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Abstract: This work deals with the electromechanical power conversion in piezoelectric materials. In this study we will use the reverse 
piezoelectric effect to determine the tensorial properties of piezoelectric ceramics. The eigen vibration modes of a piezoelectric cube 
are modelled and characterized using resonant ultrasound spectroscopy. This method, which examines the vibration modes of a 
piezoelectric cube, relates mechanical resonances that can be measured by Laser interferometry to electromechanical properties. 
The direct problem is first solved; the resonance modes of a piezoelectric cube are modelled and mechanical displacements are 
calculated as functions of frequency and boundary conditions. Because the geometry of the sample is fixed, the vibrations depend 
only on the material properties and the electrical excitation. The displacement response of a PMN-34.5PT piezoelectric ceramic cube 
is investigated using a coherent optical detection. According to properties determined by electrical impedance measurements, the 
cube presents a first resonance around 125 kHz. Results on the amplitude of the detected velocities versus the frequency of the input 
excitation voltage are reported and compared to theoretical predictions. This validates the electrical modelling of the cube vibrations. 
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Električno vzbujanje in mehanske vibracije 
piezoelektrične kocke
Povzetek: Delo obravnava elektrokemijsko pretvorbo energije v piezoelektričnih materialih. Za določevanje tenzijskih lastnosti 
piezoelektričnih keramik je uporabljen obraten piezoelektričen efekt. Načini eigenovih vibracij piezoelektrične kocke so modelirani in 
karakterizirani z resonančno ultrazvočno spektroskopijo. Ta metoda preko merljive mehanične resonacije z lasersko interferometrijo 
ugotavlja elektromehanske lastnosti. Modelirani so resonančni načini piezoelektrične kocke. Mehanični premiki so računani kot funkcija 
frekvence in robnih pogojev. Zaradi fiksne geometrije vzorca so vibracije odvisne le od lastnosti materiala in električne vzbujenosti. 
Odziv premika pmn-34.5pt piezoelektrične keramične kocke je raziskan s pomočjo koherentne optične detekcije.  Prva resonančna 
frekvenca kocke 125 kHz je določena s pomočjo impedančnih meritev lastnosti kocke. Rezultati amplitude detektiranih hitrosti glede 
na frekvenco vzbujevalne napetosti so predstavljeni in primerjani s teoretičnimi ocenami, kar potrjuje električen model vibracij kocke.

Ključne besede: vibracije, piezoelektričen efekt, spektroskopija, eigen, frekvenca, materiali
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1. Introduction

Several models of one-dimensional vibrations of a 
piezoelectric sample can be found in the literature, 
such as Mason’s [1] and KLM [2] which can predict the 
electromechanical behaviour of a piezoelectric mate-
rial. However, these methods are not applicable for a 
3D specimen such as a cube. Until now, conventional 
techniques use several samples for parameter iden-
tifications [3]. Recently, Delaunay et al. proposed an 

ultrasonic characterization method allowing the de-
termination of these properties using a single sam-
ple. This method, referred to as Resonant Ultrasound 
Spectroscopy [4], examines the vibration modes of a 
piezoelectric cube and relates mechanical resonances 
measured by Laser interferometry to electromechani-
cal properties. This method is here modified to obtain 
the electromechanical properties taking into account 
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the boundary conditions. First the eigenfrequencies of 
a piezoelectric cube with two electrodes are calculated 
and compared to the eigenfrequencies of the same 
piezoelectric cube with only one electrode and of the 
sample with no electrode. Then, the velocity spectra 
are calculated and compared to experimental results.

2. Lagrangian minimization

From classical mechanics the general form of a Lagran-
gian L is expressed as:

  (1)

where Ec is the kinetic energy, Edef is the deformation 
energy, Ep is the potential energy and Ee is the electro-
static energy.

Figure 1: Piezoelectric parallelepiped of PMN-34.5PT 
with dimensions A,B and C poled along x3

We consider a piezoelectric parallelepiped with dimen-
sion A, B and C (figure1). If we suppose that the origin 
of the axes is at the center of the cube, L1=A/2, L2=B/2 
and L3=C/2 where A,B and C are the edges of the cube. 
There are two electrodes on the planes x3=L3 and x3=-
L3. The general Lagrangian can be expressed as [5 & 6]: 

   (2)

where r and components CE
ijkl, emkl, and eS

mn are respec-
tively, the density, the elastic stiffness tensor measured 
at constant electrical field, the piezoelectric tensor and 
the dielectric tensor measured at constant strain of the 
material. The summation on indices runs from 1 to 3, 
corresponding to the three directions in the coordinate 
space. u is the displacement field and f is the potential.

To minimize the Lagrangian (and hence find the equi-
librium configuration of the system), the Rayleigh-Ritz 
method is used. In accordance with this method the 
displacement and potential may be expressed as a lin-
ear combination of the trial functions:

     (3)

     (4)

The (ψp)p...1 and (ϕr)r...M functions are chosen to be or-
thonormal.

If these relations are injected in equation (2), the La-
grangian becomes: 

 (5)

Where

   (6)

with 

 (7)

Γ, Ω and Λ are respectively elastic, piezoelectric and 
dielectric interaction matrices. Apr and Brr’ are the contri-
butions of the work of the electrostatic forces. Coeffi-
cients ap and br are obtained by calculating the sta-
tionary points of the Lagrangian (i.e. ). This yields 
the following eigenvalue system:
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 (8)

The eigenvectors of this equation system give us the 
coefficients of the expansion of the actual displace-
ment and the electrical functions in terms of the basis 
functions. The eigenvalues correspond to the actual 
resonance frequencies.

3. Eigen vibration modes of a piezo-
electric cube

Choice of the basis functions

In 1971 H. Demarest introduced the use of Legendre 
polynomial to determine the elastic constants of a solid 
[7]. A few years later I. Ohno extended this use to the 
study of free vibrations of a crystal [6]. Recently, Delau-
nay et al. proposed basis functions for a piezoelectric 
specimen with an electrode on one face of a parallel-
epipedic crystal [4]. In this study, two electrodes are 
placed on the cube: one on the face x3=-L3 and one on 
the face x3=L3. These faces are normal to the poling di-
rection and the chosen basis function must verify: 

    (9)

The displacement basis functions defined by Demarest 
are unchanged. These functions were verified by Ohno 
and Delaunay et al.. The electrical function is here mod-
ified to simulate the short-circuit boundary conditions, 
i.e. the potential on face x3=-L3 must be equal to the 
potential on face x3=L3. We suppose that the potential 
on the electrodes null in order to set to zero the Apr and 
Brr’ matrices and thus minimize the computation time. 
The chosen basis functions of the displacements and 
electrical potential are respectively: 

          (10)

                (11)

With  where 
the pth and rth basic functions ψp and φr are defined by 
the triplets, (λw,μ,ν) and (ξ,ς,η), respectively. Pa(x) is the 
normalized Legendre function of order a and ei is the 

unit displacement vector in xi direction,  is a 
normalization term [4, 6, 7].

Simulation Results

Table 1 shows the resonance frequencies of a PMN-
34.5PT cube calculated using this theory and its com-
parison with Demarest’s and Delaunay’s theories. The 
elastic, piezoelectric and dielectric constants were tak-
en from [4]. They are C11=174.7, C12=116.6, C13=119.3, 
C33=154.8, C44=26.7, C66=29 in GPa; e15=17.1, e31=-6.4, 
e33=27.3 in C/m²; e1=21.0105, e3=25.0125 in pF/m.

Table1: Resonant for a PMN 34,5PT with Delaunay coef.
(in Hz)

Demarest Ba-
sis Functions 

Order=7

Delaunay Ba-
sis Functions 

Order=7

Our Basis 
Functions 
Order=5

Error 
(1&2)

Error 
(1&3)

82966 86778 87007 -4.59% -4.87%

89241 90037 89145 -0.89% 0.11%

109147 107743 104243 1.29% 4.49%

118057 117423 113436 0.54% 3.91%

119489 121678 116894 -1.83% 2.17%

126991 122818 120120 3.29% 5.41%

129809 134243 122440 -3.42% 5.68%

134243 137977 124276 -2.78% 7.42%

139246 139264 133209 -0.01% 4.34%

142298 143193 134259 -0.63% 5.65%

145232 147165 145273 -1.33% -0.03%

153129 153961 154155 -0.54% -0.67%

160024 156405 156825 2.26% 2.00%

161706 163513 160742 -1.12% 0.60%

Table 1 presents the comparison between the resonant 
frequencies computed with the basis functions corre-
sponding to different boundary conditions showing 
that the presence of the electrodes can greatly affect 
the resonances. Note that the volume of the electrodes 
has been neglected in theoretical studies. The modes 
with maximum displacements along the x3 axis are 
the most sensitive to the presence of electrodes. The 
maximum difference between Demarest and Delaunay 
cases is 4.59% and the maximum difference between 
Demarest and our case is 7.42%. Increasing the degree 
of the approximate polynomial functions does not 
reduce the discrepancy in the prediction of resonant 
frequencies between Demarest basis function and our 
basis function. They are due to the new boundary con-
ditions (short circuit electrodes). The order of the ba-
sis functions in our case is lower than in Demarest and 
Delaunay’s cases; the convergence is improved and the 
computing time is around 2.2 seconds against 22.4 sec-
onds for Demarest.
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4. Experimental results

Experimental set-up

Figure 2: Experimental set-up

The experimental set-up is presented on figure 2. It al-
lows the measurement of vibration velocities versus 
frequency. The electrical excitation is delivered by a 
voltage generator. It has a very large bandwidth and 
the delivered electrical power is adjustable. The sample 
is set on a plastic holder and the electrical contact is 
ensured by a metallic strip fixed on a spring so that free 
mechanical boundary conditions at the surfaces of the 
cube are fulfilled. Velocities at the surface of the sample 
are measured by means of a Laser vibrometer (Polytech 
OFV-505) that allows the detection of the resonance 
frequencies and the identification of the associated 
mode shapes. The interferometer is positioned at 50 
cm from the sample. The velocity decoder sensitivity 
is respectively 5 mm/s/V and 25 mm/s/V, depending 
on the cut-off frequency, respectively 250 kHz and 1.5 
MHz. The measured signals are sent to a computer via a 
digital oscilloscope.

Results and discussions

The resonance spectrum of the PMN-34.5PT 
(10mm×10mm×10mm) sample was measured by the 
described above experimental set-up.

Figure 3: Comparison between the theoretical and ex-
perimental velocity spectra of the PMN-34.5PT cube (at 
the center of the face x3=L3)

Experimental and theoretical results are compared in 
Figure 3. The theoretical velocity is computed using the 
eigen frequencies and the expression of the displace-
ment, the velocity being the time derivative of the dis-
placement. In the frequency domain, this implies: 

.

For the first two resonances, agreement is satisfactory. 
The discrepancies between measurements and predic-
tions for the two other peaks could be due to the lack of 
precision in the functional properties used for the the-
oretical modeling. A sensitivity study of the resonance 
location to input parameters has shown that these two 
peaks were very sensitive to C13 and C33. Further studies 
will deal with the application of the model to material 
characterization.

5. Conclusion

This paper studied the natural frequencies of a piezo-
electric ceramic. A numerical method is developed to 
predict the resonance spectrum of the PMN-34.5PT 
cube and a comparison with the experimental spec-
trum shows that all the eigenfrequencies are not pi-
ezoelectrically coupled. In future work, the inverse 
problem will be solved for this and other piezoelectric 
ceramics in order to extract the functional properties 
of piezoelectric ceramics from their resonant spectra.
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Appendix

A. Description of interaction matrices: elastic, Γ, piezo-
electric, Ω, and dielectric Λ

Table2: Matrix of elastic interaction: Γ´

i, j

1,1

2,2

3,3

2,3

3,1

1,2

Table3: Matrix of piezoelectric interaction: Ω

i

1

2

3

Table4: Matrix of dielectric interaction: Λ
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