknje nastale kot posledica ugrizov, kemičnih procesov, poškodb z orodjem, bolezenskih procesov, zaradi pritiska ali ležanja v sedimentih in kot posledica kapljajoče vode, so popolnoma prepričljivi, zato v tej smeri ni več smiselno iskati rešitve. Nekoliko več pozornosti Brodar nameni tudi analizi možnosti, da bi luknje izdelal človek. Njegovim argumentom proti tej misli, (da bi morale biti že kje odkrite podobne luknje, da se luknje v večjem številu pojavijo šele sredi Würma in, da ni jasno čemu naj bi te na nosorogovih kosteh, izdelane že v interglacialu, sploh služile) je morda treba dodati še nekaj. Človek bi luknje na teh kosteh naredil lahko le takrat, ko so bile še na površju, oziroma, ko kosti še niso imele fosfatne obloge. Na kosteh, ki oblogo imajo, se jasno vidi, da je bila pri transportu odbrušena in da je bila odložena na kost preden je prišlo do poškodb in obrušenja kosti. Torej pred transpor- SI. 10: Rentgenski posnetki fragmenta a (1), b (2), c (3). tom. Če bi bile luknje narejene takoj v sveže kosti, bi se kasneje obloga naredila tudi v luknjah ali vsaj na razgaljeni spongiozi pri ovalnih luknjah. Tega pa ni. Pri ovalnih luknjah se vidi, da gre obloga po kompakti do roba luknje. Kjer prehod v luknjo med kompakto in spongiozo ni poškodovan oziroma zglajen se lepo vidi, da gre obloga le do roba (si. 9). Človek bi torej luknje lahko naredil le v stare kosti, ki jih je našel na mestu kjer je poginil nosorog, in na katerih je že bila obloga. Če so se kosti res ujele v razpoki ali manjši jami bi jih bilo težko že sploh najti, predvsem pa bi v tem primeru človek luknje naredil z nekim namenom in jih ne bi vrgel nazaj k ostalim kostem, kjer jih je pobral in odkoder bi jih kasneje skupaj z ostalimi odplavilo v Dolarjevo jamo. Že samo število lukenj v nosorogovih kosteh pa je v tem primeru takšno, da bi bilo upravičeno pričakovati še kakšno sled človekovega posega, ki pa je ni. Samo prelomljene metakarpalne kosti in drobci oglja v sami jami so v tem primeru, kakor zapiše že Brodar, premalo. Kakšne so izgubljene kosti manjših živah ne vemo, zato jih tu ne moremo upoštevati. Vrtanje lukenj brez sile, ki odstranjuje (spodriva ali drobi) spongiozo, ni mogoče. Rakovee je ugotovil, da "v kolikor ni struktura spongioze zakrita z vmes nahajajočo se ilovico, je še prav dobro videti, da ni bila spongioza pri nastajanju lukenj prav nič stlačena." (Rakovee 1933, 25) Da bi ta vizualni vtis še potrdili, so bile vse kosti z luknjami rentgensko slikane. Na slikah se jasno vidi, da spongioza ni, ne na stenah, ne na vhodu v luknjo in ne na dnu, prav nič stlačena in poškodovana (si. 10). Edina možna razlaga tega dejstva je, da pri nastajanju lukenj ni bilo uporabljeno orodje ali sila v smislu pritiskanja proti kosti. Brez pritiskanja oziroma uporabe sile pa bi lahko luknje v kost izdelale le živah, ki bi jih naredile z izjedanjem. Brodar omenja pri vzrokih nastanka lukenj v kosteh tudi črve. V nekaterih glinastih sedimentih postanejo kosti popolnoma mehke. V takem primeru je možen prehod črvov, ki na ta način naredijo luknje. V nobenem od naših najdišč iz katerih kosti z luknjami izvirajo, takih sedimentov ni in ta možnost pri nas odpade. (Brodar 1985, 43) Tudi v Dolarjevi jami ghnastih sedimentov ni, zato tudi tu s črvi ni računati. Kost se zmehča zaradi raztapljanja kalcijevega karbonata tudi v kislih sedimentih, nosorogove kosti iz Dolarjeva jame pa so kompaktne in trde. Ker je tako zmehčanje, ko enkrat nastopi, trajno, bistvene spremembe v trdoti kosti v konkretnem primeru ne moremo pričakovati. Živah, ki oblikujejo oziroma izjejo popolnoma identične luknje tem v nosorogovih kosteh, so polži. Luknje, ki jih kopenski polži izjejo v gobe so tako okroghh kot ovalnih oblik (si. 11). Prvi argument proti tej primerjavi je sam material. Goba je mehka, kost pa trda, čeprav pa je spongioza, kamor so v večini primerov narejena luknje, še najbolj krhka in do neke mere spužvasta, še posebej, če je kost dolgo mokra. Toda samo trdota ne more biti temeljni argument proti. Kopenski polži dolbejo luknje celo v kamen. Ta fenomen je v Angliji preučeval geolog William I. Stanton na apnencih v Mendipu (Stanton 1984, 15-18). Na več kot 60 različnih lokacijah je pregledal več 1000 lukenj in ugotovil, da jih dolbejo predvsem gozdni polži Cepaea Nemoralis. Luknje so izdelane v skale apnenca ah celo v apnenčevih prodnikih v konglomeratu. Luknje so narejene v obliki plitvih vdolbinic, preprostih lukenj premera od 20 mm in do 50 mm, pa do kompleksnih lukenj v obliki satovja, globokih do 200 mm (si. 12). Ugotovil je da polži izdolbejo cca 15 mm luknje v 100 letih, kar pomeni, da polži isto luknjo poglabljajo skozi veliko generacij. Kaj je vzrok takega početja polžev ni znano, po nekaterih mnenjih, h katerim se nagiba tudi Stanton, naj bi šlo za "homing instinct", oziroma za počivahšča, skrivahšča polžev, ne pa tudi za prostor hibernacije. Stanton je ugotovil, da polži delajo luknje na apnenčevih skalah, ki so blizu vegetacije, dolbejo pa jih navpično tako, da je luknja pod previsno površino kamnine, da je zaščitena pred vplivom okolja. Podobnost naših lukenj z luknjami, ki jih opisuje Stanton kot enostavne -preproste luknje je velika. Z okroglimi luknjami gre za identičnost tako po dimenzijah kot po obliki in zaokroženem dnu. Zaradi tega sem za mnenje o luknjah v kosteh pisno zaprosil Stantona, ki je na pismo takoj prijazno odgovoril, za kar se mu najlepše zahvaljujem. Stanton piše, da lukenj, ki bi jih v kosti naredili polži, ne pozna. Dodatno pojasni, da ni našel lukenj niti v dolomitu, temveč le v apnencu, kar si razlaga s tem, da polže očitno odbija Mg. Po njegovem mnenju, bi tudi P v kosteh lahko deloval enako odbojno. Glede samega načina izdelave lukenj Stanton pravi, da še ni jasno, ali kopenski polži luknje v apnenec naredijo z raztapljanjem s pomočjo kisle sline ali pa jih izpraskajo z radulami. Če jih izpraskajo, bi SI. 12: Oblike lukenj, ki jih polži Cepaea Nemoralis dolbejo v apnenec (povzeto po Stanton 1984, 15). za izdelavo takih lukenj kot so v kosteh, če bi jih delah z enakim vzrokom kot v apnenec, polži potrebovah več kot sto let. Drug argument proti je lahko vprašanje zakaj podobne luknje niso bile najdene še kje. Odgovor na to ni tako preprost. Navsezadnje imamo opraviti z dvema najdiščema in sicer Dolarjevo jamo in Nevljami pri Kamniku. V obeh primerih so si ovalne oz. poševne luknje tohko podobne, da lahko za oba najdišča iščemo isti vzrok nastanka. Luknje iz Dolarjeve jame, ki imajo okrogel oster rob so tako izrazite, da takoj padejo v oči, kar pa za tiste, ki gredo poševno v dno ne bi mogh reči. Se vedno pa velja, da tako kot je nastala ena so nastale vse. Zakaj takih lukenj ni bilo doslej najdenih več se zaenkrat ne da reči, le ugibamo lahko, da je vzrok nastanka nekaj izjemnega. Glede na to, da tudi kopenski in ne le morski polži dolbejo luknje v kamen, ideja, da bi jih lahko naredili tudi v kosti ni nemogoča, čeprav neposredne potrditve še nimamo. Kopenski polži v Dolarjevo jamo zahajajo. Njihove hišice so prišle na dan ob flotaeiji ilovice, Rakovec pa jih je tudi našel v "privršnjih plastah ilovice." Lupine so bile zdrobljene, vendar mu je uspelo določiti dve hišici, ki pripadata vrsti Aegopis verticillus Fer (Rakovec, 7). Polži so torej luknje lahko naredili v jami ali pa že prej, ko so bile kosti še v razpoki, oziroma pred presedimentacijo v Dolarjevo jamo. Na vsak način pa so morah luknje narediti že po tem, ko je bila na kosteh odložena fosfatna obloga, saj gre ta le do roba lukenj. Ker se struktura kosti razlikuje od apnenčevih skal, se zdi, da v tem primeru polži lukenj v kosti ne bi delali z enakim vzrokom kot v skale. Vzrok bi bil lahko v neki nevsakdanji situaciji, ki bi se za polže pojavila v tistem trenutku in na tistem mestu, in bi se zato lotili kosti. Ali bi bil ta vzrok lahko hranjenje, je le ugibanje, čeprav se prav to zdi precej verjetno. Vsekakor je z idejo o polžih kot povzročiteljih lukenj, moč najti skupni imenovalec za luknje v Dolarjevi jami in Nevljah, čeprav je med nastankom enih in drugih velika časovna razlika. V obeh primerih so polži imeli možnost dostopa do kosti. Tudi dve luknji na fragmentu b, ki sta si skoraj nasproti, tej razlagi ne nasprotujeta. Na koncu je treba nekaj reči še o obeh žlebovih. Brodar za žleb na fragmentu b pravi, da podoben žleb nastane, če po kosti potezamo sem ter tja z mehkim tkivom, npr. kito, vendar pravi, da bi bilo v konkretnem primeru "trditi, da je žleb delo človeka, vendarle preveč tvegano." (Brodar 1989, 98). Sedaj imamo dva žleba. Drugi se od tega na fragmentu b razlikuje v tem, da je na koncih globji in da načenja spongiozo, v sredini pa je enak prvemu. Kljub temu, da Brodar pravi; "Ne poznamo primera, da bi kdo tak žleb poskušal razložiti kot naraven pojav..." (prav tam), se mi zdi, da je rešitev prav tu. Žleb gre na fragmentu b po spongiozi. Ce je kost suha se spongioza od dotiku in pritiskanju nanjo drobi v razhčno velikih koščkih, nasprotno pa z vodo prepojena kost, predvsem spongioza, postane nekako prožnejša - spužvasta. V tem primeru se spongioza ob pritisku drobi v enakih majhnih "drobtinicah." Če bi torej namočen in z vodo prepojen fragment kosti sediment pritiskal oz. tiščal na nek rob kamnine, bi se ta rob vtisnil v spongiozo. Žleb ki bi tako nastal, bi imel zaradi malenkostnega premikanja kosti skozi daljše časovno obdobje, zaokroženo in zaglajeno dno. Zaradi dolgotrajnega enakomernega pritiska in morebitne vmesne osušitve bi vtisnenje ostalo trajno. Enako bi lahko nastal žleb na fragmentu h, le da je v tem primeru skalni rob zaradi drugačne oblike kosti šel na najvišji točki najglobje in na tem mestu, zaradi prevelike globine spongiozo že krušil in ne več le stisnil oz. vtisnil. Na sredi, kjer je žleb plitek, pa je prišlo le do vtisnenja in zato do enakega izgleda kot na fragmentu b. Hipoteza o polžih kot možnem povzročitelju lukenj v nosorogovih kosteh iz Dolarjeve jame in mamutovi petnici iz Nevelj, je le še eden od poskusov pojasniti njihov nastanek. Ker so te luknje res nekaj posebnega je prav, da se upošteva čim več možnosti, ki bodo morda nekoč pripeljale do nedvomno dokazljivega vzroka nastanka lukenj. OPOMBE: Ker Brodar dosedaj objavljene kostne fragmente z luknjami označuje z oznako "fragment a, b m c", novoodkrite luknje označujem z nadaljevanjem abecede. LITERATURA BRODAR, M., 1985: Fossile Knochendurehloochungen. Razprave IV. razr. SAZU, XXVI (zbornik Ivana Rakovca), 29-47, Ljubljana BRODAR, M., 1989: Luknje v kosteh iz Dolarjeve jame in Nevelj. Acta carsologica, XVIII, 89-101, Ljubljana GOSPODARIČ, R. in POHAR, J., 1966: Geološka svojstva nahajahšča železovih rud. Zelezar - Tehnična priloga, VIII/1,7-25, Jesenice KRYSTUFEK, B., 1991: Sesalci Slovenije. Prirodoslovni muzej Slovenije, Ljubljana OSOLE, E, 1986: Wurmski jamski sedimenti Slovenije. Poročilo o raziskovanju paleolita, neolita in eneolita v Sloveniji, XIV, 7- 10, Ljubljana RAKOVEC, L, 1933: Coelodonta mercki Jag. iz Dolarjeve jame pri Logatcu. Prirodoslovne razprave, 2, 5-41, Ljubljana STANTON, W. L, 1984: Snail holes in Mendip limestone. Proceedings of the Bristol Naturahsts Society, 44, 15-18, Bristol TURK, I., et al., 1988: Fosfati in tanatomasa v sedimentih iz jame Divje babe I. Acta carsologica, XVII, 109 - 127, Ljubljana ONCE MORE ABOUT THE HOLES IN THE RHINOCEROS' BONES FROM DOLARJEVA JAMA CAVE NEAR LOGATEC Summary Because the holes in the fossil rhinoceros' bones are specific, the only comparision can be made with the hole in mammoth's heel-bone found at Nevlje near Kamnik. Up to now it was not possible to explain the origin of the holes, therefore the possibility that snails made them was taken into account. Looking seriously through the collection of the mentioned bones, additional five holes were found. With previous ones they are now 11 altogether. Three of the new found ones are smaller, looking as they were the first phase of hole making. The other two are bigger and having all the characteristics of the previously known holes. Taking into account that the holes in rhinoceros' and mammoth's bones can not be compared to any known holes in fossil bones, also their origin have to be different. It can not be explained by beasts' bites, by chemical processes, by action of a tool, by pathological processes, or by the pressure of the overlying sediment load. There are no arguments to think that the holes are man made, just opposite, because the holes are made in such a manner that the "spongiosis" is completely intact, which would be impossible if the holes were made by boring. Without any pressure or force, the holes could be made by a sort of corrosion. Bigger animals can not be taken into account regarding the fact that their traces on bones are different and known already a long time. One possibility is that the holes were made by snails. They make identical holes in mushrooms to those in rhinoceros' and mammoth's bones. English geologist N. I. Stanton found that the snails Cepaea nemoralis are making holes in limestone too. There is a great similarity between the so-called simple holes in limestone and the holes of the mentioned bones. For the moment it is not possible to say that the snails are making holes in the bones. But if they do it, the reason why they are making holes in the bones has to be different from those made into limestone. The paper thus presents one more explanation of the origin of the holes. In any case if the "snails' theory" should be accepted, there is a parallel between the holes in rhinoceros' bones to those in the mammoth's, although there is a great difference in time between them. If the snails made the holes they had to be made in a very exceptional, pecuhar situation. Otherwise many more of such holes have to be found. Am ca/sologka, KXVm {im SI. 1: Fragment d; ovalna luknja v prelomljeni metakarpalni kosti. 'Si- SI. 3: Fragment f; mali luknji na delu epifize. SI. 7: Fragment h; žleb na prstnem členku. SI 2: Fragment e; 1: prvo vratno vretence s prečno odlom-Ijeno desno stranjo krila, puščica kaže mesto luknje, 2: fron talni pogled priti luknji. SI. 4: Fragment g; ovalna "kvadratna" luknjica na sredi kosti. SI. 5: Fragment c; "kvadraten' rob luknje. SI. 6: Fragment b, bližinski posnetek žleba. SI. 11: Luknje kijih v gobe izjejo polži, SI. 9: Fragment a; obloga gre le do roba zgoraj okrogle, spodaj ovalne luknje. luknje in v luknjo ni odložena. ACTA CARSOLOGICA XXVI/2 36 431-439 LJUBUANA 1997 PRVI REZULTATI RAZISKAV KAMNINE V TREH LUNANSKIH KAMNITIH GOZDOVIH (YUNNAN, KITAJSKA) FIRST RESULTS OF ROCK RESEARCH IN THREE LUNAN STONE FORESTS (YUNNAN, CHINA) MARTIN KNEZi Izvleček UDK 551.44(510) 552.54(510) Martin Knez: Prvi rezultati raziskav kamnine v treh lunanskih kamnitih gozdovih (Yunnan, Kitajska) Kamnina je v nekaterih predelih lunanskega področja izredno monotone sestave, ponekod pa v geoloških profilih zasledimo pestro menjavanje različnih tipov apnencev in dolomitov. To se odraža na selektivni koroziji in eroziji karbonatov in s tem na oblikovanosti in morfološkem izgledu posameznih kamnitih stebrov, večjih kamninskih blokov in reliefu pokrajine. Ključne besede: Jcrasoslovje, geologija, litologija, selektivna korozija, kamniti gozd, Yunnan, Kitajska. Abstract UDC 551.44(510) 552.54(510) Martin Knez: First results of rock research in three Lunan Stone forests (Yunnan, China) In some areas of Lunan county the composition of the rock is very monotonous but in some places the geological profiles show alternation of different types of limestones and dolomites. This results in selective corrosion and erosion of carbonates and therefore affects the appearance of separated stone pillars, of the bigger rock blocks and of the landscape relief. Key words: karstology, geology, lithology, selective corrosion, stone forest, Yunnan, China. ' Inštitut za raziskovanje krasa ZRC SAZU, Titov trg 2, SI - 6230 POSTOJNA, SLOVENIJA UVOD Raziskave v treh kamnitih gozdovih (Shilin, Naigu in Laoheigin) v bližini kraja Lunan (Yunnan) so potekale v sodelovanju med Yunnanskim geografskim inštitutom (Centrom za zaščito narave in kulture) in Inštitutom za raziskovanje krasa Znanstvenoraziskovalnega centra SAZU. Delo na meddržavnem projektu z naslovom Študij značilnosti krasa lunanskega Kamnitega gozda in študij podzemnega odtekanja vode je finančno podprlo Ministrstvo za znanost in tehnologijo Republike Slovenije. Glavne značilnosti krasa v pokrajini Yunnan Geološka struktura kamnin v pokrajini Yunnan (v kitajščini pomeni Yunnan južno od ozir. pod oblaki^ v resnici je večji del pokrajine visoka planota z nadmorskimi višinami okrog 2000 m) se kaže kot serija izmenjujočih grebenov in udorin (tektonskih grabnov) v smeri sever-jug. V splošnem pa je znano, da sta bili področji vzhodnega in centralnega dela pokrajine v celoti tektonsko dvignjeni v kenozoiku in danes tvorijo obsežne visoke planote. Večinoma spodnjepaleozoiske in triasne karbonatne kamnine se razprostirajo predvsem v vzhodnem Yunnanu. Prav tako tudi v nekaterih dehh zahodnega Yunnana (Zhongdian, Dali in Lincang) zasledimo posamezna manjša karbonatna področja. V provinci Yunnan, ki meri okrog 97 000 km^, je skoraj 26% ozemlja kraškega (Sweeting 1995). Naj omenim v literaturi dosegljiv podatek, da ima celotna Kitajska okrog 3,4 milijona km^ karbonatnih kamnin, to je približno tretjina državnega teritorija (Yuan 1991). Kljub temu pa je razgaljene karbonatne kamnine le za okrog 0,91 milijona km*, kar je ena desetina njenega ozemlja. V različnih geoloških in klimatskih pogojih so se izoblikovali trije različni tipi kraške pokrajine: a) kras tropskega deževnega gozda v Xishuangbanna na jugu, b) kras tektonskih udorin (grabnov) in c) kras visokih planot s "kamnitimi gozdovi". Kras tropskega deževnega gozda v Xishuangbanna na jugu V pokrajini Xishuangbanna se razteza najobsežnejša robni tropski predel celinske Kitajske. Dve kraški področji posebej izstopati: pokrajina Mengla s površino okrog 500 km^ in ozemlje vzdolž reke Lancang s površino okrog 450 km^. Apnenci v pokrajini Mengla so pretežno permijski in srednjekarbonski sivi masivni apnenci, biomikritni in bisparitni apnenci, psevdooohtni apnenci, bio-klastični apnenci in triasni dolomitni apnenci. Skladovnica karbonatov je debela preko 2000 m. Pod vplivom vlažne tropske klime so apnenci v kvartarju intenzivno zakraseli. Značilnosti kraške pokrajine vzdolž reke Lancang se kažejo v številnih depresijah in slepih dolinah, kjer so dokaj pogosti tudi t.i."kamniti zobje" pa tudi posamezni kamniti stebri. Kras tektonskih udorin (grabnov) Kras v tektonskih udorinah (Song & Liu 1992) je močno razširjen pojav v pokrajini Yunnan, kjer je vsaj 28 ločenih predelov od katerih ni nobeden manjši od 100 km-. Največji je t.i. kunminški bazen (po glavnem mestu pokrajine Yunnan, Kunming), ki presega površino 1100 km- in ima preko 3000 km- vodozbirnega zaledja. Nevezan kamninski pokrov v kunminškem bazenu znaša okrog 1000 m. Kras visokih planot s "kamnitimi gozdovi" "Kamniti gozdovi" kažejo poseben tip kraške pokrajine, za katero so značilni skupine stoječih apnenčastih stebrov, ponekod visokih preko 30 m. Apnenčasti stebri stojijo navadno na rahlo valoviti podlagi. Kamnite gozdove delijo glede na njihovo pokritost z nevezanim sedimentom na gole, pokrite in skrite. Glede na geomorfološko pojavljanje pa na kamnite gozdove na dvignjenih področjih, kamnite gozdove v depresijah in kamnite gozdove na pobočjih. Splošne značilnosti karbonatnih kamnin Glavne značilnosti karbonatne kamnine so velika koncentracija le-teh, velika debelina in precejšnja starost kamnine, ki gradijo obsežnejše karbonatne komplekse. So večinoma platformnega tipa in se odlikujejo po precejšnji čistosti, enakomernosti v razporeditvi različnih karbonatnih tipov in enakomerni debe-hni. Nadalje je za te kamnine značilno, da so bile, tudi zaradi svoje starosti, podvržene močnemu vplivu diagenetskih procesov. Te značilnosti pa se neposredno odražajo tako na hidrološkem odzivu matične kamnine (Kogovšek, Liu & Petrič 1997) kot na razvoju krasa v splošnem. Lunanski kamniti gozd Najbolj značilen kitajski kamniti gozd je nedvomno kamniti gozd v neposredni bližini mesta Lunan (Lunan Shilin). Tam so kamniti stebri z izrazitimi ostrimi vrhovi, ki so pogosto tik pod vrhom ločeni od spodnje, bolj ah manj enakomerno debele baze, z leziko. V splošnem so stebri visoki praviloma več kot 10 m. Sicer pa kamnite gozdove najdemo tudi v provincah Guizhou, Guangxi in Fujian (Habič 1980; Waltham 1984; Song 1986). V Provinci Yunnan je preko 400 km^ površine pokrite s kamnitimi gozdovi. Lunanski kamniti gozd leži na valoviti kraški planoti na nadmorskih višinah od 1720 do 2000 m (Sweeting 1995). V omenjenem gozdu zasledimo pestro paleto kraških oblik, med katerimi so nedvomno najpomembnejši karbonatni stebri, visoki od 10 do 30 m. Manjši, do 10 m visoki stebri stojijo na višji nadmorski višini, medtem ko najvišji stebre najdemo v depresijah (Sweeting 1995). Pod kamnitimi gozdovi so pogosto tudi jame in podzemni vodni tokovi. Vzrok tako izrazito razvitemu globokemu krasu v okolici Lunana je posebna kombinacija khmatskih, litoloških, strukturno geoloških in geomorfoloških pogojev (Yuan 1991). Bistvene značilnosti karbonatnih kamnin na področju Lunana se kažejo v več nivojih. Ena pomembnejših lastnosti je nedvomno njihova spodnjepermijska starost. V splošnem gradijo tipične kamnite gozdove grebenski biomikriti in biospariti, ki so se odložili na blagih plitvomorskih brežinah. Takšne karbonatne kamnine, ki jih dodatno odlikujejo debele plasti in enakomerna kemična sestava, naj bi bile najbolj primerne za oblikovanje visokih kamnitih stebrov. Dodatno pa naj bi stratigrafske in litološke posebnosti, ki smo jih ugotovili v geoloških profilih, doprinesle k tvorbi izjemnih oblik. Letos opravljene uvodne analize so nekatere domneve pomagale ustrezno razrešiti. Druga pomembna lastnost, ki omogoča razvoj kamnitih gozdov je blag naklon plasti. V lunanskem kamnitem gozdu je vpad plasti večinoma manjši od 5". Različni tektonski pritiski so povzročih tvorbo številnih, v gosto mrežo razporejenih, razpok (cf. Šebela 1996). Zaradi svoje usmerjenosti so dovoljevale vertikalno migracijo vadozne vode in s tem intenzivno raztapljanje. Razhčna višina kamnitih gozdov na različnih področjih se kaže kot tretja pomembna lastnost. Najvišji stebri (20-40 m) so se oblikovali v velikih skledastih udorinah z velikim vodnim zaledjem.V skledastih udorinah z zelo majhnim naklonom pobočji "zrastejo" stebri tudi nad 10 m. Kjer pa je matična kamnina še vedno pokrita s prstjo, najdemo le t.i. "kamnite zobe", stebre visoke do nekaj metrov (Yuan 1991; Song 1986). Poleg navedenih značilnosti pa je oblikovanje stebrov tesno povezano z podpovršinskim raztapljanjem matične kamnine, kjer je glavni agens s CO^ bogata vadozna voda. Ostri vrhovi kamnitih stebrov naj bi nastali z raztapljanjem kamnine s pomočjo površinske vode v brezzračnem horizontu površinskega nevezanega in z organskim materialom bogatega sedimenta (Chen, Song & Sweeting 1985). Litološke in stratigrafske značilnosti karbonatov lunanskega kamnitega gozda Kamniti gozdovi, tako v splošnem kot tudi na področju Lunana, nastajajo primarno v zelo debeloplastnatem in kemično čistem apnencu. Po nekaterih podatkih naj bi se lunanski kamniti gozd razvil v karbonatnih plasteh, ki so debele tudi preko 30 m (Song 1986). Debelina plasti v drugih kamnitih gozdovih južne Kitajske je znatno nižja, saj znaša le okrog 2 m. Lunanski kamniti gozd je nastal v spodnjepermijskih apnencih. Ti so bili tektonsko sicer močno porušeni, nagnjenost plasti pa kljub temu v povprečju ni večja od 10". V nekaterih sosednjih kamnitih gozdovih je povprečna nagnjenost skladov izjemoma tudi prek 20". Ugotovljeno je, da pri nagnjenosti plasti, ki presega 15", ne more priti do večjih kamnitih stebrov (Song 1986). Pri svojem delu nisem temeljil zgolj na vzorčevanju kamnine iz posameznih kamnitih stebrov, pač pa sem največ pozornosti posvetil stikom različnih kamnin v geološkem stolpcu. V nekaj primerih je tak stik razkrila močnejša korozija določenega dela profila, ki se je morfološko jasno odražala v kamnini. Večkrat pa je za ugotovitev stika litološko razhčnih kamnin botrovalo le zvezno vzorčevanje. V lunanskih kamnitih gozdovih je bilo že na terenu ugotovljeno, da ima poseben pomen pri selektivni koroziji tudi različna stopnja poroznosti karbonata. Že makroskopsko je bilo ponekod opaziti, da so posamezni predeli geološkega profila oz. kamnitih stebrov bistveno bolj podvrženi vplivu korozije in erozije (sl.l, 2). Tudi raziskave na mikroskopskem nivoju, ki še niso zaključene, to dejstvo potrjujejo. Karbonatna kamnina (stopnja Maokou) v Shilin kamnitem gozdu, le-ta meri 11 km^ (Salomon 1997), se, z izjemo nekaterih krajših odsekov, iz strukturnega in teksturnega vidika skozi geološki profil praktično ne spreminja. Vsi vzorci, raziskani z mikroskopom kažejo, da je bila 350 milijonov let stara kamnina močno diagenetsko spremenjena. Fosilni ostanki so večinoma nerazpoznavni, čeprav tektonsko niso poškodovani. Tudi vpad plasti, ki je večinoma okrog 5", in le redko večji od 10", kaže na majhne regionalne premike. Hkrati pa rezultati mikroskopskih opazovanj kažejo na to, da danes opazovani vpad plasti najverjetneje odraža le relativno kratko fazo nagibanja terena v nevertikalni smeri, oziroma, da so bloki med sicer ne prav gostimi razpokami ostah malo poškodovani. Ne glede na to pa v kamnini zasledimo številne, s kalcitom zapolnjene drobne razpoke, ob katerih ni prišlo do opaznih zmikov. Zaradi čistosti in prekristaljenosti karbonata matične kamnine je kalcitne žilice marsikdaj že makroskopsko težko ugotoviti. Regionalno obsežno blago antiklinalno dviganje kamnine se je vršilo v več različnih fazah in obdobjih. Na ne le eno deformiranje permijske kamnine opozarja tudi drugi raziskovalci (cf. Yuan 1991). Kamniti gozd Naigu ima površino 8 km^ (Salomon 1997). Gradijo ga kamnine iz Qixia formacije, ki se skozi geološki profil nekajkrat spremenijo. Večkrat zasledimo spremembo v barvi, plastnatosti, poroznosti, spremembi vključkov in drugo. Baza najnižjega razkritega dela Naigu kamnitega gozda je sestavljena iz svetlorjavega do oranžnega masivnega in homogenega karbonata. V profilu sledijo kamnine, ki so slabše odporne na korozijo in erozijo. Tvorijo nekakšen ožji del stebra pod sicer širšim in s tem odpornejšim zgornjim delom. Laoheigin kamniti gozd leži okrog 20 km severno od Shilina. Posamezni kamniti stebri in večji korozijsko in erozijsko preobhkovani bloki kamnine zavzemajo le okrog 2 kml Morfološko so kamniti stebri zelo podobni tistim iz Naigu kamnitega gozda. Zanimiva so mnenja o vplivu litologije na morfologijo krasa, posameznih kamnitih stebrov in kamninskih blokov. Nekateri krasoslovei trdijo (Zhang 1997), da ni nobenega vpliva karbonatne sestave in strukture kamnine na razvoj in obliko krasa ter kraških oblik. Omenjeni avtor nadaljuje, da se kamniti gozdovi lahko razvijajo tako na dolomitu kot na apnencu, z vključki roženca ali brez, ter da se razvijajo lahko na karbonatnih kamninah različnih strukturnih in genetskih tipov. Drugi pa so mnenja (Salomon 1997), da so litološke posebnosti kamnine bistveni faktor pri razvoju, oblikovanju in današnjem morfološkem izgledu kraških oblik skozi ves razvoj; od kamnitih zob do kamnitih stebrov. Literature o podrobnih mikroskopskih raziskavah vzorcev iz geoloških profilov raziskovanih kamnitih gozdov nisem našel. Kljub temu pa je v eni od objav omenjeno, da je bilo iz vzorcev kamnine iz kamnitega gozda Shilin izdelanih nekaj mikroskopskih preparatov. Kje so morebitni rezultati mikroskopskih analiz, nisem uspel ugotoviti. V delu geološkega profila, ki ga je mogoče zajeti v neposredni bližini Shilina sem ugotovil, da mikroskopske analize večjih biostratigrafskih sprememb v kamnini ne pokažejo. Pač pa so v vseh treh raziskovanih gozdovih pomembnejše litološke anomalije. Kljub temu, da se pogosto med rezultati različnih raziskav pojavljajo tudi rezultati kalcimetričnih analiz, pa ni opaziti, da bi kdo podrobneje raziskoval tudi stik htološko razhčnih kamnin, kjer je selektivna korozija pogosto jasno izražena in tam izvedel mikroskopske in kalcimetrične analize. Kot primer navajam rezultate kalcimetrične analize dveh karbonatov. Da sta vzorca A in B (razdalja med njima je v vertikalni smeri le 0,5 cm) pravzaprav dve povsem različni kamnini je bilo v profilu opaziti le po rahli spremembi barve. VZOREC CaO* Mgo kalcit dolomit skupni karbonat CaCO, MgCO, CaO/MgO A 51,76 3,23 84,38 14,75 99,13 92,38 6,75 16,02 B 32,41 20,16 7,82 92,21 100,00 57,87 42,13 1,61 Tabela 1. Primer dveh karbonatov, na stiku katerih je prišlo do intenzivne korozije. * Vse vrednosti, razen v zadnjem stolpcu, so v %. ZAKLJUČEK Glede na prve makroskopske in mikroskopske raziskave kamnine iz treh kamnitili gozdov iz bližine Lunana je bilo ugotovljeno, da se tip kamnine jasno odraža na selektivni koroziji in eroziji karbonatov in s tem na oblikovanosti in morfološkem izgledu posameznih kamnitih stebrov in večjih kamninskih blokov. Kalcimetrično anahzo (Tabela 1) je na Inštitutu za raziskovanje krasa naredila Mateja Zadel. LITERATURA Chen, Z. P., Song, L. H. & Sweeting, M. M., 1985: The pinnacle karst of the Stone Forest, Lunnan, Yunnan, China: an example of a sub-jacent karst. In: New Directions in Karst, 597-607, Norwich. Habic, P., 1980: S poti po kitajskem krasu.- Geografski vestnik, 107-122, Ljubljana. Kogovšek, J., Liu, H., Petrič, M., 1997: Properties of underground water flow in karst area near Lunan in Yunnan Province, China.- Tracer Hydrology 97, 255-261, Rotterdam. Salomon, J.-N., 1997: Comparaison entre les "Stone forests" du Lunan (Yunnan-Chine) et les Karsts a "Tsingy" de Madagascar.- Stone Forest, a treasure of natural Heritage (Song, L., Waltham, T, Cao, N., Wang, E, Eds.), 124-136, Beijing. Song, L. H., 1986: Origination of Stone Forests in China.- International Journal of Speleology, 15, 3-13, Trieste. Song, L. H. & Liu, H.,1992: Control of geological structures over development of cockpit karst in south Yunnan, China.- Tübinger Geographischer Studien, 109, 57-70, Tübingen. Sweeting, M. M., 1995: Karst in China. Its Geomorphology and Environment. -Springer- Verlag, XI-h265 str., Berlin. Sebela, S., 1996: Results of Tectonic Measurements in the Stone Forest, Lunan, China." Acta carsologica, 25, 437-450, Ljubljana. Zhang, S., 1997: Stone Forest in China and Pinnacle Karst in Madagascar.-Stone Forest, a treasure of natural Heritage (Song, L., Waltham, T, Cao, N., Wang, E, Eds.), 78-80, Beijing. Yuan, D., 1991: Karst of China.- Geological Pubhshing House, V-t-224str., 48 si., Beijing. Waltham, A. C., 1984: Some features of karst geomorphology in South China.-Cave Science, The transactions of the British Cave Research Association, 11, 4, 185-198, Somerset. SI. 1: Vrh ene od skupin kamnitih stebrov v Naigu kamnitem gozdu (Foto: M. Knez). Fig. 1: Top of one group of the stone pillars in Naigu Stone Forest (Photo by M. Knez). SI. 2: Značilna oblika kamnitih stebrov v Laoheigin kamnitem gozdu (Foto: M. Knez). Fig. 2: Tipical shape of the stone pillars in Laoheigin Stone Forest (Photo by M. Knez). ACTA CARSOLOGICA XXVI/2 37 441-456 LJUBLJANA 1997 NEKATERE ZNAČILNOSTI PRENIKAJOČE VODE NA LUNANSKEM KRASU, YUNNAN, KITAJSKA SOME PROPERTIES OF THE PERCOLATION WATER IN THE KARST OF LUNAN, YUNNAN PROVINCE, CHINA JANJA KOGOVŠEK' Izvleček UDK 556.3(510) Janja Kogovšek: Nekatere značilnosti prenikajoče vode na Lunanskem krasu, Yunnan, Kitajska Julija 1996 in septembra 1997, v začetku in ob koncu deževne dobe, so bile na krasu v kitajski provinci Yunnan ugotovljene osnovne značilnosti prenikajoče vode v podzemnih jamah Jiuxiang, Baiyun, Xin-Shi in Wayao. Podane so osnovne značilnosti dežja in nekatere analize zemljin na tem krasu. Ugotovljene so tudi tiste komponente zemljin, ki jih padavine lahko spirajo in tako vplivajo na proces raztapljanja kamnine oz. zakrasevanje. Visoka vsebnost karbonatov (do 7.7 mekv/1) v prenikli vodi, ki je bila izmerjena v sigastih ponvicah v jamah Jiuxiang in Baiyun, pogojuje izločanje sige. Ključne besede: krasoslovje, prenikajoča voda, raztapljanje in izločanje, Yunnan, Kitajska. Abstract UDC 556.3(510) Janja Kogovšek: Some properties of the percolation water in the karst of Lunan, Yunnan province, China In July 1996 and in September 1997, at the beginning and at the end of the rainy season, we studied the basic characteristics of the percolation water in the Jiuxiang, Baiyun, Xin-Shi and Wayao caves in the Chinese province of Yunnan. The basic characteristics of rainfall and some analyses of soil there are given. Those soil components that may be washed away by rainwater and thus influence rock solution or karstification are identified. High carbonate levels (up to 7.7 mekv/1) in the percolation water, measured in micro-gours in the Jiuxiang and Baiyun caves, control the flowstone deposition Key words: karstology, percolation water, solution and deposition, Yunnan, China. ' Inštitut za raziskovanje krasa ZRC SAZU, Titov trg 2, SI - 6230 POSTOJNA, SLOVENIJA UVOD V juliju 1996 smo v okviru mednarodnega znanstvenega sodelovanja med Slovenijo in Kitajsko, ki ga je omogočilo Ministrstvo za znanost in tehnologijo RS, raziskovali v sodelovanju s kitajskimi kolegi z Geografskega inštituta iz Kunminga tudi značilnosti kraške vode na njihovem krasu v okolici Lunana. Povprečna letna količina padavin območja je 796 mm, povprečna relativna vlaga 75.3 % in povprečna letna temperatura 15.6°C. Sicer pa letna količina padavin od leta do leta zelo niha. Več kot 80 % vseh letnih padavin pade v deževnem obdobju nekako od junija do oktobra. Metodologija dela Preniklo vodo v podzemnih jamah smo vzorčevali v večini primerov neposredno na jamskem stropu. Pretoke smo v večini primerov ocenili glede na ulovljeno količino v določenem času. Ob zajemu vodnih vzorcev smo na terenu določiU temperaturo na desetinko natančno in specifično cl. prevodnost - SEP na 1 ptS/cm (julija 1996 z aparatom LF 91-WTW, septembra 1997 pa z LF 196) ter pH vzorcev (aparat pH 90-WTW). Primerjava - interkalibracija obeh kon-duktometrov je pokazala dokaj dobro ujemanje. V območju 150 do 250 /nS/cm smo z LF 91 določali od 1 do O % prenizke vrednosti in v območju 250 do 500 yU,S/cm od O do 1 % previsoke vrednosti. SESTAVA DEŽJA Daoxian (1991) navaja sestavo dežja: pH, vsebnost kalcija, magnezija, natrija, kalija ter kloridov, sulfatov, nitratov in amonija za nekaj območij Kitajske, vendar ne tudi za območje Yunnana. Ugotavlja vpliv matične kamnine, kot tudi vplive človekove dejavnosti, kot so dim in onesnaževanje zaradi cementarn in kamnolomov. Navaja, da je vsebnost kalcija v dežju na krasu znatno večja, preko 5 mg/l (oz. 12.5 mg CaCOj/l) kot na nekraškem svetu, kjer je pod 0.1 mg/l. Prva naša vzorčevanja in meritve dežja smo opravili v Kamnitem gozdu v juliju 1996. Od 9. do 14. julija je padlo skupno 87 mm padavin. Ozračje je bilo tako 16. julija zvečer, ko je začelo ponovno deževati, dokaj dobro sprano. V času pred polnočjo je padlo po naši oceni 10 mm dežja, od polnoči do jutra pa po naših meritvah še nadaljnjih 42 mm dežja. Tedaj smo tudi zajeh 1. vzorec dežja. Padavine so se občasno nadaljevale še preko dneva, ko je padlo 14 mm dežja in smo zajeh 2. vzorec dežja. Te naše meritve kohčine dežja so se dobro skladale z meritvami na padavinski postaji Dakenyan. Po podatkih te padavinske merilne postaje je padlo 16. julija 56.6 mm dežja, 17. julija pa 11 mm, skupno 67.6 mm. Naslednji, zelo skromen dež je padel ponoči z 20. na 21. julij in sicer je bilo to le počasno pršenje. V Kamnitem gozdu smo izmerili 3.5 mm, v Dakenyanu pa so zabeležili 5.5 mm. Nekoliko več dežja pa je padlo naslednjo noč, v Kamnitem gozdu po naših meritvah 10 mm, pri Dakenyanu pa 26.5 mm. Tudi opazovanje vodostaja voda ob vzorčevanju voda je dajalo vtis, da je v približno 7 km oddaljenem Dakenyanu in na območju NO od Kamnitega gozda v primerjavi s Kamnitim gozdom padlo več padavin, da gre občasno za lokalne razlike. V vseh primerih smo vzorčevali dež od začetka do konca padavin, tako, da sem analizirala kompozitorne vzorce dežja. Rezultati meritev so razvidni iz tabele 1. Temperatura ozračja je preko dneva in noči le malo nihala okoli vrednosti 20°C. SEC vzorcev je obratno sorazmerna količini padavin, kar se zdi logično, saj se je onesnaženje iz zraka spiralo z manjšo ah večjo količino dežja, ko so nastopih manjši ah večji razredčevalni učinki. Ob nizkih vrednosti SEP in pH (v noči na 22.7.96) je dež vseboval 0.12 mekv/1 (6 mg CaCOj/l) kalcija in magnezija. Ob pršenju 20. julija smo izmerili znatno višjo SEP in tudi pH, zaradi česar sklepamo, da je bila tudi vsebnost raztopljenih karbonatov tedaj verjetno višja. Ob ponovnem obisku 25. septembra 1997 je rosilo in preko dneva je padlo le 7 mm dežja. Popoldne pa je začelo močneje deževati in kasneje v presledkih deževalo še preko naslednjega dne. Močno se je ohladilo, saj smo izmerih 14°C. Skupno je padlo 25 mm dežja, ki smo ga analizirali (tabela 1). Dež je vseboval 0.2 mekv/I kalcija in magnezija (10 mg CaCO,yi). Tudi naslednja dva dni je počasi deževalo z občasnimi prekinitvami, ko je padlo 10 mm dežja, ki je vseboval 14 mg CaCO,yL Tabela 1: Značilnosti dežja v Kamnitem gozdu. Table 1: The characteristics of rain in Stone Forest. Čas vzorčevanja Količina dega T SEP pH j Karbonati Ca+Mg Time of sampling Quantity of rain T SEC pH i Carbonates Ca+Mg mm °C nS/cm mekv/1 mekv/1 16.-17.7.96 42 19.5 29 7.15 0.12 0.06 17.07.96 14 18.5 44 7.95 i 20.-21.7.96 3.5 20.5 76 8.24 ! 21.-22.7.96 10 19.0 44 7.18 1 0.12 25.-26.9.97 25 14.0 17 7.12 1 0.12 0.20 26.-28.9.97 10 20.5 7.72 i 0.28 V okviru meritev in analiz padavin v Postojni v času od 1985 do 1987 smo izmerih nihanja SEP med 10 in 285 /^S/cm s povprečno vrednostjo 45 /xS/cm. Dež z višjo SEP, ki je vseboval več kalcija in karbonatov, je imel tudi povišane vrednosti pH, kar smo pripisali burji oz. raztapljanju karbonatnih delcev matične kamnine v zraku. Povprečna vrednost vsote kalcija in magnezija v dežju je bila 6.8 mg CaCO,yi in povprečna vrednost pH 4.5. Občasno smo zabeležili tudi opazneje povišane vrednosti sulfatov, nitratov in kloridov (Ko-govšek & Kranjc 1988). Za podrobnejšo sliko sestave padavin v Kamnitem gozdu bi bile potrebne obsežnejše analize ob najrazličnih padavinskih dogodkih, poleg pH, SEP, vsebnosti karbonatov, kalcija in magnezija, pa še določitve vsebnosti nitratov, sulfatov in kloridov. ZNAČILNOSTI PRENIKAJOČE VODE V PODZEMNIH JAMAH Padavinska voda, ki prenika najprej skozi tanjšo ali debelejšo plast zemljin z vegetacijo, v primerih ko te ni, pa neposredno skozi različno debele karbonatne kamnine, se pojavi kot prenikla voda v podzemnih jamah. Vse dogajanje na poti do podzemne jame se odrazi v sestavi prenikle vode v jami. K raztapljanju karbonatnih kamnin lahko pomembno prispevajo zemljine z vegetacijo nad njo. Da bi spoznali vpliv zemljin, smo na površju zajeh nekaj vzorcev prsti in jim določili vsebnost karbonatov, organskega ogljika in fosfatov (tabela 2). Da bi določili, katere komponente padavine lahko spirajo iz prsti, pa smo zmlete vzorce ob občasnem mešanju namakah v destilirani vodi (5g v 500 ml 6 dni) in po centrifugiranju določali v vodni ratopini vsebnost: kloridov, nitratov, sulfatov, fosfatov, silicija, kalcija in magnezija ter pH. Rezultati so zbrani v tabeli 3. Tabela 2: Analize zemljin. Table 2: Soil analyses. Vzorec Karijonati organski C P205 Sample Carbonates organic C P205 % g/lOOg mg/lOOg Kamniti gozd 0 0.39 24 PI- pri Maoshuidong 1.08 1.7 48 P2 - pri Guanyindong 0.8 1.4 28 Tabela 3: V vodi topne komponente zemljin. Table 3: Components of soil soluble in water. Viansc pH Kalcij Magnezij S ilidj Kloridi Nitrati Fosläti Sample pH Caldum Magnesium Silica Chlorides Nitrates 1 Phosphates mg/lOOg mg/lOOg mg/lOOg mg/lOOg mg/lOOg mg/lOOg Kamniti gozxi 6.65 50 3.6 170 5 9 1 Pl-pri Maoshuidong 6.3 20 1.2 78 5 2.2 0.2 P2 - pri Guanyindong j 8 g 2.4 j 99 5 11 0.4 Ob obisku podzemnih jam Jiuxiang, Baiyum, Xin-Shi in Wayao v Yunnanu smo zajeli več vzorcev prenikle vode, opravili meritve in nekatere analize, ki so pokazale osnovne značilnosti preniklih voda tega dela kitajskega krasa. Daoxian (1991) ugotavlja za prenikajočo vodo v jami Muyuanfu (Guilin) karbonatno trdoto med 1.6 in 5.7 mekv/1 (100 - 350 mg HCO,-/l), medtem ko nismo zasledili podatkov za Yunnan, da bi primerjali naše meritve. Jama Jiuxiang Ogled jame Juixiang nam je dal vtis podobnosti s Škocjanskimi jamami. V jamo ponika reka Mai Tian. Turistična pot poteka vzdolž njenega površinskega in podzemnega kanjona in dalje v obsežne dvorane. Opazili smo več kapljanj in manjših curkov prenikle vode. Dva tedna pred našim obiskom julija 1996 ni bilo večjih padavin. Zajeli smo vzorec reke Mai Tian in tri vzorce prenikle vode (slika 1). Ob obisku septembra 1997 smo ponovno zajeli vzorec reke Mai Tian, štiri vzorce prenikle vode in dotekajočo vodo v velike in manjše ponvice. SI. 1: Jama Jiuxiang: zajemna mesta prenikle vode A, B, C, D, E in F. Fig. 1: Jiuxiang Cave: sampling points of percolation water (A, B, C, D, E and F). Reka Mai Tian Dne 13.7.1996 je bila voda reke Mai Tian pred ponorom ob 13.00 srednje kalna z nekoliko povišanim pretokom, izmerili smo temperaturo 20.1 °C, specifično električno prevodnost (SEP) 184 /iS/cm in pH 8.26. Vzorec smo pred nadaljnjimi analizami prefiitrirali skozi filter modri trak, vendar je ostal tudi po filtraciji še moten, kar kaže na prisotnost zelo finih trdnih delcev. Voda je vsebovala 1.76 mekv/1 (107 mg HCO,71) karbonatov in 0.88 mekv/1 (17.6 mg Ca-+/1) kalcija. Vsebnost magnezija je bila enaka vsebnosti kalcija, tako da je znašalo razmerje Ca/Mg 1, kar pomeni da reka dobiva vodo z dolomitnega območja. Naslednje leto smo zajeli vzorec Mai Tian na istem mestu 23. septembra ob nekoliko višjem vodostaju, ki pa je bil v upadanju. Voda je imela temperaturo 17.7 "C, SEP je znašala 147 fiS/cm in pH pa'8.95. Voda je vsebovala 1.42 mekv/1 karbonatov, 0.84 mekv/1 kalcija in 0.64 mekv/1 magnezija, tako de je razmerje Ca/Mg znašalo 1.3. V primerjavi s preniklo vodo v jami, so vrednosti SEP in trdot opazno nižje, kar govori o neprimernosti uporabe te vode za zapolnjevanje preko leta pretežno suhih velikih ponvic v jami. Prenikla voda Tudi vzorci prenikle vode v jami Juixiang so imeli razmerje Ca/Mg okoh vrednosti 1, kar pomeni, da padavinska voda prenika skozi dolomitno oz. dolomitizirano kamnino. Vzorec A-97 (slika 1) smo zajeli septembra 1997 in je kapljanje s pretokom okoli 10 ml/min v sicer zelo suhem delu jame na vrhu stopnic v prehodu iz kanjonskega v suhi del jame. Vzorec B-96 smo zajeli julija 1996 in je močnejše kapljanje oz. že kar curek, ki s 5 m visokega stropa in s pretokom približno 70 ml/min pada v zbiralnik v prostrani dvorani. Že takojšnja meritev SEC te vode je pokazala visoke vrednosti, zaradi česar sem predpostavljala morebiten vir onesnaženja na površju. To je nakazala tudi kasnejša primerjava vsebnosti karbonatov in celokupne trdote te vode z drugimi preniklimi vodami. Po končanem obisku jame smo se s sedežnico odpeljali na izhodno točko. Ugotovili smo, da je končna postaja te sedežnice nad dvorano, kjer smo zajeli omenjen vzorec in tako obstaja možnost onesnaževanja s površja. Žal tedaj nismo imeli možnosti opraviti še analiz nitratov, kloridov in sulfatov, ki bi naše predvidevanje tudi lahko potrdile. Septembra 1997 smo ponovno zajeli vzorec te vode B-97 in ugotovili nižje vrednosti SEP in vseh trdot, 9 mg/l kloridov ter večjo prisotnost sulfatov, ki pa smo jih določili le kvalitativno. Vse meritve in analize so razvidne iz tabele 4 ter slik 2 in 3. Tudi izdatnejše kapljanje na točki C v stranskem rovu dosega visoko SEP in predvsem celokupno trdoto, vsebovala pa je še 6 mg/l kloridov, medtem ko sulfati niso bili povišani. Žal tudi tokrat nismo mogli določiti nitratov. Tabela 4: Značilnosti prenikle vode v kraških jamah Jiiaiang, Baiyun, Xin-Shi in Wayao. Table 4: The characteristics of percolation water in Jiuxiang, Baiyun, Xin-Shi and Wayao caves. Jama Mesto Pretok T SEP pH Karbonati Ca Mg Celnfc. t| Ca/Mg Nekarb.t Cave Place Disdiar. T SEC pH Carbffliat. Ca Mg T<«alh. CaAlg Noncar,h, ml/min oC ^S/an mekv/1 mekv/l mekv/1 mekv/1 i mekv/1 Jiuxiang A-97 331 8.40 3.36 1,28 2,07 3,35 0.6 B-96 70 20,0 605 8.40 5,12 2,72 2,88 5.60 0.9 0,48 B-97 17.2 500 8.15 4,75 2,47 2,44 4,91 1.0 0,16 C-97 100 15.9 615 8.03 5,28 3,191 4,15 7.34 1 08 1,06 D-97 692 7.68 7,70 3.47 4,27 VH 08 !E-96 17.5 514 7.80 5.04 2.80 2,80 5.60 1.0 0,56 E-97 i 15.9 556 7.70 5,75 3.35, 2,99 6,34 1.1 0.59 F-97 15.2 394 8.40 4.21 1.88 1.62 4.39 1.2 0,18 Baiyun G -96 100 17.3 550 7.75 6.08 6.16 0,08 G - 97 50 17.6 594 7.44 6.32 5,35 1.19 6.54 5.5 0.22 H-97 10 645 8.03 7.05 5,75 1.67 7.42 3.4 0,37 1-96 1 400 18.0 590 7.15 6.52 6,68 016 1-97 1 50 16.4 527 7.97 5,43 4,27 1.36 5.63 3.1 0,2 J - 97 100 16.4 532 7.88 5,63 4.47 1.59 6.06 2,8 0,43 K-97 398 i 4,54 2.63 2.16 4.79 1,2 L-97 16.8 511 7,63 5,59 4.63, 0.88 5.51 5,3 Xin-Shi M 3 20.4 405 8.45 4,00 4,24 0,24 N 20 478 8,15 4,88 5,20 0,32 o 10 515 8,40 5,52 P 80 19.8 545 7,53 5,76 6,00 0,24 R 18.6 470 7,52 5,12 Wayao S 16.2 355 8.27 2,75 3.31 0.2 3.51 0,76 T 15.9 461 8,11 1 3,77 4,59 0,16 4.75 0,98 IZLOČANJE SIGE V PONVICAH Jamo Jiuxiang krasijo kar na štirih mestih razHčno obsežne sigaste ponvice. Največje ponvice so na obsežnem pobočju, in so kar nekajkrat večje kot v Škocjanskih jamah. Tudi te ponvice, podobno kot ponvice v Škocjanskih jamah, nimajo stalnega dotoka vode. Ob njihovem vznožju so manjše ponvice, ki pa so stalno zapolnjene z vodo. Ob obisku septembra 1997 smo uspeli zajeti dotekajočo vodo v velike ponvice, vzorec D-97, ki pa so bile le delno zalite s to vodo. Leto poprej, v juliju, ko se je šele dobro začelo deževno obdobje, dotoka ni bilo. Meritve in analize te vode so pokazale najvišje do sedaj izmerjene vrednosti SEP in trdot v okviru naših analiz preniklih voda na yunnanskem in slovenskem krasu. Ker pa dosegajo trdote v svojem sezonskem nihanju, verjetno podobno kot izvirne vode na tem krasu, najvišje vrednosti na začetku deževne dobe, sklepamo, da bi tedaj izmerih lahko še nekoliko višje vrednosti. Analize so 600 500 S too 300 o a b C d Zaporedne ponvice I -—♦— Baiyun —O— Jiux3ang-% —O^JiuxiaBg-97 | SI. 4: Izločanje sige v ponvicah v jamah Baiyun in Jiiaiang. Fig. 4: Flowstone deposition in massive gours in the Baiyun and Jiu-xiang caves. pokazale višje vrednosti magnezija v primerjavi s kalcijem (v mekv/1), kar na slovenskem krasu še nisem zabeležila. Različnost sestave preniklih voda vzdolž jame pa nakazuje pestrost geološke zgradbe, ki jo bodo, kot pričakujemo, potrdile podrobnejše analize kamnine, saj so bili vzeti številni vzorci. Že ob prvem obisku julija 1996 smo zajeli vzorce vode v manjših, niže ležečih ponvicah, in sicer dotekajočo vodo v 1. ponvico (E^ - 96) in opraviti meritve v nižjih zaporedno si sledečih ponvicah (tabela 5 in slika 4). Meritve SEP so pokazale zaporedno nižanje vrednosti, zato sklepamo na izločenje sige, oz. recentno rast ponvic. Ker nismo uspeli zajeti dotekajoče vode pred 1. ponvico, sklepamo, da ima ta še višjo SEP oz. večjo vsebnost karbonatov. Tabela 5: Izločanje sige v povicah v jamh liuxiang in Baiyun. Table 5: Flowstone deposition in gours in Jiuxiang and Baiyun caves. Jama Mesto Pretok T SEP pH Karbon. Ca Mg Celoict. CaMg Nckarb.t. Cave Place Dischar. T SEC pH Carbonat. Ca Mg Total h. Ca/Mg Noncar. ml/min oC )iS/cm mekv/1 mekv/1 mefcv/1 mefcv/1 mekv/1 Jiuxiang Eg-96 17.5 514 7.80 5.04 2.80 2.80 5.60 1.00 Ea-96 17.8 489 i Eb-96 17.« 48S ) Ec-96 18.0 472 Eg-97 15.9 556: 7.70 5.75 3.35 2.99 6.34 1.10 0.59 Eb-97 15.7 1 417' S.24 4.9 2.35 2.84 5.19 0.83 0.29 Baiyun lo-96 100 18.0 5901 7.15 6.52 6.68 la-96 1 5151 lb-96 450 i Ic-96 385 Ko - 97 398 4.54 2.63 2.16 4.79 1.2 Ka-97 385! i Kb - 97 375 r Kc-97 337 3.65 2.07i 1.6 3.67 1.3 Za "oživitev" velikih ponvic bi torej potrebovali vodo z visoko vsebnostjo karbonatov. Voda reke Mai Tian ni primerna, saj ima do 5-krat manjšo karbonatno in celokupno trdoto, ker bi lahko povzročila raztapljanje ponvic. Jama Baiyun Jama Baiyun leži v Naigu Kamnitem gozdu. D. Ford, J. N. Salomon in P. Williams (1997) ugotavljajo, da je Naigu stone forest v osnovi iz homogenega sivega apnenca, nad njim pa je plast približno 1.5 m srednje plastovitega masivnega dolomitnega apnenca. Dolomit se pojavlja v obliki "mozoljčkov", ki so nastali z rekristalizacijo in so zato bolj odporni proti raztapljanju kot fino zrnati kalcitni matriks in izstopajo iz osnove. Prenikla voda Strop jame je visok le nekaj metrov, njegova debelina pa je več 10 metrov. Jama je lepo zasigana s številnimi drobnimi kapljanji, na nekaterih mestih pa so bili tudi manjši curki prenikle vode. Od vstopa v jamo do njenega konca nas spremlja bister potok. Jamo smo obiskali 18.7.1996, ko so bile dva dni prej izdatne padavine, ki so pogojevale večje pretoke. Vzorec prenikle vode G-96 smo zajeli julija 1996 na stropu. Pretok drobnega curka je znašal 200 ml/min. Voda je po slabem metru poti skozi zrak padala na sigasto kopo ob turistični poti, kjer so bili znaki vidnega odlaganja sige. Značilnosti preniklih voda so razvidne iz tabele 4 in slik 2 in 3. Ob obisku septembra 1997, ko smo beležih vzdolž jame nižje pretoke prenikle vode kot julija 1996, smo ponovno zajeli vzorec tega curka G-97, ki je dosegal višje vrednosti SEP in trdot, kar pa je verjetno odraz načina in manjše hitrosti pretakanja skozi jamski strop. Razmerje med vsebnostjo kalcija in magnezija je bilo 5.5. Le nekaj metrov stran smo zajeli kapljanje H-97, kjer smo izmerili najvišjo SEP in trdote prenikle vode v jami. Karbonatna trdota je bila 7.05 mekv/1, celokupna pa 7.42 mekv/1. Sigaste ponvice Julija 1996 smo nekoliko globlje v jami zajeli vzorec curka 1-96 s pretokom 400 ml/min, ki je padal v ponvico, voda pa se je nato zaporedno prelivala v več niže ležečih ponvic. Meritve SEP so pokazale znatno upadanje vrednosti, iz česar smo sklepali na opaznejše izločanje karbonatov, oz. rast ponvic. Do druge ponvice je SEP upadla za 13 %, do tretje še za 11 % in do četrte pa še za 11 %. Na razdalji nekaj metrov se je torej SEP zmanjšala kar za 35 %. Ker ni bilo vidnih možnih onesnaževalcev na površju nad jamo, sklepamo, da so spremembe SEP sorazmerne vsebnosti karbonatov. Seveda bi to predpostavko lahko potrdile le vzporedne analize. Ta prenikla voda je imela najvišje vsebnosti karbonatov (6.52 meq/l) in najvišjo celokupno trdoto (6.68 meq/l) od vseh naših meritev prenikle vode julija 1996 na tem območju, yunnanskega krasa. Nekarbonatna trdota je bila zelo nizka, žal pa nismo mogli zaradi omejene opreme določiti kalcija. Septembra 1997 je bil ta curek le počasno kapljanje, popnvice pa so bile le delno zalite z vodo, napeljano iz potoka, tako, da smo zajeli vzorec vode 1 m oddaljenega kapljanja s pretokom okoli 50 ml/min 1-97, ki pa je dosegal nižjo vrednost SEP in nižje trdote kot 1-96. Vzorčevali smo še le 3 m oddaljen droben curek s pretokom 100 ml/min J-97, ki pa je imel nekoliko višje trdote kot kapljanje 1-97. Sklepamo, da so razlike odraz različnega načina pretakanja. Septembra 1997 smo vzorčevali vodo tudi v manjših ponvicah v začetnem delu jame na točki K. Preko zaporednih ponvic je SEP postopoma upadala od prve do četrte ponvice, skupno za 61 ^iS/cm. Pri tem se je izločilo 56 mg CaCOj. Vendar je bila vsebnost karbonatov dotekajoče vode (4.54 mekv/1) sorazmerno nizka, saj je dotekajoča voda v velike ponvice v jami Jiuxiang dosegala kar 7.7 mekv/1. Potok Vse prenikle vode v jami Baiyun so bile prenasičene in povsod so bili vidni znaki svežega izločanja sige ob polzenju vode. Tudi potok (L), ki spremlja obiskovalca vzdolž turistične poti od začetka do konca jame, ima zelo visoke vsebnosti karbonatov in kalcija, magnezij pa je nekoliko nižji, tako, da znaša razmerje Ca/Mg 5.3. Je prenasičen in izloča sigo, saj mu SEP na nekako 400 m dolgi poti po jami upade za 25 jiS/cm. Upravljalci jame so to vodo upravičeno napeljali na bližnji stalagmit in nato v sigaste ponvice na točki I, čeprav verjetno prej niso preverili njene sestave. Že na 3 m dolgi poti po stalagmitu upade SEP za 42 /xS/cm, kar pomeni sorazmerno hitro izločanje sige. Najvišje vsebnosti karbonatov v prenikli vodi smo na območju Slovenije zabeležili v jamah Krasa, v Škocjanskih jamah 6.3 mekv/1 in v Vilenici 6.6 mekv/1, vendar le pri kapljanjih s pretokom le nekaj ml/min (Kogovšek 1984). Jami Xin-Shi in Wayao V Naigu kamnitem gozdu smo 22. julija 1996 raziskovali tudi v neturistični jami Xin- Shi, ki je bila dalj časa zaprta z veliko skalo. Medtem ko so kolegi opravih izmero jame za izdelavo njenega načrt, sem zajela več vzorcev prenikle vode. S/. 5: Jama Xin-Shi: Celokupna trdota in SEP z debelino jamskega stropa naraščata. Fig. 5: Xin-Shi Cave: Total hardness and SEC is proportional to increase of the cave roof thickness. Površje nad jamo je poraslo s travo in redkejšim grmičevjem. Višina stropa v jami je le do nekaj metrov in opazili smo vidne znake, da se v nižjem delu jame voda občasno dvigne skoro do stropa. Verjetno so bila v jami prav zaradi dežja, ki je padel v noči pred našim obiskom, kar številna drobna kapljanja. Jama leži namreč plitvo pod površjem, z debelino jamskega stropa od 2 m na vhodnem delu do nekako 10 m globlje v jami. Opazili smo precej drobnih kapljanj s pretokom le nekaj ml/min, ter le nekaj izdatnejših. Največji pretok, 80 ml/min, je imel droben curek najgloblje v jami. Meritve in analize so pokazale naraščanje SEC, vsebnosti raztopljenih karbonatov in celokupne trdote v smeri od vhoda v notranjost jame, oz. z večanjem debeline jamskega stropa (tabela 4 in slika 5) kar pomeni, da na najtanjših dehh jamskega stropa še ne pride do nasičenja oz. prenasičenja prenikajoče vode. Vzorec R je voda iz malega jezerca v najnižjem delu jame in njene značilnosti odražajo preniklo vodo, ki se zbira na neprepustnem dnu s finim sedimentom. Tudi prenikle vode v tej jami, podobno kot v jamah Jiuxiang in Baiyun, imajo nizko nekarbonatno trdoto. Podobne značilnosti prenikle vode smo izmerili tudi v jami Wayao, kjer je prenikla voda, ki priteka skozi približno 3 m debel strop (S) dosagala nižje vrednosti trdot kot pa globje v jami z debehno stropa okoli 8 m (T). V obeh vzorcih smo zabeležili opazno višjo nekarbonatno trdoto, kot pri ostalih preni-klih vodah, povečano vsebnost kloridov in sulfatov. ZAKLJUČEK Opazovanja dežja na območju Kamnitega gozda, Yunnan, so pokazala, da lahko pade večja količina dežja v sorazmerno intenzivni obliki (julija 1997 40 mm v 6 urah) ali pa kot počasen dež, ko dnevna kohčina ne preseže 10 mm. Spec. el. prevodnost dežja je znašala od 17 do 76 ju,S/cm, pH od 7.1 do 8.25, skupna vsebnost kalcija in magnezija pa je bila od 3 do 14 mg CaCO^/l. Daoxian (1991) navaja, da je vsebnost kalcija v dežju na kit ajskem krasu znatno večja kot na nekraškem svetu in presega 12.5 mg CaCO^/l. K raztapljanju karbonatnih kamnin pa na pokritem krasu pomembno prispevajo zemljine, oz. topne komponente v njej, ki jih lahko spira dež. To so predvsem silikati, nitrati in kloridi. Preniklo vodo smo vzorčevali (skupno 25 vzorcev) v štirih jamah julija in septembra ob različnih hidroloških pogojih. Prenikla voda v Jami Jiuxiang je dosegala razmerje Ca/Mg od 0.6 do 1.2, podobno kot tudi reka Mai Tian, ki ponika vanjo. Spec. el. prevodnost, ki odraža kohčino prisotnih raztopljenih snovi, je znašala od 331 do 692 /xS/cm, vsebnost karbonatov je bila od 3.36 do 7.7 mekv/1 in celokupna trdota od 3.35 do 7.74 mekv/1. Najvišjo vrednost trdot smo zabeležih pri prenikli vodi, ki napaja velike ponvice, in sicer septembra ob višjem vodostaju. Določih smo ji tudi višjo vsebnost magnezija v primerjavi s kalcijem, česar na slovenskem krasu še nismo izmerili. Ker pa verjetno dosegajo trdote preniklih voda v svojem sezonskem nihanju, podobno kot izvirne vode na tem krasu, najvišje vrednosti na začetku deževne dobe, sklepamo, da bi tedaj zabeležili še nekoliko višje trdote. Zanimivo je, da ima tudi dotočna voda v ponvice v Škocjanskih jamah najvišjo trdoto v vsej jami, da je ta dotok občasen in nastopi le po res izdatnih, dalj časa trajajočih padavinah. Vendar ima ta voda le nizko vsebnost magnezija, njene trdote pa so v primerjavi z dotekajočo vodo v velike ponvice v jami Jiuxiang za nekako 15 % nižje. Prenikla voda v jami Baiyun odraža drugačno kamninsko sestavo kot je v jami Jiuxiang, saj dosega razmerje Ca/Mg vrednosti od 2.8 do 5.5. Voda je prenasičena in izloča sigo. Septembra 1997 so bili pretoki nižji kot julija 1996. Na primerjalni točki G smo izmerili višje trdote in spec.el.prevodnost septembra. Verjetno to odraža prevlado načina pretakanja v pogojih slabše zapolnje-nosti zaledja curka v primerjavi s sezonskim nihanjem. Sezonsko nihanje trdit pa bi ga lahko potrdih le s pogostejšimi meritvami preko celega leta. V jami Xin-Shi smo zajeli vodo, ki je prenikala skozi 2 do nekako 10 m debel jamski strop. Sorazmerno z naraščanjem debeline jamskega stropa smo izmerili tudi naraščanje trdot, oz. razhčno stopnjo nasičenosti oz. prenasičenosti vod. Meritve izločanja sige v ponvicah so v jamah Jiuxiang in Baiyun pokazale, da se že na kratki poti preko nekaj ponvic na razdalji nekako 3 m iz 1 litra vode izloči od 20 % (56 mg CaC03) do 35 % od vseh raztopljenih karbonatov. Sigo pa izloča tudi potok, ki teče skozi jamo Baiyun, ki ga tako lahko uporabljajo tudi za napajanje ponvic in bližnjega stalagmita, ki imata slab dotok prenikle vode. LITERATURA Ford, D., J. N. Salomon & P. Williams, 1997: The Lunan stone forest as a potential world heritage site. Stone forest - a treasure of natural heritage (Proc.of Internal. Symp.), 107-123. Kogovšek, J., 1984: Vertikalno prenikanje v Škocjanskih jamah in Dimnicah.- Acta carsologica, 12 (1983), 49-65, Ljubljana. Kogovšek, J. & A. Kranjc, 1988: Opazovanje kislosti padavin v Postojni v letih 1985-87.- Geografski vestnik, 60, 21-29, Ljubljana. Yuan D., 1991: Karst of China. 224. Beijing, China. SOME PROPERTIES OF THE PERCOLATION WATER IN THE KARST OF LUNAN, YUNNAN PROVINCE, CHINA Summary Rainfall in the Stone Forest area, Yunnan, appears either as a relatively intensive rain giving a higher quantity of water (40 mm in 6 hours in July 1997) or as a soft rain when the daily amount does not exceed 10 mm. The specific electrical conductivity of rain varies from 17 to 76 mS/'cm and pH from 7.1 to 8.25; the total calcium and magnesium level was from 3 to 14 mg CaCO.yi. Daoxian (1991) cites that the calcium level in rain in the Chinese karst is essentially higher than the one on non-karst areas and exceeds 12.5 mg CaCO,/l. On covered karst an important contribution to rock solution is provided by the soil, or the more soluble components of it that may be washed out by rain. We established higher levels of sihcate, nitrate and chloride. Percolation water was sampled (altogether 23 samples) in three caves in July and September during different hydrological conditions. The Ca/Mg proportion in percolation water in Jiuxiang cave was from 0.6 to 1.2, as were the levels of the Mai Tian river sinking into this cave. Specific electric conductivity, which shows the quantity of dissolved matter, was from 331 to 692 mS/cm, the carbonate level from 3.36 to 7.7 mekv/1 and total hardness from 3.35 to 7.74 mekv/1. In September the highest hardness level was recorded in the percolation water feeding the massive gours when the water level was higher. We also recorded a higher proportion of magnesium to calcium which was never met in the Slovene karst. The level of the percolation water hardness varies seasonally and is highest at the beginning of the rainy season as it is in spring waters also; if we measured in that time, the hardness level would probably be even higher. A similar case was met in Škocjanske Jame where the massive gours are seasonally fed by very hard water; but the absolute level is 15% lower. The percolation water in Baiyun Cave indicates a different rock structure to the one of Jiuxiang Cave; the Ca/Mg proportion was 2.8 to 5.5. The water is supersaturated and deposits flowstone. In September 1977 the discharges were lower than in July 1996 and at the same point we measured higher hardness levels and higher specific electrical conductivity. In Xin-Shi Cave we sampled the water infiltrated through the cave roof, which is from 2 to 10 m thick. The increase in hardness level, and the level of saturation or supersaturation of water is proportional to increase of the cave roof thickness. The measurements of the flowstone deposition in massive gours in the Jiuxiang and Baiyun caves showed that during the short flow of about 2 m over three grours, 56 mg CaCO, deposits from 1 1 of water; this is approximately 20% of all the carbonates. But also the stream flowing through Baiyun Cave deposits flowstone and it is used to feed the gours and the nearby stalagmite where the inflow is weak. v / 300 400 500 600 700 800 900 SEP (jiS/cm) • Jiuxiang ■ Jiuxiang-polluted # Baiyun # Xin-Sh 9 Ž u E 1 6 ž S t 5 S 4 J tf> ■ % O 300 400 500 600 700 SEP (pS/cm) 800 900 ♦ Jiuxiang ■ Jiuxiang-poiluted O Baiyun -Xin-Sh SI. 2: Celokupna trdota in SEP vseh merjenih preniklih voda. Fig. 2: Total hardness and conductivity (SEC) of measured percolation waters. 1 Sf ' / 1 V s s cP 0 2 4 Ca (mekv/l) 2 4 Ca (mekv/I) • Jiuxiang 1 Baiyun O Jiuxiang > Baiyun SI. 3: Kalcij in magnezij v prenikli vodi v jamah Baiyun in Jiuxiang. Fig. 3: Calcium and magnesium of percolation water in the Baiyun and Jiuxiang caves. SI. 6: Vzorčevanje prenikle vode v jami Baiyun. Fig. 6: Sampling of percolation water in Baiyun Cave. I ' HI . SI. 7: Izločanje sige v malih ponvicah v jami Baiyun. Fig. 7: Flowstone deposition in small gours in Baiyun Cave. ACTA CARSOLOGICA XXVI/2 38 457-488 LJUBLJANA 1997 CARBONATE SPELEOGENESIS: AN INCEPTION HORIZON HYPOTHESIS SPELEOGENEZA V KARBONATNIH KAMNINAH: HIPOTEZA ZAČETNIH HORIZONTOV DAVID LOWE & JOHN GUNN^ Izvleček UDK 551.44:552.54 David Lowe in John Gunn: Spelogeneza v karbonatnih kamninah: hipoteza začetnih horizontov Procesi, ki oblikujejo kraške prevodnike in jame v karbonatniii kamninah so sorazme-no dobro poznani, manj pa je bilo poskusov razložiti najzgodnejšo, začetno fazo speleogeneze. Temeljno vprašanje je: "Zakaj in kako karbonati doživijo prehod iz kamnine brez kanalov v prevotljeno gmoto?" Podrobna proučitev kemizma raztapljanja in mehanike tekočin, spoznanje o vlogi sindiagenetskih procesov in temeljita razširitev spelogenetske časovne lestvice so omogočili oblikovanje učinkovtite hipoteze začetnih horizontov, ki nudi nove odgovore na mnoga vprašanja spelogeneze in z njo povezanih dogajanj. Ključne besede: apnenec, jame prevodniki, hipoteze o začetnih horizontih. Abstract UDC 551.44:552.54 David Lowe and John Gunn: Carbonate speleogenesis: An inception horizon hypothesis Processes whereby conduits, and ultimately caves, develop in carbonate rocks are relatively well understood but there have been few attempts to explain the earliest, inception, stage, of speleogenesis. The fundamental questions are: "Why and how do carbonates undergo the transition from rock without conduits to rock with conduitsT'. Re-examination of dissolution chemistry and flow mechanisms, recognition of the role of syngenetic processes, and a radical expansion of potential speleogenetic timescales have allowed the development of a versatile Inception Horizon Hypothesis, which provides alternative answers to many of the questions of speleogenesis and related subjects. Key words: limestone, speleogenesis conduits caves, inception horizon hypothesis. 'Limestone Research Group, Department of Geographical and Environmental Sciences, University of Huddersfield, Queensgate, HUDDERSFIELD, HDl 3DH, UNITED KINGDOM. 1. INTRODUCTION: CONDUITS AND CAVES IN CARBONATE ROCKS The terms conduit and cave are commonly used interchangeably, although strictly a conduit is a void greater than 100mm in diameter and a cave is a void large enough to permit human access. In this paper we follow these strict definitions and ask, "Why and how do carbonates undergo the transition from rock without conduits to rock with conduitsT. These questions are significant because flow is generally laminar in aquifers without conduits and hence transfer of pollutants is slow, with significant decay and dilution. Conduit flow is usually turbulent, allowing transport of suspended sediment and rapid pollutant transfer with little or no decay or dilution. As commonly used, the term speleogenesis includes the origin of caves (Lowe & Waltham 1995), but many classical cave formation papers have addressed only the question of processes responsible for developing conduits into caves (eg Davis 1930; Swinnerton 1932; Gardner 1935; Warwick 1953; Davies 1960; Ford 1965; Palmer 1975, 1991). These processes are moderately well known, but still far from fully understood. In contrast, little has been written about the earliest development phase, which we term inception. Karstification occurs continuously in young carbonate sequences with a relatively high porosity and permeability, particularly on carbonate platforms. Well developed cave systems are described in Pleistocene limestones on Tonga (Lowe & Gunn 1986) and the Bahamian archipelago (Mylroie & Carew 1990). Some such caves, and by inference smaller conduits, may survive ongoing diagenesis and later tectonism and play an important role in subsequent speleogenesis (Lowe & Gunn 1986 & in preparation; Lowe 1989). In considering speleogenesis it is commonly assumed that older, better indurated, carbonates are characterised by a low primary permeability and an absence of integrated conduits. Our aims in this paper are to consider factors influencing conduit inception in such carbonate sequences and to outline a synthesis of conduit inception and later speleogenesis that provides a working model of cavern origin mechanisms. Particularly important is the potential role of non-karstic processes in speleogenesis (Lowe 1992a; Lowe & Gunn 1995). Those karst processes (sensu stricto) and related landform evolution, including cave development, involving carbonate rocks (loosely termed limestones) are generally assumed to reflect the effects of carbonic acid upon calcium carbonate. The importance of carbonic acid to ongoing cave development cannot be disputed, but its role in speleo-inception is less clear (Lowe & Gunn 1995). 2. DEFINITION OF INCEPTION AND INCEPTION HORIZONS The term inception, used here to describe the earliest phase of speleogenesis in carbonate sequences, is only partially synonymous with initiation. Use of Simplified view of the life cycle of conduits/caves within a single "tier" of a typical carbonate succession, indicating: ® Terminology in common and informal use; (D Part of the terminology developed by Worthington (1991); (D Terminology used by Lowe (1992a). Elapsed TIME, increasing from left to right, is not to scale. NO CONDUITS ==> CONDUIT GROWTH TURBULENT THRESHOLD CAVE GROWTH OVERALL DECAY OF CAVES NO CAVES (D (D (D INITIATION various phases of DEVELOPMENT abandonment and eventual removai ® (D (3) INITIATION PHASE LAMINAR FLOW NOTHEPHREATIC PHASE SYNSENETIC i STAGNATION AND ! AND PARAQENETIO 1 DESTRUCTION CONDUIT ; PHASES GROWTH i PHASES j INCEPTION i GESTATION i i ABANDONMENT DEVELOPMENT i and 1 DESTRUCTION true point o1 Period of Turbulent flow Major growth can be complex Host rock 'cave' origin transitional change begins phases and multiphase removed Fig. 1: Simplified view of some different terminology schemes covering phases of cave development in carbonate rock sequences. the latter term by some earlier workers assumed speleogenetic processes to be active before the establishment of local hydraulic gradients, viable underground drainage systems and conduit flow, without considering their nature, mechanism, guidance and duration. The inception concept allows closure of an obvious but unexplained interregnum during early speleogenesis, inherent in some descriptions of initiation. If the inception concept is accepted, the terminology of workers whose initiation did include primitive processes is necessarily superseded, though not invalidated. If terminology to cover the phase between inception and the start of turbulent flow is also defined, the misleading term initiation can be ignored in future discussions of speleogenesis. We suggest the term gestation to describe growth during the laminar flow phase between the conception [inception] and birth [break-out] of a conduit system (Fig. 1). The term inception horizon (Lowe 1992a) describes: Any lithostratigraphi-cally controlled element of a carbonate sequence that passively or actively favours localized inception of dissolutional activity, by virtue of physical, lithological or chemical deviation from the predominant carbonate facies within the sequence. There is commonly a link between inception horizons and boundaries between lithostratigraphical divisions or depositional cycles (sensu lato). The variety of physical, lithological and chemical boundary signatures necessitates a flexible definition. Although discussion in this paper is limited to cave development in carbonate rock sequences, similar arguments can be applied to void inception in more soluble rock types (such as evaporites) and in less soluble rocks such as sandstones. Many authors (eg Gardner 1935; Ford & Ewers 1978) have noted that not all bedding planes in a carbonate sequence support speleogenesis. The general understanding was summed-up by Ford (1976: p.29): "In speleogenetic studies it is common to speak of 'favourable' or 'unfavourable' beds: these are simply reflections of greater porosity and permeability, impurities, pyrite inclusions and so on. Much more study is required before the nature of the favourability can be fully understood.". Thus, the importance of favourable horizons in supporting speleogenesis is recognised and acknowledged, but effort to link them into a cave inception and development hypothesis has been limited. 3. THE NATURE OF INCEPTION HORIZONS Commonly held views that bedding planes and/or impermeable horizons exercise stratigraphical control are inadequate to explain all elements of speleogenesis, but there is no doubt that many such horizons, and others, influence localization of cave inception, and continue to guide later speleogenesis. Inception elements formed along these horizons during the early life of carbonate successions may escape subsequent tectonic obliteration and influence later cave development in folded and faulted sequences (Lowe & Gunn 1986; Šušteršič 1997). At least four broad and overlapping categories of inception horizon can be identified (Lowe 1992a). Aquifuge, aquiclude, aquitard and aquifer horizons. These rock properties may appear dissimilar. However, in the inception horizon context, allocation of such terms to beds within a carbonate sequence or (in the case of the term aquifer) to the whole sequence, should be viewed with suspicion. The terms identify overlapping segments of a continuum, and beds may exhibit more than one such property during different stages of speleogenesis. For example, prior to and during inception, the entire carbonate mass, rather than being an aquifer, may be essentially impermeable, and beds that will later be aquicludes can provide the earliest viable water routes (Lowe, 1992a; Klimchouk In Press). Some clayrocks, particularly shales, may possess sufficient linked primary porosity, relative to that of enclosing carbonates, to allow pore fluid bleeding through or from these supposed aquicludes (eg. Neuzil 1986, 1994). Adjacent crystalline carbonates may initially exhibit relatively lower primary porosity and associated permeability. Values included in Table 1 illustrate the range of porosity, primary permeability and secondary permeabihty in a selection of rock types. The overlap between porosity and, particularly, permeability values for some carbonates, sandstones and shales is significant. Clay beds (sensu lato) in a carbonate succession act as barriers to significant water movement on a local basis, but mere presence of clay does not necessarily localise speleo-inception above it. Water movement conditions before conduit flow begins are totally unlike those affecting later development. Primitive seepage is driven largely by mechanisms unrelated to hydraulic gradients (eg. Davies 1960; Davis 1966; Pye & Miller 1990), though normal hydraulic flow becomes increasingly important later. Early oscillatory or directional water movement is as likely (or more likely) in sandstones and some shales, with linked primary porosity, as in crystalline carbonates (Table 1). Any related acid generation or physical dissolution effects can be localised against adjacent carbonates, the earUest dissolution affecting the contact zones. Some carbonates in potential inception situations are permeable due to linked primary porosity. Syngenetic dissolution in the littoral (freshwater/ saltwater interface) environment has attracted much recent research (eg Back & others 1986; Bottrell & others 1990; Myhoie & Carew 1990; Whitaker & Smart 1990) and is not re-examined here. Discussion of these important processes in the inception horizon context is presented by Lowe (1992a: Chapter 3). Oolites and similar rocks may exhibit primary porosity and permeability, though diagenesis and secondary processes can obscure original rock properties. Some coarse shell beds, reef limestones and pseudobreccias exhibit an apparently primary porosity and permeabihty that is actually imposed by post-depositional dissolution. It is debatable whether these are primary inception horizons or a secondary manifestation of speleo-inception (sensu lato). Of great potential relevance to speleo-inception is the apparent interchange-ability of aquifers, aquitards and aquicludes (but not true aquifuges) with respect to time (Lowe 1992a: p.161). A viable aquifer before inception, because of (albeit minimal) permeability related to linked primary porosity, may almost instantaneously invert to aquiclude status when linked dissolutional voids form at its boundaries. Open-textured sandstone provides an ideal inception aquifer (sensu Gardner 1935), but cannot compete as a drainage route with dissolutional conduits that develop at its boundaries. After the onset of speleogenesis the sandstone still transmits water, but its permeability is orders of magnitude less than that provided by conduits (Table 1). Pre-speleogenesis bleeding through cemented sandstone, shale or clayrock with poorly linked porosity is less than seepage in open-textured sandstone and the Table 1: Selected values of porosity, primaiy permeability and secondary permeability for various rock types and open caverns (compiled from published sources including Smith, D.I. et al, 1976, and various British Geological Swvey publications). Where a range of source information was consulted, a range of values is quoted, to illustrate potential variation even within a single named rock unit. The values quoted are not claimed to be definitive, either for specific lithologies or for a particular named unit. Rock type Porosity Primary Secondary % Permeability Permeability mm/day mm/day Basalt 7.7 0.014 - Typical clay 30 - 60 0.01 - 2.5 - London Clay 37 - 59 0.026 - (Tertiary) Gault Clay 31 - 48 0.00017 - (Cretaceous) Lower Oxford Clay 30 - 54 0.043 - (Jurassic) Typical quartzite 0.5 0.0019 - Typical sandstone 10 - 30 500 - Sherwood Sandstone 0 - 30 0.86 - 3340 - (Triassic) Fell Sandstone 9.8 150 - (Carboniferous) Chatsworth Grit 14.6 170 - (Carboniferous) Mudstone/shale 2 - 25 0.000086 - 0.86 - Sandy or silty shale 3 - 30 86 - Recent coral 20.0 - 45.0 1,000,000 - limestone Oolite 1.0 - 10.0 10 - 1,000 1,500 Chalk 14.0 - 40.0 10 - 1,000 60,000 Massive limestone 0.1 ~ 1.0 1 - 10 8 - 60,000 Marble 0.1 ~ 0.4 1 20,000 Caverns - - 10« -10» contrast between pre- and post-inception permeabilities is more pronounced. Commonly, non-carbonates are labelled aquicludes or aquitards, whilst greater thicknesses of initially low-porosity, effectively impermeable, carbonate are assumed to be aquifers. In reality, many carbonate rocks exhibit aquifer properties only because of the presence of voids achieved due to dissolution, which in this context is inseparable from speleogenesis. Development of conduits in indurated carbonate rock increases nominal permeability more than 10 miUion times (Smith & others 1976: p.l84) (Table 1). TVans-bedding contrasts (sensu lato) These inception horizons are difficult to describe and to justify. Instinctive expectation is that well-marked bedding planes provide, by their mere presence, potential inception foci, as deduced by Gardner (1935) and reiterated by many later authors. If so, it might be expected that more bedding plane guided passage would exist in most carbonate successions, where generally only a proportion of available bedding plane fissures are affected by dissolution (eg Ford and Ewers 1978). It is unprovable whether most supposedly ope« bedding plane fissures existed before dissolution/speleogenesis, but assuming such existence, it is unlikely that this alone can provide conditions suitable for inception under most circumstances. Trans-bedding contrasts include real and incipient partings. The former, deduced to exist as voids before speleogenesis, are relatively rare. The latter, emphasised by dissolution along a plane of litholog-ical contrast, are relatively common. Many bedding planes reflect hiatus during sedimentation, but a smaller number of master bedding planes (Schwarzacher 1958) represent substantial temporal breaks between cycles of deposition. The British Dinantian cycles approximate to defined Regional Stages, and fades changes between them commonly define lithostratigraphical boundaries. Detailed re-examination (Mundy in Arthurton & others 1988) after Schwarzach-er's work, confirmed complex cyclicity, with some major breaks marked by karstified surfaces and terrigenous deposits (Fig. 2). Other major bedding planes are simply breaks, representing time gaps, separating beds that may differ greatly in chemistry/purity and crystallinity. Such contrasts are less easily identified than breaks with karstic surfaces and/ or terrigenous deposits, yet they are particularly important in sequences that lack other, more favourable, inception horizons. Ideal development shows a sharp contrast between fine-grained, hme-mudstone, deposits below and coarsely crystalline carbonates above. Sweeting & Sweeting (1969: p.209) noted: 'X study of the landforms suggests that sparry Umestones are more impermeable than the biomicrites...", but Rauch (1972) argued that an increase in cr>'Stal size, and especially in sparry cement content, leads to increased dissolutional development. Contrasts between micritic and sparry rocks can signify change from regressive to transgressive depositional conditions. As deposited, the lower beds WATER DEPTH OOlfflNANTUTHOLOGY THICKNESS AND PERMEABIUTY INCEPTION ROLE first bed of overlying cycle at or above sea-level coal, seateafth, volcanic fallout and other terrigenous deposits relatively thin; some beds with significant primary permeability generation/transfer of sulphuric acid from in situ pyrits (etc) shallow water 1 calcite mudstone, with dolomite and evaporite minerals such as gypsum thin; initially impermeable; possible horizon o! syngenatic (palaeo) karstlficatlon Sulphuric acid from evaporite; dolomite/clay mineral reactions; aqueous dissolution f these rocks maka mainly ooiific limesttsne reJatively Ä. swth potential prmary parmeaWity uf^ surface fe iavoured location of early dissolution t up most pate, Wctef-beddfdijiodastic lifnestorw thick (major part o( cycle]; initielly impermeable early dis60lut»tir«sW(aed to tectonic or liihogenetie teures f of the cycl» datk, thirtner-ljedited bioeteKo hmestone wittlvely thir); iniiWly impermetble as above t calcareous mudstone thin: very low primary permeability as above; possitily some sulphuric acid from pyrite oxidation deep water non-calcareous mudstone thin; very low primary permeability sulphuric acid lormeti from pyrite last bed of underlying cycle 1 Fig. 2: Schematic view (not to scale) of the rocks comprising a single idealised major carbonate depositional cycle [shown within a thick border] and the thick, relatively pure rocks [shaded] that comprise the majority of the cycle. Most inception activity takes place within the thinner and less pure beds [unshaded] The beds at the bottom of the cycle are deposited in deep water, and those above in progressively shallower water. commonly include minerals that can generate strong acid, or be dissolved physically, producing solutions of salts, such as gypsum or epsomite, that will attack sparry beds above more readily than the source micrite below (cf. Gillott 1978). Acid-generating horizons Howard (1964) demonstrated theoretically that early speleogenesis depends upon acid generated in the rock mass, rather than externally derived carbonic acid. He stated that even if minute voids exist at depth and even if a mechanism exists to drive fluid motion through them, surface-derived groundwater would be non-aggressive due to saturation with calcium carbonate. This view was less revolutionär)' than ideas of sulphuric acid dissolution presented by Durov (1956). Howard stressed the need for locally generated acid during early speleogenesis, followed by gradual domination by carbonic acid. Durov suggested that sulphuric acid is of relatively great importance throughout speleogenesis, though carbonic acid is also involved. Only a difference of degree separates the interpretations. Strong acid is essential to speleo-inception in some situations, and acid generation continues throughout the life of the cave, but quantitatively its relative importance commonly diminishes as caves develop. Meteoric carbon dioxide and carbon dioxide produced as a reaction by-product enter the system and mixture dissolution (eg Bögli 1964) begins to operate, swamping groundwater with bicarbonate and masking background sulphate levels. Possible explanations of high sulphate levels in limestone springs have been discussed by Worthington and Ford (1995). Chemical and microbial processes that generate sulphuric acid, reviewed by Lowe (1992a: chapter 7) and Lowe & Gunn (1995), depend upon sulphides or sulphates occurring in the rock, though sulphur-bearing organic material (eg hydrocarbons) may be important locally. Reactions can be simple and direct, such as sulphide oxidation to sulphuric acid, or via several steps, such as reduction of sulphate to sulphide followed by oxidation to sulphur and thence to sulphuric acid. Bacterial and/or chemical oxidation of organic or inorganic sulphur also occur. Horizons that can supply raw material for oxidation and reduction reactions include: a) Evaporitic sulphates b) Regressive (lagoonal or near-sabkha) carbonates with evaporite inclusions c) Regressive, dark carbonates with organic content d) Carbonates with sulphide inclusions e) Coals and associated pyritic seat-rocks f) Proximal volcanic and (possibly) high-level intrusive rocks containing sulphides g) Distal volcanic rocks: fine sulphide-rich air-borne fallout onto the carbonate surface or into the sea over the carbonate (clay wayboards, palaeosols and some shales). These horizons include carbonate as well as non-carbonate Hthologies, but acid-producing material is generally concentrated at or near the levels of hiatuses between depositional cycles (Fig. 2). Increased sahnity, locally sub-aerial conditions and long periods of air-fall, contributed relatively small, but vitally important, quantities of sulphate, sulphide and organic-rich material against a background of decreased overall carbonate deposition. Only at or near cycle boundaries was carbonate deposition sufficiently limited to allow relative domination of acid-forming and/or readily soluble impurities. Physically soluble horizons The physical solubihty of calcium carbonate and dolomite in pure water is relatively insignificant. Other minerals within carbonate successions are more soluble. Polyhahte, kieserite (or epsomite), carnalhte, silvite (together termed bittern salts) and halite precipitate during total evaporation of a stagnant sea-water body (Scoffin 1987), but are the last minerals to crystallize, due to their high solubilities. Earher, first calcium carbonate and then calcium sulphate are precipitated. Bittern salts are commonly absent and the halite sequence depleted (Scoffin 1987: p.100), However, precipitation of lime-mudstone (approximately synonymous with porcellanous hmestone, chinastone, calcilutite or - in some contexts - micrite) and gypsum/anhydrite is common. Ideally the least soluble mineral precipitates first, followed by the next most soluble, but some concurrent deposition occurs, and the resultant hme-mudstone can contain calcium sulphate inclusions. Survival of calcium sulphate in carbonate sequences, particularly those re-exposed to surface or near-surface weathering, is uncommon, except in arid areas. Calcium sulphate within lime-mudstone is less prone to removal by surface effects, though some may be lost due to karstification during ongoing regression. Surviving calcium sulphate may dissolve later, due to speleogenesis or speleogenesis-like processes, if within zones of groundwater movement. The argument is chicken and egg, as it cannot clearly be demonstrated whether water movement initiates dissolution or whether voids created by dissolution encourage water movement. In either case a potential link between calcium sulphate and speleogenesis is suggested. Much sulphate in young carbonate sequences probably re-dissolves in groundwater, causing major or minor matrix readjustment. Early re-dissolution may trigger formation of carbonate pseudobreccias, just as a more easily demonstrated evaporite removal at depth formed breccias in English Triassic mud-stones (Elliott 1961; Firman & Dickson 1968). Pseudobreccias present potential hydraulic pathways during subsequent speleogenesis. Only in deeply buried sequences, where groundwater motion is relatively slight (though, in context, potentially increasing), are significant sulphate levels preserved, as beds or inclusions within a carbonate matrix (cf. Dunham 1973). As surface modification effectively lifts gypsiferous rock into zones of more active groundwater movement, the amount of sulphate preserved decreases (cf. Krothe & Libra 1983). Theoretically, sulphate loss is complemented by void creation, probably only partially realised due to redistribution of carbonate matrix and insoluble residues. The potential porosity increase may be vital in the speleogenetic context. Sulphates may have two other speleo-inception roles. Gillott (1978) showed that dissolved calcium sulphate, epsomite and halite accelerate aqueous (rather than acid) dissolution of calcium carbonate. The potential that such processes are involved in speleo-inception cannot be ignored. Finally, sulphates can be converted to sulphuric acid by chemical and bacterial means, as discussed above. Thus, soluble minerals within carbonate successions can influence inception in at least three ways. As calcium sulphate commonly occurs as distinct beds or concentrations of inclusions within specific but relatively limited thicknesses of rock, it is valid to deduce that such zones act as inception horizons. Whether it is also valid to include horizons that have lost sulphate (eg pseudobreccias) and gained porosity, among such horizons is merely a philosophical conundrum. Reahstically, speleogenesis is well advanced (but potentially quiescent following gypsum removal) by the time the new rock fabric is created. Other potential inception horizon functions This discussion mainly concerns cave development in well-indurated carbonate sequences, of limited permeabihty before speleo-inception. A major exception is that of syngenetic or penecontemporaneous development in young (eg aeohan or reef) limestones (Lowe 1992a: Chapter 3). Other carbonate sequences that are permeable due to linked primary porosity are common within the geological column. Such rocks are not found consistently at specific chronostratigraphical levels, but reflect local depositional fades and subsequent diagenesis. The Upper Cretaceous Chalk of south-eastern England is not identical to rocks of the same name and age in northern England and differs from carbonates of the same age beneath much of France. Variation also occurs within some Jurassic carbonate formations and less widespread Permian carbonates of northern England. The potential relevance of the Inception Horizon Hypothesis to cave development in Chalk and other porous rocks, and the probable nature of the inception foci within these sequences are discussed by Lowe (1992b). 4. APPLICATION OF THE INCEPTION HORIZON HYPOTHESIS TO CARBONATE SPELEOGENESIS The Inception Horizon Hypothesis includes many diverse elements. Not all are implicated in cave development in every cavernous sequence nor in the same sequence in different settings. This section outlines application of the hypothesis to indurated carbonate successions. Important processes of littoral zone dissolution and the question of palaeokarsts are reviewed elsewhere (Lowe 1992a). Speleo-inception in indurated carbonate successions is probably driven by mechanisms other than simple hydraulic/gravitational flow, such as capillarity, earth tides (Davis 1966) or ionic diffusion (Pye & Miller 1990). These promote directional or oscillatory water transfer in or adjacent to the carbonate. generally within buried sequences, across great distances. Water transfer may begin along incipient or real structural or stratigraphical partings (Davis 1966) and/or palaeokarstic voids within the carbonates. Alternatively progressive transmission may be from and into adjacent porous rocks (Palmer 1975; Klimchouk In Press) or via fractures penetrating adjacent non-porous rocks. As water moves in the rock mass, enlargement of proto-routes begins due to physical and chemical changes including dissolution of sulphates, oxidation and reduction reactions involving sulphates, sulphides and native sulphur (with or without microbial mediation) and dissolution of carbonate by strong acids produced in situ (eg Durov 1956; Howard 1964; Worthington 1991)). Carbon dioxide produced by some of these reactions enables further dissolution (eg. Ball & Jones 1990). These processes begin deep below the water-table and are unrelated to surface topography and local hydraulic gradients. Inputs of solvent water to the initially low permeability carbonate mass are diffuse or concentrated along fissures, and derived from relative aquifers above or below. Output from the carbonate is from its boundaries (or across/via faults) into adjacent, more permeable, beds. In suitable structural situations concentrated movement against gravity will occur due to artesian pressure (see also Klimchouk In Press). As buried dissolution continues, the full lateral extent of inception horizons may be incipiently affected. Some areas will, however, be more favourable to water movement and/or dissolution, due to structural effects, local chemical incentives or the presence of open or loosely-filled palaeokarstic voids. Entire susceptible beds can be removed or modified, resulting in the formation of regionally extensive features that will have the superficial appearance of stylohtes, or the widespread development of pseudobreccias. Simultaneous inception at several horizons may be linked by dissolutionally widened fractures. Inception probably proceeds infinitesimally slowly, despite the potency of the dissolutional mechanisms. Initial slowness is indicative of relatively weak driving mechanisms, inevitable supersaturation of the migrating fluids and an original lack of a continuously linked set of proto-routes. If primitive water movement follows the junction between impermeable carbonate rock and an adjacent porous aquifer, considerable time may pass before activity extends beyond the contact zone and opens fracture planes sufficiently to reach inception horizons within the carbonate. Eventually, discrete zones of enhanced seepage propagate and transition from seepage to laminar flow occurs as the indeterminate threshold between inception and gestation is crossed. During gestation, laminar flow concentrates along preferred zones within inception horizons and their linking fractures. Seepage persists in peripheral parts of the inception horizons and effectively parallel, sub-parallel or dendritic sets of small tubes develop, each with ill-defined tributary seepage zones. Locally, single tubes become dominant in areas determined by structural factors and capture drainage from other inception/gestation seeps and flows within their area of influence. These victor tubes transmit water by laminar flow until they achieve a diameter of 5-lOmm, at which (breakthrough) point turbulent flow becomes dominant and the potential growth rate of the tubes increases (eg. White & Longyear 1962; Dreybrodt 1990). Throughout these processes the overall water motion need not be downwards or downdip, but hes along a regional hydraulic gradient (Fig. 3). Structural and hydrological settings in which all early movement within the carbonates is topographically and geologically upward are readily imagined and by no means contrived. These processes and developments, and later stages discussed below, can affect undeformed, sub-horizontal, successions, gently tilted homoclinal sequences, or rocks that have suffered greater deformation. The potential for features conceived and enlarged in undeformed sequences to survive subsequent gentle or severe tectonism is important. Features that survive, intact or fragmented, continue to influence ongoing speleogenesis in their new structural setting (eg. Lowe & Gunn 1986; Šušteršič 1997). Inception, gestation and later growth proceed in buried rocks, whether or not they suffer deformation, but eventually the incipient system will be intersected by the land surface. Such breaching disrupts the regional hydraulic regime. Depending on structural, stratigraphical and topographical considerations, input sinks, gravitational risings or artesian springs may develop, related to local hydraulic gradients (Fig. 3). Elements of the original, regional hydrau-hc gradient will continue to affect water movements above or below the newly exposed input/output area. Resurgences created by downcutting are generally associated with the highest inception horizon in the succession. Passages updip of such risings are drained and modified by vadose downcutting. Passages directly behind artesian risings remain flooded whilst more remote passages, confined at higher topographical levels, are drained. Pre-existing conduits at lower stratigraphical levels than newly created risings remain in the phreatic zone, but if incipient fracture links exist, some underflow (cf. Worthington 1991; Klimchouk In Press) from deeper conduits can target on and rise towards the spring rather than following original routes along the regional hydraulic gradient. As surface topography cuts deeper, lower inception horizons are intercepted. Risings on higher horizons are abandoned to all but local percolation and/or flood water from the land surface or subsurface back-up. Thus, tiered cave systems are drained sequentially; dissolution continues at one or more lower levels, whilst vadose modification (accompanied by seepage from underdeveloped local feeders), abandonment and eventual erosional removal dominate above. Ultimately the lowest inception horizon in the succession, which need not be at the base of the carbonates, is unroofed. As surface downcutting extends below its level, drainage and vadose incision generally occur and in suitable geological settings an accessible canyon is cut back from the rising, with its floor entrenching underlying rocks. Rarely Fig. 3: Schematic view of the stages in the establishment of local hydraulic gradients in a carbonate rock unit and adjacent porous aquifers confined by impermeable rocks: (1) all underground drainage follows extended routes along regional hydraulic gradients under artesian or deep phreatic conditions; (2) confinement may be broken by erosion allowing establishment of upward movement under artesian conditions; (3) deeper surface erosion intersects the carbonate aquifer to establish the earliest local hydraulic gradient, but some drainage still follows the regional hydraulic gradient; (4) elements of the carbonate bad are isolated from the regional situation and have only local hydraulic gradients, but surviving parts of the regional drainage system continue to function. there may be minimal inception-type development at the lower limit of the soluble rock, yet unless true inception conditions obtain at that level it is unhkely to capture the complete flow of the higher resurgence before a significant canyon forms above. Throughout post-gestational (post-breakthrough) cave growth, stagnation and erosional removal, disused, underused or incipient fragments of original inception networks are preserved at higher levels. If low level routes are blocked by clastic debris, by back-up of surface or underground floodwaters or, exceptionally, by glacial ice, higher segments may be re-invaded temporarily or permanently. After early failure or abandonment, parts of higher, relict, systems might have been adopted by local percolation water or flow from isolated sinks. Such drainage could utilize and enlarge pre-existing inception horizon guided sections of the proto-system down gradient from open links to lower horizons. Thus, flood water can back up to invade and utilize significant conduits that did not exist when the higher tier was first abandoned. This explanation differs from earlier views of flood water overflows, such as that of Palmer (1975). The Inception Horizon Hypothesis encapsulates the essence of many processes and relationships that contribute to an overall picture of speleo-inception and ongoing speleogenesis. Emphasis is placed on elements falling outside, or considered only locally within, most current models, and on elements relating to non-karstic dissolution, particularly where this is locahzed in the carbonate mass by the presence of inception horizons. The importance of carbonic acid dissolution to development, particularly at relatively shallow depth, is not belittled, but the vital importance of other processes to inception in young or mature indurated rocks, is emphasised. The role of bedding-related factors, together termed inception horizons, is stressed in the context of sequential tier and resurgence development, but fracture-guided links also carry drainage between inception horizons, capture drainage at the surface and deliver resurgent water back to the surface. In the remainder of this paper the Inception Horizon Hypothesis is used to provide possible explanations of the origins of various components of a typical cave system. 5. EXPLANATION OF UNDERGROUND FEATURES BY THE INCEPTION HORIZON HYPOTHESIS Features commonly viewed as inherent parts of a typical carbonate cave system may be explained readily by the Inception Horizon Hypothesis, on the basis that not all parts of a carbonate sequence are equally prone to speleo-genesis. The following considerations depart from some traditional views. Vertical or sub-vertical shafts The term shaft is used here to describe generally vertical or sub-vertical elements of cave systems, termed pitches or pits by explorers in Britain or the USA respectively. Other definitions that include considerations of supposed origins or observed morphology exist, but their sophistication is unnecessary for this discussion. As used here the term disregards elements of fissure-guided passages requiring vertical descent during exploration but reflecting the morphology of the fissure rather than the geological guidance of the cave skeleton. Inception horizon theory predicts that in undeformed terrains proto-shafts are conceived in the flooded (broadly artesian or phreatic) zones as (sub-) vertical links between (sub-) horizontal inception horizons. If bedding dip is closer to vertical, inception horizons guide shaft-like features, linked by sub-horizontal, structurally-guided elements. In the former situation, initial groundwater movement follows guiding fissures, notably joints and high-angle faults, probably driven initially by processes such as groundwater pumping (Davis 1966) and later by artesian pressure. Aggressive groundwater moves between inception horizons via the fissures, and dissolution occurs on a wide front. As gestation progresses in the inception horizons, flow from and into discrete conduits localises groundwater movement within the fissures, causing local widening. Drainage from an inception horizon might move vertically upwards, vertically downwards or in any lateral sense towards another favourable horizon. As the flooded dissolutional conduits grow and normal hydrauhc laws begin to operate, all inception links will enlarge initially, but combinations with favourable hydraulic gradient will enlarge preferentially, eventually gathering most of the drainage. Following uphft and drainage, when vadose gravitational flow replaces artesian and phreatic hydraulic flow, only vertically or obliquely downward linking-routes are followed by free drainage. Vadose flow along a rehct dissolutional conduit will plunge down vertical links, or cascade along downward obhque links, opening shafts or descending, fissure-guided passages. (Sub-) vertical shaft lips are cut back and down by headward erosion as vadose trenches form in conduit floors. Cursor)' examination of passage morphology may fail to reveal that both passage and shaft originated under flooded conditions. At the shaft foot the vadose stream normally abandons the guiding modern land surface enlarged joint may or may not develop into slia't A potential zone of vadose cut-back active or abandoned shaft on joint -----► potential zone of vadose cut-back —> I flow via other joints to lower inception horizons potential zone of vadose cut-back early rising largely abandoned * * ? underflow horizon ^ ? flooded inception route in horizon C Fig. 4: Schematic representations of the role of joint- or fault-guided links in the formation of vertical and sub-vertical shafts. In this figure and in figures 5 and 6 the simplest possible two-dimensional view is presented. In reality, at any of the points where drainage diverges from bedding-guided routes, conduit development might propagate up, down or laterally along a guiding fracture to generate a three-dimensional system. fissure for a conduit in a topographically lower inception horizon. More rarely, if only an immature conduit exists, flow below the shaft continues within the guiding fissure towards another inception horizon. This situation is commonly accompanied by ponding of water (cf sumps, below). Shaft-forming fissure hnks are of two broad kinds, both potentially present in (sub-) horizontal and dipping situations. One develops along joint planes where seepage through the effectively saturated rock mass targets upon strati-graphically lower or stratigraphically higher inception horizons. Concurrently a route could pursue the original horizon across the fissure (cf abandoned high level passages, below). In the other, guided by fault planes, water travels upwards, downwards or laterally to reach a favourable target in stratigraphically higher or lower inception horizons, or the same horizon at another topographical level. Possible combinations are shown in a highly schematic, two-dimensional form, in Fig. 4. In the situations illustrated, fissure links may extend great distances in the third dimension. Upward shafts (avens) and related features The term aven is used in Britain to describe (sub-) vertical upward extensions from cave passages or chambers. Some avens have no negotiable Fig. 5: Schematic representation of the formation of 'avens' [see explanation of Figure 4] upward connection, others provide links to higher passages. In this context avens do not include generally-local dissolutional features that are not fracture-guided. The previous section provides a basis for examination of aven formation in the inception horizon context. If dissolutional links can form in any direction under artesian/phreatic conditions, when vadose conditions are established any pre-existing upward ramifications must become disused as drains from any lower horizon that was involved in their inception. Vadose streams occupying inception horizon conduits plunge down vertical shafts, cascade along oblique fissures or continue along the original inception level, but incipient' or active upward routes are disregarded by that particular flow. However, upward development from one horizon could be downward development from a higher one. Three broad possibilities remain. There may exist bhnd upward ramifications that failed to establish a viable link to a remote target horizon. Secondly, an aven in the roof of one inception conduit may rise to join a higher abandoned inception conduit. Thirdly, an aven in a passage roof may be an active inlet shaft from a passage conceived along a higher inception level. These three categories, each expandable to fit many actual underground situations, are shown in a highly diagrammatic form in Fig. 5. Abandoned high levels and passage continuations Fig. 6 illustrates links that have formed where an inception horizon meets a joint and development continued along the inception horizon as well as along the joint. Such onward development probably pre-dated significant disso- modern land surface "blind aven" flooded inception route in horizon C Fig. 6: Schematic representation of the formation of 'abandoned high level passages', 'avens', 'shafts' and 'sumps' [see also figures 4 and 5J lution along the fissure. If, after uplift, vadose flow continued across any incipient links on the joint plane, the latter would become water-logged sites of continued dissolution. If dissolution along the joint link eventually broke through, the inception horizon would progressively be abandoned, as the lower, more favourable route enlarged. A parallel situation could be enforced at the time of vadose estabhshment, if a downward route along a suitable joint was already sufficiently open to permit capture of the flow (as discussed above). The observation that not all phreatic conduits continue across fissure-guided shafts is simply explained. No continuation will occur (except where inception horizons are coincidentally juxtaposed) across a fault-guided shaft. Flooded passage sections Negotiable cave passages may commonly appear to terminate where water meets the roof, forming features that have been termed sumps, syphons or (water) traps. Some are of limited horizontal extent and comprise water-filled conduits that re-connect to open passage beyond the flooded section. They may be passable or impassable to human explorers. Others may extend deep into the flooded zone with no readily accessible links back to unflooded conduits. Fig. 6 provides a two-dimensional schematic view of possible situations where links may form vertically or laterally along guiding fissures between inception horizons during inception. There will be situations where, after upHft, vadose drainage in an invaded inception conduit will find no advantageous onward route vertically or laterally downwards. This situation will normally be encountered in the context of fault-guided rather than joint-guided links. In order that drainage from the invaded inception horizon may progress down the hydraulic gradient it must transfer to another, more suitable horizon. Initially, connections between the two horizons are flooded and may extend great distances laterally, though water levels are effectively identical at both ends. The simplest situation involves a short, flooded, downdip tube and a "phreatic" lift up the fault plane, but more complex links ramify laterally in three dimensions and may include several fault-guided links and sections guided by downfaulted inception horizons and other fissures. General views of multi-level speleogenesis A question that reappears throughout the history of publication on speleogenesis concerns the origin of multi-level or tiered caves. Awareness of the problem may be implicit, as in the case of early discussions by authors such as Davis (1930) and Gardner (1935) or explicit, as in the work of Swinnerton (1932). None of these achieved a fully workable hypothesis of multi-level speleogenesis, though Gardner's ideas included a view close to that in the Inception Horizon Hypothesis. The major conceptual problem in understanding the genesis of multi-level caves is that of providing a model applicable in folded as well as unfolded terrains. Superficially, it seems that Swinnerton (1932) addressed this more closely than did Davis (1930) or Gardner (1935). This is illusory; the supposed sub-horizontal situation within most of W.M. Davis's examples and the folded situation discussed by Swinnerton are points near the ends of a continuum, wherein Gardner's dipping sequence occupies a more central position. Not all earlier discussions of multi-level caves were misdirected, but many suffered from trying to link passage levels to a development chronology, the common assumption being that the highest passage in a multi-level system formed first and the lowest formed last. This view is modified in the Inception Horizon Hypothesis, which suggests that, potentially, all levels were conceived under artesian and/or phreatic conditions at approximately the same time. Bridging the gulf between this concept and earlier ideas is recognition that after artesian/phreatic inception at two (or many) levels in a carbonate block, development may be greatest in the highest incipient passage and least in the lowest. Downward decrease of development potential reflects more favourable hydraulic conditions near the water-table (shallow phreatic zone). However, the orderly sequence may be locally inverted if a lower inception horizon is significantly more favourable than those above, or if significant artesian activity continues at depth without affecting shallower passage development. As surface topography and hence regional and local hydraulic gradients alter with time, the level of the water-table drops, eventually falling below the highest and (generally) best developed phreatic conduit system. Drainage may be wholly or partly diverted from its original route to resurge at a spring manufactured by a surface valley intersecting the conduit. Part or all of the drainage might, however, divert to the next lower inception level, via fracture-guided routes, immediately or in due time. In some cases vadose conditions will take over for the up-gradient part of the original system as deduced by Gardner (1935) but, in complex structural situations, parts of the system will remain flooded. Even after transition of part of the underground drainage network to the vadose zone, a deeper flow component remains in lower inception horizons (and within the truncated down-gradient extension of the first). These will in turn be intercepted by the surface topography and the higher passages will be progressively abandoned by all but local seepages. 6. CONCLUSIONS Much of this paper has involved description and lateral re-examination of elements that lie within the currently accepted concepts of speleogenesis or have contributed to them. Early ideas that were subsequently abandoned now appear to remain potentially vaUd to the overview of speleogenesis. Parts of the current view may be re-evaluated and concepts viewed as universal appear potentially less widely applicable, whilst concepts previously accepted as of only local significance are seen to be potentially of widespread importance. The hypothesis discussed here does not replace existing cave development models, but expands upon them. In so doing, it provides a linking string, or strings, that allow concatenation of aspects previously seen as separate and specialized. In attempting to justify this hnkage, some pre-existing relationships are questioned and new explanations are developed, but much of the background structure of speleogenetic dogma remains intact. If the qualitative hypothesis presented provides an acceptable working model and stimulates empirical studies that confirm its validity, much of the extant chemical and mathematical dataset about which current theories pivot may have to be more closely reconsidered. ACKNOWLEDGEMENTS The Inception Horizon Hypothesis was presented as part a doctoral thesis by DJL under the auspices of the Council for National Academic Awards and Manchester Metropolitan University, supervised by JG. Contributions by Dr Tony Waltham and Dr Trevor Ford to the successful conclusion of the project are gratefully acknowledged, as is material support from the British Geological Survey and the Manchester Geographical Society (Centenary Research Scholarship). This precis of parts of the philosophy of the Hypothesis was first drafted several years ago. Since then comments from anonymous referees and suggestions from other readers, notably Arthur Palmer, France Šušteršič and Alex- ander Klimchouk, have led to significant improvement of the original. The authors acknowledge their valid criticisms and thank them all for their support. We also acknowledge the greatest criticism of all, that as presented here, and pending the completion of ongoing research projects in several countries, the inception horizon model remains largely quahtative and conceptual. Thanks to France Sušteršič for providing a faithful translation of the Abstract and Summary into Slovene, and to Steve Pratt for redrafting some of the illustrations. REFERENCES Arthurton, R.S., Johnson, E.W. & Mundy, D.J.C. 1988. Geology of the country around Settle. Memoir of the British Geological Survey, Sheet 60. Back, W., Hanshaw, B., Herman, J.S. & Van Driel, J.N. 1986. Differential dissolution of a Pleistocene reef in the ground-water mixing zone of coastal Yucatan, Mexico. Geology, Vol.14: 137-140. Ball, TK. & Jones, J.C. 1990. Speleogenesis in the limestone outcrop north of the South Wales Coalfield; the role of micro-organisms in the oxidation of sulphides and hydrocarbons. Cave Science, Vol.17: 3-8. Bögli, A. 1964. Erosion par melange des eaux. International Journal of Speleology, Vol.1: 61-70. Bottrell, S.H., Smart, PL., Whitaker, EE & Raisvvell, R. 1990. Geochemistry and isotope systematics of sulphur in the mixing zone of Bahamian blue holes. Applied Geochemistry, Vol.6: 97-103. Davies, WE. 1960. Origin of caves in folded hmestone. National Speleological Society Bulletin, Vol.22: 5-18. Davis, S.N. 1966. Initiation of groundwater flow in jointed limestone. National Speleological Society Bulletin, Vol.28: 111-118. Davis, W.M. 1930. Origin of limestone caverns. Geological Society of America Bulletin, Vol.41: 475-628. Dreybrodt, W. 1990. The role of dissolution kinetics in the development of karst aquifers in limestone: a model simulation of karst evolution. Journal of Geology, Vol.98: 639-655. Dunham, K.C. 1973: A recent deep borehole near Eyam, Derbyshire. Nature: Physical Science, Vol.243: 84-85. Durov, S.A. 1956. On the question about the origin of the salt composition of karst water. Ukrainian Chemical Journal, Vol.22: 106-111. [Enghsh translation by O. Muller, 1979, in Cave Geology, Vol.1: 185-190.] Elliott, R.E. 1961. The stratigraphy of the Keuper Series in southern Nottinghamshire. Proceedings of the Yorkshire Geological Society, Vol.33: 197-231. Firman, R.J. & Dickson, J.A.D. 1968. The solution of gypsum and limestone by upward flowing water. Mercian Geologist, Vol.2: 401-408. Ford, D. C. 1965. The origin of hmestone caverns: a model from the central Mendip Hills, England. Bulletin of the National Speleological Society of America, Vol.27: 109-132. — & Ewers, R.O. 1978. The development of limestone cave systems in the dimensions of length and depth. Canadian Journal of Earth Sciences, Vol.15: 1783-1798. Ford, T.D. 1976. The geology of caves. - 11-60 in Ford, TD. & Cullingford, C.H.D. (Eds): The Science of Speleology: Academic Press, London. Gardner, J. H. 1935: Origin and development of limestone caverns. Bulletin of the Geological Society of America, Vol.46: 1255-1274. Gillott, J. E. 1978. Effect of deicing agents and sulphate solutions on concrete aggregate. Quarterly Journal of Engineering Geology, Vol.11: 177-192. Howard, A.D. 1964. Processes of limestone cave development. International Journal of Speleology, Vol.1: 47-60. Klimchouk, A.B. In Press . [The] Artesian speleogenetic setting. Proceedings of the 12th International Congress of Speleology, La Chaux-de-Fonds, Switzerland, 1997. Lowe, D. J. 1989. Tonga '87 - the report of the 1987 speleological expedition to 'Eua Island, Kingdom of Tonga. - Private publication: ii4-28 pp. Lowe, D. J. 1992a. The origin of limestone caverns: an inception horizon hypothesis. Unpublished PhD Thesis, Manchester Metropolitan University/Council for National Academic Awards, xx + 511pp. — 1992b. Chalk caves revisited. Transactions of the British Cave Research Association (Cave Science), Vol.19: 55-58. — & Gunn, J. 1986. Caves and limestones of the islands of Tongatapu and 'Eua, Kingdom of Tonga. Transactions of the British Cave Research Association (Cave Science), Vol.13: 105-130. — & — 1995. The role of strong acids in speleo-inception and subsequent cavern development. 33-60 in Environmental effects on karst terrains. Kevai-Bäräny, I (Editor), special issue of Acta Geographica Szegediensis: Szeged: Attila Jözsef University. — & — In preparation. Carbonate speleogenesis: the role of geological structure in cavern development. — & Waltham, A.C. 1995. A Dictionary of Karst and Caves: Cave Studies Series Number 6: British Cave Research Association, London. Mylroie, J.E. & Carew, J.L. 1990. The flank margin model for dissolution cave development in carbonate platforms. Earth Surface Processes and Land-forms, Vol.15: 413-424. Neuzil, C.E. 1986. Groundwater flow in low-permeability environments. Water Resources Research, Vol.22: 1163-1195. — 1994. How permeable are clays and shales? Water Resources Research, Vol.30: 145-150. Palmer, A.N. 1975. The origin of maze caves. National Speleological Society Bulletin, Vol.37: 56-76. — 1991. Origin and morphology of limestone caves. Geological Society of America Bulletin, Vol.103: 1-21. Pye, K. & Miller, J.A. 1990. Chemical and biochemical weathering of pyritic mudrocks in a shale embankment. Quarterly Journal of Engineering Geology, London, Vol.23: 365-381. Rauch, H.W. 1972. The effects of lithology and other hydrogeologic factors on the development of solution porosity in the Middle Ordovician carbonates of central Pennsylvania. Unpublished PhD thesis, Pennsylvania State University. Schwarzacher, W. 1958. The stratification of the Great Scar Limestone in the Settle district of Yorkshire. Liverpool and Manchester Geological Journal, Vol.2: 124-142. Scoffin, TP. 1987. An introduction to carbonate sediments and rocks:- Blackie, Glasgow and London. Smith, D. L, Atkinson, T.C. & Drew, DP 1976. The hydrology of limestone terrains. 179-212 in Ford, TD. & Cullingford, C.H.D. (Eds): The Science of Speleology: Academic Press, London. Sušteršič, E 1997. Poljes and caves of Notranjska. Acta Carsologica, Vol.25, 251-289. Sweeting, M.M. & Sweeting, G.S. 1969. Some aspects of the Carboniferous limestone in relation to its landforms with particular reference to northwest Yorkshire and County Clare. Revue Geograpique des Pays Mediterraneens, Vol.7: 201-209. Swinnerton, A.C., 1932. Origin of hmestone caverns. Geological Society of America Bulletin, Vol.43: 662-693. Warwick, G.T. 1953. The origin of hmestone caves. 41-61 in Cullingford, C H D (Ed): British Caving: Routledge and Kegan Paul, London. Whitaker, F.F. & Smart, P.L. 1990. Active circulation of saline ground waters in carbonate platforms: Evidence from the Great Bahama Bank. Geology, Vol.18: 200-203. White, W.B. & Longyear, J. 1962. Some limitations on speleo-genetic speculation imposed by hydraulics of water flow in hmestone. National Speleological Society, Nittany Grotto Newsletter, Vol.10: 155-167. Worthington, S.R.H. 1991. Karst hydrogeology of the Canadian Rocky Mountains. Unpublished PhD thesis, McMaster University. — & Ford, DC. 1995. High sulphate concentrations in limestone springs: An important factor in conduit initiation? Environmental Geology, Vol.25: 9-15. SPELEOGENEZA V KARBONATNIH KAMNINAH: HIPOTEZA ZAČETNIH HORIZONTOV Povzetek 1. UVOD: KRAŠKE VOTLINE V KARBONATNIH KAMNINAH V članku razpravljava, zakaj in kako nastanejo v kamnini, kjer prej ni bilo povezanih votlin, kraški kanali'. Osvetliti želiva dejavnike, ki vodijo k nastanku prevodnika in nadalnji speleogenzi ter podati delovni model mehanizmov, ki porajajo kraške vothne. Izraz speleogeneza, kakor ga običajno pojmujemo, naj bi pomenil nastanek jam (Lowe & Waltham 1995), vendar se mnoga klasična dela s tega področja posvečajo izključno vprašanju nadalnjega razvoja obstoječega prevodnika v jamo (n.pr. Davis 1939; Swinnerton 1932; Gardner 1935; Warwick 1953; Davies 1960; Ford 1965; Palmer 1975, 1991). Čeprav sodelujočih procesov še ne razumemo do zadnjih podrobnosti, lahko vendarle ugotovljamo, jih poznamo vsaj v precejšnji meri. Nasprotno pa je bilo o najbolj zgodnji razvojni fazi, ki jo imenujeva začetje^, doslej napisanega le malo. V speleogeteskih razpravah se zdi predpostavka, da imajo starejše, bolj sprijete karbonatne kamnine nizko primarno poroznost in da zveznih prevodnikov takorekoč ni, bolj ah manj samoumevna. Posebej na karbonatnih platformah poteka zakrasevanje v mladih karbonatnih skladovnicah s sorazmerno visoko poroznostjo in prevodnostjo skupaj z diagenezo. Dobro razviti jamski sistemi so znani s pleistocenskih apnencev otočij Tonga (Lowe & Gunn 1986) in Bahamov (Mylroie & Carew 1990). Nekaj takšnih jam, in po logiki stvari, tudi manjših prevodnikov, se ohrani skozi diagenezo in morebitno tektonsko preoblikovanje ter igra pomebno vlogo pri nadalnji spelogenezi (Lowe & Gunn 1986, v pripravi; Lowe 1989). Za speleogenezo se nama zdi vloga nekraških procesov (Lowe 1982a, Lowe & Gunn 1985) posebnega pomena. Kraške procese (v ožjem smislu) na karbonatnih kamninah in razvoj geomorfnih oblik, ki iz tega sledijo (in kamor spada tudi razvoj jam), imamo običajno za izid delovanja ogljikove kisline na kalcijev karbonat. O pomenu ogljikove kisline za kasnejši razvoj jam pač ni potrebno razpravljati, manj pa je jasna njena vloga pri samem nastanku jam (Lowe & Gunn 1986). 2. DEFINICIJA ZAČETJA IN ZAČETNIH HORIZOTOV Izraz začetje, kot ga uporabljava v tem besedilu, pomeni najbolj zgodnjo fazo v spelogenezi karbonatne sekvence in je je le delno soznačen izrazu iniciacija. Pojem začetja zapolnjuje neogibno vrzel v razumevanju speleogeneze. ki ostaja doslej večinoma odprta. Če privzamemo misel o začetju in definiramo izraze, ki naj pokrijejo fazo med začetjem in pričetkom turbulentnega toka, lahko ohlapni poiem iniciacija v nadalnji razpravi o speleogenezi opustimo. Pač pa predlagava izraz snovanje, s katerim opišemo rast kanala v času laminarnega toka med začetjem in prebojem. Izraz začetni horizont (Lowe 1982a) opisuje: katerikoli element karbonatne sekvence, ki ga odrejajo litostratigrafska svojstva kamnine in ki, kot posledica fizikalnih, litoloških ali kemijskih razlik v prevladujočem karbonatnem faciesu znotraj skladovnice, pasivno ali aktivno proži raztapljanje. Začetni horizonti se do neke mere skladajo z mejami med litostratigrafskimi členi oz. sedimentacij-skimi cikli (v širšem smislu). 3. SVOJSTVA ZAČETNIH HORIZONTOV Splošno razširjeno mnenje, da lezike in/aU nepropustni vložki po stratigraf-ski plati uokvirjajo spelogenezo, ne pojasni vseh njenih tančin; nedvomno pa ti elementi odrejajo mesto začetja v prostoru in usmerjajo nadalnji razvoj jame. Elementi začetja, ki se oblikujejo vzdolž teh horizontov v zgodnjih obdobjih nsatajanja karbonatne kamnine, lahko prestanejo tektonsko preoblikovanje kamninske gmote in vplivajo na kasnejši razvoj jam v nagubanih ali razlomljenih kamninah (Lowe & Gunn 1986, Šušteršič 1997). Horizonti z značajem akvifnga', akvikluda', akvitarda^ oz. akviferja^ Na pogled so si naštete hidrogeološke kategorije zelo različne. V okviru razmišljanj o začetnih horizontih pa so le izseki kontinua, ki se med seboj lahko prekrivajo in v različnih fazah spelogeneze znotraj posamezne skladovnice tudi menjajo svoje vloge. Nekateri glinovci, še posebej skrilavi, morejo v primerjavi s sosednjimi karbonati izkazovati zadovoljivo zvezno primarno poroznost in dopuščajo mezenje skozi ali iz domnevnega akvikluda (Neuzil 1986, 1994). Tabela 1 (izvirno besedilo) kaže iznos poroznosti in primarne ter sekundarne prepustnosti nekaterih kamnin. Pomembno je prekrivanje iznosov poroznosti in še posebej prepustnosti med posameznimi karbonati, peščenjaki in glinastimi skrilavci. V krajevnem merilu pomenijo glinaste plasti (v šišem smislu) v karbonatni skladovnici zaporo obilnejšemu prenikanju, vendar njihova navzočnost še ne potisne začetja više, proč od njih. Pogoji pronicanja vode so namreč pred vzpostavitvijo kanalskega toka popolnoma drugačni kot pozneje. V tem času je izmenično (ali usmerjeno) pronicanje vode bolj verjetno v peščenjakih kot v karbonatih. Če se pridružijo še nastajanje kislin, ali fizikalno raztapljanje, lahko uspešno načne sosednjo karbonatno kamnino. Nekateri karbonati so prepustni zaradi svoje primarne poroznosti. Sindiage-netsko raztapljanje na stiku sladke in slane vode je bilo v zadnjem času deležno velike pozornosti (Back & al. 1986; Bottrell & al. 1990; Mylroie & Carew 1990; Whitaker & P.L. Smart 1990). Podobno so že od vsega začetka lahko visoko porozne nekatere oolitne karbonatne kamnine. Peščenjaki z odprtimi razpokami so lahko idealen začetni akvifer (v smislu Gardnerja 1935), seveda pa ne moreje tekmovati z razvitim kraškim prevodnikom. Dejansko zadobijo mnoge karbonatne kamnine lastnosti akviferja šele, ko raztapljanje povzroči nastanek votlin, kar je v smislu naše razprave neločljivo povezano s speleogenezo. Tedaj v trdnih karbonatih dotedanja prepustnost zraste več kot 10 milijonkrat (Smith & al. 1976: str. 184; Tabela 1). Medplastovne razlike (v širšem smislu) Medplastovne razlike se kažejo vzdolž obstoječih ali nakazanih presledkov med skladi. Za prve menimo, da se pojavljajo kot praznine že pred speleogenezo in so sorazmeno redke. Naprotno pa so slednji, ki jih raztapljanje v ploskvi litološkega kontrasta še poudari, sorazmerno pogosti. Mnoge lezike odsevajo vrzel v času sedimentacije, toda manjše število med njimi, po Schwar-zacherju (1958) vodilne lezike, pomenijo pomebne časovne presledke med posameznimi cikli odlaganja. Preostale odprte lezike so presledki, ki odsevajo časovne vrzeli in lahko ločijo plasti, ki se rezko razlikujejo po čistosti kamnine (kemizmu) in stopnji prekristaljenja. Običajno se v spodnjem skladu odlagajo minerali, ki ob oksida-ciji spoščajo močne kisline ah pa se topijo fizikalno. Minerali kot sadra, epsomit ipd. razkrajajo sparite v zgornji plasti učinkoviteje kot mikrite, iz katerih izvirajo (Gillott 1978). Takšne kontraste je teže zaznati kot paleokraška površja ali sedimente kopenske faze, a so posebnega pomena kadar manjka drugih, začetju prikladnejših horizontov. Horizonti ki sproščajo kisline Howard (1964) je teoretično pokazal, da bolj kot na od zunaj dotekli ogljikovi kislini, zgodnja speleogeneza temelji na kishni, ki nastaja znotraj same kamninske gmote. Menil je, da bi tudi v primeru, ko na primerni globini drobne votlinice že obstojajo in ko mehanizmov, ki potiskajo tekočino skoznje ne manjka, voda ne bila agresivna, saj se prehitro zasiti s kalcijevim karbonatom. Se bolj prekucuška je bila misel Durova (1956), ki je predložil, da se prvo raztapljanje odvije s pomočjo žveplene kishne. Pristopa se razlikujeta edino v poudarkih. Vsekakor je v nekaterih okoliščinah navzočnost močne kisline za začetje bistvena. Taka kishna se seveda sprošča ves čas spelogeneze in se njen učinek absolutno ne zmanjša, vendar po pomenu reakcija ogljikove kisline kmalu popolnoma prevlada. Kemični in biogeni procesi, ki sproščajo žvepleno kislino, koreninijo v sulfidih ali sulfatih, ki se pojavljajo v kamnini. Včasih je pomembna tudi navzočnost organske snovi, bogate z žveplom (ogljikovodiki). Reakcije so lahko preproste in neposredne, ali pa postopne. Horizonti, ki lahko prispevajo reaktante za oksidacijo ali redukcijo so predvsem: a) sulfatni evaporiti b) regresivni (lagunami ali sebkini) karbonati z vložki evaporitov c) regresivni, temni karbonati z organsko primesjo d) karbonati z vključenimi sulfidi e) premogi in druge s piritom bogate kamnine f) predornine oz. plitve globočnine z minerali, ki vsebujejo žveplo g) piroklastiti, bogati z drobno razpršenimi sulfidi, ki so se usedli na kopne ali podmorske krbonatne površine. Fizikalno topni horizonti Fizikalna topnost kalcijevega karbonata in dolomita v čisti vodi je sorazme-no nizka, so pa bolj topni drugi minerali, navzoči v karbonatnih skladovnicah. V času hlapenja vodnega telesa se odlagajo polihalit, kieserit, epsomit, karnalit, silvin in hallt (Scoffin 1987), a zaradi svoje visoke topnosti kristalijo poslednji. Večino haloidov in sulfatov v mladih karbonatih verjetno ponovno raztopi podtalnica. Teoretično to pomeni nastajanje votlinic, ki jih le delno zapolnijo netopne primesi oz. karbonat iz osnove. Dovolj zgodnje raztapljanje lahko sproži nastajanje karbonatnih psevdobreč, kar bi s stališča speleogeneze zopet pomenilo pomembno povečanje poroznosti. Gillott (1978) je pokazal, da raztopljeni kalcijev sulfat, epsomit in haht pospešujejo neposredno raztapljanje kalcijevega karbonata. Možnosti, ki jih ta proces odpira začetju pač ne gre spregledati. Končno nekateri biogeni ali kemični dejavniki sulfate spremenijo v sulfide, s posledicami, o katerih smo govorili nekoliko prej. Druge možnosti pojavljanja začetnih horizontov V naši razpravi se oziramo predvsem na nastanek jam v dobro sprijetih karbonatnih skladovnicah, katerih prepustnost je bila pred začetjem omejena. Pomebna izjema je razvoj v najmlajših, subrecentnih eolskih aU grebenskih apnencih (Lowe 1982a). Teh kamnin še ne moremo šteti v določen stratigrafski nivo, ampak odsevajo, geološko gledano, trenutne pogoje odlaganja in takojšnje diageneze. Možno vlogo krede (kamnine) in drugih poroznih kamnin je obdelal Lowe (1982a). 4. APLIKACIJA HIPOTEZE ZAČETNIH HORIZONTOV NA SPELOGENEZO KARBONATOV Hipoteza začetnih horizontov vključuje raznorodne dejavnike. V razvoj posameznega zaporedja kanalov niso vpleteni vsi, niti ni verjetno, da bi bili v enakih kamninskih skladovnicah navzoči vedno isti. Začetje v karbonatnih kamninah verjetno poganjajo drugačni mehanizmi kot preprost tekočinski tok na osnovi hidravličnih zakonov, ki ga poganja težnost. Verjetno gre za kapilar-nost, phmovanje zemeljske skorje (Davis 1966) ali ionsko difuzijo (Pye & Miller 1990). Medtem ko se voda premika skozi kamninsko gmoto, se večajo njene prvotne poti, naj bo to zaradi fizikalnih ah kemijskih dejavnikov. Opraviti imamo predvsem z raztapljanjem sulfatov, z oksidacijo ali redukcijo sulfatov, sulfidov ali samorodnega žvepla (s pomočjo delovanje mikrobov ali pa ne) ter z raztapljanjem karbonatov s pomočjo močnih kislin, ki nastajjo na kraju samem (Durov 1956; Howard 1964; Worthington 1991). Našteti procesi se odvijajo globoko pod gladino podtalnice in se ne ozirajo na oblikovanost površja in hidravhčni gradient. Voda, ki vstopa v karbonatno gmoto prihaja z višje ah nižje ležečega vodonosnika in je potuje razpršena po nezveznostih v kamnini. Napredujoče raztapljanje postopoma zajame celoten začetni hoziront. Posamezni predeli so premikanju vode in/ali raztapljanju prikladnejši, naj bo to zaradi strukturnih učinkov, krajevnih sprememb v kemijskih lastnostih kamnine ali navzočnosti slabo zapolnjenih/odprtih paleo-kraških votlin. Tako lahko izginejo celotne plasti, nagnjene k tovrstnemu razkroju in učinki dobijo regionalne razsežnosti. Začetje se verjetno prične neznansko počasi, ne glede na možno učinkovitost sodelujočih dejavnikov. To kaže na sorazmerno šibko prenikanje, neogibno prenasičenje tekočine in začetni neobstoj povezanih vodnih poti. Posamezna območja hitrejšega prenikanja se postopoma povezujejo in ko je prag med začetjem in pripravo prekoračen, se pojavijo prehodi med prenikhm in laminar-nim tokom. V času priprave se laminarni tok zbira vzdolž najugodnejših smeri znotraj začetnih horizontov, oz. razpok, ki jih povezujejo. Posamezni kanali prevladajo in pritezajo nase vodo iz sosednjih območij začetja/priprave. Tok v teh zmagovitih poteh je laminaren, dokler njihov premer ne doseže 5 - 10 mm. Tedaj se prevrže v turbulentnega, stopnja večanja pa zelo naraste (White & Longyear 1962; Dreybrodt 1990). V času teh procesov je smer vodnega toka v prostoru poljubna - globalno pa se pokorava regionalnemu hidravličnemu gradientu (Slika 3). Začetje, priprava in kasnejše večanje se odvijajo globoko v kamninski gmoti, vendar nastajajoči prevodni sistem slej najde stik s površjem. Glede na krajevne strukturne, stratigrafske in topografske danosti se pojavijo ponori, gravitacijski ali arteški izviri, kakršne pač so krajevne hidrogeološke razmere (Slika 3). Medtem ko se površje vse bolj znižuje, seka vse globlje začetne horizonte. Freatični dvigi na višje horizonte omrtvijo in poslužujejo se jih edino prenikla deževnica oz. občasno poplavne vode iz večjih globin. Tako jamski sistemi postopoma osuševajo; raztapljanje se nadaljuje v enem ali več spodnjih svež-njih, medtem ko zgoraj prevlada vadozno preoblikovanje. Kljub temu se odlomki opuščenih, delno opuščenih ali komajda nakazanih spletov v višjih delih ohranijo. Če spodnje dele prekinejo podori, ah izjemoma led, jih voda lahko ponovno aktivira. 5. RAZLAGA PODZEMSKIH KRAŠKIH POJAVOV S POMOČJO HIPOTEZE ZAČETNIH HORIZONTOV Če sprejmemo ugotovitev, da vsi členi karbonatne skladovnice niso enako primerni za spelogenezo, lahko s pomočjo hipoteze začetnih horizontov preprosto razložimo oblikovanst kraškega podzemlja. Navpični in skoraj navpični jaški Z izrazom jašek v tem besedilu navpične ah skoraj navpične elemente jamskih sistemov. Izraz ne obsega votlin, ki jih jamarji premagujejo s tehniko obvladovanja navpičnic in ki odsevajo neposrden razvoj iz tektonske(ih) raz-pok(e)l Hipoteza o začetnih horizontih predvideva, da nastajajo v poplavljeni (frea-tični ali arteški) coni tudi v tektonsko nepoškodovanih gmotah embrionalne oblike jaškov, ki (skoraj) navpično povezujejo (skoraj) vodoravne začetne horizonte. Če je skladovitost skoraj navpična, so začetni horizonti vodila nastajajočim vothnam, ki spominjajo na brezna - le te pa povezujejo kanali, ki sledijo razpokam. Med začetnimi horizonti se agresivna voda pretaka po razpokah in preskoki se pojavljajo na široki fronti. Šele napredujoča priprava zbere tok znotraj začetnega horizonta v posamezen kanal; ta pa napaja le nekatere razpoke in povzroči, da se na tem odseku razširijo tudi same. Tok iz začetnega horizonta v smeri proti naslednjemu začetnemu horizontu lahko uporabi katerokoli prikladno smer v prostoru. Zato pri površnem ocenjevanju izvora oblikovanosti jamskega prostora hitro spregledamo, da sta tako rov kot jašek nastala v prežeti coni. Jaški, ki nastajajo ob razpokah, so v grobem dveh vrst in morejo nastati enako v vodoravnih kot poševnih skladovnicah. Prvi nastajajo vzdolž razpok, kamor se usmerja prenikla padavinska voda, ko je že dosegla prežeto cono in išče poti do najbližjega s začetnega horizonta. V drugem primeru potuje freatična voda ob ploskvi preloma v poljubni smeri, z enega začetnega horizonta na drugega. Kamini' in podobne oblike V prežeti coni nastajajo jamski rovi v poljubni smeri v prostoru. Ko se gladina podtalnice zniža, preidejo višji predeli svežnja v vadozne pogoje. Prenikle vode se zbirajo vzdolž začetnih horizontov, padajo po navpičnih jaških aH derejo po poševnih razpokah - ne morejo pa se po podedovanih votlinah vzpenjati. V grobem so možni trije osnovni izidi, ki jih prikazuje SI. 5. Opuščeni višji rovi in njihova nadaljevanja Slika 6 prikazuje zveze, ki se pojavijo, kjer začetni horizont naleti na razpoko in se razvoj nadaljuje vzdolž obeh. Tak razvoj je starejši od pomembnejšega raztapljanje vzdolž razpoke. Če si po tektonskem dvigu vadozni tok najde pot vzdolž neke starejše zveze vzdolž razpoke, se bo ta širila dalje. Ko raztapljane znotraj dotlej še nenačetega predela končno utre novo pot razpoke, začetni horizont postopoma omrtvi, nižja, nova pot pa se širi dalje. Poplavljeni odseki rovov Prehodni rovi se često "končajo", kjer se stakneta strop in vodna gladina. Nastane položaj, ki mu pravijo jamarji sifon, smrk ah "ujeta voda". Slika 6 je shematiziran dvodimezionalen prikaz možnih izidov, kadar se zveze vzdolž vodilnih razpok med dvema začetnima horizontoma lahko pojavljajo v različnih smereh. Prvotno so zveze med dvema začetnima horizontoma poplavljene in mnoge se bočno raztezajo na velike razdalje. Najpreprostejši izid je kratka, zalita cev, ki se spušča ob leziki in ponovno dvigne ob ploskvi preloma. Bolj zapletene se vejijo tudi v bočni smeri in lahko vključujejo številne člene, ki so jim botrovale enako razpoke ali prelomi, kot začetni horizonti. Splošno o nastanku jam v več nadstropjih Med vprašanji, ki so v ospredju že vse od prvih pisanih/tiskanih razprav o spelogenezi, je vprašanje nastajanja jam v različnih višinskih pasovih. Večina zgodnjih del je iskala časovnih odnosov med "nadstropji", pri čemer je veljalo za samoumevno, da je najvišje "nadstopje" najstarejše in najnižje najmlajše. Hipoteza začetnih horizontov to gledišče popravlja, saj predvideva, da se je začetje vseh kanalov, v vseh "nadstropjih" lahko odvilo približno istočasno, v freatičnih/arteških pogojih. Ker se površinska oblikovanost in zato hidrogeološke razmere s časom spreminjajo, se gladina podtalnice spušča in postopoma pade niže od najvišjega in večinoma najbolje razvitega svežnja. Kraške vode se preusmerjajo proti najgloblji zarezani površinski dolini, ki seka kraški prevodnik. Podzemsko pretakanje se, največkrat vzdolž razpok, postopoma prestavlja na nižje ležeče začetne horizonte, v višjih pa vladajo vadozne razmere. 6. ZAKLJUČKI Večina članka obsega razpravo o temeljnih mislih, ki jih sprejema danes veljavno razumevanje spelogeneze, ali pa so neko vlogo odigrale v preteklosti. Nekatere so postopoma prešle v pozabo, a pri celostnem pogledu na speloge-nezo spet pridobivajo veljavo; posamezni pogledi, ki so obveljali za splošne, pa se zdijo danes manj uporabni. Hipoteza, o kateri razpravljamo na tem mestu, obstoječih modelov razvoja jam ne nadomešča, iz njih ampak raste. Predvsem plete vezi z mishmi, ki so doslej veljale za manj pomembne. S tem, ko jih skušava upravičiti, razvijava nove razlage, vendar ostaja osnovna speleogenetska dogma nedotaknjena. Predstavljena kvalitativna hipoteza omogoča delovni model, ki naj spodbudi empirično raziskovanje. (Prevod France Šušteršič) Prevajalčeve opombe: ' Pri prevajanju besedila, ki novim mislim šele utira pot, so težave pri iskanju primernih izrazov neogibne. Da bo branje lažje, sem se naslonil na članek Prispevek k slovenskemu speleološkemu pojmovniku (Šušteršič, Knez, Naše jame, 37, 1995, str 153-170). Polno pa se zavedam, da je to izhod za silo, saj je tam eksplicitno zapisano (str. 154), da besedilo nima normativnih namenov in da je predvsem namenjeno nadaljnji razpravi. ^ Angleški izraz inception je nedvomno izpeljan iz latinskega neologizma inceptio, ta pa iz glagola incipio (= začeti, začeti se) (Bradač 1937: Latinsko slovenski slovar Jugoslovanska knjigama v Ljubljani, Ljubljana, str 249). Zato menim, da je moje slovenjenje vsebinsko in formalno pravilno. Vsekakor ne vidom razloga, da bi na latinski koren cepil slovensko obrazilo in skoval še eno nepotrebno tujko več. Med naštetimi tujkami ima slovensko soznačnico edino izraz aquifer (= vodo-nosnikj. Da bi bilo besedilo enotno, sem tudi to ohranil v poslovenjeni izvirni obliki. * Anglosaško pojmovanje navpičnih kraških votlin se zdi nekoliko ohlapnejše, kot slovensko, terminologija pa enako nedosledna. Uporabljeni ;zraz jašek je pač izhod za silo. ^ Angleškemu izrazu aven ^e najbolj ustereza naš kamin. Seveda pa sta obe besedi predvsem jamarski in izražata tehnično zahtevnost, manj oblikovanost, zagotovo pa ne izx'ora. REPORTS POROČILA Martin Knez, Janja Kogovšek, Tadej Slabe KARST RESEARCHES IN YUNNAN PROVINCE, CHINA IN 1997 Between September 19 and October 3, 1997 members of our Institute, Mag. Janja Kogovšek, Dr. Martin Knez and Dr. Tadej Slabe, achieved the planned field work related to the project Study on Stone Forest Genesis, Functions and Structures of the Underground Karst Aquifers in Lunan, Yunnan Province, in co-operation with the Geographical Institute of Yunnan and sponsored by the Ministry of Science and Technology of Slovenia. They studied stone forests and carried out an underground water tracing test in the aquifer there. We would like to acknowledge the help of our Chinese partners for the successful work. A book about the research results is in preparation. Study of Lunan Stone Forests Stone forest is a special form of karrenfeld. Karren intersected by deep solutional channels, hollows or enlarged fissures on the surface of the rock are presented in the shape of piUars or teeth. Rock teeth are smaller forms. Pillars are from 5 to 50 m high; in the Lunan Stone Forest they are up to 35 m high and of various shapes. Their shape is controlled, as well as by past and present influences, by the lithology of the rock also, the extent to which it is bedded and crushed. A stone forest develops in thick-bedded, relatively pure limestones and dolomites; the strata are dipping 15" at the most and they are intersected by a network of vertical fissures. In regard to location one may distinguish between two types of stone forest. Those in lowlands and valleys where large forests develop with interlying dolines and collapse dolines have underground water flowing beneath them; they are seasonally flooded or water flows through them. The second type develops on the ridges of mountains; their pillars are smaller (10-30 m), growing from a common base, and the sediment cover is thin. Stone forests appearing on the slopes present an intermediate form between the two described. Usually a stone forest is described as a form of covered karst. The limestone where karren developed had been covered by thick sediments that decisively controlled the origin and the shape of the stone forest. Uncovered carbonate rocks are weathered by rainfall. Teeth are the first to appear, followed by a true forest. Stone forests are a typical form of polytropical and subtropical climate. The Lunan Stone Forest is one of the most famous. The central part (Shilin) covers about 80 ha, and bigger or smaller stone forests nearby are covering as much as 350 kml Tourist parts of the Lunan Stone Forest are visited by more than miUion visitors per year. This is a unique and integral natural and cultural landscape where the Sani minority lives mostly on tourism. Below the forest a complex system of water conduits developed. The shape of pillars and their height are controlled by the type of rock and by their topographic location. The central part of the forest - Shilin - lies between 1625 to 1875 m a.s.l. It is located in a shallow lowland with underground water close to the surface and the water level rises by 10 m after heavy rain. Most of the rain, from 70 to 80%, from the total annual amount of 936,5 mm, falls from June to October. The average temperature is 16,3", varying from -2 to 39"C. The pillars are highest in the central part of the lowland, there where the superficial waters flow underground; at the borders there are more sediments. In the lower part the water flows on the surface and in the rainy season it floods the tourist footpaths among the pillars. The central part of the Lunan Stone Forest developed in thickly-bedded and vertically jointed Lower Permian carbonates of the Maokou period. First the limestone was covered by a Permian basalt and tuff and later by Eocene (Miocene) lacustrine sediments. Thick layers of lateritic soil were deposited above them. The stone pillars in the central part of the stone forest, which is located in lowland, are up to 30 m high; the spaces amon g them are mostly 1 to 5 m wide. In the central part the pillars are closely packed together; further out they stand separately also. They are relics of rock between the spaces and their shape corresponds; they may have either square or triangular cross-sections, and there are also elongated and narrow shapes. Pointed and blade-like shaped pillars with sharp peaks prevail. The more the limestones are homogeneous, the sharper are the shapes of the pillars. On such carbonates the effective rainwater has incised outstanding rock features. The Naigu stone forest lies 20 km east of the central forest and is an important tourist destination also. The pillars are from 20 to 30 m high, towerlike with square cross-section often having several smaller, pointed peaks. The pillars are frequently connected into series between distinct fault areas and often they may be described as large rock masses with numerous sharp peaks. Some higher rock pillars stand separately, some are very slim. The tops of pillars that form a vast pillar area are at the same level. Many pillars are mushroom-like especially single ones. The edges of pillars are frequently rounded; only the crests between flutes are sharp. Their rock surface, specially in the smaller rock features, is less distinctive due to inhomogeneity of the rock, and the rock surface is rough. This forest developed in Qixia rocks and this is reflected in its shape and relief. The shape of subcutaneous rock teeth is not controlled by the rock structure. They are roundly pointed as are the subcutaneous teeth in other rocks. Below the stone forest there is a show-cave showing, by its rock surface, several phases of its genesis. Scallops of not very distinctive shapes give evidence for a water flow of 0,5 m/s that flowed through the flooded passages. The scallops were covered by fine-grained sediments that filled the cave. On the roof there are big above-sediment ceiling channels, several metres across, and anastomoses. Above-sediment ceiling features give evidence of a long duration of cave formation by water flowing above the fine-grained sediments. The cave in the middle of the park shows cavernous karst underground below the stone forest and indicates the periods of fast water outflow from the surface transporting sediments that covered the limestones. But also relatively long were the periods when the cave was filled by fine-grained sediments and the surface above it was probably flooded. This shows the development of the stone forest in stages. Examples of outstandingly mushroom-like pillars, from 35 to 40 m high, are found in Lao Hei Gin, 20 km NE from the "central park". The highest pillars are in the lowest part of the forest. They may be divided into huge rock masses intersected by narrower spaces and having several smaller pointed peaks and single pillars; among them are vast patches of sediments. Single pillars are square towers or like mushrooms. Often they consist of more squares, these are rehcs of rock layers between bedding-planes and fissures. The central part of the pillar is weathered and disintegrates strongly. The rock weathers in grains and the rock surface is rounded, being angular only below thin scales. The rock is very porous and the middle part of the pillars is intersected by numerous channels, from 1 cm to f m and even more across. Rainwater shapes the rock surface on the peaks of the pillars and at their foot, at the section of more resistant rock. So the rock surface reflects the structure and joint frequency; the rock was shaped below the soil and later transformed by rainwater. Between pillars, dolines are frequent and in them are caves. Through some of these caves water flows from 30 to 50 m below the surface, having a discharge up to 3 nr^ and only exceptionally from 4 to 7 ml Taking into account that the underground water network is well developed also in this stone forest, we infer that the outflow from the surface is fast, and not only limestone and dolomite but also sediments and soil are transported underground. At the foot of single pillars there are big above-sediment channels incised deep into the rock. It seems that the entire aquifer was dammed. There had been enough rainfall and this is shown by above-sediment features in the rock. At that time water did not remove sediments from the surface and the growth of the forest was interrupted. Martin Knez has sampled the rocks at some new locations in the stone forest and also at places already known, in order to establish, by later laboratory tests, the reasons for selective corrosion in three stone forests near Lunan. During this visit the geological investigations did not involve a regional overview of the landscape and geologic processes from the Paleozoic to now, but just detailed researches of the parent rock mostly in such parts of the geological profile where selective corrosion occurred during karstification. The work was undertaken in the field at macroscopic level and at home in the laboratory it will continue at microscopic level in order to find out the basic reasons that conditioned essentially stronger and sometimes locally characteristic karstification at some sections of the geological column. Tadej Slabe completed researches on single rock pillars in low stone forests. The underground rock surface developed below the sediments and soil, and the peaks of pillars were transformed by rainwater; composite rock features occur at the foot of pillars, at the contact with sediments and soil. Slabe Hnked rocky features into rocky relief revealing the factors controlling the stone pillar formation and frequently providing evidence of the development of the stone forest. For development of a stone forest the Uthology is very important too. He complemented or changed the previous explanations about origin of some rocky features that he had found in hterature; obviously the study must continue and several assumptions must be checked. He intends to make a research model of a stone forest in plaster of Paris. Janja Kogovšek studied stone pillar solution in the Stone Forest and solution during the rainwater percolation in karst. Processing of results of karst water properties obtained at the first visit to the Yunnan karst in July 1996, reflecting the process of carbonate solution, indicated a need for additional analyses at the surface and also in conditions when rainwater percolates through the vegetation and a thinner or thicker layer of soil and rock. In September 1997 she analysed the rainwater, which is the input parameter in the solution process in karst, and also the water that had, by trickling down variously tall bare rock pillars, already dissolved a certain amount of rock. Solution of rock pillars when the soil and vegetation are removed is controlled by the intensity of rain; the thickness of the water film that pours down the carbonate pillars depends on the amount of precipitation. The amount of limestone dissolved by a certain amount of rain trickling down the pillars depends on their height and on the length of the trickling way; usually equilibrium is not yet restored at the foot of a pillar. The rate of solution by a gentle rain in a warm season is the biggest and gerater effects of solution may be expected. The decisive factor in dissolving the hmestone is the amount of rain, as has already been shown in the Slovene karst; in China there is also a high strength of solution. But already a small amount of rain causes the impermeable base at the foot of pillars to accumulate, and hold water; this water is still aggressive and capable of further solution of the rock at the contact, intensified by the influence of soil. Presumably the contact of pillars with soil and rainwater accelerates the solution effects and this may contribute to the explanation of some rocky features, which, however, must still be studied. We analysed the percolation water in detail in the Baiyun and Jiuxiang caves where we sampled most of the abundant trickles and drips underground; this not only complemented our previous results but also provided new perceptions. The surface above the Jiuxiang cave is covered by soil and overgrown by grass and dense bushes. The water in the cave reflects dolomitic structure of the rock; Ca/Mg ratio was about 1, but there was also a percolation water with higher magnesium level compared to calcium showing relatively complex rock structure of the cave roof. The highest hardness levels during our researches in the Chinese karst were established; they exceed the levels measured in Slovenia by more than 15%. Baiyun cave lies in Naigu Stone Forest where the surface is bare and vegetation scarce. In supersaturated percolation water controlling recent flowstone deposition, calcium prevails, the Ca/Mg ratio being from 3 to 5. The stream flowing through the cave is very interesting, for it contains as much dissolved carbonates as the other percolation water and deposits flowstone. The cave managers felt justified, in leading this water to a nearby stalagmite with a weakened inflow and into nearby gours. Water tracing test in the Lunan area Water tracing tests in karst are used to discover and to prove the underground water connections. The method is widely used all over the world in order to protect water in karst and in particular to assure healthy drinking water. Already at the beginning of our co-operation, our Chinese colleagues expressed their wish to carry out such a test in their karst as in a dry season they are lacking water not only for drinking but also for irrigation; they planned to construct an underground reservoir. Before starting this they wanted to check the underground water flow by a water tracing test. By the first successful water tracing in July 1996 we established two main directions of the underground flow and measured its velocities at certain points. The samphng was carried out at 9 samphng sites, the tracing test was quantitatively evaluated and 55% of returned tracer was established. A directly useful result of the first water tracing was the conclusion that a layer of sandstones, previously supposed to be an important barrier for karst waters, is not so important to justify a construction of a big reservoir, for it only reduces the flow. The relatively low quantity of returned tracer in the first tracing test indicated the possibility that water flows in another direction also. Unclear results obtained by natrium chloride, which is not a good tracer, in the southern part of the area, dictated the use of a more appropriate tracer. We therefore carried out another combined water tracing test in September 1997. At the point Wayaodong on September 26 we injected 1 kg of Uranin, and on the point Qinhuadong 200 kg of Natrium chloride which was the only possible second tracer. At both points tlie discharge was higher than during the first tracing test; the sampling was organised on ail the sampling sites of the first test and at one additional site in the northern part of the aquifer. We contributed a plan of water tracing and this time samples will be analysed at the Geographical Institute at Kunming where they expect a new luminiscence spectrometer. At the same time as the water tracing test was carried out, we sampled the water of the whole area and determined its basic parameters (temperature, specific electric conductivity and pH) in the field and analysed the levels of carbonates, calcium, magnesium and chlorides. We shall process the hydrological data gathered and the results of fluorescence analyses of the water tracing test, together with basic water characteristics, and we shall synthetise the results and assessments of our researches in a common Slovene-Chinese monograph related to studies in China. Stanka Sebela 6. MEDNARODNA KONFERENCA O VRTAČAH IN INŽENIRSKIH VPLIVIH IN VPLIVIH OKOLJA NA KRASU Springfield/Missouri/ZDA/ 6. - 9. april 1997 Ker sem bila v začetku leta 1997 na podoktorskem izpopolnjevanju v ZDA, ki mi ga je omogočila Slovenska Znanstvena Fundacija, je bila to tudi enkratna priložnost, da se udeležim mednarodnega simpozija o krasu v ZDA. Kot edina Slovenka in predstavnica Inštituta za raziskovanje krasa ZRC SAZU sem se tako že drugič (prvič leta 1995, Gatlinburg, Tennessee, ZDA) udeležila mednarodne konference, katere naslov je bil tokrat "The Engineering Geology and Hydrology of Karst Terranes". Sodelovanje na konferenci mi je omogočil IZRK ZRC SAZU, organizator srečanja dr. Barry F. Beck (P.E. LaMoreau & Associates, Inc., Oak Ridge, Tennessee) mi je ponudil ugodno možnost plačila kotizacije, soorganizator dr. Kenneth C. Thomson profesor na Department of Geography, Geology and Planning (Southern Missouri State University, Springfield) mi je ponudil brezplačno bivanje. V štirih dneh se je simpozija, udeležilo 123 udeležencev, izmed katerih jih je 47 predstavilo referate in 19 posterje. V nedeljo 6. aprila 1997 smo imeli uvodno enodnevno ekskurzijo, ki jo je vodil dr. Kenneth C. Thomson, izkušen krasoslovec, hidrogeolog in jamar. Springfield je tretje največje mesto v zvezni državi Missouri. Leži na platoju Ozark, ki ga gradijo mississippijske (karbon) karbonatne kamnine, predvsem apnenci. V okolici Springfielda smo si ogledali številne primere vrtač, ki so ob močnejših deževjih preplavljene z vodo. Mnogo je kraških jam, ki ob večjih padavinah predstavljajo izvire, ki ogrožajo naselja. Gradbeniki in načrtovalci stanovanjskih hiš so naselja postavih povsem na kraškem terenu, ki je premrežen z vrtačami, ne da bi se pri tem zavedali vseh nevarnosti. Ker je nad plastmi apnenca debela plast preperine, so vrtače v okolici Springfielda bolj nekakšni grezi v sedimentu in so tudi morfološko manj poglobljene in kamnite, kot smo jih vajeni iz naših krajev. Seznanili smo se tudi z rezultati barvanja kraških voda, kraškimi izviri in splošno hidrogeologijo območja. Videli pa smo tudi konkretne rešitve pred poplavami kot npr. regulacije terena za primer odvodnavanja po kanahh in urejenih strugah. Poleg kraških jam, vestno urejajo tudi kataster vseh vrtač. Od 7.-9. aprila 1997 se je v treh dneh zvrstilo 47 referatov. Gostovali smo v hotelu Holiday Inn, University Plaza v Sprinfieldu. Poleg glavnega organizatorja P.E. LaMoreaux & Associates, Inc. so srečanje sponzorirali The Department of Geography, Geology & Planning of Southwest Missouri State University, The Mid-Missouri & St. Louis Sections of the American Society of Civil Engineers, The Association of Ground Water Scientists and Engineers (NGWA), The Association of Engineering Geologists, The Karst Waters Institute. Na simpoziju so predstavili zbornik predavanj, ki na 516 straneh zajema 66 člankov (Beck, B.F. & Stephenson, BJ., 1997: The Engineering Geology and Hydrology of Karst Terranes.- Proceedings of the Sixth Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, Spring-field/Missouri/6-9. april 1997, 516 p., A.A.Balkema, Rotterdam, Brookfield). Srečanje je imelo bogato mednarodno udeležbo, saj so bili poleg američanov prisotni predstavniki in predavatelji iz Belgije, Nemčije, Slovenije, Rusije, Litve, Kitajske, Indije, Kanade, Kuvajta, Irske, Velike Britanije, Madžarske in Porto-rika. Uvodni referat je imel dr. John E. Mylroie (Department of Geosciences, Mississippi State University, Mississippi State) z naslovom: Land Use and Carbonate Island Karst. Sklopi predavanj so bili: Onesnaženje talne vode v kraških terenih, Geotehnične raziskave in inženiring na krasu I in II, Raziskave krasa z geofiziko, Kras v evaporitnih kamninah, Vladne zakonitosti za kraške terene, Drenaža ob nevihtah in problemi poplav na kraških terenih. Kraška hidrogeologija in oskrba z vodo, Pojavljanje vrtač na apnenčastem krasu. Ob reševanju in raziskovanju problemov posegov na krasu širom po svetu smo se seznanili s konkretnimi primeri reševanja pojavljanja vrtač, poplav, nenadnih udorov. Predvsem je šlo za konkretne primere iz gradbeništva. Med odmori smo si lahko ogledali razstavo posterjev, avtorji pa so bih vedno pripravljeni na konzultacije. Že šesta konferenca po vrsti in predvsem letošnja velika udeležba neameri-čanov, kaže na veliko zanimanje za tovrstno temo širom po svetu. Simpozij organizirajo v zadnjih letih vsaki 2 leti, nekaj strokovnjakov pa se ga udeležuje že od začetka. Naslednji simpozij naj bi bil leta 1999 nekje v severnem delu ZDA. Vedno bolj je očitna želja in zanimanje za povezavo in izmenjavo znanj na področju krasoslovja med ZDA in ostalimi državami. VIR Beck, B.F. & Stephenson, B.J., 1997: The Engineering Geology and Hydrology of Karst Terranes.- Proceedings of the Sixth Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, Springfield/Missouri/6-9.april 1997, 516 p., A. A. Balkema, Rotterdam, Brookfield. BOOK REVIEWS KNJIŽNA POROČILA Martin Knez TRACER HYDROLOGY 97 (A. Kranjc, Ed.) Proceedings of the 7th International Symposium on Water Tracing A. A. Balkema, Rotterdam, Brookfield, 1997, XIV+450 strani V zadnjih petih letih je prišlo do številnih novih odkritji na področju kraške hidrologije, metodologije in tehnologije sledenja voda: od novih ugotovitev pri določanju sledil do uporabe novih sledil in poglobljenega znanja o njihovih lastnostih. Prav tako se je močno poglobilo znanje o vplivu sledil na okolje in človeka, kar pripomore k boljši, varnejši in kvahtetnejši uporabi le-teh. Najrazličnejše metode vodnega sledenja opisane v tej knjigi, v povezavi s številnimi drugimi metodami, so v tesni povezavi z teoretičnimi laboratorijskimi poizkusi in uporabnimi nalogami. Metode vodnega sledenja pa so bolj in bolj pomembne pri reševanju razhčnih hidroloških, hidrogeoloških in v zadnjem času vse pogostejših ekoloških vprašanj. Knjigo, v celoti je v angleškem jeziku, sestavlja 63 referatov z že sedmega mednarodnega simpozija o sledenju voda, ki je eden mednarodno najodmevnejših in strokovno najpomembnejših tovrstnih srečanj raziskovalcev podzemnega pretakanja vode. Prispevke je pripravilo 177 avtorjev z najrazhčnejših institucij iz praktično vsega sveta. Kljub obsežnosti knjige pa si jo moramo zaradi njene vsebinske pomembnosti nekoliko pobliže ogledati. Nastajala je takorekoč preteklih pet let. Zadnji simpozij o sledenju voda je namreč bil leta 1992 v Nemčiji (Karlsruhe). Kljub temu, da je knjiga ozko strokovna, pokriva široko interesno področje. Bralec lahko v njej odkrije katera nova sledila so se pojavila, kako se le-ta uporabljajo v razhčnih situacijah in končno kakšne probleme lahko rešujemo in razrešimo s pomočjo metod podzemnih vodnih sledenj. Med referati lahko odkrijemo tudi razpravo, ki bo morda neposredno povezana z našim delom oz. nam bo v največji meri v pomoč, lahko pa takšno, ki predstavlja določeno regionalno problematiko in rezultate tamkajšnjih raziskav. Prav gotovo pa med referati ne manjka tudi besedil, ki opisujejo reševanje najrazhčnejših težavnih situacij s pomočjo računalniškega modehranja. Knjiga je zbirka zapisnikov razprav, predstavljenih na simpoziju in je zato neprecenljiv priročnik za različna vprašanja povezana z podzemnim sledenjem voda, hkrati pa je zbirka znanja, ki prikazuje pregled, kako so se hidrologija, hidrogeologija in kraška hidrologija razvijali v zadnjem času, kakšne znanstvene dosežke so dosegle in kakšno usmeritev imajo v prihodnje. Poglavjema Uvod in Organizacija sledi 6 vsebinskih sklopov referatov: Methods, Surface waters, Unsaturated zone, Aquifers, Contamination transport and protection in Aquifer parameters and modelling. Knjiga je zaokrožena s poglavjem Author index. V prvem poglavju je zbrano gradivo o metodah sledenja podzemnih voda. Avtorji so predstavili pomen bakteriofagov pri podzemnem sledenju, nekatere laboratorijske eksperimente, nova fluorescenčna barvila, pomen radona (^^-Rn), kot sledila pri ugotavljanju onesnaženja z naftnimi derivati, predstavili so toksičnost nekaterih fluorescenčnih barvil, uporabo optičnih sledil in drugo. V poglavju Površinske vode (Surface waters), ki vključuje le pet referatov, so zbrana besedila o sledilnih poizkusih v površinskih vodnih sistemih. Naslednje poglavje, ki nosi naslov Nenasičena cona (Unsaturated zone), je sklop zbranih predavanj o raziskavah pretokov v vadozni coni vodonosnika. Razprave so se med drugim osredotočile na raziskave nenasičene cone v gorskem okolju, obnašanju raztopljenega silicija in kisika-18, kot sledil med taljenjem snega, sledenje v nekarbonatnih kamninah. Četrto poglavje je najobsežnejše in se nanaša na raziskovanje tako karbonatnega kot nekarbonatnega vodonosnika. Avtorji opisujejo hidrološke razmere od province Malataya v Turčiji, preko raziskav Kamniških Alp in Grintovca, predelov v bohinjskem predelu in okolici Pirana, kraških področji v Spodnji Avstriji, v osrednjih Pirenejih Španije, monitoring reke Reke, v Dinarskem krasu Hrvaške, različnih področjih Kitajske, kras jugozahodne Nemčije, izbranih vodonosnikov Indije in Anglije. V naslednjem poglavju so prispevki, ki se večinoma nanašajo na raziskave migracije različnih fluidov v različnih medijih in načinu zavarovanja pred škodljivimi snovmi. Glavni poudarek je na kontaminaciji področji v neposredni bližini urbanih področjih, kjer je pomemben dejavnik tudi kmetijstvo. Aquifer parameters and modelling, kot zadnje poglavje knjige prinaša predvsem zbirko teoretičnih študij razmer v vodonosniku, kot naprimer poskus simulacije podzemnega pretakanja na splošno, simulacija jamske hidrologije, ugotavljanje hidroloških zakonitosti v heterogenih vodonosnikih in drugo. Kvalitetno oblikovana in urejena v trde platnice vezana knjiga je bila v za naše razmere visoki nakladi natisnjena v ugledni specializirani založniški hiši A. A. Balkema iz Rotterdama. Je v zbirki ostalih šestih od katerih imata zadnji dve enako naslovnico (razlikujeta se le po imenu urednika in letnici izdaje), kar je nedvomno dobrodošlo, hkrati pa to kaže na svojevrstno programsko kontinuiteto in usklajeno delo raziskovalcev iz različnih držav. Tracer Hydrology 97 vsekakor ni knjiga o nečem kar je bilo, pač pa knjiga, ki bo vsaj v naslednjem petletnem obdobju eden od temeljev pri raziskovanju in sledenju voda. Andrej Kranj c David Gillieson - CAVES: PROCESSES, DEVELOPMENT AND MANAGEMENT Blackwell Publishers, Oxford & Cambridge (Mass.), 1996 The Blackwell Publishing House, well known among physical geographers, geomorphologists and karstologists, mostly those dealing with the karst surface, has published a book that will surely arouse a lot of interest even among those geographers and karstologists dealing with karst underground and among speleologists. It is in the collection The Natural Enviroment and among the editors is a geographer A. Goudie. Do not take me wrong; in this book there is a lot that is useful and interesting for everybody, from theorist to practical persons, either for the manager of a show cave, for instance, or for a landscape architect planning the revitalization of an abandoned quarry, on karst, of course. The work of the distinguished Australian researcher of karst, and the karst underground in particular, David GiUieson, entitled Caves: Processes, Development and Management, tries to show the reader the themes announced by the title in a detailed and up-to-date way, considering the latest laboratory and field results and researches. What was stated at the start of the Natural Environment collection is also true of this book on caves: "This series will provide accessible and up-to-date accounts of the physical and natural environment in the past and in the present, and of the processes that operate upon it." The book contains 324 pages divided into 10 chapters: The Cave System and Karst, Cave Hydrology, Processes of Cave Development, Cave Formations, Cave Sediments, Dating Cave Deposits, Cave Deposits and Past Climates, Cave Ecology, Cave Management, Catchment Management in Karst. Single chapters are well sub-divided according to their contents very precisely. Let us look, first, at the short but important first chapter. Here are explained the author's views, essential in treating the whole subject. The title of this first subchapter is "What is karst?" We know that there is no uniform definition given either by authors of basic karstological works or followers of the same school or by the experts of different branches of natural science. The author did not define what is karst for him as a more or less short definition but he explains it in detail. Among other things he says: "This terrain (karst) is formed principally by the solution of the rock, most commonly limestone and its close relatives. But solution of rocks occurs in other hthologies, in particular in other carbonates such as dolomite, in evaporites such as gypsum and halite, in silicates such as sandstone and quartzites, and in some basalts and granites where conditions are favourable. All these are therefore true karst... Karstic terrain can also develop by other processes - weathering, hydraulic action, tectonic movements, melt water and the evacuation of molten rock (lava). Because the dominant process in these cases is not solution, we can choose to call this suite of landforms pseudokarst." If we look in the Slovene karst terminology of 1973 (maybe this book needs to be modernized) its definition of karst does not disagree with the words of Gillieson but it is denied by the definition of pseudokarst: "karst phenomena in non-carbonate rocks (lava, salt)." For Gilheson also lava tubes are pseudokarst, but karst phenomena in salt are true karst for him and for us this is a pseudokarst. There is not a question who is "more correct" but it is important to consider the entire work from this point of view otherwise we may be surprised; in the chapter on speleogenesis there is an example from a "sihcate karst in Venezuela", for example. In such works that are basic and also manual at the same time I find it specially interesting and useful to establish how much the author knows and takes into account the examples from our karst, the results of our researches and our publications. After many years we find in this book again among the deepest caves a shaft from our karst. Čeki 2, Kanin Mountains placed in 11"' place. In the chapter on speleothems there are data about flowstone growth and age in Postojnska Jama, and that on cave sediments is illustrated by Postojnska and Planinska Jama. The last chapter offers directly useful guidelines or recommendations on the protection and restoration of different "wounds" on karst. For us, being used to more or less "classical" examples mostly from Europe, the book seems at places slightly exotic. No wonder, for the author comes from Austraha and he is more familiar with the karst of Austraha and the southern Pacific as he did a lot of his researche there. Thus it is quite normal and right that the examples too are coming from there. Yet, it seems pecuhar that the example of the Vauclusian spring is not La Fontaine de Vaucluse but the biggest spring in New Zealand. But also an expert can be surprised how much and what kind of karst there is in Austraha, as for example the karst area Nullarbor plain covering 20.000 km^. Such a work provokes the question if it is possible that one man, speciah-sed as men are today, can cover such a wide palette of natural sciences in the detail necessary for karst studies, ranging from chemistry and physics through geology and hydrauhes to biology. This book is a proof that such men do exist although there are some details showing that the author is also near the limit of his capacity. An expert, for instance may find the equation 5.2, page 157 (w=WAV=tyn) suspicious or not clear, as in my non-expert opinion, specific stream power is not a constant. Where on page 172 it is said that HCO, is ion, then the chemical formula must be written correctly, with charge. Maybe it is just a simple printing error. From a professional point of view it would be perhaps better if single chapters are written by different specialists but then the book would loose its unity and would be less understandable and not as readable as it is. As already mentioned, the virtue of this book is its contemporaneity; this is shown also by the references used being based on modern works and not on the usual older "classical" references. There are 484 cited professional works. I must remark that the author is extremely "Enghsh" oriented, most of used works are written in Enghsh language and others almost do not appear. There are 5 works of Slovene authors, all written in Enghsh. Out of works published in Slovenia there are two papers from Acta Carsologica, the others were published abroad. Gillieson's work may serve as a good example when we are in a dilemma, whether to pubhsh in English or in Slovene language. Maybe I have mentioned some slight imperfections, if they are imperfections at all, but this is mostly from our point of view and not related to the excellent entirety. I must stress, in order not to be misunderstood, that GiUieson's book is an excellent and useful work as much for students as for karstologists and experts. Everybody can find a lot that is new and interesting and I think that this book can join the modern karstological "breviary" Karst Geomorphology and Hydrology by Ford & Williams. I think that this is the best commendation. The book is published in hard and soft cover; the paperback issue costs 18.99 pounds and such a price cannot be an obstacle for such a book to appear on shelves of relevant libraries. Andrej Kranj c D. Andre & M. Casteret & E Carlier & A. Gautier & G. Kalliata-kis & C. in L. Renouard, LA PLUME ET LES GOUFFRES Correspondence de E.-A. Martel (1868 - 1936), Association E.-A. Martel, Meyrueis 1997 Leto 1997 so v francoskem departmaju Lozere poimenovali "Martelovo leto". Pred 100 leti je namreč ta znameniti francoski raziskovalec krasa in kraških jam, imenujejo ga "utemeljitelj sodobne speleologije" (pri nas sicer imenujemo "očeta sodobne speleologije" A. Schmidla), med drugim je tudi prvi prodrl po podzemeljski Pivki iz Postojnske do Magdalene jame, zaključil svoje drugo raziskovanje kraških planot Gausses. Velik del departmaja Lozere obsega prav Gausses in Martel jih je s svojimi raziskavami odkril Francozom in tako postavil temelje tamkajšnjega turizma, od katerega je v veliki meri odvisen tudi proračun Lozere. V Martelovem letu so v Lozere pripravih celo vrsto prireditev, eden najpomembnejših dogodkov pa je bila gotovo izdaja Martelove korespondence v obliki knjige z naslovom "Pero in brezna". Knjiga je bila domači in tuji javnosti podrobneje predstavljena na posebnem simpoziju o Martelu, ki je bil 17. in 18. oktobra v prestolnici departmaja, v mestu Mende. Kako težka in obsežna naloga je bila priprava te knjige, kaže že podatek o Martelovih objavah: izpod njegovega peresa je izšlo preko 1000 člankov in 24 knjig. Med knjigami je nekaj prav obsežnih, npr. Les Abimes ..., knjiga velikega formata, kjer samo poglavje o našem krasu obsega 57 strani. Vendar ni pisal le člankov in knjig, tudi zbirka njegovih pisem je zelo velika. Avtorji, med njimi naj kot zanimivost omenim s. Marie Casteret, hči znanega speleologa in pubheista, katerega nekaj knjig je prevedenih tudi v slovenščino, Norberta Castereta, so uspeli nalogo opraviti pravočasno in pred nami je obsežno in tehtno delo, ki tudi kaže na Marteiovo na videz neizčrpno energijo: knjiga velikega formata (25 x 35 cm) na 607 straneh kvalitetnega (in težkega!) papirja, v kateri je zbranih 1034 pisem Martelove korespondence. Da so delo zmogli, gre gotovo tudi zasluga številnim sodelavcem iz raznih dežel. V uvodu jih je naštetih 112, med njinmi tudi dva iz Slovenije. Seveda knjiga ni le preprost ponatis oziroma transkripcija Martelovih pisem. Po uvodnih poglavjih na 35 straneh: Dediščina..., Dolga zgodovina pisem. Dopisovanje Martel - Casteret, Martel in njegova pisava. Osvetlitev Martelove-ga življenja, Literatura za Martelovo biografijo (upoštevanih je 6 prispevkov slovenskih avtorjev), se prične prava korespondenca. Tudi ta je razdeljena na več poglavij oziroma sklopov po letih: 1859 (potrdilo o rojstvu), Otroštvo in mladostna popotovanja (1868-1882), Uvod v raziskovanje podzemlja (1883-1887), Veliki podzemeljski podvigi (1884-1894), Spelunca in Speleološko društvo (1895-1899), Leta uradnih raziskav (1900-1914), Leta sprememb (1915-1925), Čas Martelovih naslednikov (1926-1938). Sledijo pisma, ki se tičejo Martela po njegovi smrti, zadnje 1034., je pismo L. Balsana Martelovi vdovi iz i. 1949. Delo zaključuje seznam pisem (prejetih in tistih, ki jih je sam pisal), seznam francoskih departmajev in tujih dežel, kjer je potoval, Martelov kronološki življenjepis ter prav na koncu nenavadni "postface" z naslovom "Marteloscopie infernale" izpod peresa pred nekaj leti umrlega B. Geza. Knjiga predstavlja predvsem dejstva, gradivo za nadaljnje delo tistih, ki se ukvarjajo z Martelovo biografijo kot tudi tistih, ki se ukvarjajo z zgodovino speleologije. Za nas je morda najzanimivejše, kako je v tej korespondenci zastopan naš kras in naše jame. Med korespondenco za leto 1893 (takrat je bil na "misiji" po dinarskem krasu) sta obširno pismo in poročilo ministru (na dobrih 3 straneh!), leto 1894 pa se začne s pismom postojnskemu okrajnemu glavarju - predsedniku Jamske komisije, v katerem priporoča, naj podpirajo postojnsko društvo Anthron. V preglednem življenjepisu je npr. po dnevih navedeno, kdaj je prišel na Kranjsko in kaj je kakšen dan počel. Tako piše za "23. september 1893 (sobota): obiskal je Škocjanske jame; meri višine stropov s papirnatim balonom." Pregled vseh objavljenih pisem s ciljem ugotoviti, katera se še morda tičejo našega krasa oziroma so pomembna za zgodovino našega krasoslovja in speleologije, bi bila že prava raziskava. Posebno poglavje so ilustracije. Vsega skupaj je 551 črno-belih, med njimi največ fotografij (številne je posnel Martel), risb, faksimil pisem in jamskih načrtov, razglednic in dopisnic, zemljevidov, itd. Na 61 slikah je Martel, 11 pa jih predstavlja motive z našega krasa oziroma dokumente, ki se tičejo naših krajev. Poleg tega, da je to pravi Martelov album, zbirka slik iz številnih jam, zgodovina pionirskega obdobja francoske speleologije, je to tudi neke vrste ilustrirana zgodovina speleološke tehnike, kar je svetovnega in ne le francoskega pomena. Da ne omenjam portretov oziroma "akcijskih posnetkov" tako znanih jamarjev (Casteret, De Jolly, Geze) kot tudi naravoslovcev in LA PLUME ET LES GOUFFRES CORRESPOND AN CE d 'Edouard-Alfred MA R TEL, (de 1868-1936) (ivec Norbert CASTERET, Robert de JOL Y, Louis BALSAN et tes nombreux pionniers de la Speleolo^ie sploh ljudi, pomembnih predvsem za znanost konec prejšnjega in v začetku tega stoletja. La plume et les gouffres ni knjiga, ki bi jo človek prebral in odložil, sploh ne vem, če jo bo kdo prebral v celoti, saj je to delo, gradivo, ki mora biti nekje pri roki, saj človek nikoli ne ve, kdaj mu bo prišlo prav, kaj bo kdaj potreboval od nje: podatek, datum, ilustracijo? Žal te knjige verjetno ne bo v številnih knjižnicah po Sloveniji, vseeno pa je nobeden, kdor se bo ukvarjal z zgodovino našega krasoslovja in speleologije, z zgodovino jamarske tehnike, s krasoslovno in speleološko bibliografijo ali biografijo, ne sme prezreti. Acta carsologica Rrasoslovni zbornik XXVI/2 1997 Izdala in založila Slovenska akademija znanosti in umetnosti in Znanstvenoraziskovalni center SAZU v Ljubljani Grafična priprava Zdenko Rudolf Postojna Tisk Tiskarna Lotos Postojna Naklada 1000 izvodov ZNflNSTV€NORflZISKOVRLIMI CeNT€R SLOVeNSKe fiKfiD6MlJ€ ZNANOSTI IN UMeTNOSTI SCieNTIFIC ReS€flRCH C€NTRe OF THe SLOVeNIHN flCfiDCMV OF SCI€NCeS RND ARTS ps triglav insurance company Ltd Mia [XÖX81 postojnska jama 1818-1998 ISSN 0583-6050