Scientific original paper Informacije ^efMIDEM A lonrnal of M Journal of Microelectronics, Electronic Components and Materials Vol. 42, No. 3 (2012), 192 - 196 Electrical excitation and mechanical vibration of a piezoelectric cube Oumar Diallo1, E. Le Clezio2, M. Lethiecq1, G. Feuillard1 1 Laboratoire GREMAN UMR CNRS 7347. Ecole Nationale d'lngenieurs du Val de Loire, Universite Frangois Rabelais de Tours, Rue de la Chocolaterie BP 3410 41034 BLOIS, CEDEX, France 2 Institut d'Electronique du Sud UMR CNRS 5214 lES - MIRA case 082, Universite Montpellier 2 Place Eugene Bataillon, 34095 MONTPELLIER CEDEX 5, France Abstract: This work deals with the electromechanical power conversion in piezoelectric materials. In this study we will use the reverse piezoelectric effect to determine the tensorial properties of piezoelectric ceramics. The eigen vibration modes of a piezoelectric cube are modelled and characterized using resonant ultrasound spectroscopy. This method, which examines the vibration modes of a piezoelectric cube, relates mechanical resonances that can be measured by Laser interferometry to electromechanical properties. The direct problem is first solved; the resonance modes of a piezoelectric cube are modelled and mechanical displacements are calculated as functions of frequency and boundary conditions. Because the geometry of the sample is fixed, the vibrations depend only on the material properties and the electrical excitation. The displacement response of a PMN-34.5PT piezoelectric ceramic cube is investigated using a coherent optical detection. According to properties determined by electrical impedance measurements, the cube presents a first resonance around 125 kHz. Results on the amplitude of the detected velocities versus the frequency of the input excitation voltage are reported and compared to theoretical predictions. This validates the electrical modelling of the cube vibrations. Key words: Vibration-Piezoelectricity-Spectroscopy-Eigen-frequency-Materials Elektri^cno vzbujanje in mehanske vibracije pi^ezoelektri^cne kocke Povzetek: Delo obravnava elektrokemijsko pretvorbo energije v piezoelektričnih materialih. Za določevanje tenzijskih lastnosti piezoelektričnih keramik je uporabljen obraten piezoelektričen efekt. Načini eigenovih vibracij piezoelektrične kocke so modelirani in karakterizirani z resonančno ultrazvočno spektroskopijo. Ta metoda preko merljive mehanične resonacije z lasersko interferometrijo ugotavlja elektromehanske lastnosti. Modelirani so resonančni načini piezoelektrične kocke. Mehanični premiki so računani kot funkcija frekvence in robnih pogojev. Zaradi fiksne geometrije vzorca so vibracije odvisne le od lastnosti materiala in električne vzbujenosti. Odziv premika pmn-34.5pt piezoelektrične keramične kocke je raziskan s pomočjo koherentne optične detekcije. Prva resonančna frekvenca kocke 125 kHz je določena s pomočjo impedančnih meritev lastnosti kocke. Rezultati amplitude detektiranih hitrosti glede na frekvenco vzbujevalne napetosti so predstavljeni in primerjani s teoretičnimi ocenami, kar potrjuje električen model vibracij kocke. Ključne besede: vibracije, piezoelektričen efekt, spektroskopija, eigen, frekvenca, materiali ' Corresponding Author's e-mail: oumardiallo@univ-tours.fr 1. Introduction Several models of one-dimensional vibrations of a piezoelectric sample can be found in the literature, such as Mason's [1] and KLM [2] which can predict the electromechanical behaviour of a piezoelectric material. However, these methods are not applicable for a 3D specimen such as a cube. Until now, conventional techniques use several samples for parameter identifications [3]. Recently, Delaunay et al. proposed an ultrasonic characterization method allowing the determination of these properties using a single sample. This method, referred to as Resonant Ultrasound Spectroscopy [4], examines the vibration modes of a piezoelectric cube and relates mechanical resonances measured by Laser interferometry to electromechanical properties. This method is here modified to obtain the electromechanical properties taking into account O. Diallo et al; Informacije Midem, Vol. 42, No. 3 (2012), 192 - 196 the boundary conditions. First the eigenfrequencies of a piezoelectric cube with two electrodes are calculated and compared to the eigenfrequencies of the same piezoelectric cube with only one electrode and of the sample with no electrode. Then, the velocity spectra are calculated and compared to experimental results. where p and components C^^^,, and eSmn are respectively, the density, the elastic stiffness tensor measured at constant electrical field, the piezoelectric tensor and the dielectric tensor measured at constant strain of the material. The summation on indices runs from 1 to 3, corresponding to the three directions in the coordinate space. u is the displacement field and f is the potential. 2. Lagrangian minimization From classical mechanics the general form of a Lagrangian L is expressed as: L = jjl{Ec-Eäef-Ep-Ee)äV (1) where Ec is the kinetic energy, Edef is the deformation energy, Ep is the potential energy and Ee is the electrostatic energy. Figure 1: Piezoelectric parallelepiped of PMN-34.5PT with dimensions A,B and C poled along x^ We consider a piezoelectric parallelepiped with dimension A, B and C (figure1). If we suppose that the origin of the axes is at the center of the cube, L1=A/2, L2=B/2 and L3=C/2 where A,B and C are the edges of the cube. There are two electrodes on the planes x3=L3 and x3=-L3. The general Lagrangian can be expressed as [5 & 6]: To minimize the Lagrangian (and hence find the equilibrium configuration of the system), the Rayleigh-Ritz method is used. In accordance with this method the displacement and potential may be expressed as a linear combination of the trial functions: !f 0= (3) (4) The (^p)p , and (9r)r M functions are chosen to be or-thonormal. If these relations are injected in equation (2), the La-grangian becomes: p 9 L p ^ f ^ Where (5) with 3