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Abstract

We introduce a notion of a girth-regular graph as a k-regular graph for which there
exists a non-descending sequence (a1, a2, . . . , ak) (called the signature) giving, for every
vertex u of the graph, the number of girth cycles the edges with end-vertex u lie on. Girth-
regularity generalises two very different aspects of symmetry in graph theory: that of vertex
transitivity and that of distance-regularity. For general girth-regular graphs, we give some
results on the extremal cases of signatures. We then focus on the cubic case and provide a
characterisation of cubic girth-regular graphs of girth up to 5.
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1 Introduction
This paper stems from our research of finite connected vertex-transitive graphs of small
girth. The girth (the length of a shortest cycle in the graph) is an important graph theoretical
invariant that is often studied in connection with the symmetry properties of graphs. For
example, cubic arc-transitive graphs (a graph is called arc-transitive if its automorphism
group acts transitively on its arcs, where an arc is an ordered pair of adjacent vertices) and
cubic semisymmetric (regular, edge-transitive but not vertex-transitive) graphs of girth up
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to 9 and 10 have been studied in [5, 11] and [6], respectively, and tetravalent edge-transitive
graphs of girths 3 and 4 have been considered in [14]. Recently, a classification of all cubic
vertex-transitive graphs of girth up to 5 was obtained in [8].

In our investigation of vertex-transitive graphs of small girth, it became apparent to us
that the condition of vertex-transitivity is almost never used in its full strength. What was
needed in most of the arguments was only a particular form of uniformity of the distribution
of girth cycles throughout the graph. Let us make this more precise.

For an edge e of a graph Γ, let ε(e) denote the number of girth cycles containing the
edge e. Let v be a vertex of Γ and let {e1, . . . , ek} be the set of edges incident to v ordered
in such a way that ε(e1) ≤ ε(e2) ≤ · · · ≤ ε(ek). Then the k-tuple (ε(e1), ε(e2), . . . , ε(ek))
is called the signature of v. A graph Γ is called girth-regular provided all of its vertices
have the same signature. The signature of a vertex is then called the signature of the graph.

We should like to point out that girth-regular graphs of signature (a, a, . . . , a) for some
a have been introduced under the name edge-girth-regular graphs in [10], where the au-
thors focused on the families of cubic and tetravalent edge-girth-regular graphs.

By definition, every girth-regular graph is regular (in the sense that all its vertices have
the same valence). Further, it is clear that every vertex-transitive as well as every semisym-
metric graph is girth-regular. Slightly less obvious is the fact that every distance-regular
graph is also girth-regular. The notion of girth-regularity is thus a natural generalisation of
all these notions. On the other hand, examples of girth-regular graphs exist that are neither
vertex-transitive, nor semisymmetric nor distance-regular (for example, the truncation of a
3-prism is such a graph; see Section 3.2).

The central question we would like to propose and address in this paper is the following:

Question 1.1. Given integers k and g, for which tuples σ = (a1, a2, . . . , ak) ∈ Zk does a
girth-regular graph of girth g and signature σ exist?

The above question seems to be very difficult if considered in its full generality. We
begin by stating three theorems proved in Section 2, which give an upper bound on the
entries ai of the signature in terms of the valence k and the girth g, and consider the case
where this upper bound is attained.

Theorem 1.2. If Γ is a girth-regular graph of valence k, girth g, and signature (a1, . . . , ak),
then ak ≤ (k − 1)d, where d = bg/2c.

Theorem 1.3. If Γ is a connected girth-regular graph of valence k, girth 2d for some
integer d, and signature (a1, . . . , ak) such that ak = (k − 1)d, then a1 = a2 = · · · = ak
and Γ is the incidence graph of a generalised d-gon of order (k − 1, k − 1).

In particular, if k = 3, then g ∈ {4, 6, 8, 12} and Γ is isomorphic to K3,3 (if g = 4),
the Heawood graph (if g = 6), the Tutte-Coxeter graph (if g = 8) or to the Tutte 12-cage
(if g = 12).

For a description of the graphs mentioned in the above theorem, see Note 2.2.

Theorem 1.4. If Γ is a connected 3-valent girth-regular graph of girth 2d + 1 for some
integer d and signature (a1, a2, a3) such that a3 = 2d, then Γ is isomorphic to K4 or the
Petersen graph.

In the second part of the paper, we focus on 3-valent graphs (also called cubic graphs)
and obtain a complete classification of cubic girth-regular graphs of girth at most 5 (see
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Theorem 1.5 below). Prisms and Möbius ladders are defined in Section 4, the notion of a
dihedral scheme and truncation is defined in Section 3.2, and graphs arising from maps are
discussed in Section 3.3.

Theorem 1.5. Let Γ be a connected cubic girth-regular of girth g with g ≤ 5. Then either
the signature of Γ is (0, 1, 1) and Γ is a truncation of a dihedral scheme on some g-regular
graph (possibly with parallel edges), or one of the following occurs:

1. g = 3 and Γ ∼= K4 with signature (2, 2, 2);

2. g = 4 and Γ is isomorphic to a prism or to a Möbius ladder, with signature (4, 4, 4)
if Γ ∼= K3,3, signature (2, 2, 2) if Γ is isomorphic to the cube Q3, and signature
(1, 1, 2) otherwise;

3. g = 5 and Γ is isomorphic to the Petersen graph with signature (4, 4, 4), or to the
dodecahedron with signature (2, 2, 2).

Since every vertex-transitive graph is girth-regular, the above result can be viewed as a
partial generalisation of the classification [5] of arc-transitive cubic graphs of girth at most
9 and also a recent classification [8] of vertex-transitive cubic graphs of girth at most 5.

Unless explicitly stated otherwise, by a graph, we will always mean a finite simple
graph, defined as a pair (V,∼) where V is the vertex-set and ∼ an irreflexive symmetric
adjacency relation on V .

However, in Section 3.2 it will be convenient to allow graphs possessing parallel edges;
details will be explained there. Finally, in Section 3.3, when considering embeddings of
graphs onto surfaces, we will intuitively think of a graph in a topological context as a
1-dimensional CW complex. See that section for details.

2 An upper bound on the signature
This section is devoted to the proof of Theorems 1.2, 1.3 and 1.4 that give an upper bound
on the number of girth cycles through an edge in a girth-regular graph and in some cases
characterise the graphs attaining this bound.

2.1 Moore graphs and generalised n-gons

We begin by a well-known result that sets a lower bound on the number of vertices for a
k-regular graph of finite girth g.

Proposition 2.1 (Tutte [16, 8.39], cf. Brouwer, Cohen & Neumaier [2, §6.7]). Let Γ be a
k-regular graph with n vertices and finite girth g ≥ 2. Let d = bg/2c. Then

n ≥

{
1 + k

∑(g−3)/2
j=0 (k − 1)j = k(k−1)d−2

k−2 if g is odd,

2
∑(g−2)/2

j=0 (k − 1)j = 2 (k−1)d−1
k−2 if g is even.

(2.1)

Note 2.2. Let Γ be a k-regular graph of girth g for which equality holds in (2.1). If g
is odd, then such an extremal graph is called a Moore graph. It is well known (see [7]
or [1], for example) that a Moore graph is either a complete graph, an odd cycle, or has
girth 5 and valence k ∈ {3, 7, 57}. Of the latter, the first two cases uniquely determine the
Petersen graph and the Hoffman-Singleton graph, respectively, while no example is known
for k = 57.
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If the girth g is even, then Γ is an incidence graph of a generalised (g/2)-gon of order
(k−1, k−1) (see [15] or [2, §6.5], for example). For k = 2, we have ordinary polygons, and
their incidence graphs are even cycles. For k ≥ 3, such generalised (g/2)-gons only exist
if g/2 ∈ {2, 3, 4, 6} (see [9, Theorem 1]). In particular, if k = 3, then Γ is the incidence
graph of a generalised d-gon of order (2, 2), where d ∈ {2, 3, 4, 6}. For d = 2, this is
a geometry with three points incident to three lines, so its incidence graph is K3,3. For
d = 3, we get the Fano plane, and its incidence graph is the Heawood graph, which is the
unique cubic arc-transitive graph on 14 vertices. For d = 4, there is a unique generalised
quadrangle of order (2, 2), cf. Payne & Thas [12, 5.2.3], and its incidence graph is the
Tutte-Coxeter graph, also known as the Tutte 8-cage, which is the unique connected cubic
arc-transitive graph on 30 vertices. For d = 6, there is a unique dual pair of generalised
hexagons of order (2, 2), cf. Cohen & Tits [3], and their incidence graph (on 126 vertices),
also known as the Tutte 12-cage, is not vertex-transitive. However, the latter graph is edge-
transitive, making it semisymmetric – in fact, it is the unique cubic semisymmetric graph
on 126 vertices (see [4], where this graph is denoted by S126).

2.2 Proof of Theorems 1.2, 1.3 and 1.4

Equipped with these facts, we are now ready to prove Theorems 1.2, 1.3 and 1.4. Let us
thus assume that Γ is a simple connected girth-regular graph of valence k ≥ 3, let g be its
girth and let (a1, a2, . . . , ak) be its signature. Set d = bg/2c.

In order to prove Theorem 1.2, we need to show that ak ≤ (k − 1)d, or equivalently,
that ε(e) ≤ (k − 1)d for every edge e of Γ.

For an integer i and a vertex v of Γ, let Si(v) denote the set of vertices of Γ that are at
distance i from v, and for an edge uv of Γ, let Di

j(u, v) = Si(u) ∩ Sj(v). If i and j are
integers such that |i− j| ≥ 2, then clearly Di

j(u, v) = ∅.
Now let uv be an arbitrary edge of Γ and let i ∈ {2, . . . , d}. For simplicity, let Di

j =

Di
j(u, v). If A and B are two sets of vertices of Γ, let E(A,B) be the set of edges with

one end-vertex in A and the other in B. Since g ≥ 2d, the following facts can be easily
deduced:

(1) Di
i = ∅ if i ≤ d− 1;

(2) each of Di−1
i and Di

i−1 is an independent set;

(3) each vertex in Di−1
i has precisely one neighbour in Di−2

i−1 , and if i ≤ d − 1, precisely
k − 1 neighbours in Di

i+1;

(3’) each vertex in Di
i−1 has precisely one neighbour in Di−1

i−2 , and if i ≤ d − 1, precisely
k − 1 neighbours in Di+1

i ;

(4) |Di
i−1| = |D

i−1
i | = (k − 1)i−1;

(5) if g is even, then ε(uv) = |E(Dd−1
d , Dd

d−1)|;

(6) if g is odd, then every vertex in Dd
d has precisely one neighbour in each of the sets

Dd−1
d , Dd

d−1 and ε(uv) = |Dd
d|.

Henceforth, let uv be an arbitrary edge of Γ such that ε(uv) = ak and let Dj
i =

Dj
i (u, v). The structure of Γ with respect to the sets Dj

i is then depicted in Figure 1.
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Figure 1: The partitions of the vertices of Γ of girth g corresponding to an edge uv lying
on (k − 1)d girth cycles, where d = bg/2c. (a) shows the case when g is even, while (b)
shows the case when Γ is cubic and g is odd. The sets Di

j with i+ j < 2d are independent
sets, while the set Dd

d in the odd case induces a perfect matching.

Suppose first that g is even. Let

D =

d⋃
i=1

(Di
i−1 ∪Di−1

i )

and observe that all of the vertices in D, except possibly those in Dd−1
d and Dd

d−1, have all
of their neighbours contained in D. By (4), we see that

|D| = 2(1 + (k − 1) + · · ·+ (k − 1)d−1) = 2
(k − 1)d − 1

k − 2
.

Moreover, it follows from (1) – (5) that

ak = ε(uv) = |E(Dd−1
d , Dd

d−1)| ≤ (k − 1)|Dd−1
d | = (k − 1)d.

This proves Theorem 1.2 in the case when g is even. (The case when g is odd will be
considered later.)

To prove Theorem 1.3, assume that ak = (k − 1)d. Then equality holds in the above
equation, implying that |E(Dd−1

d , Dd
d−1)| = (k− 1)|Dd−1

d |, which means that each vertex
in Dd−1

d has k − 1 neighbours within Dd
d−1. This implies that every vertex from the set D

has all of its neighbours contained in D, and by connectivity of Γ, we see that V (Γ) = D.
But then by Proposition 2.1 and Note 2.2, the graph Γ is the incidence graph of a generalised
g/2-gon of order (k − 1, k − 1). If, in addition, k = 3 holds, then Γ is one of the graphs
mentioned in the statement of Theorem 1.3. This proves Theorem 1.3.

Let us now move to the case where g is odd, prove Theorem 1.4 and finish the proof of
Theorem 1.2. Suppose henceforth that g is odd. Even though Theorem 1.4 is only about
cubic graphs, we will try to continue the proof without this assumption for as long as we
can. Let

D = Dd
d ∪

d⋃
i=1

(Di
i−1 ∪Di−1

i )

and observe that

|D| ≤ (k − 1)d + 2(1 + (k − 1) + · · ·+ (k − 1)d−1) =
k(k − 1)d − 2

k − 2
.
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If we prove that every vertex inD has all of its neighbours contained inD, the connectivity
of Γ will imply that V (Γ) = D. But then Proposition 2.1 will imply that Γ is a Moore
graph. Since the only cubic Moore graphs are K4 and the Petersen graph, this will then
imply Theorem 1.4.

Note that by (2), (3) and (3’), it follows that the neighbourhoods of all vertices, except
possibly those contained in Dd−1

d , Dd
d−1 or Dd

d , are contained in D. By (3), (3’) and (6), it
follows that |Dd

d| ≤ (k − 1)|Dd−1
d | = (k − 1)d, and by (6) we see that

ak = ε(uv) = |Dd
d| ≤ (k − 1)d,

thus proving Theorem 1.2 also for the case when g is odd.
Assume now that ak = (k − 1)d. Then, by (6), |Dd

d| = (k − 1)d, implying that every
vertex in Dd−1

d (as well as in Dd
d−1) has k− 1 neighbours in Dd

d , and thus none outside the
set D. To prove Theorem 1.4, it thus suffices to show that every vertex from Dd

d has all of
its neighbours in D.

Since every vertex in Dd
d+1 or Dd+1

d has to have at least one neighbour in Dd−1
d or

Dd
d−1, respectively, and since all of the neighbours of vertices in the latter two sets lie in

Dd
d , Dd−2

d−1 and Dd−1
d−2 , it follows that the sets Dd

d+1 and Dd+1
d are empty. By consequence,

the sets Di+1
i (u, v) and Di

i+1(u, v) for i ≥ d are also empty. Let us summarise that in
Lemma 2.3.

Lemma 2.3. Let Γ be a girth-regular graph of girth 2d + 1 and signature (a1, . . . , ak)
such that ak = (k − 1)d. If uv is an edge of Γ such that ε(uv) = ak, then for i ≥ d the
sets Di+1

i (u, v) and Di
i+1(u, v) are empty.

Suppose now that V (Γ) 6= D. Then a vertex y ∈ Dd
d has a neighbour w outside D.

Since the girth of Γ is 2d + 1, there exists a unique path of length d from y to u. Let v′

be the neighbour of u through which this path passes, and let u′ be a neighbour of v′ other
than u such that ε(v′u′) = ε(uv). Let Ei

j = Di
j(u
′, v′) and observe that by Lemma 2.3, the

sets Ed+1
d and Ed

d+1 are empty. Furthermore, since w is not in D but has a neighbour y in
D, we see that d(w, u) = d+ 1, implying that w ∈ Dd+1

d+1 .
We shall now partition the set Dd−1

d with respect to the distance to the vertices v′ and
u′. In particular, we will show that Dd−1

d is a disjoint union of the sets

X = Dd−1
d ∩ Ed−3

d−2 ,

Y = Dd−1
d ∩ Ed−1

d−2 ,

Z = Dd−1
d ∩ Ed

d .

To prove this, note first that a vertex inDd−1
d is at distance d−1 from u and thus by (1),

it is either at distance d − 2 or d from v′. Furthermore, those vertices that are at distance
d − 2 from v′ are either at distance d − 3 or d − 1 from u′, and therefore belong to X or
Y . Now let x be an element of Dd−1

d that is at distance d from v′. Since Ed+1
d = ∅, this

implies that x is either inEd−1
d or inEd

d . If x ∈ Ed−1
d , then there exist two distinct paths of

length d from x to v′, one passing through u and one passing through u′, yielding a cycle
of length at most 2d, which is a contradiction. Hence x ∈ Ed

d , and therefore x ∈ Z.
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We will now determine the sizes of X , Y and Z. In particular, we will show that:

|X| = (k − 1)d−3,

|Y | = (k − 2)(k − 1)d−3,

|Z| = (k − 2)(k − 1)d−2.

To prove the first equality, observe that X consists of all the ends of paths of length
d − 2 that start with v′u′. The equality for |X| then follows from the fact that there are
(k− 1)d−3 such paths. Further, note that Y consists of all the ends of paths of length d− 2
that start in v′ but do not pass through u′ or u. There are (k − 2)(k − 1)d−3 such paths,
proving the equality for |Y |. Finally, to prove the equality for |Z|, observe that Z consists
of all the ends of paths of length d− 1 that start in u but do not pass through v or v′; there
are clearly (k − 2)(k − 1)d−2 such paths.

We will now partition the set Dd
d into sets X ′, Y ′ and Z ′ defined as follows. Let x be

a vertex of Dd
d and observe that there is a unique path from x to u of length d. If this path

passes through X , then we let x ∈ X ′, if it passes through Y , then we let x ∈ Y ′, and if it
passes through Z, we let x ∈ Z ′.

Since each vertex in Dd−1
d has k − 1 neighbours in Dd

d and each vertex in Dd
d has

precisely one neighbour in Dd−1
d , we see that

|X ′| = (k − 1)|X| = (k − 1)d−2,

|Y ′| = (k − 1)|Y | = (k − 2)(k − 1)d−2,

|Z ′| = (k − 1)|Z| = (k − 2)(k − 1)d−1.

Observe furthermore that a vertex x in X ′, having a neighbour in X , is at distance at
most d− 2 from u′, but since it is at distance d from u, it is at distance exactly d− 2 from
u′. Similarly, d(x, v′) ≤ d − 1 and since d(x, u) = d, we see that d(x, v′) = d − 1. In
particular, x ∈ Ed−2

d−1 and thus

X ′ = Dd
d ∩ Ed−2

d−1 = Ed−2
d−1 .

A similar argument shows that
Y ′ = Dd

d ∩ Ed
d−1.

Let us now consider the set Z ′, and in particular the intersection A = Z ′ ∩ Ed−1
d . Note

that each vertex in Z must have at least one neighbour in A, for otherwise it could not be at
distance d from u′. This implies that |A| ≥ |Z| = (k − 2)(k − 1)d−2. On the other hand,
for a similar reason, each vertex in A must have a neighbour in X ′. By comparing the sizes
of A and X ′, we may thus conclude that every vertex in X ′ has k − 2 neighbours in A and
each vertex inA has precisely one neighbour inX ′. In particular, every vertex inX ′ has all
of its neighbours in D, and consequently, the vertex w has no neighbours in X ′. Therefore,
we have y ∈ Y ′. Now recall that w ∈ Dd+1

d+1 , implying that d(w, v′) ≥ d. On the other
hand, w has a neighbour in Y ′, which is a subset of Ed

d−1, implying that d(w, v′) = d.
Since Ed+1

d = ∅, it follows that w ∈ Ed
d , and hence there exists a path wz1z2 . . . zd−1u

′

of length d from w to u′. By considering possibilities for such a path, one can now easily
see that z1 ∈ Z ′ and z2 ∈ X ′. But then z1 has at least four neighbours: z2, w, a neighbour
in Z, and a neighbour in Dd

d−1, see Figure 2. This contradicts our assumption that the
valence k is 3. This contradiction shows that V (Γ) = D, and thus completes the proof of
Theorem 1.4.
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Figure 2: The partitions of the vertices of Γ of girth g, where g is odd, corresponding to the
edges uv and u′v′, both lying on 2d girth cycles, where d = bg/2c. Assuming there is a
vertex w ∈ Dd+1

d+1 , we show that w ∈ Ed
d has a neighbour in Z ′, which in turn must have at

least four neighbours.

3 Cubic girth-regular graphs
Let us now turn our attention to cubic girth-regular graphs. After proving a few auxiliary
lemmas, we will characterise cubic girth-regular graphs of some specific signatures. As an
application of our analysis, we provide a characterisation of all cubic girth-regular graphs
of girth at most 5 in Sections 4 and 5.

3.1 Auxiliary results

Lemma 3.1. If (a, b, c) is the signature of a cubic girth-regular graph Γ of girth g, then:

1. a+ b+ c is even,

2. a+ b ≥ c, and

3. if a ≥ 1 and c = a+ b, then g is even.

Proof. Let u be a vertex of Γ and let and e1, e2 and e3 be the three edges incident to u,
lying on a, b and c g-cycles, respectively. Further, let x, y, z be the number of g-cycles the
2-paths e1e2, e2e3 and e3e1 lie on, respectively. Clearly, we have a = x + z, b = x + y
and c = y + z. Then a+ b+ c = 2(x+ y + z), showing that this sum is even.

Further we may express x = (a+ b− c)/2, y = (−a+ b+ c)/2 and z = (a− b+ c)/2.
Since these numbers are nonnegative, it follows that a+ b ≥ c.

Now suppose that a ≥ 1 and c = a + b. Let us call an edge e with ε(e) = c saturated
and others unsaturated. Note that c > b, implying that e1 and e2 are unsaturated while
e3 is saturated. Since y + z = c = a + b = 2x + y + z, we see that x = 0. Since u
was an arbitrary vertex of Γ, this shows that a 2-path in Γ consisting of two unsaturated
edges belongs to no g-cycles. In particular, when traversing a g-cycle in Γ, saturated and
unsaturated edges must alternate, implying that g is even.

Lemma 3.2. If the signature of a cubic girth-regular graph is (0, b, c), then b = c = 1.

Proof. Let Γ be a cubic girth-regular graph with signature (0, b, c) and let g be its girth.
By part (2) of Lemma 3.1, it follows that b = c. Suppose that b > 1. Let e be an edge of
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Figure 3: The partitions of the vertices of Γ of girth g corresponding to a 2-path uvw lying
on 2d−1 girth cycles, where d = bg/2c. (a) shows the case when g is even, while (b) shows
the case when g is odd. The sets Di

j with i+ j < 2d are independent sets, while the set Dd
d

may contain edges. Note that no vertex of Di
i (i ∈ {d − 1, d}) with a neighbour in Di−1

i−1

can have a neighbour in Di−1
i or Di

i−1.

Γ lying on b g-cycles, and let C,C ′ be two distinct g-cycles containing e. Since C 6= C ′,
there exists a vertex u such that one of the edges incident to u lies on both C and C ′,
while each of the remaining two edges incident to u belongs to exactly one of C and C ′.
However, this contradicts a = 0.

Corollary 3.3. If Γ is a cubic girth-regular graph with signature (a, b, c) and girth g,
where g is odd, then a 6= 1.

Proof. Suppose that a = 1. By part (2) of Lemma 3.1, c = b or c = b + 1. If b = c, then
a + b + c is odd, contradicting part (1) of Lemma 3.1. Hence c = b + 1 = a + b, and by
part (3) of Lemma 3.1, g is even, contradicting our assumptions.

Lemma 3.4. Let Γ be a cubic girth-regular graph of girth g with signature (a, b, c). Let
m = 2bg/2c−1. Then a ≥ c−m and b ≤ a− c+ 2m.

Proof. Let us first show that any 2-path in Γ lies on at mostm girth cycles. Let uvw be a 2-
path in Γ, and letDi

j be the set of vertices at distance i from u and at distance j from w. Set
d = bg/2c. Similarly as in the proof of Theorem 1.2, we can see that the number of girth
cycles containing the 2-path uvw equals the number of common neighbours of vertices in
the sets Dd−2

d and Dd
d−2 if g is even, and the number of edges between the vertices in the

sets Dd−1
d and Dd

d−1 if g is odd, see Figure 3. In the even case, |Dd−2
d | = |Dd

d−2| = 2d−2,
and each of the vertices from Dd−2

d or Dd
d−2 may have at most two common neighbours

with vertices of the other set, so uvw can lie on at most 2d−1 = m girth cycles. In the odd
case, we have |Dd−1

d |, |Dd
d−1| ≤ 2d−1, and each vertex from Dd−1

d or Dd
d−1 may have at

most one neighbour in the other set, as otherwise we would have a cycle of length 2d < g.
Therefore, uvw can lie on at most m girth cycles also in this case.
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As each of a, b, c is the sum of the number of girth cycles two distinct 2-paths sharing
the central vertex lie on, the quantity c − a equals the difference between the numbers of
girth cycles two such 2-paths lie on, and is therefore at most m, from which a ≥ c − m
follows. Also, the quantity −a+ b+ c equals twice the number of girth cycles a 2-path in
Γ lies on, and is therefore at most 2m. From this, b ≤ a− c+ 2m follows.

3.2 Dihedral schemes, truncations and signature (0, 1, 1)

In this section we will allow graphs to have parallel edges and loops. A graph with parallel
edges and loops is defined as a triple (V,E, ∂) where V and E are the vertex-set and the
edge-set of the graph and ∂ : E → {X : X ⊆ V, |X| ≤ 2} is a mapping that maps an
edge to the set of its end-vertices. If |∂(e)| = 1, then e is a loop. Further, we let each edge
consist of two mutually inverse arcs, each of the two arcs having one of the end-vertices as
its tail. If the graph has no loops, we may identify an arc with tail v underlying edge e with
the pair (v, e). The set of arcs of a graph Γ is denoted by A(Γ) and the set of the arcs with
their tail being a specific vertex u by outΓ(u). The valence of a vertex u is defined as the
cardinality of outΓ(u).

A dihedral scheme on a graph Γ (possibly with parallel edges and loops) is an irreflexive
symmetric relation ↔ on the arc-set A(Γ) such that the simple graph (A(Γ),↔) is a 2-
regular graph each of whose connected components is the set outΓ(u) for some u ∈ V (Γ).
(Intuitively, we may think of a dihedral scheme as a collection of circles drawn around each
vertex u of Γ intersecting each of the arcs in outΓ(u) once.) Note that, according to this
definition, the minimum valence of a graph admitting a dihedral scheme is at least 3.

The group of all automorphisms of Γ that preserve the relation ↔ will be denoted
by Aut(Γ,↔) and the dihedral scheme ↔ is said to be arc-transitive if Aut(Γ,↔) acts
transitively on A(Γ).

Given a dihedral scheme ↔ on a graph Γ, let Tr(Γ,↔) be the simple graph whose
vertices are the arcs of Γ and two arcs s, t ∈ Γ are adjacent in Γ if either t ↔ s or t and
s are inverse to each other. The graph Tr(Γ,↔) is then called the truncation of Γ with
respect to the dihedral scheme↔. Note that Tr(Γ,↔) is a cubic graph which is connected
whenever Γ is connected.

As we shall see in Section 3.3, a natural source of arc-transitive dihedral schemes are
arc-transitive maps (either orientable or non-orientable). However, not all dihedral schemes
arise in this way.

Clearly, the automorphism group Aut(Γ,↔) acts naturally as a group of automor-
phisms of Tr(Γ,↔), implying that Tr(Γ,↔) is vertex-transitive whenever the dihedral
scheme↔ is arc-transitive. The following result gives a characterisation of arc-transitive
dihedral schemes in group theoretical terms. Here, the symbol Dd denotes the dihedral
group of order 2d acting naturally on d points, while Zd is the cyclic group acting transi-
tively on d points.

Lemma 3.5. Let Γ be an arc-transitive graph (possibly with parallel edges) of valence d
for some d ≥ 3. Then Γ admits an arc-transitive dihedral scheme if and only if there exists
an arc-transitive subgroupG ≤ Aut(Γ) such that the groupGoutΓ(u)

u induced by the action
of the vertex stabiliser Gu on the set outΓ(u) is permutation isomorphic to the transitive
action of Dd, Zd or (when d is even) D d

2
on d vertices.

Proof. Suppose that↔ is a dihedral scheme on Γ and thatG = Aut(Γ,↔). ThenGoutΓ(u)
u
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preserves the restriction ↔u of the relation ↔ onto outΓ(u), and thus acts as a vertex-
transitive group of automorphisms on the simple graph (outΓ(u),↔u). Since the latter
graph is a cycle of length d, we thus see that GoutΓ(u)

u is a transitive subgroup of Dd and
thus permutation isomorphic to one of the transitive actions mentioned in the statement of
the lemma.

Conversely, suppose that for some vertex u, the group GoutΓ(u)
u is permutation isomor-

phic to the transitive action of Dd, Zd, or (if d is even) Dd/2 on d vertices. In all three
cases, we may choose an adjacency relation↔u on outΓ(u) preserved by GoutΓ(u)

u in such
a way that (outΓ(u),↔u) is a cycle. For every v ∈ V (Γ), choose an element gv ∈ G
such that vgv = u, and let↔v be the relation on outΓ(v) defined by s ↔v t if and only if
sgv ↔u t

gv . Then clearly (outΓ(v),↔v) is a cycle, implying that the union↔ of all↔u

for u ∈ V (Γ) is a dihedral scheme. Moreover, it is a matter of straightforward computation
to show that↔ is invariant under G.

We are now ready to prove the following characterisation of cubic girth-regular graphs
of signature (0, 1, 1).

Theorem 3.6. If Γ is a simple cubic girth-regular graph of girth g with signature (0, 1, 1),
then Γ ∼= Tr(Λ,↔), where ↔ is a dihedral scheme on a g-regular graph Λ (possibly
with parallel edges). Moreover, if Γ is vertex-transitive, then the dihedral scheme is arc-
transitive.

Proof. Let V be the vertex-set of Γ, let T be the set of girth cycles in Γ, letM be the set of
edges that belong to no girth cycle in Γ, and let G = Aut(Γ). Note that since the signature
of Γ is (0, 1, 1), each vertex v ∈ V is incident to exactly one edge inM and to exactly one
girth cycle in T .

For an edge v′v ∈ M, let C and C ′ be the girth cycles that pass through v and v′,
respectively, and let ∂(v′v) = {C,C ′}. This allows us to define a graph Λ = (T ,M, ∂).

Note that since C,C ′ ∈ V (Λ) are girth cycles of Γ, we have C 6= C ′, and so Λ has no
loops. This allows us to view an arc of Λ as a pair (C, e) where e ∈ M and C is a girth
cycle of Γ passing through one of the two end-vertices of e. For two such pairs (C1, e1)
and (C2, e2) we write (C1, e1) ↔ (C2, e2) if and only if C1 = C2 and the end-vertices
of e1 and e2 that belong to C1 are two consecutive vertices of C1. Then ↔ is a dihedral
scheme on Λ. Let Γ′ = Tr(Λ,↔).

We will now show that Γ′ ∼= Γ. By the definition of truncation, the vertex-set of Γ′

equals the arc-set of Λ. For an arc (C, e) of Λ let ϕ(C, e) be the unique end-vertex of e
that belongs to C. Since each vertex of Γ is incident to exactly one edge inM and exactly
one cycle in T , it follows that ϕ is a bijection between V (Γ′) and V (Γ). If (C1, e1) and
(C2, e2) are adjacent in Γ′, then either (C1, e1) ↔ (C2, e2) or (C1, e1) and (C2, e2) are
inverse arcs in Γ′. In the first case, C1 = C2 and the vertices ϕ(C1, e1) and ϕ(C2, e2) are
adjacent on C1. In the second case, e1 = e2 and the vertices ϕ(C1, e1) and ϕ(C2, e2) are
the two end-vertices of e1. In both cases ϕ(C1, e1) and ϕ(C2, e2) are adjacent in Γ. By a
similar argument we see that whenever ϕ(C1, e1) and ϕ(C2, e2) are adjacent in Γ, (C1, e1)
and (C2, e2) are adjacent in Γ′. Since both Γ and Γ′ are simple graphs (one by assumption,
the other by definition), this shows that ϕ is a graph isomorphism.

Suppose now that G is transitive on the vertices of Γ. Since both sets T and M are
invariant under the action of G, there exists a natural action of G on Λ that preserves the
dihedral scheme↔; that is, G ≤ Aut(Λ,↔). Now let (C1, e1) and (C2, e2) be two arcs
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of Λ, and for i ∈ {1, 2}, let vi be the unique end-vertex of ei that lies on Ci. Since G is
vertex-transitive on Γ, there exists g ∈ G mapping v1 to v2. Since Ci is the unique girth-
cycle through vi for i ∈ {1, 2}, it follows that Cg

1 = C2. Similarly, since ei is the unique
edge inM incident with vi for i ∈ {1, 2}, it follows that eg1 = e2. This shows that G acts
transitively on the arcs of Λ.

Note 3.7. Parallel edges occur in the graph Λ as in Theorem 3.6 whenever there exist two
girth cycles in Γ such that there are at least two edges with an end-vertex in each of the
two girth cycles. In fact, it can be easily seen that in a girth-regular graph Γ with signature
(0, 1, 1), there are at most two such edges between any two girth cycles, leading to at most
two parallel edges between each two vertices, with the exception of the case when Γ is
the 3-prism (see Section 4) and Λ is the graph with two vertices and three parallel edges
between them.

Note 3.8. No nontrivial bound on the girth of the graph Λ as in Theorem 3.6 can be given.
In fact, we can construct a family of graphs of constant girth such that their truncations
with respect to appropriate dihedral schemes are cubic girth-regular graphs with signature
(0, 1, 1) and unbounded girth. Let Λ be a graph obtained by doubling all edges in a k-
regular graph of girth at least k+1

2 – the girth of Λ is then 2. Equip Λ with a dihedral
scheme↔ such that each two arcs with a common tail belonging to two parallel edges are
antipodal in the connected component of the graph defined by ↔ they belong to. Then
Tr(Λ,↔) is a cubic girth-regular graph of girth k and signature (0, 1, 1).

3.3 Maps and signatures (2, 2, 2) and (1, 1, 2)

In this section, it will be convenient to think of a graph (possibly with parallel edges) as
a topological space having the structure of a regular 1-dimensional CW complex with the
vertices of the graph corresponding to the 0-cells of the complex and the edges correspond-
ing to the 1-cells. A simple closed walk (that is, a closed walk that traverses each edge at
most once) in the graph then corresponds to a closed curve in the corresponding topologi-
cal space which may intersect itself only in the points that correspond to the vertices of the
graph.

Given a graph Γ (viewed as a CW complex) and a set of simple closed walks T in Γ, one
can construct a 2-dimensional CW complex in the following way. First, take a collectionD
of topological disks, one for each walk in T . Then choose a surjective continuous mapping
from the boundary of each disk to the closed curve in Γ representing the corresponding
walk in T , such that the preimage of each point that is not a vertex of the graph is a
singleton. Finally, identify each point of the boundary of the disk with its image under that
continuous mapping. Note that the resulting topological space is independent of the choice
of the homeomorphisms D and thus depends only on the choice of the graph and the set of
closed walks T .

When Γ is connected and the resulting topological space is a closed surface (either
orientable or non-orientable), the CW complex is also called a map. Its open 2-cells are
then called the faces of the map, the closed walks in T are called the face-cycles and the
graph Γ is the skeleton of the map. A map whose skeleton is a k-regular graph and all of
whose face cycles are of length m is called an {m, k}-map. The following lemma provides
a sufficient condition on the set of cycles T under which the resulting 2-dimensional CW
complex is indeed a map.
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Lemma 3.9. Let Γ be a graph and T a set of simple closed walks in Γ such that every
edge of Γ belongs to precisely two walks in T . For two arcs s and t with a common tail,
write s ↔ t if and only if the underlying edges of s and t are two consecutive edges on a
walk in T . If↔ is a dihedral scheme, then Γ is the skeleton of a map whose face cycles are
precisely the walks in T .

Proof. Let us think of Γ as a 1-dimensional CW complex and let us turn it into a 2-
dimensional CW complex by adding to it one 2-cell for each walk in T as described above.

Let us now prove that the resulting topological spaceM is a closed surface. It is clear
that the internal vertices of the 2-cells have a regular neighbourhood. Further, since each
edge of Γ lies on precisely two walks in T , the internal points of edges also have a regular
neighbourhood, made up from two half-disks, each contained in the 2-cell glued to one
of the walks in T passing through that edge. Finally, let u be a vertex of Γ, let k be
the valence of u, and let {si : i ∈ Zk} be the set of arcs with the initial vertex u such that
s0 ↔ s1 ↔ · · · ↔ sk−1 ↔ s0. By the definition of↔, each pair of arcs (si, si+1) (i ∈ Zk)
lies on a unique walk Ci in T . Note that Ci 6= Ci+1, for otherwise the edge underlying
si+1 would lie on only one walk in T . This implies that a regular neighbourhood of u inM
can be built by taking appropriate half-disks from the 2-cells corresponding to the cycles
Ci (i ∈ Zk), and gluing them together in the order suggested by the relation↔. This shows
thatM is a 2-manifold without a boundary. Finally, since Γ is finite,M is compact, and
thus a closed surface. Hence,M is a map with Γ as its skeleton.

Each face of a map can be decomposed further into flags, that is, triangles with one
vertex in the centre of a face, one vertex in the centre of an edge on the boundary of that
face and one in a vertex incident with that edge. In most cases, a flag can be viewed as a
triple consisting of a vertex, an edge incident to that vertex, and a face incident to both the
vertex and the edge.

An automorphism of a map is then defined as a permutation of the flags induced by a
homeomorphism of the surface that preserves the embedded graph. A map is said to be
vertex-transitive or arc-transitive provided that its automorphism group induces a vertex-
transitive or arc-transitive group on the skeleton of the map, respectively.

Note 3.10. If a map is built from a graph Γ and a set of simple closed walks T as in
Lemma 3.9, then each automorphism of Γ that preserves the set of walks T clearly extends
to an automorphism of the map.

IfM is a map on a surface S, then the sets V , E and F of the vertices, edges and faces,
respectively, satisfy the Euler formula

|V | − |E|+ |F | = χ(S)

where χ(S) is the Euler characteristic of the surface S . It is well known that χ(S) ≤ 2
with equality holding if and only if S is homeomorphic to a sphere. Moreover, if χ(S) is
odd, then S is non-orientable.

As the following two results show, skeletons of maps arise naturally when analysing
cubic vertex-transitive graphs of signature (2, 2, 2) or (1, 1, 2).

Theorem 3.11. Let Γ be a simple connected cubic girth-regular graph of girth g and
order n with signature (2, 2, 2). Then g divides 3n and Γ is the skeleton of a {g, 3}-map
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embedded on a surface with Euler characteristic

χ = n

(
3

g
− 1

2

)
.

Moreover, every automorphism of Γ extends to an automorphism of the map. In particular,
if Γ is vertex-transitive, so is the map.

Proof. Let T be the set of girth cycles of Γ. Since the valence of Γ is 3, it follows easily
that the relation ↔ from Lemma 3.9 satisfies the conditions stated in the lemma; that is,
↔ is a dihedral scheme. Lemma 3.9 thus yields a mapM whose skeleton is Γ and whose
face-cycles are precisely the walks in T ; in particular,M is a {g, 3}-map, as claimed.

Since Γ is a cubic graph with n vertices, it has 3n/2 edges, and since each vertex
lies on three face-cycles and since each face-cycle contains g vertices, the map M has
3n/g faces (showing that g must divide 3n). The Euler characteristic of M thus equals
n− 3n

2 + 3n
g = n( 3

g −
1
2 ).

Since every automorphism of Γ preserves T , it extends to an automorphism ofM (see
Note 3.10).

Theorem 3.11 has the following interesting consequence.

Corollary 3.12. There exists only finitely many connected cubic girth-regular graphs with
signature (2, 2, 2) of girth at most 5.

Proof. Suppose that Γ is a connected cubic girth-regular graph with signature (2, 2, 2) of
girth g and order n. By Theorem 3.11, Γ is a skeleton of a map on a surface of Euler
characteristic χ = n(3/g − 1/2). Hence, if g ≤ 5, then χ ≥ n/10, and since χ ≤ 2, it
follows that n ≤ 20.

Note 3.13. For each g ≥ 6, there are infinitely many girth-regular graphs of girth g with
signature (2, 2, 2).

If M is a map and Γ is its skeleton, then one can define a dihedral scheme ↔ on Γ
by letting s ↔ t whenever the arcs s and t have a common tail and the underlying edges
of s and t are two consecutive edges on some face-cycle ofM. The truncation Tr(Γ,↔)
is then simply referred to as the truncation of the mapM and denoted Tr(M). Note that
this construction in some sense complements Lemma 3.9. We are now equipped for a
characterisation of cubic girth-regular graphs with signature (1, 1, 2).

Theorem 3.14. Let Γ be a simple connected cubic girth-regular graph of girth g with n
vertices and signature (1, 1, 2). Then g is even and Γ is the truncation of some mapM with
face cycles of length g/2. In particular, g/2 divides n. Moreover, if Γ is vertex-transitive,
M is an arc-transitive {g/2, `}-map for some ` > g.

Proof. By part (3) of Lemma 3.1 we know that g is even and in particular, g ≥ 4. Let X
be the set of edges of Γ that belong to exactly one girth cycle and let Y be the set of edges
that belong to two girth cycles. Since the signature of Γ is (1, 1, 2), every vertex of Γ is
incident to two edges in X and one edge in Y . Consequently, the edges in Y form a perfect
matching of Γ and the subgraph induced by the edges in X is a union of vertex-disjoint
cycles of Γ that cover all the vertices of Γ. Let us denote the set of these cycles by C.
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Observe also that two edges in X sharing a common end-vertex, say v, cannot be two
consecutive edges on the same girth cycle, for otherwise that would be a unique girth cycle
through v, contradicting the fact that the third edge incident with v belongs to two girth
cycles. Since the edges in Y form a complete matching of Γ, the same holds for the edges
in Y , implying that the edges on any girth cycle alternate between the sets X and Y .

For an edge e in Y with end-vertices u and v, let Cu and Cv be the unique cycles in
C that pass through u and v, respectively, and define ∂(e) to be the pair {Cu, Cv}. Let
Λ = (C,Y, ∂). Note that since the edges of Λ are precisely those edges of Γ that belong
to Y , we may think of the arc-set A(Λ) as being the set of arcs of Γ that underlie edges in
Y . Note also that it may happen that for some e ∈ Y , we may have Cu = Cv and then the
graph Λ has loops. If D is a girth cycle of Γ, then the edges of D that belong to Y induce
a simple closed walk in the graph Λ of length g/2, which we denote D̂.

Let T be the set of walks D̂ where D runs through the set of girth cycles of Γ. Since
edges of Λ correspond to the edges of Γ that pass through two girth cycles of Γ, each edge
of Λ belongs to two walks in T . As |Y| = n/2, it follows that g/2 divides n.

Let↔ be the relation on the arcs of Λ defined by T as explained in Lemma 3.9. It is
easy to see that ↔ is a dihedral scheme. Indeed, let C ∈ C be a vertex of Λ viewed as a
cycle in Γ and let v0, v1, . . . , vk−1 ∈ V (Γ) be its vertices listed in a cyclical order as they
appear on C. Further, for each i ∈ Zk, let si be the arc of Γ with tail vi that underlies
an edge contained in Y . The arc si can thus also be viewed as an arc of Λ. Observe that
outΛ(C) = {s0, s1, . . . , sk−1} and that s0 ↔ s1 ↔ · · · ↔ sk−1 ↔ s0. In particular,↔ is
a dihedral scheme.

By Lemma 3.9, there exists a map M with skeleton Λ in which T is the set of face-
cycles. Moreover,↔ equals the dihedral scheme arising from that map.

Let Γ′ = Tr(M) and let s be a vertex of Γ′. Then s is an arc of Λ and thus also an
arc of Γ underlying an edge in Y . By letting ϕ(s) be the tail of s (viewed as an arc of Γ),
we define a mapping ϕ : V (Γ′)→ V (Γ). Note that the mapping which assigns to a vertex
v ∈ V (Γ) the unique arc of Γ with tail v that underlies an edge in Y is the inverse of ϕ,
showing that ϕ is a bijection. Furthermore, note that two vertices s and t of Γ′ are adjacent
in Γ′ if and only if one of the following happens: (1) they are inverse to each other as arcs
of Λ; or (2) they have a common tail and s ↔ t. In case (1), ϕ(s) and ϕ(t) are adjacent
in Γ via an edge in Y , while in case (2), ϕ(s) and ϕ(t) are adjacent in Γ via an edge in
X . Conversely, if for some s, t ∈ V (Γ′), the images ϕ(s) and ϕ(t) are adjacent in Γ, then
either s and t are inverse to each other as arcs of Λ (this happens if ϕ(s) and ϕ(t) form an
edge in Y), or s and t have a common tail and s↔ t (this happens if ϕ(s) and ϕ(t) form an
edge in X ). In both cases, s and t are adjacent in Γ′. This implies that ϕ is an isomorphism
of graphs and thus Γ ∼= Tr(M), as claimed.

Since every automorphism of Γ preserves each of the sets Y and X (and thus also C), it
clearly induces an automorphism of the graph Λ which preserves the set T . In particular,
every automorphism of Γ induces an automorphism of the mapM.

Finally, suppose that Γ is vertex-transitive. Then all cycles of C have the same length
` > g. As each vertex of a cycle of C is incident to precisely one edge of Y , it follows that
Λ is an `-regular graph, andM is then a {g/2, `}-map. LetG be a group of automorphisms
of Γ acting transitively on V (Γ). Note that every vertex of Γ is the tail of precisely one arc
of Γ that underlies an edge of Y . In view of our identification of the arcs of Γ′ with the arcs
of Γ that underlie an edge in Y , we thus see that the transitivity of the action of G on V (Γ)
implies the transitivity of the action of G on the arcs ofM.
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4 Cubic girth-regular graphs of girths 3 and 4

Before stating the theorem about girth-regular cubic graphs of girth 3, let us point out that
every cubic graph admits a unique dihedral scheme, which is preserved by every auto-
morphism of the graph. This allows us to talk about truncations of cubic graphs without
specifying the dihedral scheme.

Theorem 4.1. Let Γ be a connected cubic girth-regular graph of girth 3. Then one of the
following holds:

(a) Γ is isomorphic to the complete graph K4;

(b) Γ has signature (0, 1, 1) and is isomorphic to the truncation of a cubic graph.

Proof. Let (a, b, c) be the signature of Γ. By Theorem 1.2 it follows that c ≤ 2. If c = 2,
then Theorem 1.4 implies that Γ is isomorphic to K4. On the other hand, if c = 1, then
Lemmas 3.1 and 3.2 imply that the signature of Γ is (0, 1, 1), and by Theorem 3.6, it follows
that Γ is the truncation of a cubic graph.

Let us now move our attention to graphs of girth 4. Before stating the classification
theorem, let us define two families of cubic vertex-transitive graphs.

For n ≥ 3, let the n-Möbius ladder Mn be the Cayley graph Cay(Z2n, {−1, 1, n}).
Note that such a graph has girth 4. The graph Mn has signature (4, 4, 4) if n = 3 (in this
case it is isomorphic to the complete bipartite graph K3,3), and (1, 1, 2) if n ≥ 4. An
n-Möbius ladder can also be seen as the skeleton of the truncation of the {2, 2n}-map with
a single vertex embedded on a projective plane.

For n ≥ 3, the n-prism Yn is defined as the Cartesian productCn �K2 or, alternatively,
as the Cayley graph Cay(Zn × Z2, {(−1, 0), (1, 0), (0, 1)}). The girth of Y3 is 3, while
the girth of Yn for n ≥ 4 is 4. The graph Yn has signature (2, 2, 2) if n = 4 (in this case it
is isomorphic to the cube Q3), and (1, 1, 2) if n ≥ 5. An n-prism can also be seen as the
skeleton of the truncation of the {2, n}-map with two vertices embedded on a sphere, i.e.,
an n-gonal hosohedron.

Theorem 4.2. Let Γ be a connected cubic girth-regular graph of girth 4. Then Γ is iso-
morphic to one of the following graphs:

(a) the n-Möbius ladder Mn for some n ≥ 3;

(b) the n-prism Yn for some n ≥ 4;

(c) Tr(Λ,↔) for some tetravalent graph Λ and a dihedral scheme↔ on Λ.

Proof. Let (a, b, c) be the signature of Γ. By Theorem 1.2, we see that c ≤ 4, and by
Theorem 1.3, if c = 4, then the signature of Γ is (4, 4, 4) and Γ ∼= K3,3

∼= M3.
Suppose now that c = 3. Then, by Lemma 3.1, a+ b is odd, and by Lemma 3.2, a ≥ 1.

Hence either a = 1 and then b = 2, or a = 2 and then b = 3. The possible signatures in
this case are thus (1, 2, 3) and (2, 3, 3). Let us show that neither can occur.

Let uv be an edge of Γ lying on three 4-cycles, and u0, u1 and v0, v1 be the remaining
neighbours of u and v, respectively. There must be three edges with one end-vertex in
{u0, u1} and the other in {v0, v1}; without loss of generality, these edges are u0v0, u0v1

and u1v1 (see Figure 4(c)). Then the edges uu0 and vv1 already lie on three 4-cycles,
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v0
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Figure 4: (a) The graph K4 of girth 3 with signature (2, 2, 2). (b) The graph Y3 of girth 3
with signature (1, 1, 2). (c) Constructing a graph of girth 4 with c = 3. The dashed edges
should lie on two 4-cycles, however the doubled edge already lies on three 4-cycles.

so we have b = 3, and thus a = 2. In particular, ε(uu1) = ε(vv0) = 2. Then the
edge u1v1, being incident to both u1 and v1, belongs to precisely three 4-cycles, that is
ε(u1v1) = 3. Similarly, ε(u0v0) = 3. It follows that the edge u0v1 lies on precisely two
4-cycles. However, we have already determined three 4-cycles on which u0v1 lies; these
are uu0v1v, v0u0v1v, and uu0v1u1. This contradiction shows that the case c = 3 is not
possible.

Suppose now that c = 2. By Lemma 3.1, a + b is even, and by Lemma 3.2, a ≥ 1.
Hence the signature of Γ is either (1, 1, 2) or (2, 2, 2).

If (a, b, c) = (1, 1, 2), then, by Theorem 3.14, Γ is the skeleton of the truncation of
a connected mapM with face cycles of length 2. Since every edge belongs to two faces
and every face is surrounded by two edges, the number of faces equals the number of
edges. The Euler characteristics χ(S) of the underlying surface S thus equals |V (M)|.
Since χ(S) ≤ 2, it follows that M has one or two vertices, depending on whether S
is the projective plane or the sphere – in particular, the skeleton of M is an `-regular
graph for some ` > 4. IfM has one vertex only, then it consists of `/2 loops embedded
onto the projective plane in such a way that its truncation is the Möbius ladder Mn with
n = `/2 ≥ 4, see Figure 5(a) (note that M3

∼= K3,3 has signature (4, 4, 4)). On the
other hand, if M has two vertices, then M is the map with two vertices and ` parallel
edges embedded onto the sphere. The graph Γ is then isomorphic to the n-prism Yn with
n = ` ≥ 5.

If (a, b, c) = (2, 2, 2), then, by Theorem 3.11, Γ is the skeleton of a {4, 3}-map embed-
ded on a surface of Euler characteristic χ = n/4 > 0. As above, χ ≤ 2 and thus χ = 1
or 2. For χ = 1, we get the hemicube on the projective plane (see Figure 5(b)), and its
skeleton is isomorphic to K4 of girth 3. For χ = 2, we get the cube on a sphere, and its
skeleton is isomorphic to Y4 with signature (2, 2, 2). This completes the case c = 2.

If c = 1, then since a + b + c is even, we see that a = 0 and b = 1, and then
by Theorem 3.6, Γ is the truncation of a 4-regular graph with respect to some dihedral
scheme.
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Figure 5: (a) A {2, 8}-map with a single vertex, four edges and four labelled faces embed-
ded on the projective plane. Its truncation has the graph M4 with signature (1, 1, 2) as its
skeleton. (b) The hemicube on the projective plane with labelled faces. Its skeleton is the
graph K4.

5 Cubic girth-regular graphs of girth 5

Theorem 5.1. Let Γ be a connected cubic girth-regular graph of girth 5. Then either the
signature of Γ is (0, 1, 1) and Γ is the truncation of a 5-regular graph with respect to some
dihedral scheme, or Γ is isomorphic to the Petersen graph or to the dodecahedron graph.

Proof. Let (a, b, c) be the signature of Γ. By Theorem 1.2, we see that c ≤ 4. If c = 4,
then by Theorem 1.3 and Theorem 1.4, the signature of Γ is (4, 4, 4) and Γ is isomorphic
to the Petersen graph. We may thus assume that c ≤ 3.

If a = 0, then by Lemma 3.2 the signature of Γ is (0, 1, 1), and then by Theorem 3.6, Γ
is the truncation of a 5-regular graph with respect to some dihedral scheme. Moreover, by
Corollary 3.3, a 6= 1. We may thus assume that a ≥ 2.

If c = 2, then the signature of Γ is (2, 2, 2) and by Theorem 3.11, Γ is the skeleton of a
{5, 3}-map embedded on a surface of Euler characteristic χ = n/10, where n is the order
of the graph Γ. In particular, χ ∈ {1, 2}. If χ = 1, then n = 10 and since the girth of Γ
is 5, Proposition 2.1 and Note 2.2 imply that Γ is the Petersen graph (whose signature is in
fact (4, 4, 4)). If χ = 2, then n = 20 and Γ is the skeleton of a {5, 3}-map on the sphere.
It is well known that there is only one such map, namely the dodecahedron.

Finally, suppose that c = 3. Then, by Lemma 3.1, a + b is odd, and since a ≥ 2, the
signature of Γ is (2, 3, 3). We will now show that this possibility does not occur.

Let uv be an edge of Γ lying on three 5-cycles, and u0, u1, v0, v1 be vertices of Γ with
adjacencies u0 ∼ u ∼ u1 and v0 ∼ v ∼ v1. Then there should be three vertices adjacent
to one of u0, u1 and one of v0, v1. Without loss of generality, let w00, w10, w11 be vertices
such that u0 ∼ w00 ∼ v0 ∼ w10 ∼ u1 ∼ w11 ∼ v1. Further, let x be the neighbour of u0

other than u andw00, and let y be the neighbour of v1 other than v andw11, see Figure 6(a).
Observe that x 6= y, for otherwise the edge uv would belong to four 5-cycles. Note also
that x is not adjacent to any of the three neighbours of v, for otherwise the girth of Γ would
be at most 4.

The signature implies that for each vertex, two edges incident to it lie on three 5-cycles.
Suppose that uu0 lies on three 5-cycles. As x and v have no common neighbours, w00

and x must have a common neighbour with u1, so we have w00 ∼ w11 and x ∼ w10, see
Figure 6(b). But then the edge uu1 lies on four 5-cycles, contradiction. Therefore, the edge
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Figure 6: Constructing a graph of girth 5 with c = 3. The bold edges lie on three 5-cycles,
and the dashed edges lie on two 5-cycles. The general setting is shown in (a). In (b), the arc
(u, u0) is assumed to lie on three 5-cycles, but the doubled edge then lies in four 5-cycles.
In (c), the obtained distribution of edges among cycles is shown, which, however, cannot
be completed.

uu0 must lie on two 5-cycles, and a similar argument shows the same for vv1. Thus, the
arcs uu1, vv0, u0x, u0w00, v1w11 and v1y must lie on three 5-cycles, see Figure 6(c).

Since the edge u0w00 lies on three 5-cycles, there should be three vertices adjacent to
one of u, x and one of v0 and the remaining neighbour of w00. Similarly, v1w11 lying on
three 5-cycles implies that there should be three vertices adjacent to one of v, y and one of
u1 and the remaining neighbour of w11. As w10 is the only potential common neighbour
for x, v0 and for y, u1, it follows that at least one of these pairs does not have a common
neighbour. Without loss of generality, we may assume that x and v0 do not have a common
neighbour. The vertex u already has a common neighbour with v0, and it must also have a
common neighbour with the remaining neighbour of w00. Then the remaining neighbour
of w00 must be w11, which however has no common neighbour with x, contradiction.
Therefore, (a, b, c) = (2, 3, 3) is not possible.

6 Concluding remarks
Theorem 1.5 gives a complete classification of simple connected cubic girth-regular graphs
of girths up to 5. While extending the classification to non-simple graphs (i.e., girths 1 and
2) is straightforward, increasing the girth leads to exponentially many more possible signa-
tures. For example, the census of connected cubic vertex-transitive graphs on at most 1280
vertices by Potočnik, Spiga and Verret [13] shows that 9 distinct signatures appear among
graphs of girth 6, while many more signatures are allowed by the results in Sections 1, 2
and Subsection 3.1. A classification of connected cubic vertex-transitive graphs of girth 6
will thus be given in a follow-up paper.
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