18 Medical Imaging and Radiotherapy Journal (MIRTJ) 39 (Suppl. 1) Medical Imaging and Radiotherapy Journal (MIRTJ) 39 (Suppl. 1) UMIK MEHKEGA TKIVA PRI SLIKANJU MEDENICE STOJE: PRIMERJAVA DOZNE OBREMENITVE IN KAKOVOSTI RENTGENOGRAMA FAT TISSUE DISPLACEMENT IN ERECT PELVIC RADIOGRAPHY: COMPARISON OF RADIATION DOSE AND IMAGE QUALITY Šejla Trožić 1,3, Andrew England 2, Nejc Mekiš 3 1 Univezitetni klinični center Ljubljana, Klinični inštitut za radiologijo, Zaloška cesta 7, 1000 Ljubljana, Slovenija / University medical centre Ljubljana, Institute of Radiology, Zaloška cesta 7, 1000 Ljubljana, Slovenia 2 University College Cork, Department of Radiography, Cork, Ireland 3 Univerza v Ljubljani, Zdravstvena fakulteta, Oddelek za radiološko tehnologijo, Zdravstvena pot 5, 1000 Ljubljana, Slovenija / University of Ljubljana, Faculty of health sciences, Medical Imaging and Radiotherapy Department, Zdravstvena pot 5, 1000 Ljubljana, Slovenia Korespondenca / Corresponding author: sejla.trozic1997@gmail.com Prejeto/Recived: 14. 3. 2022 Sprejeto/Accepted: 22. 3. 2022 IZVLEČEK Uvod in namen: V primerjavi s slikanjem medenice leže je pri slikanju medenice stoje višja doza in slabša kakovost rentgenograma. Namen raziskave je bil ugotoviti, ali se kakovost rentgenogramov in prejeta doza razlikujeta pri dveh različnih načinih slikanja medenice stoje – z odmikom in brez odmika mehkega tkiva. Metode dela: Prvi del je obsegal meritve na fantomu, kjer smo izbrali trak, ki ni povzročal vidnih artefaktov na rentgenogramu pri odmiku tkiva med preiskavo. Drugi del študije je bil izveden na 60 pacientih, ki so bili napoteni na rentgensko slikanje medenice stoje. Naključno so bili razdeljeni v dve skupini z enakim številom. Polovica jih je umaknila tkivo s področja slikanja, druga polovica pa ne. Pri vseh smo izmerili obseg pasu in bokov, telesno višino in maso, DAP, velikost polja, razdaljo med goriščem in objektom slikanja, tokovni sunek (mAs) in napetost (kV). Naknadno smo iz meritev izračunali še indeks telesne mase, vstopno kožno dozo in efektivno dozo. Dobljene slike so ocenili trije radiologi. Rezultati in razprava: Tanka trikotna ruta ni povzročala artefaktov na rentgenogramu. Obseg pasu se je zmanjšal za 4,7 % po umiku mehkega tkiva, medtem ko je obseg bokov ostal enak. V skupini pacientov, ki so umaknili maščobno tkivo med preiskavo, se je DAP znižal za 38,5 %, vstopna kožna doza za 44 %, efektivna doza pa za 38,7 %. Kolčna sklepa, veliki in mali grči stegnenice, sklepna ponvica kolčnega sklepa, vratova stegnenice, sredica in skorja kosti medenice, križnica in križnične odprtine ter mehka tkiva medenice in kolkov so bili bolj vidni na slikah z odmikom mehkega tkiva. Zaključek: Z umikom maščobnega tkiva se znižajo DAP, vstopna kožna doza in efektivna doza, hkrati pa se izboljša kakovost slike. Ključne besede: slikanje medenice stoje, odmik mehkega tkiva, kakovost slike, dozna obremenitev ABSTRACT Introduction and purpose: When previous studies compared erect pelvic imaging with the supine position, they reported lower image quality and higher radiation dose for erect pelvic X-ray in larger patients. The purpose of this study was to determine whether radiation dose and image quality diff er for radiographs of the pelvis in the erect position with and without adipose tissue displacement. Methods: The fi rst part of the study was performed on a phantom in which we determined a band that would not produce artefacts on the resulting image when displacing fat tissue. The second part was performed on 60 patients who were randomly divided into two groups. One group had adipose tissue displaced from the pelvic region and the other did not. We measured waist and hip circumference, height, weight, DAP, primary fi eld size, source-to-skin distance, mAs, and kV. We then calculated BMI, ESD, and eff ective dose. The images were evaluated by three radiologists. Results and Discussion: A thin cotton triangular bandage showed no visible artefacts. Thickness around the waist decreased by 4.7% after tissue displacement, while hip circumference remained the same. In a group of patients with tissue displacement, DAP was 38.5% lower, ESD was 44% lower and eff ective dose was reduced by 38.7%. Hip joints, trochanters, acetabula, femoral necks, medulla and cortex of the pelvis, pelvic/hip soft tissues, and sacrum and its foramina were more visible on images obtained with fat tissue displacement. Conclusion: When fat tissue was displaced from the pelvic region DAP, ESD and the eff ective dose decreased and the image quality increased. Medical Imaging and Radiotherapy Journal (MIRTJ) 39 (Suppl. 1) 19 Medical Imaging and Radiotherapy Journal (MIRTJ) 39 (Suppl. 1) LITERATURA / REFERENCES Ahmad N (2003). Proper positioning for the pelvis and proximal femur. https://www.auntminnie.com/index. aspx?sec=ser&sub=def&pag=dis&ItemID=58880 <20. 3. 2021>. Aliasgharzadeh A, Mihandoost E, Masoumbeigi M, Salimian M, Mohseni M (2015). Measurement of Entrance Skin Dose and Calculation of Eff ective Dose for Common Diagnostic X-Ray Examinations in Kashan, Iran. Glob J Health Sci, Vol 7 (5): 202–7. Alzyoud K, Hogg P, Snaith B, Flintham K, England A (2018). Optimum Positioning for Anteroposterior Pelvis Radiography: A Literature Review. J Med Imaging Radiat Sci, Vol 49 (3): 316–24. Alzyoud K, Hogg P, Snaith B, Flintham K, England A (2019). Impact of body part thickness on AP pelvis radiographic image quality and eff ective dose. Radiography, Vol 25 (1): e11–7. Alzyoud K (2019). Establishing an Evidence-Base for Erect Pelvis Radiography: Positioning, Radiation Dose and Image Quality. PhD thesis. Manchester: University of Salford. Campbell SE (2005). Radiography of the hip: Lines, Signs, and Patterns of Disease. Semin Roentgenol, Vol 40 (3): 290–319. Chan VO, McDermott S, Buckley O et al. (2012). The relationship of body mass index and abdominal fat on the radiation dose received during routine computed tomographic imaging of the abdomen and pelvis. Can Assoc Radiol J, Vol 63 (4): 260–6. Chiron P, Demoulin L, Wytrykowski K, Cavaignac E, Reina N, Murgier J (2017). Radiation dose and magnifi cation in pelvic X-ray: EOSTM imaging system versus plain radiographs. Orthop Traumatol Surg Res, Vol 103 (8): 1155–9. Drake RL, Vogl WA, Mitchell AWL (2010). Gray’s anatomy for students. 2nd ed. Philadelphia: Churchill Livingstone. Durani Y (2021). X-Ray Exam: Pelvis. https://kidshealth.org/en/ parents/xray-pelvis.html <24. 1. 2021>. Efthymiou FO, Metaxas VI, Dimitroukas CP, Panayiotakis GS (2020). Low BMI patient dose in digital radiography. Radiat Prot Dosimetry, Vol 189 (1): 1–12. European Commission (2004). DIMOND III – Image Quality and Dose Management For Digital Radiography. https:// www.sorf.fi /doc/diamond_III.pdf <20. 11. 2019>. European Union (2014). Radiation protection N°180. Medical Radiation Exposure of the European Population: Part 1/2. Luxembourg: Publications Offi ce of the European Union. https://ec.europa.eu/energy/sites/ener/fi les/documents/ RP180.pdf <12. 3. 2021>. Fisher DR, Fahey FH (2017). Appropriate use of eff ective dose in radiation protection and risk assessment. Health Phys, Vol 113 (2): 102–9. Flintham K, Alzyoud K, England A, Hogg P, Snaith B (2021). Comparing the supine and erect pelvis radiographic examinations: an evaluation of anatomy, image quality and radiation dose. Br J Radiol, Vol 94 (1123): 1–17. Flintham K, Snaith B, England A, Hogg P, Alzyoud K, Harris M (2017). A pilot study to compare supine and erect pelvis radiographs-assessment of impact on radiation dose and diagnostic quality (SEPRAIDD): Study Protocol. Fuchs-Winkelmann S, Peterlein CD, Tibesku CO, Weinstein SL (2008). Comparison of Pelvic Radiographs in Weightbearing and Supine Positions. Clin Orthop Relat Res, Vol 466 (4): 809–12. Girish G, Finlay K, Fessell D, Pai D, Dong Q, Jamadar D (2012). Imaging Review of Skeletal Tumors of the Pelvis Malignant Tumors and Tumor Mimics. Sci World J, Vol 2012 (5): 1–12. Gorham S, Brennan PC (2010). Impact of focal spot size on radiologic image quality: A visual grading analysis. Radiography, Vol 16 (4): 304–13. Hendee WR, O’Connor MK (2012). Radiation risks of medical imaging: Separating fact from fantasy. Radiology, Vol 264 (2): 312–21. Holmes JF, Wisner DH (2012). Indications and performance of pelvic radiography in patients with blunt trauma. Am J Emerg Med, Vol 30 (7): 1129–33. International Atomic Energy Agency (2007). Technical reports series No. 457. Dosimetry in Diagnostic Radiology: An International Code of Pratice. Vienna: International Atomic Energy Agency. Jackson TJ, Estess AA, Adamson GJ (2016). Supine and Standing AP Pelvis Radiographs in the Evaluation of Pincer Femoroacetabular Impingement. Clin Orthop Relat Res, Vol 474 (7): 1692–6. Kim SC, Lee HK, Lee YS, Cho JH (2015). Evaluation of automatic exposure control system chamber for the dose optimization when examining pelvic in digital radiography. J Xray Sci Technol, Vol 23 (3): 321–30. Kloth JK, Rickert M, Gotterbarm T et al. (2015). Pelvic X-ray examinations in follow-up of hip arthroplasty or femoral osteosynthesis - Dose reduction and quality criteria. Eur J Radiol, Vol 84 (5): 915–20. Krans B (2017). X-Ray of the Pelvis. https://www.healthline. com/health/pelvis-x-ray#purpose <24. 1. 2021>. Lampignano JP, Kendrick LE (2017). Bontrager’s Textbook of Radiographic Positioning and Related Anatomy. 9th ed. St. Louis: Mosby. Le NTT, Robinson J, Lewis SJ (2015). Obese patients and radiography literature: What do we know about a big issue? J Med Radiat Sci, Vol 62 (2): 132–41. 20 Medical Imaging and Radiotherapy Journal (MIRTJ) 39 (Suppl. 1) Medical Imaging and Radiotherapy Journal (MIRTJ) 39 (Suppl. 1) Lipovec V, Mekiš N, Starc T (2016). Rentgenske slikovne metode in protokoli. 2nd ed. Ljubljana: Zdravstvena fakulteta. Mand S (2018). Back to Basics: Pelvic XRays. https://www. tamingthesru.com/blog/diagnostics/pelvic-xrays <20. 11. 2019>. Metaxas VI, Messaris GA, Lekatou AN, Petsas TG, Panayiotakis GS (2018). Patient Dose in Digital Radiography Utilising BMI Classifi cation. Radiat Prot Dosimetry, Vol 184 (2): 155–67. Modica MJ, Kanal KM, Gunn ML (2011). The Obese Emergency Patient: Imaging Challenges and Solutions. Radiographics, Vol 31 (3): 811–24. Mraity HAAB, England A, Cassidy S, Eachus P, Dominguez A, Hogg P (2016). Development and validation of a visual grading scale for assessing image quality of AP pelvis radiographic images. Br J Radiol, Vol 89 (1061): 1–27. Mratiy HAAB (2015). Optimisation of radiation dose and image quality for AP pelvis radiographic examination. PhD thesis. Manchester: University of Salford. O’Sullivan B, Goergen S (2017). Plain Radiograph/X-ray. https://www.insideradiology.com.au/plain-radiograph-x- ray/ <20. 11. 2019>. Parker S, Nagra NS, Kulkarni K et al. (2017). Inadequate pelvic radiographs: implications of not getting it right the fi rst time. Ann R Coll Surg Engl, Vol 99 (7): 534–9. Pullen WM, Henebry A, Gaskill T (2014). Variability of acetabular coverage between supine and weightbearing pelvic radiographs. Am J Sports Med, Vol 42 (11): 2643–8. Ross JR, Tannenbaum EP, Nepple JJ, Kelly BT, Larson CM, Bedi A (2015). Functional Acetabular Orientation Varies Between Supine and Standing Radiographs: Implications for Treatment of Femoroacetabular Impingement. Clin Orthop Relat Res, Vol 473 (4): 1267–73. Schuenke M, Schulte E, Schumacher U (2010). General Anatomy and Musculoskeletal System. Stuttgart: Georg Thieme Verlag. Shaikh AH (2018). Preoperative Planning of Total Hip Arthroplasty. In: Bagaria V, ed. Total Hip Replacement - An Overview. 1st ed. London: IntechOpen, 3–18. Statistical Offi ce of the Republic of Slovenia (2020). Overnutrition and obesity of adult population. https:// www.stat.si/Pages/en/goals/goal-2.-end-hunger-achieve- food-security-and-improved-nutrition-and-promote- sustainable-agriculture/2.1-obesity-rate <3. 5. 2021>. Svalkvist A, Svensson S, Hagberg T, Båth M (2021). Viewdex 3.0—Recent Development of a Software Application Facilitating Assessment of Image Quality And Observer Performance. Radiat Prot Dosimetry, 1–6. Tapiovaara M, Siiskonen T (2008). PCXMC: A Monte Carlo program for calculating patient doses in medical x-ray examinations. 2nd ed. Helsinki: Edita Prima Oy. Tortora GJ, Derrickson BH (2014). Principles of Anatomy and Physiology. 14th ed. New Jersey: John Wiley & Sons, Inc. Troelsen A, Jacobsen S, Rømer L, Søballe K (2008). Weightbearing anteroposterior pelvic radiographs are recommended in DDH assessment. Clin Orthop Relat Res, Vol 466 (4): 813–9. Tugwell J, Everton C, Kingma A et al. (2014). Increasing source to image distance for AP pelvis imaging - Impact on radiation dose and image quality. Radiography, Vol 20 (4): 351–5. World Health Organization/Europe (2021). Body mass index - BMI. https://www.euro.who.int/en/health-topics/disease- prevention/nutrition/a-healthy-lifestyle/body-mass- index-bmi <3. 5. 2021>. World Health Organization (2020). Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/ obesity-and-overweight <3. 5. 2021>. Yanch JC, Behrman RH, Hendricks MJ, McCall JH (2009). Increased Radiation Dose to Overweight and Obese Patients from Radiographic Examinations. Radiology, Vol 252 (1): 128–39. Yang G, Li Y, Luo D, Hui C, Xiao K, Zhang H (2019). Diff erences of Anteroposterior Pelvic Radiographs Between Supine Position and Standing Position in Patients with Developmental Dysplasia of the Hip. Orthop Surg, Vol 11 (6): 1142–8. Zalokar N, Resnik A, Mekiš N (2020). Radiation dose during pelvic radiography in relation to body mass index. Radiat Prot Dosimetry, Vol 189 (3): 294–303. Zdešar U, Rainer S, Pori D, Štuhec M (2000). Obsevanost pacientov pri klasičnih radioloških preiskavah v Splošni bolnišnici Slovenj Gradec - Poročilo raziskovalne naloge. Ljubljana: Zavod za varstvo pri delu.