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Abstract

A fullerene G is a 3-regular plane graph consisting only of pentagonal and hexagonal
faces. The resonance graph R(G) of G reflects the structure of its perfect matchings. The
Zhang-Zhang polynomial of a fullerene is a counting polynomial of resonant structures
called Clar covers. The cube polynomial is a counting polynomial of induced hypercubes
in a graph.

In the present paper we show that the resonance graph of every fullerene is bipartite
and each connected component has girth 4 or is a path. Also, the equivalence of the Zhang-
Zhang polynomial of a fullerene and the cube polynomial of its resonance graph is estab-
lished. Furthermore, it is shown that every subgraph of the resonance graph isomorphic to
a hypercube is an induced subgraph in the resonance graph. For benzenoid systems and
tubulenes each connected component of the resonance graph is the covering graph of a
distributive lattice; for fullerenes this is not true, as we show with an example.
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1 Introduction

A fullerene is a molecule of carbon in the form of a hollow sphere, ellipsoid, tube, or many
other shapes. The first fullerene molecule was discovered 30 years ago. In graph theory,
a fullerene is a 3-regular plane graph consisting only of pentagonal and hexagonal faces.
Kekulé structures of an unsaturated hydrocarbon represent the possible positions of double
bonds in the molecule, which corresponds to a perfect matching of a molecular graph. In
recent years, a lot of research has been done on the symmetries of fullerenes and their
Kekulé structure counts. The concept of the resonance graph of a fullerene was introduced
in [9]. The resonance graph of a hydrocarbon reflects the structure of its perfect matchings.
There are many results on resonance graphs of benzenoid systems [14] and open-ended
carbon nanotubes (tubulenes) [11, 19], but nothing has been done on resonance graphs of
fullerenes.

In the present paper we investigate basic properties of resonance graphs of fullerenes.
It is shown that the resonance graph of every fullerene is bipartite and each connected com-
ponent has girth 4 or is a path. Further, the equivalence of Zhang-Zhang polynomial of a
fullerene and the cube polynomial of its resonance graph is established. The corresponding
results are already known for benzenoid systems and tubulenes (see [14, 12, 11, 17, 3]).
Moreover, we prove that every subgraph of the resonance graph of a fullerene that is iso-
morphic to a hypercube is actually an induced subgraph. We also give an example of
a fullerene such that one of the connected components of its resonance graph is not the
covering graph of a distributive lattice. This is surprising since all such components are
covering graphs of distributive lattices in the case of benzenoid systems and tubulenes (see
[15, 13]).

2 Preliminaries

A fullereneG is a 3-regular plane graph consisting only of pentagonal and hexagonal faces.
By Euler’s formula it follows that the number of pentagonal faces is exactly 12 in every
fullerene.

A 1-factor of a fullerene G is a spanning subgraph of G such that every vertex has degree
one. Edges of the 1-factor form an independent set of edges i.e. a perfect matching of
G (in the chemical literature these are known as Kekulé structures; for more details see
[5]). Petersen’s theorem states that in a bridgeless 3-regular graph, there is always a perfect
matching [8]. Therefore, a fullerene always has at least one perfect matching.

Let M be a perfect matching of G. A hexagon h of G is M -alternating if the edges of h
appear alternately in and out the perfect matching M . Such a hexagon h is also called a
sextet.

The resonance graph R(G) of a fullerene G is the graph whose vertices are the perfect
matchings of G, and two perfect matchings M1 and M2 are adjacent whenever their sym-
metric difference M1 ⊕M2 forms a set of edges of exactly one hexagon of G.

Let G be a fullerene. A Clar cover is a spanning subgraph of G such that every component
of it is either a hexagon or an edge. The set of hexagons in a Clar cover is a resonant
set of G. A resonant set with the maximum number of hexagons is a Clar formula of G.
The number of hexagons in the Clar formula is a Clar number Cl(G) of G. The Zhang-
Zhang polynomial of G (also called the Clar covering polynomial, see [18]) is defined in



N. Tratnik and P. Žigert Pleteršek: Resonance graphs of fullerenes 427

the following way:

ZZ(G, x) =

Cl(G)∑
k=0

z(G, k)xk,

where z(G, k) is the number of Clar covers of G with k hexagons. Note that for a fullerene
G number z(G, 0) equals the number of vertices of R(G) and z(G, 1) equals the number
of edges of R(G).

The n-dimensional hypercubeQn is the graph whose vertices are all binary strings of length
n and two vertices are adjacent if and only if their strings differ exactly in one position. A
Lucas cube Λn is the graph whose vertex set is the set of all binary strings of length n
without consecutive 1’s and also without 1 in the first and the last bit. The edges are
defined analogously as for the hypercube.

Let H be a graph. The Cube polynomial of H is defined as follows:

C(H,x) =
∑
i≥0

αi(H)xi,

where αi(H) denotes the number of induced subgraphs of H that are isomorphic to the
i-dimensional hypercube.

The Cartesian product G�H of graphs G and H is the graph with the vertex set V (G) ×
V (H) and (a, x)(b, y) ∈ E(G�H) whenever ab ∈ E(G) and x = y , or, if a = b and
xy ∈ E(H).

Let P = (P,≤) be a poset, i.e. ≤ is a binary relation on P , which is reflexive, antisym-
metric and transitive. For x, y ∈ P , a lower bound of x and y is an element z ∈ P such
that z ≤ x and z ≤ y. A lower bound z of x and y is said to be the greatest lower bound
(if it exists) if z′ ≤ x and z′ ≤ y, z′ ∈ P , imply that z′ ≤ z. If x and y have a greatest
lower bound, then it is unique and denoted by x∧y. Similarly we can define the least upper
bound x ∨ y whenever it exists. A lattice is a poset in which every pair of elements have
the least upper bound and the greatest lower bound. Further, when operations ∧ and ∨ of
a lattice admit distributive laws we call it a distributive lattice. By x < y we mean that
x ≤ y and x 6= y. We say that y covers x if x < y and x < a ≤ y imply a = y. The
covering graph C(P) of a poset P is a graph whose vertices are elements of P and x, y ∈ P
are adjacent in C(P) if and only if x covers y or y covers x.

Let G be a graph. A median of a triple of vertices u, v, w of G is a vertex z that lies on a
shortest u, v-path, on a shortest u,w-path and on a shortest v, w-path. Note that z can be
one of the vertices u, v, w. A graph is a median graph if every triple of its vertices has a
unique median. These graphs were first introduced in [1] by Avann. Median graphs arise
naturally in the study of ordered sets and distributive lattices. It is known that trees and grid
graphs are examples of median graphs.

A graph H is a retract of G if there are homomorphisms (edge–preserving functions) f :
V (H) → V (G) and g : V (G) → V (H) such that g(f(a)) = a for every a ∈ V (H).
Note that if H is a retract of G it is convenient to take H as a subgraph of G and f to
be an inclusion map. It is known that median graphs can be characterized as retracts of
hypercubes [2].
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3 Some results about resonance graphs of fullerenes
In this section we will prove some basic properties of resonance graphs of fullerenes. The
first theorem claims that the resonance graph of every fullerene is a bipartite graph. In the
proof we use the concept of the dual graph G∗, which has a vertex for each face of G. The
dual graph has an edge whenever two faces of G are separated from each other by an edge.

Theorem 3.1. Let G be a fullerene. Then its resonance graph R(G) is bipartite.

Proof. It is known that R(G) is bipartite if and only if R(G) does not contain an odd
cycle. Let C = M0M1 . . .Mt be a cycle in R(G), where M0 = Mt. Hence there
exists a sequence of hexagons h1, h2, . . . , ht such that E(hi) = Mi−1 ⊕ Mi for every
i ∈ {1, 2, . . . , t}. For every hexagon h of a fullerene G we define δ(h) to be the number of
times h appears in the sequence h1, h2, . . . , ht. We will show that δ(h) is an even number
for every hexagon h of G. We consider two options:

(i) Let h be a hexagon with an edge e lying on some pentagon of G. We know that
M0 = M0 ⊕ E(h1) ⊕ E(h2) ⊕ . . . ⊕ E(ht), hence there must be an even number
of terms in the sequence h1, h2, . . . , ht containing the edge e. Since h is the only
hexagon of G that contains e, δ(h) must be even.

(ii) Now suppose that no edge of h lies on a pentagon. Let G∗ be the dual graph of
some planar drawing of G and let p0 be a pentagon of G such that dG∗(h, p0) =
min{d(h, p) | p pentagon of G}. Furthermore, let h, h1, . . . , hn, p0 be a shortest
path from h to p0 in G∗. Let e be the common edge of h and h1. Similar as in (i) we
can see that δ(h) + δ(h1) is even. Assume that δ(h) is odd. Then δ(h1) must be odd.
Let e′ be the common edge of h1 and h2 – see Figure 1. But δ(h2) is odd too since
δ(h1) + δ(h2) is even. If we repeat this discussion we obtain that δ(hn) is odd. But
the hexagon hn contains an edge lying on pentagon p0 and therefore, by (i), δ(hn)
must be even. This contradiction shows that δ(h) is even.

Figure 1: Hexagons h, h1 and h2.

We have proved that δ(h) is an even number for every hexagon h of G. Hence t =∑
h∈T δ(h) is even, i.e. C is an even cycle.

Next we show that every connected component (different from a path) of the resonance
graph of a fullerene has girth 4. We begin with the following lemma.

Lemma 3.2. Let G be a fullerene and H a connected component of the resonance graph
R(G) such thatH is not a path. If V1(H) is the set of all vertices inH that have degree one
and M ∈ V (H)− V1(H), then we can find in a fullerene G at least two disjoint hexagons
which are M -alternating cycles.
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Proof. The proof is the same as the proof of Lemma 3.1 in [11].

With Lemma 3.2 the following theorem is almost obvious.

Theorem 3.3. Let G be a fullerene and H a connected component of the resonance graph
R(G). Then H is either a path or a graph of girth 4.

Proof. Suppose that H is not a path. The set of all vertices in V (H) which have degree
one will be denoted by V1(H). If the set V (H)− V1(H) is empty it follows that H is the
path P2, which is a contradiction since H is not a path. Hence, let M ∈ V (H)− V1(H).

By Lemma 3.2, in a fullerene G there are two disjoint hexagons h1 and h2 which are
M -alternating cycles. Thus, M lies in a 4-cycle MM1M2M3 where M1 = M ⊕ E(h1),
M2 = M1⊕E(h2) andM3 = M2⊕E(h1). By Theorem 3.1 the resonance graphR(G) is
bipartite, therefore, H is bipartite too. Hence, there is no 3-cycle in H . Since every vertex
lies in some 4-cycle, the girth of H is 4 and the proof is completed.

4 Equivalence of Zhang-Zhang polynomial and cube polynomial for
fullerenes

In this section we prove that the Zhang-Zhang polynomial of every fullerene equals the
cube polynomial of its resonance graph. The same result was proved in [17] for benzenoid
systems and in [3] for tubulenes. However, the proof in [17] cannot be applied in our case,
since it is based on directed resonance graph (which is not defined for fullerenes, since
fullerenes are not bipartite). Therefore, we combine ideas from [10], [17] and [3] to prove
the following theorem:

Theorem 4.1. Let G be a fullerene. Then the Zhang-Zhang polynomial of G equals the
cube polynomial of its resonance graph R(G) i.e.

ZZ(G, x) = C(R(G), x) .

Proof. Let k be a nonnegative integer. For a fullerene G we denote by Z(G, k) the set of
all Clar covers of G with exactly k hexagons. On the other hand, consider a graph H; the
set of induced subgraphs ofH that are isomorphic to a k-dimensional hypercube is denoted
by Qk(H). Let us define a mapping fk from the set of Clar covers of a fullerene G with k
hexagons to the set of induced subgraphs of the resonance graph R(G) isomorphic to the
k-dimensional hypercube

fk : Z(G, k) −→ Qk(R(G))

in the following way: for a Clar cover C ∈ Z(G, k) consider those perfect matchings M1,
M2, . . ., Mi of G that each hexagon in C is Mj-alternating and each isolated edge of C is
in Mj , for all j = 1, 2, . . . , i. Assign fk(C) as an induced subgraph of R(G) with vertices
M1,M2, . . . ,Mi.

Note first that in case when k = 0 Clar covers are without hexagons, i.e. Clar covers
are perfect matchings of a fullerene and if C is such a Clar cover then fk(C) is a vertex of
the resonance graph and the mapping is obviously bijective. So from now on k will be a
positive integer.
First show that fk is a well-defined mapping.
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Lemma 4.2. For each Clar cover C ∈ Z(G, k) we have fk(C) ∈ Qk(R(G)).

Proof. The proof in [17] is based on proper and improper alternating cycles, which are not
well defined in our case. But we can apply the same proof as in [3]:
It is sufficient to show that fk(C) is isomorphic to the k-dimensional hypercube Qk. Let
h1, h2, . . . , hk be hexagons of C. Obviously, every hexagon of C has two possible perfect
matchings. Let us call these “possibility 0” and “possibility 1”. For any vertexM of fk(C)
let b(M) = (b1, b2, . . . , bk), where bi = 1 if on hi possibility 1 is selected, and bi = 0
otherwise, i = 1, 2, . . . , k. It is obvious that b : V (fk(C)) → V (Qk) is a bijection.
For M ′ ∈ V (fk(C)), let b(M ′) = (b′1, b

′
2, . . . , b

′
k). If M and M ′ are adjacent in fk(C)

then M ⊕M ′ = E(hi) for some i, 1 ≤ i ≤ k. Therefore, bj = b′j for each j 6= i and
bi 6= b′i, which implies (b1, b2, . . . , bk) and (b′1, b

′
2, . . . , b

′
k) are adjacent in Qk. Conversely,

if (b1, b2, . . . , bk) and (b′1, b
′
2, . . . , b

′
k) are adjacent in Qk, it follows that M and M ′ are

adjacent in fk(C). Hence b is an isomorphism between fk(C) and Qk.

The following lemma shows that fk is an injective mapping. For the proof see [17, 3].

Lemma 4.3. The mapping fk : Z(G, k) −→ Qk(R(G)) is injective for each positive
integer k.

The next lemma was proved in [17] for benzenoid systems. Here we extend it to fullerenes.

Lemma 4.4. Let G be a fullerene. If the resonance graph R(G) contains a 4-cycle
M1M2M3M4, then h = M1 ⊕ M2 and h′ = M1 ⊕ M4 are disjoint hexagons. Also,
we have h = M3 ⊕M4 and h′ = M2 ⊕M3.

Proof. We can apply the proof of Lemma 2.4 in [17].

To prove that the mapping fk is surjective, we apply a similar proof as in [3], but to prove
Claim 1 and Claim 2 in the proof, we use Lemma 4.4 (which is shorter). We give the whole
proof since notation from it is then used in the proof of Proposition 4.8.

Lemma 4.5. The mapping fk : Z(G, k) −→ Qk(R(G)) is surjective for each positive
integer k.

Proof. Let k be a positive integer and Q ∈ Qk(R(G)). Since Q is a subgraph of R(G)
isomorphic to a k-dimensional hypercube, vertices of Q can be identified with binary
strings (u1, u2, . . . , uk), so that two vertices of Q are adjacent in Q if and only if their
binary strings differ in precisely one position. Consider the following vertices of Q: M =
(0, 0, 0, . . . , 0), N1 = (1, 0, 0, . . . , 0), N2 = (0, 1, 0, . . . , 0), . . . , Nk = (0, 0, 0, . . . , 1). It
is obvious that MN i is an edge of R(G) for every i, 1 ≤ i ≤ k. By definition of R(G), the
symmetric difference of perfect matchings M and N i is the edge set of a hexagon of G.
We denote this hexagon by hi and we obtain the set of hexagons {h1, . . . , hk} of fullerene
G. If two of these hexagons were the same, for example if hi = hj for i, j ∈ {1, . . . , k}
and i 6= j, then N1 = N2 - a contradiction. Hence, we have the set of k distinct hexagons.
In the next claim we show that these hexagons are pairwise disjoint.

Claim 4.6. The hexagons hi, 1 ≤ i ≤ k, are pairwise disjoint.
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Proof. Let i, j ∈ {1, . . . , k} and i 6= j. Let W be a vertex of Q having exactly two 1’s and
these are in the ith and jth position. Obviously, MN1WN2 is a 4-cycle and therefore, by
Lemma 4.4, hi and hj are disjoint hexagons.

Claim 4.7. Let XY be an edge of Q. If the binary representations of X and Y differ at the
j-th place, then the symmetric difference X ⊕ Y is the edge set of the hexagon hj .

Proof. We can apply the same proof as in [10]:
Without loss of generality assume that j = 1. Let X = (0, . . .) and Y = (1, . . .). Let s be
the number of 1’s in X . Consider the path X0, X1, . . . , Xs in Q, where Xi has exactly i
1’s and these are in the same position as the first i 1’s in X . Furthermore, consider the path
Y 0, Y 1, . . . , Y s in Q, where Y i differ from Xi in precisely the first position. Obviously,
Xi and Y i are adjacent in Q and we also notice that X0 = M,Y 0 = N1, Xs = X,Y s =
Y . We use induction to prove that the symmetric difference of Xi and Y i is the hexagon
h1. If i = 0, this follows from the definition of the hexagon h1. Now suppose that the
statement holds for i = r, i.e. the symmetric difference of Xr and Y r is the hexagon
h1. Consider the cycle XrXr+1Y r+1Y r. By the inductive assumption and Lemma 4.4 it
follows that the symmetric difference of Xr+1 and Y r+1 is the hexagon h1. Therefore, the
symmetric difference of Xs = X and Y s = Y is the hexagon h1.

We notice that M0 = M = (0, 0, 0, . . . , 0), M1 = N1 = (1, 0, 0, . . . , 0), M2 =
(1, 1, 0, . . . , 0), . . . , Mk = (1, 1, 1, . . . , 1) is the path in Q and by Claim 2, the edge
M iM i+1 corresponds to the hexagon hi+1 for every i, 0 ≤ i ≤ k − 1. So going from M0

to Mk the perfect matchings only change in pair-wise disjoint hexagons h1, . . . , hk, hence
the perfect matching Mk contains a sextet of each hexagon in {h1, . . . , hk}. Since Q is
connected graph it follows that every vertex of Q contains a sextet of each hexagon from
{h1, . . . , hk} and also vertices of Q differ only on edges of exactly these same hexagons.

Let C be a subgraph of G, induced with edges in the set Mk ∪ E(h1) ∪ . . . ∪ E(hk).
It is easy to see that C is a Clar cover with k hexagons and V (fk(C)) = V (Q). Since both
Q and fk(C) are induced subgraphs of the resonance graph, it follows fk(C) = Q.

Lemma 4.2, Lemma 4.3 and Lemma 4.5 together imply Theorem 4.1.

In the proof of Theorem 4.1 we considered just induced subgraphs of the resonance graph
that are isomorphic to a hypercube. It is natural to ask what happens if we consider all
subgraphs that are isomorphic to a hypercube. In the next proposition we show that every
subgraph of the resonance graph of a fullerene that is isomorphic to a hypercube is actually
an induced subgraph. The same can be shown for benzenoid systems and tubulenes.

Proposition 4.8. Let G be a fullerene. Then every subgraph of R(G), isomorphic to a
hypercube, is induced subgraph in R(G).

Proof. Let Q be a subgraph of the resonance graph, isomorphic to the k-dimensional hy-
percube. If k = 0, the proposition is obvious. So let k ≥ 1. Let F and F ′ be two distinct
vertices in Q such that they are not adjacent in Q. It suffices to prove that F and F ′ are
not adjacent in R(G). Let all notation be the same as in the proof of Lemma 4.5. Since
F and F ′ are not adjacent in Q, their binary representations differ in more than one coor-
dinate. Since every coordinate represents position of double bonds of one of the hexagons
h1, . . . , hk, F and F ′ differ in double bonds of more than one hexagon. Hence, they are
not adjacent in the resonance graph R(G).
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5 Example

Figure 2: A fullerene G with two rings consisting of 5 + 5 hexagons.

In Figure 2 we can see an example of a fullerene G with 10 hexagon faces, forming
two disjoint rings, each having 5 hexagons. A subgraph of fullerene G induced on one of
those two rings is a graph called cyclic fibonacene which resonance graph is isomorphic to
a Lucas cube Λ5 (see [20]). Since the two rings of hexagons are disjoint and the union of
their vertex sets is the vertex set of G, one of the components of the resonance graph of G
is isomorphic to the Cartesian product of two 5-dimensional Lucas cubes, Λ5�Λ5 = H ,
see Figure 3. The Clar number of fullerene G is obviously 4, since there is no resonant
set of size 5 in G. Since a Clar cover with k hexagons induces a k-dimensional hypercube
in the corresponding resonance graph, the largest induced hypercubes in H are of size 4.
It is easy to see that every perfect matching with 4 sextets is a vertex of H . It is also not
difficult to check that there is no maximal resonant set with 3 hexagons in G. Therefore all
components of the resonance graph of G different from H contain at most 2-dimensional
hypercubes (due to their large number only the componentH of the resonance graphR(G)
is drawn in Figure 3).

To conclude the example, we calculate the first two coefficients of Zhang-Zhang poly-
nomial using cube polynomial of a fullerene from Figure 2. Since we already know that
graph H from Figure 3 includes all 3-dimensional and 4-dimensional hypercubes of reso-
nance graph R(G), it suffices to count them in H . The number of 4-dimensional hyper-
cubes in H is 25 and the number of 3-dimensional hypercubes in H is 75 (see Figure 3)
therefore, the number of Clar covers with 4 and 3 hexagons is 25 and 75, respectively.

6 Distributive lattice structure and median graphs
We have already mentioned that the resonance graph (or each connected component of
the resonance graph) of every benzenoid graph or tubulene is the covering graph of some
distributive lattice. For the details see [6, 15, 13]. Therefore it is interesting that this result
is no longer true (in general) for resonance graphs of fullerenes. Here we give an example
of a fullerene such that a connected component of its resonance graph is not the covering
graph of a distributive lattice.

In Figure 3 we can see the largest connected component H of the resonance graph of
fullerene G from Figure 2. It is obvious that the diameter of H , diam(H) is 8, since the
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Figure 3: The largest connected component H of the resonance graph of fullerene G.

distance between vertices u and v from Figure 3 is 8. To show that graph H is not the
covering graph of any distributive lattice, we use Theorem 6.1. Before stating the theorem,
we introduce some notation.

Let 2n denote the distributive lattice of all subsets of an n-element set. Then the cov-
ering graph C(2n) is an n-dimensional hypercube. Also, if (L,≤) is a lattice, then a lin-
early ordered set C ⊆ L is called a chain. For a chain C of L we define its length by
l(C) = |C| − 1. Then the length l(L) of L is the maximum of the lengths of the chains in
L. Now the following result can be stated.

Theorem 6.1. [4] A finite graph G is the covering graph of a distributive lattice of length
n if and only if G is a retract of C(2n) and diam(G) = n.

It follows from Theorem 6.1 that if H is the covering graph of some distributive lattice,
then H is a retract of a 8-dimensional hypercube Q8. But it is obvious from Figure 3 that
the degree of the vertex in the center of H is 10 and, therefore, H cannot be a subgraph of
Q8, since all the vertices in Q8 have degree 8. Hence, H is not the covering graph of any
distributive lattice.

Next we consider the relationship between resonance graphs of fullerenes and median
graphs. It was shown that the resonance graph (or its connected component) of a benzenoid
graph or a tubulene is always a median graph (see [16, 13]). Both proofs rely on a distribu-
tive lattice structure for resonance graphs, which cannot be established for fullerenes. Since
covering graphs of distributive lattices and median graphs are closely connected [4], it is
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natural to ask if resonance graphs of fullerenes are not (in general) median graphs. How-
ever, we can easily show that graph H in Figure 3 is a median graph. To this end, let us
introduce the following procedure.

LetG be a graph. Suppose V (G) = V1∪V2, where V1∩V2 6= ∅, each 〈Vi〉 (an induced
subgraph of G with vertices Vi) is an isometric subgraph of G, and no edge of G joins
V1 \ V2 to V2 \ V1. An expansion of G with respect to V1 and V2 is a graph H obtained
from G by the following steps.

i) Replace each v ∈ V1 ∩ V2 by vertices v1 and v2, and insert the edge v1v2.

ii) Insert edges between v1 and all neighbours of v in V1 \ V2; insert edges between v2
and all neighbours of v in V2 \ V1.

iii) Insert the edges v1u1 and v2u2 if v, u ∈ V1 ∩ V2 are adjacent in G.

An expansion is convex if 〈V1 ∩ V2〉 is a convex subgraph of G. Now we can state the
following well-known theorem, which is called Mulder’s Convex Expansion Theorem.

Theorem 6.2. [7] A graph is a median graph if and only if it can be obtained from the
one-vertex graph by a convex expansion procedure.

It is easy to check that the Lucas cube Λ5 can be obtained from a one-vertex graph by
a convex expansion procedure (see Figure 4), therefore, Λ5 is a median graph.

Figure 4: A convex expansion procedure for Λ5.

Since the Cartesian product of median graphs is another median graph, graph H from
Figure 3 is median. Since we do not know any example of a fullerene such that some con-
nected component of its resonance graph is not a median graph, we propose the following
conjecture.

Conjecture 6.3. Let G be a fullerene. Then every connected component of the resonance
graph R(G) is a median graph.
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