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The shaft bow problem presents a real situation especially in case of slender rotors. This paper 

investigates the shaft bow influence on the rotor-stator contact dynamics. For this purpose the rotor is 
described as a simple Jeffcott model and the stator as an elastically suspended rigid ring. To test the 
numerical model, except a usual run down analysis, an emergency shut down after the sudden rotor 
unbalance increase is also analyzed. Numerical integration is carried out by the fourth-order Runge-
Kutta method. Two different normal force models for the rotor-stator interaction are analyzed. For 
analyzed parameters, both linear and nonlinear (Hunt and Crossley), normal force models gave similar 
rotor and stator responses. To confirm some of the results and to tune the numerical model, the 
experimental investigation on the test rig was conducted. 
© 2008 Journal of Mechanical Engineering. All rights reserved.  
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0 INTRODUCTION 
 
Contact or rub between rotor and stator is 

one of the most intensive research subjects in 
rotor dynamics. Most papers which are 
considering the rotor-stator contact phenomena 
can be classified in rigid rotor disc-rigid stator 
contact [1] to [3], bladed disc-stator contacts [4] 
and rotor-stator contact in retainer bearings when 
the rotor is supported by active magnetic bearings 
[5] and [6]. Choy and Padovan [1] developed a 
general analytical rub model using the following 
assumptions: simple Jeffcott rotor model, linear 
stiffness and damping characteristics, rigid casing 
supported by springs acting in the radial direction, 
mass inertia of the casing small enough to be 
neglected, simple Coulomb friction and onset of 
rub caused by unbalance. Bartha [2] performed an 
extensive numerical and experimental research of 
the backward whirl of rotors considering the rigid 
and elastically suspended stator. Von Grol and 
Ewins compared measurements and simulations 
for a windmilling imbalance in aero-engines 
which is very similar to the classical rotor to 
stator contact. They have revealed the rotor 
response rich in different subharmonics. Influence 
of torsion on the rotor-stator contact was 
introduced by Edwards et al. [7]. Attention was 
paid to the effects of torsion on a steady state 

response of a system experiencing rotor to stator 
contact. The analyzed Jeffcott rotor model had 
only 3 degrees of freedom – d.o.f. because the 
stator was assumed to be rigid. Žigulić et al. [8] 
considered nonlinear dynamics of a rotor 
supported by two dry-friction bearings. The rotor 
was modeled with FEM-Finite element method 
and the obtained nonlinear system was integrated 
with Hilbert-Hughes-Taylor – HHT α method. 

Karpenko et al. [9] have shown how the 
preloading of the snubber ring could stabilize the 
dynamic response of the rotor. Theoretical 
predictions of the two-degrees-of-freedom 
Jeffcott rotor model with the preloaded snubber 
ring subjected to out-of-balance excitation was 
studied in [10], while an experimental verification 
with special attention to the analysis of the shaft 
rotational speed (excitation frequency) as well as 
different eccentricities and preloading was given 
in [11]. 

This paper considers the contact between 
the rotor, with a bowed shaft, and the stator at the 
position of rotor disc (seal), after the appearance 
of sudden unbalance due to blade loss. Linear and 
nonlinear models of the normal contact force are 
compared for different shaft bow – mass 
unbalance combinations. In this study, not only 
lateral but also torsional d.o.f. are taken into 
account allowing the additional extension of the 
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model with mechanical model of the induction 
motor. Results of numerical simulations and 
experiments are presented and compared using 
the rotor and stator responses in time domain, 
spectral maps and rotor orbits  

 
1 MODELING OF THE ROTOR-STATOR 

SYSTEM 
 
A rather simple mechanical model for the 

rotor-stator interaction description is used. The 
rotor is described by Jeffcott model with a shaft 
bow while the stator is modeled as an elastically 
suspended rigid ring. Except traditional 
consideration of the rotor lateral d.o.f. (xr, yr), 
torsional d.o.f. (ϕr) is taken into account allowing 
an extension of the model with torsional d.o.f. of 
the induction motor (ϕm) as well as appropriate 
mechanical model. To keep consistency of the 
described consideration the stator had additional 
three d.o.f., two lateral (xs, ys) and one torsional 
(ϕs). Fig. 1 shows the considered rotor-stator 
system. Next sections briefly discuss the 
differential equations of motion, the contact 
model and mechanical model of the induction 
motor. 

 

 

Fig.1.  Extended Jeffcott rotor model  
 
1.1. Differential equations of motion 
 
The equations of motion for the system 

described above can be derived using the 
Lagrange equations and have the following form: 
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(1) 
The Equation (1) is taken from literature 

[12] and presents a further development of the 
models found in [2], [7] and [13], where mr, ms, c, 
cs, k, ks are mass parameters, lateral damping 
coefficients and stiffnesses of the rotor and stator 
respectively, crt, cst, krt and kst are torsional 
damping coefficients and stifnesses of the rotor 
shaft and stator, e is the rotor mass eccentricity, 
Jr, Js and Jm represent mass moments of inertia of 
the rotor, stator and induction motor respectively. 
Mfr1 and Mfr2 represent the torques of total losses 
(friction in bearings and losses in motor fan). 
These torques were identified from the 
measurements conducted on the test rig. To 
simplify the already complicated model, rotor and 
stator are assumed as isotropic regarding lateral 
stiffness and damping coefficient, what is still 
common practice in literature [14].  

Vector rr0 from the Fig. 2 represents the 
static equilibrium position of the bowed shaft 
[13], where xr0 and yr0 are its X,Y components 
and are given by 
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(2)

Components r0x and r0y represent the static 
equilibrium position of the bowed shaft in the 
rotor fixed x,y,z coordinate system.  

 

 

Fig.2.  Jeffcott rotor with a bowed shaft  
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Contact forces FCx and FCy as well as the 
contact moment MC are defined, according to Fig. 
3, by the following expression: 

Cx N T
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γ γ

γ γ

= −
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=

 

(3)

where the normal FN and the tangential FT contact 
forces have positive value when they are acting 
on the stator. Fig. 3 presents the geometry of the 
rotor - stator contact model with force definition.  

 
1.2. Contact Models  

 
Traditionally, for the rotor-stator impact 

modeling, two different methods have been 
applied, namely the Newton’s restitution 
coefficient model and the Contact force- 
indentation model. The first model is based on the 
simplifying assumption of perfectly rigid bodies. 
Actual physical objects are compliant and hence 
the impact duration is strictly greater than zero. 
This more realistic view of impact phenomena led 
many researchers to consider the continuous-
dynamics models of collision where bodies 
deform during impact and the collision dynamics 
is treated as a continuous-time dynamic 
phenomenon. In its general form, the force-
indentation relationship looks like [15]:  

( ) ( ) ( )N k c p, ,F F F Fδ δ δ δ δ& &= + +  (4)

where, Fk is the elastic (conservative) part of the 
normal contact force FN, Fc the viscous damping 
part and Fp the dissipative part due to plastic 
deformation. In the paper, plastic dissipations 
have been neglected. Fig. 4 shows the normal  
 

 
Fig.3.  Geometry of the rotor - stator contact 

model 
 

contact force model presented as a spring-damper 
system. 

In the development of the elastic relation 
Fk(δ), the Hertz theory has to be mentioned. A 
very commonly used expression is the force-
indentation relation for sphere to sphere contact, 
according to Hertz: 

3 2
k sF k δ=  (5)

where, Fk is the normal force pressing the solids 
together, δ represents the approach of two 
spheres, i.e. total deformation of both surfaces 
while ks is a constant depending on the sphere 
radii and elastic properties of the sphere 
materials. 

 

 
Fig.4.  Normal contact force model – a spring-

damper system 
 

For the case of a cylindrical joint, Rivin 
[16] based his analysis on a half sine distribution 
of contact pressure between shaft and bearing. To 
calculate the pressure distribution, he considered 
two possible models for the force – deformation 
relation, linear and quadratic:  

k 1F k δ=  (6)

2
k 2F k δ=  (7)

Results of his experiments carried out with cast 
iron and hardened steel showed that the quadratic 
model offered a better correlation of the force 
deflection in a journal bearing when a high load 
per unit length was applied. For low loads, the 
linear model represented a better fit.  

The simplest model of viscous dissipation 
( )c ,F δ δ&  which is known from the literature [1] is 

a linear damper, 
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cF cδ&=  (8)

where c is the viscous damping coefficient.  
Non-linear expression for visco-elastic 

force, originally proposed by Hunt and Crossley 
[17], is given by 

c
nF λδ δ&=  (9)

where λ and n are model parameters. Fig. 5 
shows responses of two analyzed models of the 
contact force regarding different combination of 
the elastic force models Fk and damping force 
models Fc. 

The area bounded by hysteresis loop 
represents a loss of work during an impact of 
rotor and stator and can be expressed by,  

∫= xFW c d  (10)

The linear contact force model is described 
by the well known linear equation: 

0m c kδ δ δ+ + =&& &  (11)

where c is the viscous damping coefficient, k is 
the stiffness, δ = r  – Cr is the local deformation 
of the rotor and stator in the contact point in 
normal direction, δ&  is the relative velocity of the 
rotor and stator along normal direction during the 

contact, ( ) ( )2 2
r s r sx x y y= − + −r  is the 

magnitude of vector difference between rotor and 
stator displacement according to Fig. 3 and Cr is 
the radial clearance between rotor and stator.  

 

Fig.5.  Models of normal contact force  
 
In order to eliminate the negative forces 

that appear in the linear model and with the 
improvement in the sense of avoiding the 
discontinuity, Hunt and Crossley formulated the 
equation:  

( )n n 0m kδ λδ δ δ+ + =&& &  (12)

Their theory gives a relationship between 
restitution coefficient and dissipation in contacts 
via assumption of linear dependency of the 
restitution coefficient ε and initial impact velocity 
v0 i.e.  

01 vε α= −  (13)

Thus, according to [17] Equation (12) can 
be written in the following form 

3 1 0
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where α is the constant dependent mainly 
on material and geometry of bodies in contact. 
Based on Equation (14) two separate parts of 
normal contact force can be identified, 

n n
N c k

3
2

F F F k kα δ δ δ= + = +&  
(15)

According to [16], index n can vary 
between 1 and 2 for cylindrical joints, so the 
choice of n = 3/2, originally proposed by Hertz 
(see Equation (5)), seems fairly reasonable.  

In this paper both normal force models 
(linear–Equations (6), (8) and nonlinear–Equation 
(15)) have been used and compared. 

Tangential contact force has been 
represented by the Coulomb dry friction law. The 
definition of the contact model described above 
can be expressed as follows 

r
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where μc is the coefficient of friction and vsl is the 
sliding velocity between rotor and stator surfaces 
in contact. The angle γ from equation (3) 
represents the normal force angle or direction of 
the smallest gap when rotor and stator are not in 
contact i.e.  

r s

r s
tan

y y
x x

γ
−

=
−

 
(17)

To determine δ&  and vsl further vector 
calculation should be taken. Fig. 6 shows the 
velocity definition for the rotor and stator in 
contact. If the normal direction is known, 
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0 x y r s r s, [ , ] [ , ]r r x x y y= = = − −
rn r
r

 
(18)

as well as the velocities of rotor and stator centers 
xr yr[ , ]v vv =r  and xs ys[ , ]v vv =s , one can easily 

obtain the relative normal rotor-to-stator velocity, 

rn snv vδ = −&  (19)

where rn 0v v n= ⋅r  and sn s 0v v n= ⋅  represent the 
rotor and stator velocities in normal direction. 

 

 
Fig.6.  Velocity definition for rotor and stator in 

contact  
 

The sliding velocity vsl can be further 
defined as, 

sl rt stv v v= −  (20)

where rt 0 rv Rϕ= +rv t &  
and ( )st 0 s rv R Cϕ= + +sv t &  represent the rotor 
and stator velocities on its periphery in tangential 
direction. R is the radius of the rotor while r s,ϕ ϕ& &  
are angular velocities of the rotor and stator. 

 
1.3. Mechanical Model of the Induction Motor 

 
The driving moment of the induction 

electric motor has been modeled according to the 
Kloss expression [18] and [19] 
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(21)

where Mmax and smn are the maximum motor 
torque or breakdown torque and slip for 
maximum motor torque, s is the actual slip of 
motors rotor with respect to the synchronous 
electromagnetic field and ϕ  =  fsf / fs is the ratio of 
actual frequency given from frequency inverter 
and nominal frequency given by electrical 
network (fs =50 Hz). 

If we replace Mmax in Equation (21) with 
( ) ( )max b max mn mn1 1M M s s=− + − , the Kloss 

expression for regenerative braking is obtained. 
The regenerative braking starts when actual speed 
of the motor’s rotor is greater than the 
synchronous speed. The motor is then behaving 
as an electromagnetic brake. Fig. 7 shows the 
speed torque characteristics of an induction 
motor.  

 

Fig.7.  Speed torque characteristics of an 
induction motor 

 
2 NUMERICAL SIMULATIONS  

 
The numerical integration has been carried 

out by the fourth-order Runge-Kutta method. 
Time step of s102 5−⋅=Δt , has been applied in 
all simulations where the contact between rotor 
and stator was reasonably expected. Otherwise 

s101 4−⋅=Δt  has been used. In some earlier 
simulations a greater time step was used but it 
turned out that it couldn’t describe some specific 
rotor behaviors. Time step during one simulation 
has been fixed, so the subsequent frequency 
analysis could be done.  

The parameters used in all calculations are 
as follows: rotor mass mr = 4.25 kg, stator mass  
ms = 3.838 kg, mass moments of inertia Jr = 
4.532⋅10-3 kgm2, Jm = 2.115⋅10-3 kgm2, Js = 
2.11⋅10-2 kgm2, rotor disc radius R = 0.06 m, 
stiffnesses kr = 131540 N/m, krt = 1080 Nm/rad, ks 



Strojniški vestnik - Journal of Mechanical Engineering 54(2008)10, 693-706 

 

Braut, S. - Žigulić, R. - Butković, M. 698

= 1.237⋅106 N/m, kst = 7917 Nm/rad, damping 
coefficients cr = 22.43 Ns/m, crt = 0.0374 
Nms/rad, cs = 11.96 Ns/m, cst = 0.0258 Nms/rad, 
radial clearance Cr = 0.4 mm, motor breakdown 
torque Mmax = 10.25 Nm and motor speed of max. 
breakdown torque (at power network frequency fs 
= 50 Hz) nm = 2400 rpm.  

The identified dependence between 
angular deceleration and angular velocity of the 
rotor, obtained from free run down tests 
(induction motor switched off), had the following 
form  

6 3 2

2

4 10 0.002 0.5376 10.513
    rad /s
ε ω ω ω−= − ⋅ + − −  

(22)
 

2.1. Numerical Simulation of Motor Controlled 
Run-Down (RD) Analysis  

 
The numerical RD analysis has been 

performed to identify the basic dynamic 
characteristics of the rotor-stator system and to 
correlate them with the experimental results. 
Knowing, from the modal testing (rotor response 
on the impulse force excitation at standstill) that 
the first rotor natural bending frequency is equal 
to fr1 = 28.0 Hz and according to the Jeffcott (or 
Laval) theory it is the only natural frequency, RD 
analysis has been focused on speed range n = 40 
to 0 Hz. The second rotor natural bending 
frequency obtained by the modal testing has been 
fr2 = 148.5 Hz hence it has been far away enough 
from the first natural frequency and its influence 
has been negligible.  

The basic goal of this part of numerical 
analysis was to discover the appropriate relation 
of the mass unbalance eccentricity vector e and 
the static equilibrium position of the bowed shaft 
rr0 according to the measured maximum lateral 
displacement amplitude of the rotor disc and the 
qualitative shape of the rotor lateral response in 
time domain, Fig. 8. Final parameters have been e 
= 0.046 mm, rr0 = 0.05 mm and phase lag of the e 
in relation to rr0 i.e. α0 = π rad (see Fig. 2). RD 
analysis has been controlled by a linear frequency 
ramp (speed law) of the synchronous 
electromagnetic field of induction motor, fsf = 40 
to 0 Hz in the time period of 34 s, while its rotor 
behaved according to the presented mechanical 
model. At the beginning of the numerical 
simulation, 2 s have been taken additionally for 
disappearance of any transients caused by initial 
conditions. 

 
Fig.8.  Simulated lateral rotor response in 

horizont direction for RD analysis and speed law 
 

Fig. 9 shows the spectral map of the lateral rotor 
response in the horizontal direction where as 
expected only the first order can be seen. On the 
same figure at the beginning of the simulation, 
the rotor critical speed is excited but only because 
of the numerical transient due to initial 
conditions. 

 

 
Fig.9.  Spectral map of the lateral rotor response 

in horizontal direction xr  
 

2.2. Numerical Simulations of Sudden Rotor 
Unbalance Increase (SRUI) Analysis 

 
The basic assumption has been that the 

rotor is running at a nominal speed above the first 
rotor critical speed and that the rotor is well 
balanced. To achieve the initial condition which 
is similar to the steadily running speed and to 
avoid any transients, the sudden unbalance was 
introduced 1 second after the start of simulation. 
After sudden appearance of the additional 
unbalance madd it has been assumed that the 
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permanent monitoring system of the turbo 
machine has recorded unallowable vibrations and 
as a precaution measure it starts an immediate 
shut down procedure. This was accomplished by 
switching off the induction motor. Then the 
whole rotor starts to decelerate due to given 
torques of losses, expressed by the identified rotor 
angular deceleration mentioned above. The rotor 
is then approaching to its critical speed and 
because of additional unbalance muadd it contacts 
the stator. When the additional unbalance is big 
enough, the rotor contacts the stator immediately 
after appearance of the additional unbalance i.e. 
before switching off the motor. The time period 
for response of the shut down procedure after 
sudden unbalance appearance has been set to 1 s. 
Two different contact normal force models have 
been compared i.e. linear and nonlinear. Linear 
model has contact stiffness kC = 7.7⋅107 N/m and 
contact damping cC = 3.2⋅103 Ns/m and nonlinear 
model has contact toughness kC = 1.8⋅108 Pa/m1/2 
and parameter α = 3 s/m. The output inverter 
frequency before unbalance appearance was set to 
nsf = 40 Hz. It turns out that the frictional losses 
in test rig are quite big so the rotor decelerates, 
with small unbalance and without contact, in 
some 5 to 6 seconds from 40 Hz to standstill. 

In Figs. 10 to 12 the rotor response 
without contact to stator is presented, without any 
additional unbalance, madd = 0 (or presented via 
rotor mass eccentricity eadd = 0). If someone 
compares Fig. 9 and Fig. 12, except differences in 
the shape of first order (linear in Fig. 9 and 
nonlinear in Fig. 12), on Fig. 12 exists additional 
horizontal line at 28 Hz. The reason for this 
mainly lies in fast rotor speed change while 
passing though its critical speed. 

Fig.10.  Rotor center orbit during free RD (red 
dashed line represents a clearance circle)  

Fig.11.  Simulated lateral rotor response in 
horizontal direction for free RD analysis with 

speed law eadd = 0  
 

Fig.12.  Spectral map of rotor displacements in 
horizontal direction, free RD, eadd = 0  
 

 

Fig.13.  Rotor center orbit during RD, rotor-
stator contact appeared, eadd = 0.124 mm  
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Fig.14.  Lateral rotor and stator responses in 
horizontal direction, contact appeared, eadd = 

1.24⋅10-4 m, rr0 = 0.05 mm, α0 = π rad  
 

Fig.15.  Rotor speed laws for simulations without 
and with contact  

 

 
Fig.16.  Spectral map of rotor displacement in 

horizontal direction, contact appeared  
 

 

 
Fig.17.  Spectral map of rotor relative torsional 

angles φm - φr, contact appeared  
 

 
Fig.18.  Spectral map of stator lateral velocities 

in horizontal direction, contact appeared  
 

 
Fig.19.  Spectral map of stator torsional angles, 

contact appeared  
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 Figures 13 to 19 show rotor and stator response 
after the appearance of the additional mass 
unbalance (presented in rotor mass eccentricity) 
eadd = 0.124 mm, so the total rotor mass 
eccentricity is equal to e = ein + eadd =1.17 mm. 
The magnitude of the vector rr0 was rr0 = 0.05 
mm and the phase lag was α0 = π rad. In this 
simulation the linear model of normal contact 
force has been applied and coefficient of friction 
in contact was μC = 0.18, according to Bartha [2].  

In Fig. 11 we had the supercritical self-
balancing effect because the mass eccentricity e 
was smaller than the magnitude of the shaft bow 
vector rr0. On the contrary in Fig. 14 the self 
balancing effect is placed subcritically at the t1 = 
3.8 s of simulation because after sudden 
unbalance increase, the total mass unbalance 
eccentricity e became greater than rr0.  

Fig. 15 shows the difference between 
speed laws for simulations with and without the 
rotor-stator contact appearance. As expected a 
rotor deceleration for simulation where the rotor-
stator contact appeared, was more intensive 
especially in a time period with established rotor-
stator contact (see contact indication in Fig. 15). 
After introduction of SRUI, the rotor made 
several impacts to the stator and then a permanent 
contact was established. In Figs. 16 to 19 there is 
a narrow time period around t1 = 1 s of simulation 
where multiple harmonics can be seen. This is 
due to intermittent rotor-stator contact. It is 
interesting to see after the rotor-stator separation 
(t1 = 2.75 s) that the rotor and stator continued to 
vibrate with their own flexural natural 
frequencies, fr = 28 Hz (Fig. 16), fs = 90 Hz (Fig. 
18) and torsional frequencies frt = 137.9 Hz (Fig. 
17), fst = 97.7 Hz (Fig. 19).  

In Fig. 20, the influence of the phase lag of 
the mass unbalance eccentricity vector e in 
relation to the static equilibrium position of the 
bowed shaft rr0 i.e. α0 has been analyzed. 
Presented contact forces are related to α0 = 180º, 
135º and 90º. In the same time normal contact 
forces of the linear and nonlinear models have 
been compared, so the diagrams in the left 
column correspond to the linear and in the right 
column to the nonlinear model of the normal 
contact force.  

The main difference between the linear 
and nonlinear model of the contact normal force, 
presented in Fig. 20, can be seen in the region 
immediately after appearance of SRUI. Nonlinear 

model generally had a greater force response for 
the first impact, while in permanent contact both 
linear and nonlinear model had almost the same 
values. Details about the differences between 
analyzed normal force models and influence of 
the phase lag α0 are presented in Table 1.  

The normal force for the permanent rotor-
stator contact (with sliding) FCperm has showed 
expected increasing trend with decreasing phase 
lag α0, because α0 smaller than 180° means 
greater  

 
Table 1. Results of contact normal force analysis 
regarding phase lag of the mass eccentricity 
vector e in relation to shaft bow radius vector rr0 

 

FCmax / FCperm , N α0,  
Linear Nonlinear 

180° 327.7 / 96.8 611.9 / 97.1 
135° 279.8 / 99.3 462.2 / 99.5 

90° 203.7 / 104.8 277.1 / 105.0 
 

unbalance excitation. The reason for 
contradictory trend of decreasing of the FCmax 
(max. value of the normal force for the first 
impact) with decreasing α0 (increasing unbalance 
excitation) lies in the fact that α0 of the ein and eadd 
is the same. This caused an increasing tendency 
of the radius of initial rotor orbit and therefore the 
decrease of the maximum normal velocity at the 
first rotor-stator impact. 

 
3 EXPERIMENTAL ANALYSIS 

 
The analysis has been performed on the 

test rig which can be seen on Fig. 21. The test rig 
has been specifically designed for the rotor-stator 
contact measurements. It consists of the following 
main components: robust foundation, mounting 
plate, roller bearings with their supports, rotor, 
stator, flexible coupling, induction motor with 
speed controller, measuring system based on 
Bruel and Kjaer non-contacting displacement 
sensors and National Instruments data acquisition 
card PCI NI 4472 with adequate software 
(LabVIEW, Matlab). Measurements showed that 
the first critical speed of the rotor was 28 Hz, 
while the first natural frequency of the stator was 
90 Hz. Radial clearance between the rotor and 
stator was 0.4 mm. Before the experiments the 
rotor had been balanced. 
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 a) 
 

   

 
b)  

   

 c)  
Linear model  Non-linear model 

Fig. 20. Normal forces in contact between rotor and stator; left column – linear model, right column 
nonlinear model; a) α0 = 180º, b) α0 = 135º, c) α0 = 90º 

Also before every single experiment the contact 
surfaces of the rotor and stator were lubricated 
with WD40 spray [2] to decrease the coefficient 
of friction to the value of approximately μ = 0.18 
and to minimize the possibility of destruction of 
sensors and other structural parts of the test rig.  

3.1 Experimental, Motor Controlled, Run-
Down (RD) Analysis  

 
To verify the numerical results presented in 
chapter 2.1, an experimental RD analysis has 
been performed.  
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Fig.21.  Test rig for rotor-stator contact 
investigation  

 
The speed change has been controlled via 
frequency inverter Micromaster 440 from 
Siemens. The speed rate has been the same as in 
the numerical simulation only the starting speed 
has been 70 Hz. Figs. 22 and 23 show measured 
lateral responses of the rotor in horizontal x 
direction with speed law and spectral map of the 
rotor lateral response in the horizontal direction. 
This figures can be compared to Figs. 8 and 9 
respectively, for a speed range n = 40 to 0 Hz. In 
Fig. 23 except for the first harmonic, other higher 
harmonics can be also seen due to various 
imperfections of the experimental model like 
radial and angular misalignment etc. Fig. 24 
shows a spectral map of stator displacements in 
horizontal direction. Although there wasn’t direct 
contact between the rotor and stator, the stator 
was excited as it can be seen on Fig. 24. This is 
due to the fact that rotor bearing supports and 
stator supports are rigidly connected on the 
mounting plate, so this situation allows an 
indirect stator excitation through the mounting 
plate.  

Measured flexural natural frequencies 
were, fr = 28 Hz (Fig. 23), fs = 90 Hz (Fig. 24) 
and stator torsional frequency fst = 102.5 Hz (Fig. 
24).  

To excite effectively both stator natural 
frequencies (with second harmonic), the 70 Hz as 
a starting speed of this RD analysis was chosen. 

Fig.22.  Measured lateral rotor xr response in 
horizontal direction and speed law  

 

Fig.23.  Measured spectral map of rotor 
displacement in horizontal direction  
 

Fig.24.  Measured spectral map of stator 
displacement in horizontal direction  
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3.2 Experimental Sudden Rotor 
Unbalance Increase (SRUI) Analysis 

 
Because this test rig couldn’t simulate the 

SRUI scenario during the rotor operation, 
additional mass has been added instead of being 
removed but with rotor at standstill. The rotor has 
been quickly accelerated to rotational speed of 40 
Hz to reduce the rubbing while passing through 
rotor critical speed. The power supply to the 
motor was then switched off and a whole rotor 
started a free deceleration. Two measurements 
have been presented: free rotor RD with good 
rotor balance condition as in previous analysis 
(without appearance of the rotor-stator contact), 
Figs. 25 and 26 and free RD of the rotor with 
additional mass unbalance (presented in the rotor 
mass eccentricity) eadd = 0.124 mm, Figs. 27 to 
30.  

The first measurement (Figs. 25 and 26) 
can be compared directly with the numerical 
simulation presented in the Figs. 11 and 12. 
Looking just on Figs. 11 and 25 a great 
correspondence can be noticed. Comparing 
spectral maps of simulated and measured lateral 
rotor displacements, i.e. Figs. 12 and 26, some 
differences regarding presence of higher 
harmonics in measured response can be observed. 
The reason for their presence is explained in the 
previous chapter and their influence is reflected 
on extended life of rotor bending natural 
frequency present in the response till the rotor 
standstill.  

The second measurement (Figs. 27 to 30) 
can be compared with the numerical simulation 
presented in Figs. 13 to 19 with remark that in 
simulation the motor is switched off in t1 = 2 s 
(Fig. 14) while in measurement in t1 = 1.65 s. 
Furthermore, rotor and stator were, in 
measurement, in permanent contact from the very 
beginning, while in numerical SRUI simulation 
they got into contact after additional mass 
unbalance activation i.e. in t1 = 1.0 s of 
simulation.  

Taking into account the aforementioned 
reasons for differences between simulation and 
measurement, a great correspondence between 
Figs. 14 and 27 can be noticed again. In measured 
spectral map of the rotor lateral response, Fig. 28, 
vibrations have strong first harmonic component 
i.e. 1× rotating frequency, while there are higher 
harmonics too. They were present also in the 

rotor lateral response without appearance of the 
rotor-stator contact (Fig. 26), because of the 
above mentioned imperfections of the rotor 
experimental model. Both lateral and torsional 
natural frequencies of the stator are present in 
each of its depicted responses, i.e. in the lateral 
response (Fig. 29) and in the torsional response 
(Fig. 30), after the final rotor-stator separation. 
This happened mainly because of the vicinity of 
stator natural frequencies and due to indirect 
measurement of torsional stator rotations via 2 
parallel non-contacting displacement sensors in 
horizontal (lateral) direction. Although both stator 
frequencies can be seen in two separated 
responses, lateral frequency is more emphasized 
in lateral response while torsional frequency is 
more emphasized in its torsional response. Thus 
in the case of torsionally elastic systems 
susceptible to the rotor-stator contact it is 
important to combine the measurements with 
results of the numerical simulations to make a 
decision of the character of a particular natural 
frequency.  

 
4 CONCLUSIONS 

 
The presented numerical model of the 

rotor with a bowed shaft – stator system has 
proved to be capable for analyzing different 
contact situations. Linear and nonlinear normal 
contact force models were compared in the same 
simulated situations and they showed similar 
responses for permanent rotor-stator contact, 
while nonlinear force model generally had a 
greater response for the first rotor-stator impact. 
This didn’t have a big influence on a subsequent 
rotor and stator response and their stability, for 
the analyzed parameters. Both normal force 
models, for permanent rotor-stator contact (with 
sliding) FCperm, showed increasing tendency with 
decreasing phase lag α0, because if α0 is smaller 
than 180° the unbalance excitation will be greater.  

Experimental analysis showed more 
realistic rotor and stator responses with more 
different harmonics present than in the results of 
numerical simulations. This was mainly due to 
tested model imperfections and measuring 
principle. In the real practice measured signals are 
even more unclear and mixed with different 
noise, so it is important to combine the 
measurements with adequate numerical 
simulations to recognize the needed information. 
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Fig.25.  Measured lateral rotor xr response in 
horizontal direction with speed law, contact-free 

situation, free RD, eadd = 0 mm  
 

Fig.26.  Spectral map of rotor displacements in 
horizontal direction, free RD, eadd = 0 mm  

 

Fig.27.  Measured lateral rotor xr and stator xs 
responses in horizontal direction, free RD, 

contact appeared, eadd = 0.124 mm  
 

Fig.28.  Spectral map of rotor lateral 
displacements in horizontal direction, free RD, 

contact appeared, eadd = 0.124 mm  
 

Fig.29.  Measured spectral map of stator lateral 
displacement in horizontal direction, free RD, 

eadd = 0.124 mm  
 

Fig.30.  Measured spectral map of stator 
torsional rotations, free RD, eadd = 0.124 mm  

 



Strojniški vestnik - Journal of Mechanical Engineering 54(2008)10, 693-706 

 

Braut, S. - Žigulić, R. - Butković, M. 706

5 REFERENCES 
 

[1] Choy, F. K., Padovan, J. (1987) Non-linear 
transient analysis of rotor-casing rub events, 
Journal of Sound and Vibration, 113(3), pp. 
529-545. 

[2] Bartha, A. R. (2000) Dry Friction Backward 
Whirl of Rotors, PhD. Thesis, Swiss Federal 
Institute of Technology Zurich. 

[3] Von Groll, G., Ewins, D. J. (2002) A 
Mechanism of Low Subharmonic Responce 
in Rotor/Stator Contact – Measurement and 
Simulation, Journal of Vibration and 
Acoustics, vol. 124 (2002), pp.350.-358. 

[4] Ahrens, J., Jiang, J., Ulbrich, H., Ahaus, G. 
(2001) Experimentelle Untersuchungen zum 
Schaufelanstreifen, Schwingungen in 
rotierenden maschinen – SIRM V Tagung, 
Wien, Austria, pp. 97-108, (in German). 

[5] Fumagalli, M., Schweitzer, G. (1994) Impact 
dynamics of high speed rotors in retainer 
bearings and measurement concepts, 4th 
International Symposium on Magnetic 
Bearings, ETH Zurich Switzerland. 

[6] Orth, M., Nordmann, R. ANEAS (2002) A 
modeling tool for nonlinear analysis of 
active magnetic bearing systems, 2nd IFAC 
Conference on Mechatronic Systems, 
Berkley, USA, pp. 357-362. 

[7] Edwards, S., Lees, A. W. and Friswell, M. I. 
(1999) The Influence of Torsion on 
Rotor/Stator Contact in Rotating Machinery, 
Journal of Sound and Vibration, 225(4), pp. 
767-778. 

[8] Žigulić, R., Butković, M., Braut S. (2002) 
Nonlinear dynamics of multi-disc rotor in 
dry friction bearings, IFToMM Sixth 
International Conference on Rotor 
Dynamics, vol. 2, Sydney, Australia, pp. 
960-967. 

[9] Karpenko, E.V., Pavlovskaia, E.E., 
Wiercigroch, M. (2003) Bifurcation analysis 

of a preloaded Jeffcott rotor, Chaos, Solitons 
& Fractals, 15, pp. 407–416.  

[10] Pavlovskaia, E.E., Karpenko, E.V., 
Wiercigroch, M. (2004) Nonlinear dynamics 
of a Jeffcott rotor with a preloaded snubber 
ring, Journal of Sound and Vibration, 276 
(1–2), pp. 361–379. 

[11] Karpenko, E.V., Wiercigroch, M., 
Pavlovskaia, E.E., Neilson, R.D. (2006) 
Experimental verification of Jeffcott rotor 
model with preloaded snubber ring, Journal 
of Sound and Vibration, 298, pp. 907-917 

[12] Braut, S (2006) Analysis of the rotor-stator 
contact dynamics, PhD thesis (in Croatian), 
University of Rijeka, Faculty of Engineering, 
Rijeka. 

[13] Childs, D. W. (1993) Turbomachinery 
Rotordynamics, Phenomena, Modeling, and 
Analysis, John Wiley & Sons, New York. 

[14] Chu, F., Lu, W. (2007) Stiffening effect of 
the rotor during the rotor-to-stator rub in a 
rotating machine, Journal of Sound and 
Vibration, 308(2007), 758-766. 

[15] Faik, S., Witteman, H. (2000) Modeling of 
Impact Dynamics: A Literature Survey, 2000 
International ADAMS User Conference, 
Orlando, Florida, USA, pp. 1-11. 

[16] Rivin, E. I. (1999) Stiffness and Damping in 
Mechanical Design, Marcel Dekker, Inc. 
New York. 

[17] Hunt, K. H. and Crossley, F. R. E. (1975) 
Coefcient of restitution interpreted as 
damping in vibroimpact, Transactions of the 
ASME, Journal of Applied Mechanics, pp. 
440-445. 

[18] Jurković, B. (1990) Electric power drivers, 
Školska knjiga, Zagreb, (in Croatian). 

[19] Boldea, I., Nasar, S. A. (2002) The Induction 
Machine Handbook, CRC Press, Boca 
Raton. 

 
 


