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Abstract

A Cayley (resp. bi-Cayley) graph on a dihedral group is called a dihedrant (resp. bi-
dihedrant). In 2000, a classification of trivalent arc-transitive dihedrants was given by
Marusi¢ and Pisanski, and several years later, trivalent non-arc-transitive dihedrants of or-
der 4p or 8p (p a prime) were classified by Feng et al. As a generalization of these results,
our first result presents a classification of trivalent non-arc-transitive dihedrants. Using this,
a complete classification of trivalent vertex-transitive non-Cayley bi-dihedrants is given,
thus completing the study of trivalent bi-dihedrants initiated in our previous paper [Dis-
crete Math. 340 (2017) 1757-1772]. As a by-product, we generalize a theorem in [The
Electronic Journal of Combinatorics 19 (2012) #P53].
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1 Introduction

In this paper we describe an investigation of trivalent Cayley graphs on dihedral groups
as well as vertex-transitive trivalent bi-Cayley graphs over dihedral groups. To be brief,
we shall say that a Cayley (resp. bi-Cayley) graph on a dihedral group a dihedrant (resp.
bi-dihedrant).

Cayley graphs are usually defined in the following way. Given a finite group G and an
inverse closed subset S C G\ {1}, the Cayley graph Cay(G, S) on G with respect to S is a
graph with vertex set G and edge set {{g, sg} | g € G,s € S}. Forany g € G, R(g) is the
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permutation of G defined by R(g) : © — zg forz € G. Set R(G) := {R(g) | g € G}. It
is well-known that R(G) is a subgroup of Aut (Cay(G, S)). We say that the Cayley graph
Cay(G, S) is normal if R(G) is normal in Aut (Cay(G, S)) (see [19]).

In 2000, Marusic and Pisanski [13] initiated the study of automorphisms of dihedrants,
and they gave a classification of trivalent arc-transitive dihedrants. Following this work,
highly symmetrical dihedrants have been extensively studied, and one of the remarkable
achievements is the complete classification of 2-arc-transitive dihedrants (see [7, 12]). In
contrast, however, relatively little is known about the automorphisms of non-arc-transitive
dihedrants. In [1], the authors claimed that every trivalent non-arc-transitive dihedrant is
normal. However, this is not true. There exist non-arc-transitive and non-normal dihe-
drants. Actually, in [22, 26], the automorphism groups of trivalent dihedrants of order 4p
and 8p are determined for each prime p, and the result reveals that every non-arc-transitive
trivalent dihedrant of order 4p or 8p is either a normal Cayley graph, or isomorphic to the
so-called cross ladder graph. For an integer m > 2, the cross ladder graph, denoted by
CLy4, is a trivalent graph of order 4m with vertex set Vo UVi U. .. Va2 U Vs, 1, where
V; = {9, x}}, and edge set {{a%;, 2%, 1 }, {ah; 1, 25,00} | © € Zm, 7, s € Lo} (see Fig. 1

for CLy,,). It is worth mentioning that the cross ladder graph plays an important role in the
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Figure 1: The cross ladder graph CL,,

study of automorphisms of trivalent graphs (see, for example, [5, 21, 26]). Motivated by
the above mentioned facts, we shall focus on trivalent non-arc-transitive dihedrants. Our
first theorem generalizes the results in [22, 26] to all trivalent dihedrants.

Theorem 1.1. Let X = Cay(H, S) be a connected trivalent Cayley graph, where H =
{a,b|a™ = b2 = 1,bab = a~')(n > 3). If ¥ is non-arc-transitive and non-normal, then
n is even and 3 = CLy.3 and S® = {b,ba, ba’* } for some a € Aut (H).

Recall that for an integer m > 2, the cross ladder graph CL4,, has vertex set V) U
ViU... Va2 UVapy,_1, where V; = {29, x}1}. The multi-cross ladder graph, denoted
by MCLy4, 2, is the graph obtained from CL4,, by blowing up each vertex x; of CL4y,
into two vertices z"° and z"'. The edge set is {{x5;, zb’  }, {zh 1 250} | i €
Ly, 1, 8,t € Lo} (see Fig. 2 for MCLg 2).

Note that the multi-cross ladder graph MCLy,, 2 is just the graph given in [23, Def-
inition 7]. From [6, Proposition 3.3] we know that every MCLy,, 2 is vertex-transitive.
However, not all multi-cross ladder graphs are Cayley graphs. Actually, in [23, Theo-
rem 9], it is proved that MCLy), » is a vertex-transitive non-Cayley graph for each prime

p > 7. Our second theorem generalizes this result to all multi-cross ladder graphs.

Theorem 1.2. The multi-cross ladder graph MCLy,, 2 is a Cayley graph if and only if
either m is even, or m is odd and 3 | m.
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Figure 2: The multi-cross ladder graph MCLy 2

Both of the above two theorems are crucial in attacking the problem of classification
of trivalent vertex-transitive non-Cayley bi-dihedrants. Before proceeding, we give some
background to this topic, and set some notation.

Let R, L and S be subsets of a group H such that R = R™}, L = L~! and R U
L does not contain the identity element of H. The bi-Cayley graph BiCay(H, R, L, S)
over H relative to R, L, .S is a graph having vertex set the union of the right part Hy =
{ho | h € H} and the left part Hy = {h; | h € H}, and edge set the union of the
right edges {{ho,go} | gh~! € R}, the left edges {{h1,91} | gh~' € L} and the spokes
{{ho,g1} | gh~! € S}. If |R| = |L| = s, then BiCay(H, R, L, S) is said to be an s-type
bi-Cayley graph.

In [20] we initiated a program to investigate the automorphism groups of the trivalent
vertex-transitive bi-dihedrants. This was partially motivated by the following facts. As
one of the most important finite graphs, the Petersen graph is a bi-circulant, but it is not
a Cayley graph. Note that a bi-circulant is a bi-Cayley graph over a cyclic group. The
Petersen graph is the initial member of a family of graphs P(n,t), known now as the
generalized Petersen graphs (see [17]), which can be also constructed as bi-circulants. Let
n>3,1<t<n/2andset H= (a) = Z,. The generalized Petersen graph P(n,1)
is isomorphic to the bi-circulant BiCay(H, {a,a"'}, {a’,a'}, {1}). The complete
classification of vertex-transitive generalized Petersen graphs has been worked out in [8,
14]. Latter, this was generalized by MarusSi€ et al. in [13, 15] where all trivalent vertex-
transitive bi-circulants were classified, and more recently, all trivalent vertex-transitive bi-
Cayley graphs over abelian groups were classified in [24]. The characterization of trivalent
vertex-transitive bi-dihedrants is the next natural step.

Another motivation for us to consider trivalent vertex-transitive bi-dihedrants comes
from the excellent work in a highly cited article [16], where the authors give a census of
trivalent vertex-transitive graphs of order up to 1280. This is very important in the study of
trivalent vertex-transitive graphs. Actually, by checking this census of graphs of order up
to 1000, we find out that there are 981 non-Cayley graphs, and among these graphs, 233
graphs are non-Cayley bi-dihedrants. This may suggest bi-dihedrants form an important
class of trivalent vertex-transitive non-Cayley graphs.

In [20], we gave a classification of trivalent arc-transitive bi-dihedrants, and we also
proved that every trivalent vertex-transitive 0- or 1-type bi-dihedrant is a Cayley graph, and
gave a classification of trivalent vertex-transitive non-Cayley bi-dihedrants of order 4n with
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n odd. The goal of this paper is to complete the classification of trivalent vertex-transitive
non-Cayley bi-dihedrants.

Before stating the main result, we need the following concepts. For a bi-Cayley graph
I’ = BiCay(H, R, L, S) over a group H, we can assume that the identity 1 of H isin S
(see Proposition 2.3 (2)). The triple (R, L, S) of three subsets R, L, S of a group H is called
bi-Cayley triple if R = R™', L = L™, and 1 € S. Two bi-Cayley triples (R, L, S) and
(R',L',S") of a group H are said to be equivalent, denoted by (R, L, S) = (R, L', 5"), if
either (R, L', S") = (R, L,S)*or (R, L', S") = (L, R, S~1)* for some automorphism «
of H. The bi-Cayley graphs corresponding to two equivalent bi-Cayley triples of the same
group are isomorphic (see Proposition 2.3 (3)-(4)).

Theorem 1.3. Let I' = BiCay(R, L, S) be a trivalent vertex-transitive bi-dihedrant where
H = (a,b|a™ =b*> = 1,bab = a~') is a dihedral group. Then either T is a Cayley graph
or one of the following occurs:

(1) (R,L,S) = ({b, ba},{a, a='},{1}), where n = 5.

(2) (R,L,S) = ({b, ba*™1}, {ba, ba’” ++1} {1}), wheren > 5, 63 + (2 + ( +1 =
0 (mod n), £2 # 1 (mod n).

(3) (R,L,S) = ({ba™*, ba‘},{a, a='},{1}), where n = 2m and (*> = —1 (mod m).
Furthermore, I is also a bi-Cayley graph over an abelian group Z.,, X Zs.

(4) (R,L,S) = ({b,ba},{b,ba*"},{1}), where n = 2(2m + 1), m # 1 (mod 3), and
the corresponding graph is isomorphic the multi-cross ladder graph MCL 4, 2.

(5) (R, L,S) = ({b,ba}, {ba*** ba'?*~1} {1}), where n = 48¢ and £ > 1.

Moreover; all of the graphs arising from (1)-(4) are vertex-transitive non-Cayley.

2 Preliminaries

All groups considered in this paper are finite, and all graphs are finite, connected, simple
and undirected. For the group-theoretic and graph-theoretic terminology not defined here
we refer the reader to [3, 18].

2.1 Definitions and notations

For a positive integer, let Z,, be the cyclic group of order n and Z;, be the multiplicative
group of Z, consisting of numbers coprime to n. For two groups M and N, N x M
denotes a semidirect product of N by M. For a subgroup H of a group G, denote C(H)
the centralizer of H in G and by N¢ (H) the normalizer of H of G. Let G be a permutation
group on a set 2 and a € ). Denote by G, the stabilizer of « in G. We say that G is
semiregular on Q) if G, = 1 for every a € ) and regular if G is transitive and semiregular.

For a finite, simple and undirected graph I", we use V(T'), E(T"), A(T"), Aut(T") to
denote its vertex set, edge set, arc set and full automorphism group, respectively. For any
subset B of V(I'), the subgraph of T" induced by B will be denoted by I'[B]. For any
v € V(T') and a positive integer ¢ no more than the diameter of T, denote by T';(v) be the
set of vertices at distance 4 from v. Clearly, I'; (v) is just the neighborhood of v. We shall
often abuse the notation by using I'(v) to replace I'y (v).

A graph I is said to be vertex-transitive, and arc-transitive (or symmetric) if Aut (I")
acts transitively on V(T') and A(T'), respectively. Let I' be a connected vertex-transitive
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graph, and let G < Aut(I") be vertex-transitive on I'. For a G-invariant partition B of
V(T'), the quotient graph T'p is defined as the graph with vertex set B such that, for any
two different vertices B, C' € B, B is adjacent to C' if and only if there exist v € B and
v € C which are adjacent in . Let N be a normal subgroup of G. Then the set B of
orbits of N in V(T") is a G-invariant partition of V' (I"). In this case, the symbol I'z will be
replaced by I'y. The original graph I is said to be a N-cover of I'y if I and 'y have the
same valency.

2.2 Cayley graphs

Let T' = Cay(G, S) be a Cayley graph on G with respect to S. Then T is vertex-transitive
due to R(G) < Aut (T"). In general, we have the following proposition.

Proposition 2.1 ([2, Lemma 16.3]). A vertex-transitive graph I is isomorphic to a Cayley
graph on a group G if and only if its automorphism group has a subgroup isomorphic to
G, acting regularly on the vertex set of I'.

In 1981, Godsil [9] proved that the normalizer of R(G) in Aut (Cay(G, S)) is R(G) %
Aut (G, S), where Aut (G, S) is the group of automorphisms of G fixing the set S set-
wise. This result has been successfully used in characterizing various families of Cayley
graphs Cay (G, S) such that R(G) = Aut (Cay(G, S)) (see, for example, [9, 10]). Recall
that a Cayley graph Cay(G, S) is said to be normal if R(G) is normal in Aut (Cay(G, S))
(see [19]).

Proposition 2.2 ([19, Proposition 1.5]). The Cayley graph T' = Cay(G, S) is normal if
and only if A; = Aut (G, S), where Ay is the stabilizer of the identity 1 of G in Aut (T").

2.3 Basic properties of bi-Cayley graphs

In this subsection, we let I" be a connected bi-Cayley graph BiCay(H, R, L, S) over a group
H. Tt is easy to prove some basic properties of such a I, as in [24, Lemma 3.1].

Proposition 2.3. The following hold.
(1) H is generated by RULU S.

(2) Up to graph isomorphism, S can be chosen to contain the identity of H.
(3) For any automorphism « of H, BiCay(H, R, L, S) = BiCay(H, R*, L%, S%).
(4) BiCay(H, R, L, S) = BiCay(H, L, R, S71).

Next, we collect several results about the automorphisms of bi-Cayley graph I' =
BiCay(H, R, L, S). For each g € H, define a permutation as follows:

Set R(H) ={R(g) | g € H}. Then R(H) is a semiregular subgroup of Aut (") with Hy
and H, as its two orbits.

For an automorphism « of H and z,y,g € H, define two permutations of V(I") =
Hy U H; as follows:

60‘7337?/ : h’o = (xh’a)h hl — (yha)()v vh e Ha

22
Tag: ho = (K)o, h1 = (gh®)1, Vh € H. (2.2)
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Set

I={60u2y|a€Aut(H)st. R* =2 'La, L =y 'Ry, S* =y 'S 2},

2.3)
F={0a,|acAut(H)st. R*=R, L* =g 'Lg, S* =g 'S}.

Proposition 2.4 ([25, Theorem 1.1]). Let ' = BiCay(H, R, L, S) be a connected bi-
Cayley graph over the group H. Then Ny (F)(R(H)) = R(H)x FifI =0 and
Nput ry(R(H)) = R(H)(F, dauy) if I # 0 and Sa,2,y € I. Furthermore, for any
Oa,z,y € I, we have the following:

(1) (R(H), 0a,z,y) acts transitively on V (T');

(2) ifahas order2andx =y = 1, then I is isomorphic to the Cayley graph Cay(H, RU
«aS), where H = H % («).

3 Cross ladder graphs

The goal of this section is to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that ¥ = Cay(H, S) is a connected trivalent Cayley graph
which is neither normal nor arc-transitive, where H = (a,b | " = b*> = 1,bab =
a~Y)(n > 3). Then S is a generating subset of H and |S| = 3. So S must contain an
involution of H outside (a). As Aut(H) is transitive on the coset b(a), we may assume
that S = {b,z,y} forx,y € H \ (b).

Suppose first that z is not an involution. Then we must have y = x~!. Since S
generates H, one has (a) = (z), and so bxb = 1. Then there exists an automorphism of
H sending b, x to b, a respectively. So we may assume that S = {b, a,a'}. Now it is easy
to check that ¥ is isomorphic to the generalized Petersen graph P(n,1). Since X is not
arc-transitive, by [8, 14], we have |Aut (X)| = 2|H|, and so ¥ would be a normal Cayley
graph of H, a contradiction.

Therefore, both = and y must be involutions. Suppose that x € (a). Then n is even
and z = a™/2. Again since S generates H, one has y = ba’, where 1 < j < n — 1 and
either (j,n) = 1 or (j,n) = 2 and % is odd. Note that the subgroup of Aut (H) fixing b
is transitive on the set of generators of (a) and that (a”/?) is the center of H. There exists
a € Aut (H) such that

S = {b,ba,a*®} or {b,ba? a?}.

Without loss of generality, we may assume that S = {b,ba,a?} or {b,ba®,a%}.If S =
{b,ba?,a%}, we shall prove that ¥ = P(n,1). Note that the generalized Petersen graph
P(n,1) has vertex set {u;,v; | © € Z,, } and edge set {{wu;, w;y1}, {vi, vig1}, {wi,v;} | €
Z,}. Define a map from V' (X) to V(P(n, 1)) as follows:

. 21 2+ %
P a® = uy, a ”_271'—> Vas,
ba%t — U25—1, ba?ts — V2i—1,

where 0 < i < & — 1. It is easy to see that ¢ is an isomorphism form X to P(n, 1). Since
Y is not arc-transitive, by [8, 14], we have |Aut (X)| = 2|H|, and so 3 would be a normal
Cayley graph of H, a contradiction. If S = {b, ba,a? }, then ¥ has a connected subgraph
¥, = Cay(H, {b,ba}) which is a cycle of length 2n, and X is just the graph obtained from
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331 by adding a 1-factor such that each vertex g of X is adjacent to its antipodal vertex
a?g. Then R(H) x Zy = Aut(X;) < Aut(X), and then since ¥ is assumed to be not
arc-transitive, Aut (X) will fix the 1-factor {{g,a% g} | g € H} setwise. This implies that
Aut(X) < Aut(X;) and so Aut (X) = Aut(3;). Consequently, we have 3 is a normal
Cayley graph of H, a contradiction.

Similarly, we have y ¢ (a). Then we may assume that = = ba’ and y = ba’ for some
1 <i,j<mn-—1andi # j. Then S = {b,ba’,ba’} C b(a). This implies that ¥ is
a bipartite graph with (a) and b{a) as its two partition sets. Since ¥ is not arc-transitive,
Aut (X)) is intransitive on the neighbourhood S of 1, and since ¥ is not a normal Cayley
graph of H, there exists a unique element, say s € S, such that Aut (X); = Aut(X)s.
Considering the fact that Aut (H) is transitive on b(a), without loss of generality, we may
assume that Aut (X); = Aut (X), and Aut (X); swaps ba’ and ba’. Then for any h € H,
we have

Aut (D)), = (Aut (2)1) " = (Aut (2),) " = Aut (2)y,

Direct computation shows that

Yo(1) = {a=% a7 ,at,a" 7, a,a? "},
$3(1) = {ba=*,ba? = ba=7  ba' =7, ba®, bal Tt ba? =7 ba% ba?I 1},

Let Aut ()7 be the kernel of Aut (X); acting on S. Take an o € Aut (X)}. Then «
fixes every element in S. As Aut (%), = Aut (%), for any h € H, a will fix b(ba’) = a’
and b(ba’) = a’. Note that E(ba’) \ {1, a'’} = {a~7} and E(baj) \ {1, a} = {a?}.
Then « also fixes a7 and ¢’ ~*, and then « also fixes ba’~7 and ba’/ .

If [Z2(1)] = 6, then it is easy to check that ™" is the unique common neighbor of b
and ba’~*. So « also fixes a~*. Now one can see that « fixes every vertex in ¥o(1). If
|¥2(1)| < 6 and either |31 (b) N X1 (ba’)| > 1 or [£1(b) N1 (ba’)| > 1, then « also fixes
every vertex in Xo(1). In the above two cases, by the connectedness and vertex-transitivity
of ¥, a would fix all vertices of ¥, implying that « = 1. Hence, Aut(X); = 1 and
Aut (X); = Z5. This forces that ¥ is a normal Cayley graph of H, a contradiction.

Thus, we have [Z2(1)] < 6 and [21(b) N Xy (ba’)| = [21(b) N X1 (ba’)| = 1. This
implies that ¥; (ba’) N ¥y (ba?) = {1,a* 7} = {1,a’ "%}, and so a*~7 = a’~*. It follows
that a’~7 is an involution, and hence n is even and a’~7 = /2. So S = {b, ba’, ba’*"/?}.
As S generates H, one has (a’,a"/?) = (a). So either (i,n) = 1 or (i,n) = 2 and % is
odd. Note that the subgroup of Aut (H) fixing b is transitive on the set of generators of (a)
and that (a™/2) is the center of H. There exists o € Aut (H) such that

= {b,ba,ba'* %} or {b,ba? ba* % }.

Let 3, be the automorphism of H induced by the map a — a1, b — ba¢, where € € Z,.
Then

{b,ba,ba** 2} = (b, ba,ba?},and {b,ba? ba®*t %} = {b ba®, ba*}.

If 2 is odd, then the map 7 : a + a?*2,b — ba? induces an automorphism of H,
and {b,ba,ba?}" = {b,ba? ba?}. So there always exists ¥ € Aut (H) such that S7 =
{b, ba, ba>}, completing the proof of the first part of our theorem.

Finally, we shall prove ¥ = CL4.z. Without loss of generality, assume that S =
{b,ba,ba?}. Recall that V(CLyn) = {af | i € Zyy,r € Zy} and E(CLyy) =
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Haf, zi 1}, {:vgwxgzj_ll}, | i € Zayp,r € Za}. Let ¢ be amap from V(%) to V(CLy.2)
as following:
¢: a— Y, a'tE e 2l
ba’ xgjfl, ba’itz — x%jfl,
where 0 < ¢ < % —land1 <5 < g It is easy to check that ¢ is an isomorphism from 3
and X (CLy.2 ), as desired. O

4 Multi-cross ladder graphs

The goal of this section is to prove Theorem 1.2. We first show that each MCLy,, 2 is a
bi-Cayley graph.

Lemma 4.1. The multi-cross ladder graph MCLyy, 2 is isomorphic to the bi-Cayley graph
BiCay(H, {c, ca},{ca, ca®b}, {1}), where

H=<a,b,c\am:b2:c2:1,ab:a,a“:a_1,bc:b>.

Proof. For convenience, let I' be the bi-Cayley graph given in our lemma, and let X =
MCLy,, 2. Let ¢ be a map from V(X)) to V(T") defined by the following rule:

. 1,1 t 1,1 t+1 1,0 t+1 1,0 t
¢ ay = (a)o, Taipy — (ca™ o, zyp = (ca™ )1, aoiiy = (af)s,
0,1 t+1 0,1 t 0,0 t 0,0 t+1
x> (ca’™1b)1, w9, — (a'b)1, xg, > (a'h)o, Topq > (ca’™1b)o,
where t € Z,,.
It is easy to see that ¢ is an adjacency preserving isomorphism from X to I'. O

Remark 1 Let m be odd, let e = ab and f = ca. Then the group given in Lemma 4.1 has
the following presentation:

H={(e,f|e®=f* =1l =e!).

Clearly, in this case, H is a dihedral group. Furthermore, the corresponding bi-Cayley
graph given in Lemma 4.1 will be

BiCay(H, {f, fe}, {f, fe™ '}, {1}).

Proof of Theorem 1.2. By Lemma 4.1, we may let I' = MCLy,, 2 be just the bi-Cayley
graph BiCay(H, R, L, S), where

H={(a,bcla™ =0 =c?=1,a" =a,a°=a"1,b° =),
R ={c,ca}, L = {ca,ca®b}, S = {1}.

We first prove the sufficiency. Assume first that m is even. Then the map
ar ab,b— b,c+— cb

induces an automorphism, say « of H of order 2. Furthermore, R* = {¢, ca}* = caLca,
L® = {ca,ca’b}* = caRca and S® = {1}* = ca{l}ca = S~!. By Proposition 2.4,
da,caca € Aut (I') and R(H) X (0q,ca,ca) acts regularly on V' (I"). Consequently, by Propo-
sition 2.1, I' is a Cayley graph.
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Assume now that m is odd and 3 | m. In this case, we shall use the bi-Cayley presen-
tation for I" as in Remark 5.1, that is,

I’ = BiCay(H, {f, fe}, {f, fem_l}> {1},

where ‘
H={(e, fle*=f2=1¢e =e7).

Let 3 be a permutation of V' (I") defined as following:

5 . (fz:€3t+1)i o (fi6@+3t+1)i’ (fz:+163t+1>2_ o (fi6m+3t+1)i+1,
(fz+163t+2)1_ o (]chr16w~bJr31‘/+2)Z_7 (f163t+2)i o (fz+lem+3t+2)i+1’

(e3%)i < (fe)iqa, (emT3); 5 (fem™t3h), 44,

where ¢ € Zx and i € Zo. Itis easy to check that 3 is an automorphism of I' of order 2.
Furthermore, 72( ), R(f) and § satisfy the following relations:

R(e)*™ =R(f)? = B2 =1, R(f)""R(e)R(f) = R(e)~", R(f)"'BR(f) = B,
R(e)°B = BR(e)®, R(e)*s = BR(e)'BR(e)

Let G = (R(e?), R(f), ﬁ) and P = (R(e?),3). Then R(f) ¢ P and G = P(R(f)).

Since R(e)%3 = BR(e)®, we have R(e%) € Z(P). Since R(e)?8 = fR(e)*BR(e) 2
follows that

(R(e)?B)* = R(e)*B[BR(e)* FR(e)"*|R(e)*8 = R(e°).
Let N = (R(e")). Clearly, N is a normal subgroup of G. Furthermore,
P/N = (R(¢*)N, BN | R(e?)3N = 2N = (R(¢*)B)>N = N) = A,.

Therefore,
Let

= 4m and |G| < 8m.

Ao ={zo |z € (e, f)}, Ao ={(ex)o |z € (% f)},
Aoy ={z1 ]|z e (e’ f)}, An={(ex)|ze (e f)}

Then A;;’s (i, j € Zs) are four orbits of (R(e?), R(f)). Moreover,
1gR(f) = 11 S A()l, eg = (eerl)() S Aoo, ef = (feerl)Q S AOO‘

This implies that G is transitive on V(I"). Hence, |G| = 8m and so G is regular on V(T'),
and by Proposition 2.1, I is a Cayley graph.

To prove the necessity, it suffices to prove that if m is odd and 3 t m, then T" is a non-
Cayley graph. In this case, we shall use the original definition of I' = MCLy,,, 2. Suppose
that m is odd and 3 1+ m. We already know from [6, Proposition 3.3] that T" is vertex-
transitive. Let A = Aut (I"). For m = 5 or 7, using Magma [4], T is a non-Cayley graph.
In what follows, we assume that m > 11.

For each j € Z,,, CO (.ngo, mgﬁl,xgjl,xgﬁrl) and C1 (méjl, méleruxé]vaégoﬂ)
are two 4-cycles. Set ]—" = {C; | i € Zo,j € Zp}. From the construction of T' =
MCLyyy 2, it is easy to see that in I' = MCLy,, 2 passing each vertex there is exactly one 4-
cycle, which belongs to F. Clearly, any two distinct 4-cycles in F are vertex-disjoint. This
implies that A = {V(C;) | i € Zs,j € Zy,} is an A-invariant partition of V(I"). Consider
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the quotient graph I'a, and let T" be the kernel of A acting on A. Then I'a = C,,[2K1],
the lexicographic product of a cycle of length m and an empty graph of order 2. Hence
A/T < Aut(C,,[2K1]) = Z5* X Ds,,. Note that between any two adjacent vertices of
T'a there is exactly one edge of I' = MCLy,, 2. Then T fixes each vertex of I' and hence
T = 1. So we may view A as a subgroup of Aut (I'a) = Aut (C,,[2K1]) = Z5* X Day,.

For convenience, we will simply use the C;- ’s to represent the vertices of I'a. Then I'a
has vertex set

{C},C; 1j € Zm}
and edge set
{{CO C0+1} {Cl C1+1} {CO C1+1} {Cl CO+1} | j € Zm}

Let B = {{C?,C;} | i € Zy,}. Then B is an Aut (T A )-invariant partition of V(T'a).
Let K be the kernel of Aut (I'a) acting on B. Then K = (ko) x (k2) X -+ X (kpm_1),
where we use k; to denote the transposition (C(; CJI) for j € Z,,. Clearly, K is the maximal
normal 2-subgroup of Aut (I'a).

Suppose to the contrary that I' = MCL4,, 2 is a Cayley graph. By Proposition 2.1, A
has a subgroup, say G acting regularly on V(I"). Then G has order 8m, and

G/(GNK)=GK/K < Aut(Ta)/K < Dop,.

Since m odd, it follows that |G N K| = 4 or 8, and so G N K = Z3 or Z3.

If GNK = 73, then |GK/K| = 2m and GK/K = Aut(T'a)/K = Ds,,. So
GK = Aut(Ta) = Z% % Dy,y,. Let M be a Hall 2'-subgroup of G. Then M & Z,,
and M is also a Hall 2’-subgroup of Aut (I'a). Clearly, Aut (I'a) is solvable, so all Hall
2’-subgroups of Aut (T'a) are conjugate. Without loss of generality, we may let M = {(«),
where « is the following permutation on V/(T'a):

a=(CHCY...Ch1)(CrCl...Cppy).

Then K X () acts transitively on V(I'a). Clearly, Ck(«) is contained in the center of
K x {(a). So Ck (o) is semiregular on V(I'a). This implies that

CK(a) = <k0k1 . ..k’m,1> = ZQ.

On the other hand, let L = (G N K)M. Clearly, G N K <G, so L is a subgroup of G
of order 4m. For any odd prime factor p of m, let P be a Sylow p-subgroup of M. Then
P is also a Sylow p-subgroup of L, and since M is cyclic, one has M < Np(P). By
Sylow theorem, we have |L : Np(P)| = kp + 1 | 4 for some integer k. Since 3 { m, one
has L = Np(P). It follows that M < L and so L = M x (G N K). This implies that
GNK < Cg(M)=Ck(a) = Zs, a contradiction.

If GN K = 73, then |GK/K| = m. Furthermore, GK/K = Z,, and GK/K acts
on B regularly. Since G is transitive on V/(T'), there exists g € G such that (z4")9 =
:c} ! where xé 1,33% le Cé As V(Tpa) = {C; | i € Za,j € Zp,}, g fixes the 4-cycle
Cl =zt 2t zh° 2P, Since B = {{C?,C}} | j € Zy,} is also A-invariant, g
fixes {CJ,Ch} setwise. Since GK / K acts on B regularly, g fixes {C%C%} setwise for
every j € Z,. Observe that {xo @yt }and {x]", 23"} are the unique edges of T'
between C0 and C},_,, C0 and C}, respectively. This implies that g will map C.,_, to C3,

contradicting that g fixes {C?, le} setwise for every j € Z,,. O
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5 A family of trivalent VNC bi-dihedrants

The goal of this section is to prove the following lemma which gives a new family of
trivalent vertex-transitive non-Cayley bi-dihedrants. To be brief, a vertex-transitive non-
Cayley graph is sometimes simply called a VNC graph.

Lemma 5.1. Let H = {(a,b| a™ = b?> = 1,a® = a™!) be a dihedral group, where n = 48¢
and ¢ > 1. Then T = BiCay(H, {b, ba}, {ba?**,ba'?~1},{1}) is a VNC dihedrant.

Proof. We first define a permutation on V'(T") as follows:

g: (a¥)y > (@), ()1 = (ba®" ), (a%7 1) 1= (ba¥ 1),
( 37'-1—1) ( 24€+3r+1)1, (G3T+2)i — (ba12€-&-3r+2)H_l7 (ba?’r)o — (a3T)17
(ba?)r) — (ba24€+3r) 1, (ba3r+1)0 — (ba?)r—i-l)o7 (ba3r+1)1 — (aiir-i-l)o7
(ba3r+2) ( 712£+3r+2)i+1’

where r € Zyge, @ € Zo.
It is easy to check that g is an involution, and furthermore, for any ¢ € Z¢¢, we have

a®)o)? = {( (@*)o),
1 gb a’")1, (a° o, (a°" 1o} = T((ba’)o

(ba242+3r) 3r> ’( 122+3r+1) } )IZ(( a24€+3r)1),

E {CLBT)l’(baBr)O (ba3r+1) } F(

( 0

(a3r+1)0>g {(ba3r+1) 7( 24é+3r+1)1 ( 364+43r+2 }:F((ba3r+1)1)7
(

(

(

(

g {( 24é+3r+1) 7(ba?,r-i-l) 7(ba36€+3r) } 1-\((a24é-§—3r-i-1)1)7

)? = {(ba®*1)1, (@®*1)o, (a®)o} = L'((ba®*1)o),

g {(b 12@+3r+2)0’(a36f+37"+2)17( 3r+3) } F((ba12é+3r+2) )

g — (b 2@+37‘+2)1’(a12f+3r+2)07( 12E+3r+1) } F((ba12é+3r+2) )

This implies that g is an automorphism of I'. Observing that g maps 1; to by, it follows that
(R(H), g) is transitive on V(I"), and so T" is a vertex-transitive graph.
Below, we shall first prove the following claim.

Claim. Aut (T');, = (g).

Let A = Aut(T"). It is easy to see that g fixes 1p, and so g € Aj,. To prove the Claim,
it suffices to prove that |A;,| = 2.

Note that the neighborhood T'(1p) of 1o in T" is = {17, by, (ba)o}. By a direct com-
putation, we find that in I" there is a unique 8-cycle passing through 1y, 1 and by, that
is,

Co = (1o, 11, (ba®*)1, (ba**)o, (a**)0, (a**)1, by, bo, To).
Furthermore, in T there is no 8-cycle passing through 1 and (ba)g. So Ay, fixes (ba)o.

If Ay, also fixes 1; and by, then A;, will fix every neighbor of 1, and the connected-
ness and vertex-transitivity of I" give that A;, = 1, a contradiction. Therefore, A;, swaps
11 and bg, and (ba)o is the unique neighbor of 1y such that A;; = A, It follows that
{10, (ba)o} is a block of imprimitivity of A acting on V(I'). Since T is vertex-transitive,
every v € V(T') has a unique neighbor, say u such that A,, = A,. Then the set

B={{u,v} € ET)| A, = A}

forms an A-invariant partition of V(T'"). Clearly, {1, (ba)o} € B. Similarly, since Cy
is also the unique 8-cycle of I" passing through 1o, 1; and by, A1, swaps 1g and by, and
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(ba'#~1); is the unique neighbor of 11 such that A1, = Apai2e-1y,. So {11, (ba'?71)1} €
B. Set

Bo = {{10, (ba)o} ™ | h € H} and By = {{11, (ba?>*~1)1}*™ | h € H}.

Clearly, B = By U B;.

Now we consider the quotient graph I'z of T relative to B. It is easy to see that (R(a))
acts semiregularly on B with By and B; as its two orbits. So I'i is isomorphic to a bi-
Cayley graph over {a). Set By = {lo, (ba)o} and By = {1y, (ba'?*~1);}. Then one

- Z12¢
may see that the neighbors of By in I'g are: B(zz(a)’ Bg)z(a 1), By, BF(CL ¢ +2), and the

neighbors of By in ' are: BZQ(GHHI), BF(‘fm*l)’ Bo, 3(7)3(“1”*2)' So
I 21" = BiCay((a), {a,a™"}, {a'**1, a7}, {1,a712072}).

Observe that there is one and only one edge of I' between B and any one of its neighbors in
I's. Clearly, A acts transitively on V' (I'z), so there is one and only one edge of T" between
every two adjacent blocks of B. It follows that A acts faithfully on V' (I'g), and hence we
may view A as a subgroup of Aut (I's). Recall that g € Ay, = A(yq),- Moreover, g swaps

the two neighbors 1, and by of 1o. Clearly, 1, € By and by € BX@ )

two blocks B; and BZ]z (@™, Similarly, g swaps the two neighbors (ba); and ag of (ba)g.

Clearly, (ba); € BF(ainz) and ag € BJ'), s0 g swaps the two blocks Bﬁ(ailwz) and

BZ} (@) Note that R(ab) swaps the two vertices in By. So (g, R(ab)) acts transitively on the
neighborhood of By in I'z. This implies that A acts transitively on the arcs of 'z, and so
I" is a tetravalent arc-transitive bi-circulant. In [11], a characterization of tetravalent edge-
transitive bi-circulants is given. It is easy to see that our graph IV belongs to Class 1(c) of
[11, Theorem 1.1]. By checking [11, Theorem 4.1], we see that the stabilizer Aut (I"”),, of
u € V(I") has order 4. This implies that |A| = 4|V (I'g)| = 8n. Consequently, |A;,| = 2
and so our claim holds.

, S0 g swaps the

Now we are ready to finish the proof. Suppose to the contrary that I" is a Cayley graph.
By Proposition 2.1, A contains a subgroup, say J acting regularly on V(T'). By Claim,
J has index 2 in A, and since g € Aj,, one has A = J x (g). It is easy to check that
R(a), R(b) and g satisfy the following relations:

(gR(0)* = R(a*"), gR(a®) = R(a®)g, gR(ba) = R(ba)g, g = R(a)(gR(b))*R(a’*1).

Suppose that R(H) « J. Then A = JR(H). Since |J|/|R(H)| = 2, it follows that
IR(H) : J \R(H)| = 2. Thus, J N R(H) = (R(a)) or (R(a2), R(b)). T R(H) N J =
(R(a)), then we have R(b) ¢ J, R(a) € J,and hence A = JUJR(b) = JUJg, implying
that JR(b) = Jg. It follows that gR(b) € J, and then g = R(a)(gR(b))*R(a'2*"1) € J
due to R(a) € J, acontradiction. If R(H)NJ = (R(a?), R(b)), then R(a) ¢ J, and again
we have A = JUJR(a) = JUJg, implying that JR(a) = Jg. So, R(a)g, gR(a™ 1) € J.
Then

9="R(a)gR(D)JR(B)R(a'* ") = (R(a)g)R(b)(gR(a™ )R (ba'*2) € J,

a contradiction.
Suppose that R(H) < J. Then |J : R(H)| = 2 and R(H) < J. Since J is regular

on V(I'), by Proposition 2.4, there exists a 64,4, € J such that 13&"“’ = 1, where o €
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Aut (H) and z,y € H. By the definition of d, 5 ,, we have 1; = lg‘”’y = (z-19) = 21,
implying that x = 1. Furthermore, we have the following relations:

R* =2 'Lz, L =y 'Ry, S =y 1S 'z,

where R = {b,ba}, L = {ba?**,ba'?*~1}, S = {1}. In particular, the last equality implies
that z = y due to S = {1}. So we have x = y = 1. From the proof of Claim we know that
By = {1o, (ba)o} and By = {11, (ba'?*~1),} are two blocks of imprimitivity of A acting
on V(T). So we have ((ba)g)’1t = (ba'?~1);. It follows that (ba)® = ba'?*~?, and
then from R® = L we obtain that b® = ba?*‘. Consequently, we have a® = a3%‘~1. One
the other hand, we have {b,ba} = R = L = {b, ba®***1}. This forces that ba = ba?**1,
which is clearly impossible. O

6 Two families of trivalent Cayley bi-dihedrants

In this section, we shall prove two lemmas which will be used the proof of Theorem 1.3.

Lemma 6.1. Let H = {(a,b | a'®>™ = b? = 1,a® = a™ 1) be a dihedral group with m odd.
Then for each i € Zyioy,, I = BiCay(H, {b, ba'}, {ba®™, ba’™ =}, {1}) is a Cayley graph
whenever (a',a*™) = (a).

Proof. Let g be a permutation of V' (I") defined as follows:

'R (a6km+3m (baﬁ(k+1)m+3m) (baﬁkm+3rz) — aﬁkm+371 i1
(a3km+ 3r+1)z)0 — (a3(k+l)m+(3r+1)1) (ba3km+ 3r+1)1)0 — (a3(k+1)m+(3r+1)1)
(a3km+(3r+1)z)1 — (ba3(k+1)m+(37‘+1)z) 0, (ba3km+(3r+1)z)l — (ba 3(k— 1)m+(3r+1)2)
(a3km+(3r+2)z)0 — (ba3(k+1)m+(3r+2)i)1 (ba3km+(3r+2)z)0 ( 3(k+1)m+(3r+2)i 0
(a3km+(3r+2)z)1 — (a3(k—1)m+(3r+2)i)1, (ba3km+(3r+2)z)1 ( 3(k+1)m+(3r+2)z) 0,

where r € Zy,, k € Z4 and j € Zs.
It is easy to check that ¢ € Aut(I"). Furthermore, one may check that g and R(a?)
satisfy the following relations:

R(a'2™) = g* = 1, ¢> = R(a®™), R(a®)g = g'R,(afS%

R(b-1)gR(b) = gR(a®™), R(a?)g = gR(aV)gR(a"2).

By the last equality, we have
(R(a®)g)” = [gR(a")gR(a™?))|R(a*)gR(a®)g = gR(a*)g*R(a*)g-
It then follows from the second and third equalities that
gR(a")g*R(a*)g = gR(a"*")g = g R(a"**") = R(a").

Therefore, (R(a?)g)? = R(a®).
Let G = (R(a?),R(b),g) and T = (R(a®)). Then T' I G and

R(a®)T, RO)T, gT)
R(a )T 9T | R(a®)’T = g°T = (R(a*)g)’T = T) x (R(b)T)

G/T =
o

It
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So |G| = 48m.

Let
Qoo = {to | t € (a®, 1)}, Qo1 = {t1 |t € (a®,b)},
QlO = {(at)o | te <a2,b>}, Qll = {(at)1 | te <a2,b>}.
Then €2;;’s (0 < i,j < 1) areorbitsof Tand V(I') = | ;. Since 1§ = (ba®™); €
0<4,j<1
Qo1, af = (a®™*1)g € Qoo and af = (ba>™*1); € Qpy, it follows that G is transitive,
and so regular on V(T"). By Proposition 2.1, " is a Cayley graph on G, as required. O

Lemma 6.2. Let H = {(a,b | a'®>™ = b? = 1,a® = a™') be a dihedral group with m even
and 4 1 m. Then the following two bi-Cayley graphs:

I'; = BiCay(H, {b,ba}, {ba’™ ba’m~1} {1}),
Iy = BiCay(H, {b,ba}, {ba’™, ba®" =1} {1})

are both Cayley graphs.

Proof. LetV = HoU Hy. Then V(I';) = V(I'y) = V. We first define two permutations
on V as follows:

g1 - (a4r i (b(l6m+4r)i 1, (ba‘”)i — ((14 )7,+17
(a4T+1)1 — (ba9m+4r+1)1+1, (ba4r+1)i — (a3m+4r+1)i+17
(a4r+2)i — (ba4r+2)z+1’ (ba4r+2)i — <a6m+47+2)i+1,
(a4r+3)l — (ba3m+4r+3)z+17 (ba4r+3)i — (a9m+4r+3)i+1,

go+ (a*)i = (a4, (ba*"); = (a*)ig,
(0147‘4-1)Z — (ba3m+4r+l)2+17 (ba4r+l)i — (a9m+4r+l)i+1,
(a4r+2>l — (ba47+2)1+1, (ba4r+2)i — <a6m+4r+2)i+1,
(a47’+3)l — (ba9m+4r+3) i1 (ba4r+3)i — (a3m+4r+3)i+1,

where r € Zs,, and i € Z.
It is easy to check that g; € Aut(I';) for j = 1 or 2. Furthermore, R(a?), R(b) and g;
(j = 1 or 2) satisfy the following relations:

( 12’”) R(b?) =g; =1 R(b R(a IR(b) =R(a™?),
R(a""), R(b)g;R(b) = g; ",
91 173( )g1 = R(a 3T"“) 2 R(a)g2 = R(a”™F1).

For j = 1lor2, let G; = (R(a),R(b), g;). From the above relations it is east to see

that
Gj = ((R(a)){g;)) < (R(b))
has order at most 48m. Observe that 15’ = (ba®™); € H; for j = 1 or 2. It follows that

G| is transitive on V' (T';), and so G acts regularly on V'(I';). By Proposition 2.1, each I';
is a Cayley graph. D

7 Vertex-transitive trivalent bi-dihedrants

In this section, we shall give a complete classification of trivalent vertex-transitive non-
Cayley bi-dihedrants. For convenience of the statement, throughout this section, we shall
make the following assumption.
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Assumption L.

e H: the dihedral group Dy, = {a,b | a™ = b? = 1,bab = a~1)(n > 3),

» I' = BiCay(H, R, L, {1}): aconnected trivalent 2-type vertex-transitive bi-Cayley
graph over the group H (in this case, |R| = |L| = 2),

* (G: a minimum group of automorphisms of I" subject to that R(H) < G and G is
transitive on the vertices but intransitive on the arcs of I'.

The following lemma given in [20] shows that the group G must be solvable.

Lemma 7.1 ([20, Lemma 6.2]). G = R(H)P is solvable, where P is a Sylow 2-subgroup
of G.

7.1 Hjy and H; are blocks of imprimitivity of G

The case where Hy and H; are blocks of imprimitivity of GG has been considered in [20],
and the main result is the following proposition.

Proposition 7.2 ([20, Theorem 1.3]). If Hy and Hy are blocks of imprimitivity of G on
V(T'), then either T is Cayley or one of the following occurs:

(1) (R,L,S) = ({b, ba*™'}, {ba, ba® T} {1}), wheren > 5, (3 + (> + ( + 1 =
0 (mod n), £2 # 1 (mod n);

(2) (R,L,S) = ({ba~*, ba’},{a, a='},{1}), where n = 2k and (> = —1 (mod k).
Furthermore, U is also a bi-Cayley graph over an abelian group Z,, X Zo.

Furthermore, all of the graphs arising from (1)-(2) are vertex-transitive non-Cayley.

In particular, it is proved in [20] that if n is odd and I" is not a Cayley graph, then Hy
and H; are blocks of imprimitivity of G on V' (I"). Consequently, we can get a classification
of trivalent vertex-transitive non-Cayley bi-Cayley graphs over a dihedral group Ds,, with
n odd.

Proposition 7.3 ([20, Proposition 6.4]). If n is odd, then either I is a Cayley graph, or Hy
and H, are blocks of imprimitivity of G on V (T).
7.2 Hjy and H, are not blocks of imprimitivity of G

In this subsection, we shall consider the case where Hj and H; are not blocks of imprimi-
tivity of G on V(I"). We begin by citing a lemma from [20].

Lemma 7.4 ([20, Lemma 6.3]). Suppose that Hy and Hy are not blocks of imprimitivity
of Gon V(T'). Let N be a normal subgroup of G, and let K be the kernel of G acting on
V(Cy). Let A be an orbit of N. If N fixes Hy setwise, then one of the following holds:

(1) T'[A] has valency 1, |V(I'y)| > 3 and T is a Cayley graph;
(2) T'[A] has valency 0, T’ has valency 3, and K = N is semiregular.

The following lemma deals with the case where Core(R(H)) = 1, and in this case
we shall see that I" is just the cross ladder graph.
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Lemma 7.5. Suppose that Hy and Hy are not blocks of imprimitivity of G on V(T'). If
Coreq(R(H)) = yeq R(H) = 1, then I is isomorphic to the cross ladder graph CLay,
with n odd, and furthermore, for any minimal normal subgroup N of G, we have the
following:

(1) N is a 2-group which is non-regular on V (I");
(2) N does not fix Hy setwise;

(3) every orbit of N consists of two non-adjacent vertices.

Proof. Let N be a minimal normal subgroup of G. By Lemma 7.1, G is solvable. It follows
that IV is an elementary abelian r-subgroup for some prime divisor r of |G|. Clearly,
N & R(H) due to Core(R(H)) = 1. Then [INR(H)|/|R(H)| | |G|/|R(H)|. From
Lemma 7.1 it follows that |G|/|R(H)| is a power of 2, and hence N is a 2-group.

Suppose that N is regular on V(T"). Then NR(H) is transitive on V(I') and R(H)
is also a 2-group. Therefore, NR(H) is not transitive on the arcs of I". The minimality
of G gives that G = NR(H). Since n is even, R(a?) is in the center of R(H). Set
Q = N(R(a?)). Then @ <G and then 1 # NN Z(Q) < G. Since N is a minimal normal
subgroup of G, one has N < Z(Q), and hence @ is abelian. It follows that (R(a?)) < G,
contrary to the assumption that Coreg(R(H)) = 1. Thus, N is not regular on V(T'). (1) is
proved.

For (2), by way of contradiction, suppose that N fixes H, setwise. Consider the quo-
tient graph I" ;v of T relative to N, and let K be the kernel of G acting on V(I'y). Take A
to be an orbit of N on V/(T"). Then either (1) or (2) of Lemma 7.4 happens.

For the former, I'[A] has valency 1 and [V (I'y)| > 3. Then I'y is a cycle. Moreover,
any two neighbors of v € A are in different orbits of N. It follows that the stabilizer
N, of v in N fixes every neighbor of u. The connectedness of I' implies that NV, = 1.
Thus, K = N is semiregular and I"y is a cycle of length £ = 2|R(H)|/|N|. So G/N <
Aut(T'y) = Dgp. If G/N < Aut(I'y), then |G : N| = £ and so |G| = 2|R(H)|.
This implies that R(H) < G, contrary to the assumption that Coreq(R(H)) = 1. If
G/N = Aut(T'y), then |G : R(H)| = 4. Since N £ R(H) and since N fixes Hy
setwise, one has |G : R(H)N| = 2. It follows that R(H)N < G. Clearly, Hy and H; are
just two orbits of R(H )N, and they are also two blocks of imprimitivity of G on V(T'), a
contradiction.

For the latter, I'[A] has valency 0, 'y has valency 3 and N = K is semiregular. Let
H;; be the set of orbits of N contained in H; with i = 1,2. Then I'y[H] and I 5[H;] are
of valency 2 and the edges between H, and H; form a perfect matching. Without loss of
generality, we may assume that 1o € A. Since R(H) acts on Hy by right multiplication,
we have the subgroup of R(H) fixing A setwise is just R(H)a = {R(h) | hg € A}. If
R(H)a < (R(a)), then R(H)a < R(H), and the transitivity of R(H) on Hy implies
that R(H ) will fix all orbits of N contained in Hy. Since the edges between H, and
H, are independent, R(H)a fixes all orbits of N. It follows that R(H)a < N, namely,
R(H)N/N acts regularly on Hy. Then |R(H)/(R(H)NN)| = |R(H)N/N| = |Ho/N|,
and so |[N| = |R(H) N N|, forcing N < R(H), a contradiction. Thus, R(H)a £
(R(a)), and so (R(a))R(H)a = R(H). This implies that (R(a), N)/N is transitive and
so regular on Hy. Similarly, (R(a), N)/N is also regular on H;. Thus, T'y is a trivalent
2-type bi-Cayley graph over (R(a), N)/N. By [24, Lemma 5.3], H, and H are blocks of
imprimitivity of G/N, and so H and H; are blocks of imprimitivity of G, a contradiction.
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So far, we have completed the proof of (2). Then N does not fix H setwise, and then
NTR(H) is transitive on V(I'). The minimality of G gives that G = NR(H). Let P and
P; be Sylow 2-subgroups of G and R(H), respectively, such that P, < P. Then N < P
and P = NP;y.

If n is even, then by a similar argument to the second paragraph, a contradiction occurs.
Thus, nis odd. As H = Day,,, P; = Zs and P; is non-normalin R(H). So NNR(H) = 1.
Clearly, |V(I')| = 4n. If N is semiregular on V(I"), then N = Zy or Zg X Zsg, and then
|G| = |R(H)||N| = 2|R(H)| or 4R(H)|. Since Coreq(R(H)) = 1, we must have
|G : R(H)| =4and G < Sym(4). Since n is odd, one has n = 3 and H = Sym(3). So
G = Sym(4) and hence Gy, = Zy. Then all involutions of G(= Sym(4)) not contained
in N are conjugate. Take 1 # g € G1,. Then g is an involution which is not contained in
N because N is semiregular on V(I"). Since R(H) N N = 1, every involution in R(H)
would be conjugate to g. This is clearly impossible because R(H ) is semiregular on V' (T").
Thus, N is not semiregular on V(T'). (3) is proved.

Since n is odd, we have |[V(T'y)| > 2. Since N is not semiregular on V' (T"), I has
valency 2 and I'[A] has valency 0. This implies that the subgraph induced by any two
adjacent two orbits of N is either a union of several cycles or a perfect matching. Thus,
I" v has even order. As I' has order 4n with n odd, every orbit of N has length 2. It is easy
to see that I is isomorphic to the cross ladder graph CLy,,. O

The following is the main result of this section.

Theorem 7.6. Suppose that Hy and Hy are not blocks of imprimitivity of G on V (T'). Then
I’ = BiCay(H, R, L, S) is vertex-transitive non-Cayley if and only if one of the followings
occurs:

(1) (R,L,S) = ({b,ba},{b,ba*"},{1}), where n = 2(2m + 1), m # 1 (mod 3), and
the corresponding graph is isomorphic the multi-cross ladder graph MCLy, 2,
(2) (R,L,S) = ({b,ba}, {ba*** ba'?*~1} {1}), where n = 48¢ and £ > 1.

Proof. The sufficiency can be obtained from Theorem 1.2 and Lemma 5.1. We shall prove
the necessity in the following subsection by a series of lemmas. O

7.3 Proof of the necessity of Theorem 7.6

The purpose of this subsection is to prove the necessity of Theorem 7.6. Throughout this
subsection, we shall always assume that Hy and H; are not blocks of imprimitivity of G on
V(T') and that T" = BiCay(H, R, L, S) is vertex-transitive non-Cayley. In this subsection,
we shall always use the following notation.

Assumption IL. Let N = Coreg(R(H)).

Our first lemma gives some properties of the group N.

Lemma 7.7. 1 < N < (R(a)), |(R(a)) : N| = n/|N| is odd and the quotient graph Ty
of T relative to N is isomorphic to the cross ladder graph CLyy, /| N|.

Proof. If N = 1, then from Lemma 7.5 it follows that I' = CL,4, which is a Cayley
graph by Theorem 1.1, a contradiction. Thus, N > 1. Since Hy and H; are not blocks of
imprimitivity of G on V(T'), one has N < R(H).
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Consider the quotient graph I'y. Clearly, N fixes Hj setwise. Recall that Hy and
H, are not blocks of imprimitivity of G on V(I') and that T" is non-Cayley. Applying
Lemma 7.4, we see that I'yy is a trivalent 2-type bi-Cayley graph over R(H)/N. This
implies that |R(H) : N| > 2, and since H is a dihedral group, one has N < (R(a)).

Again, by Lemma 7.4, R(H)/N acts semiregularly on V(T ) with two orbits, Hy
and H,, where H; is the set of orbits of N contained in H; with i = 1,0. Furthermore,
N is just the kernel of G acting on V(I'y) and N acts semiregularly on V(I'). Then
G/N is also a minimal vertex-transitive automorphism group of 'y containing R(H)/N.
If Hy and H; are blocks of imprimitivity of G/N on V(I'y), then Hy and H; will be
blocks of imprimitivity of G on V(I'), which is impossible by our assumption. Thus, Hy
and H; are not blocks of imprimitivity of G/N on V(I'y). Since N = Coreg(R(H)),
Coreg;/n (R(H)/N) is trivial. Then from Lemma 7.5 it follows that I'y = CL s where

|%| is odd. O

Next, we introduce another notation which will be used in the proof.
Assumption III. Take M /N to be a minimal normal subgroup of G/N.

We shall first consider some basic properties of the quotient graph I'j; of I relative to
M.

Lemma 7.8. The quotient graph T'yr of T relative to M is a cycle of length n/|N|. Fur-
thermore, every orbit of M on V(') is a union of an orbit of N on Hy and an orbit of N
on Hy, and these two orbits of N are non-adjacent.

Proof. Applying Lemma 7.5 to 'y and G/N, we obtain the following facts:

(a) M/N is an elementary abelian 2-group which is not regular on V(T'y ),
(b) M/N does not fix Hy setwise,

(c) every orbit of M/N on V(I'y) consists of two non-adjacent vertices of I y.

From (b) and (c) it follows that every orbit of M on V' (T") is just a union of an orbit of N on
Hj and an orbit of N on H, and these two orbits are non-adjacent. Since every orbit of N
on V(I') is an independent subset of V' (I"), each orbit of M on V' (T') is also an independent
subset.

Recall that I'y = CLy4,, where m = ﬁ is odd. The quotient graph of I"y relative to
M /N is just a cycle of length m, and so the quotient graph T"; of T relative to M is also
a cycle of length m. O

By Lemma 7.8, each orbit of M on V(I) is an independent subset. It follows that the
subgraph induced by any two adjacent orbits of M is either a perfect matching or a union
of several cycles. For convenience of the statement, the following notations will be used in
the remainder of the proof:

Assumption IV.

(1) Let A and A’ be two adjacent orbits of M on V(T") such that T'[A U A’] is a union
of several cycles.

(2) Let A =AgUA;and A" = AjU A, where Ay, Ay C Hy and Ay, A} C Hj are
four orbits of N on V/(T').
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3) 1p€ Ao.

Since I'[A] and T'[A’] are both null graphs and since I'|/A U A'] is a union of several
cycles, we have the following easy observation.

Lemma 7.9. I'[A; U A%l is a perfect matching for any 0 < i, j < 1.

The following lemma tells us the possibility of R (Recall that we assume that I' =
BiCay(H, R, L, {1})).

Lemma 7.10. Up to graph isomorphism, we may assume that R = {b,ba‘} with i €
Z, \ {0} and that by € A|,. Furthermore, we have

Ao = {ho | R(h) € N}, Ag = {(bh)o | R(h) € N},
Ay ={h1 | R(h) € N}, Ay = {(bh)1 | R(h) € N},

and 14 is adjacent to (ba'); € Ay for some R(a') € N.

Proof. Recall that N is a proper subgroup of (R(a)) and that n/|N| is odd. Since n is
even by Proposition 7.3, it follows that N is of even order, and so the unique involution
R(a"/?) of (R(a)) is contained in N. As 1o € Ag and N < (R(a)) acts on Hy by right
multiplication, one has Ag = {hg | h € N}. Since I'[A¢] is an empty graph, one has
a™? ¢ R. By Proposition 2.3 (1), we have (R U L) = H, and since R and L are both
self-inverse, either R C b(a) or L C b(a). By Proposition 2.3 (4), we may assume that
R C b(a).

Recall that T'[A; U A’] is a perfect matching for any 0 < ¢, < 1. Then 1, is adjacent
to rg € A for some r € R. Since R C b(a) and Aut(H) is transitive on b(a), by
Proposition 2.3 (3), we may assume that » = b. So 1g is adjacent to by € A{. Since
N < (R(a)) acts on H; with s = 0 or 1 by right multiplication, we see that the two orbits
Ag, A of N are just the form as given in the lemma. Since S = {1}, the edges between
Hj and H; form a perfect matching. This enables us to obtain another two orbits Ay, A}
of N which have the form as given in the lemma.

By Lemma 7.9, I'[A; UA]] is a perfect matching. So we may assume that 1, is adjacent
to (bal); € A, for some R(a') € N. O

Now we shall introduce some new notations which will be used in the following.

Assumption V.

(1) LetT = (R(a')) be of order , where a' is given in the above lemma.
(2) Let

(@) |0<i<t—1}, Q ={(ba’%);|0<i<t—1},

Qo =A{
Q) ={(ba’?)g|0<i<t—1}, Q) ={(a'")]0<i<t—1}.

[=h Nl

(3) B={B®R" |hec H}, where B=QqUQ,.
(4) Let B’ = Q,UQ,. Then B’ = BR®),

Lemma 7.11. The followings hold.
(1) T<N.



194 Ars Math. Contemp. 21 (2021) #P2.02 / 175-200

(2) Qo,Q,Q0, QY are four orbits of T.
(3) T[Q U QL UQ,UQ ] is acycle of length 4t.
(4) B is a G-invariant partition of V(T').

Proof. By Lemma 7.10, we see that R(a') € N, and so T < N. (1) holds. Since T =
(R(a)) is assumed to be of order ¢, one has T' = (R(a™*)), and then one can obtain (2).
By the adjacency rule of bi-Cayley graph, we can obtain (3).

Set Q = QU UQEUQ, and B = Qp U Q. By Lemma 7.8, I'[A] is a null
graph, and so B = AN Q. Since I has valency 3, it follows that A U A’ is a block of
imprimitivity of G on V(T'), and hence 2 is also a block of imprimitivity of G on V (I")
since I'[Q?] is a component of I'[A U A']. Since A is also a block of imprimitivity of G on
V(T), B(= ANQ) is a block of imprimitivity of G on V(T"). Then B = {BR(") | h € H}
is a G-invariant partition of V'(I"). O

Lemma 7.12. T' < N and the quotient graph I'g of T relative to B is isomorphic to the
cross ladder graph CL an. Moreover, T is the kernel of G acting on B.

Proof. Let Kp be the kernel of G acting on B. Clearly, T' < Kg. Let B’ = QU }. Then
B’ = BR®) ¢ B. Let B*") ¢ B be adjacent to B and BR") #£ B’.

Suppose that T'[B U BR(")] is a perfect matching. Since G is transitive on B, I';s is a
cycle of length 27" Clearly, G/Kp is vertex-transitive but not edge-transitive on I'g, so
G/Kp = Doy ). If t = 1, then it is easy to see that I' = CLy,, which is a Cayley graph by
Theorem 1.1, a contradiction. If ¢ > 1, then since I'[2] = T'[BU B’] is a cycle of length 4¢,
Kp acts faithfully on B, and so K < Aut (I'[B U B’]) & Dg,. Since K fixes B, one has
|K3| | 4t, implying that |G| = |Kg| - 2% | 8n. As |[R(H)| = 2n and R(H ) is non-normal
in G, one has |Kg| = 4t due to T < Kpg. In view of the fact that Kz < Dg;, Kp has a
characteristic cyclic subgroup, say J, of order 2¢. Then we have J < GG because Kz < G.
Clearly, J is regular on B and J N N = T, so JR(H) is regular on V (T"). It follows from
Proposition 2.1 that I' is a Cayley graph, a contradiction.

Therefore, I[BUBT")] is not a perfect matching. If N = T, then B = A and B’ = A’
are orbits of M, and then I'[B U BR(h)] will be a perfect matching, a contradiction. Thus,
N>T.

Now we are going to prove that I's = CL. Since B is adjacent to BRM) Q) is

adjacent to Qf(h) for some 4,5 € {0,1}. Then because ; and Qf(h)

rQ; U Q}z(h)] is a perfect matching. This implies that I' is of valency 3, and so Kp is

are orbits of 7T,

intransitive on B. As every B" € B is a union of two orbits of 7" on V(I'), K fixes every
orbit of T'. Since N is cyclic, the normality of NV in G implies that 7" < G. Clearly, Q) is
adjacent to three pair-wise different orbits of 7', so the quotient graph I'r of I' relative to
T is of valency 3. Consequently, the kernel of G acting on V(I'y) is 7. Then Kg = T.
Now R(H)/T = Dsy,; is regular on B, and so I's is a Cayley graph over R(H)/T.
Furthermore, G/T is not arc-transitive on I'g. Since R(H)/T is non-normal in G/T,
I's is a non-normal Cayley graph over R(H)/T. If T's is arc-transitive, then by [13,
Theorem 1], either |Aut (I'g)| = 3k|R(H)/T| with k < 2, or I'z has order 2-p withp = 3
or 7. For the former, since G /T is not arc-transitive on I'g, one has |G/T : R(H)/T| < 2,
implying R(H) <G, a contradiction. For the latter, we have 2* = 6 or 14, implying 2 = 3
or 7. Tt follows that 7" is a maximal subgroup of (R(a)), and so T = N, a contradiction.
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Therefore, I's is not arc-transitive. Since R(H)/T is non-normal in G/T, by Theorem 1.1,
one has I'g = CL%, as required. O

Proof of Theorem 7.6. By Lemma 7.12, we have I'g = CL4

an. By the definition of CL%,
we may partition the vertex set of I's in the following way:

V(Cp) =VoUViU---Vau_5UVan_y, where Vi = {B, B},i € Zzx
and
E(Tg) = {{B3;, B3it1},{Bsiy1, Boipo) |1 € Zn 1,5 € La}.

Assume that BY = B and B{ = B’. Recall that B = 0o UQ; and B’ = QU Q) =
BR(®). Moreover, Qq, 1, Q) and ) are four orbits of 7. Then every B! € B is just a
union of two orbits of T'. For convenience, we may let

B = QUi € Zzn,j € Lo,

where Q, Q7 are two orbits of T'. For B = BY, we let Qy = QY and Q; = QJ;, and for
B’ = B, welet Q) = Q% and Q) = QY.

For convenience, in the remainder of the proof, we shall use C4; to denote a cycle of
length 4¢, and we also call Cy; a 4t-cycle. Recall that I'[B U B’] = T'[BS U BY] = Cy,
and that the edges between €0,(= ;) and Q,(= €}) form a perfect matching for all
i,] € Zs. Since T' < G, the quotient graph I'y of I relative to 7" has valency 3. So the
edges between any two adjacent orbits of 7" form a perfect matching.

From the construction of Iz, one may see that there exists g € G such that {Vj, V1 }9 =
{Vai, Vaiy1} foreachi € Zy . Soforeachi € Zn,r € Zz, we may assume that I'[Bs, U
Bj; 1] = Cy, and szi)s ~ Qz-2i+1)t for all s,t € Zo. (Here szi)s ~ in2i+1)t means
that Q&i)s and Qz’% 1) are adjacent in I'g.) Again, from the construction of I'z, we may
assume that

Q?mq—z)o ~ Q?2i+1)07 Q?2i+2)1 ~ Q%Qi-i—l)o’ Q%2i+2)1 ~ Q%2i+1)07 Q(121‘-|r2)1 ~ Q?Qi-i—l)ov

for each ¢ € Z . We draw a local subgraph of I'z in Figure 3. Observing that every

B B BY BY

Q| (oo (o)
T TS [
LA O J2 )25,

™ ><f\
Q! = ><QQ}O > [0k,
. X -
- (o e ot S

BL, Bj Bj B;

Figure 3: The sketch graph of I's

every B} U B} with i € Zza is a block of imprimitivity of G acting on V/(I'). Let E be
the kernel of G acting on the block system A = {B} U B} | i € Zza }. Then G/E = D=

Vi = {B}, Bj} with i € Zz is a block of imprimitivity of G/ K acting on V(I's). So
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acts regularly on A. Clearly, R(H) is also transitive on €2, so G/E = R(H)E/E. By
Lemma 7.12, T is a the kernel of G acting on B. So E/T is an elementary 2-group.
From R(H)/(R(H) N E) = Dax it follows that R(H) N E = (R(a2)) = Zy, and
) (R(H) N E)/T is a normal subgroup of G/T of order 2. This 1mp11es that B} =
(B?)R(‘”t) for i € Zzn. We may further assume that Q= (28R (a%) ¢ B} S
09, U Q}, is just the orbit of (R(az7)) containing 1o.

Observing that Y, ~ Q9 and the edges between them are of the form {g0, (ba’g)o}
with go € 9, one has Q9 = ba’Q); = ba'(Qy)*® = ()" ). So O, C
(BYRE,

Since BY = B’ = BR®) = (BY)R®), one has B} = (B})*®). Recall that 1, €
09, = Qf and 1; is adjacent to 15 € QJ; = Qo and (ba'); € QY, = Q1. As we assume
that Q9; ~ Q1,, 1; is adjacent to some vertex in 3,. So 23, C H; and hence

Qo = (2)" "
= (@) REFRE
= (@fy)RF T
= {(ba*¥), |0 <k <t —1}REFT,

So we have the following claim.

Claim 1 L = {ba!,ba*i+% "} and R = {ba’,b}, where [R(a')| = t, i € Z, and
0<k<t—1.

Let G7, be the kernel of G, acting on the neighborhood of 1y in I'. Then G7, < Ej,,.
Recall that for each i € Zn,r € Zs, I'[By; U By, ;] = Cy and the edges between
BY; 1UB3;,, and BY, , ,UBj;  , form a perfect matching. It follows that E acts faithfully
on each BY U B}. Clearly, Gj, < E1,, so G}, acts faithfully on each BY U B}.

Claim 2 If t > 2 then G, = 1, and if t = 2 then G7 < Z3 and 3 | n.

Assume that ¢ > 2. Since I'[Bj U BY] = Cy;, Gf, fixes every vertex in B, and so
fixes every vertex in %)), since ), ~ Q, (see Figure 3). This implies that G7, fixes
QF_,), setwise, and so fixes Q5 setwise since Q) ), ~ Qgo. Consequently, G, also
fixes 2}, setwise. Similarly, by considering the edges between BY U B} and BY U B3, we
see that G, fixes both 1, and 01, setwise. Recall that the edges between Ql and Qf;
form a perfect matching for i, j € Zo. As I'[BY U B}] = Cyy, 1, acts falthfully on Q},
(or 5,), and so G, < Zs.

If ¢ > 2, then since ['[BY , U B? |] = Cyy, G, will fix every vertex in this cycle, and in
particular, G, will fix every vertex in Q_,),. As Q0_,); ~ Qy, G, will fix every vertex
in Qf,. Since G7, acts faithfully on Qf,, one has G =

Lett = 2. We shall show that 3 | n. Then T' = (R(a?)). Recall that (R(H) N E)/T is
anormal subgroup of G/T of order 2. Let M = R(H)N E. Then M is a normal subgroup
of G of order 4. Since R(H) is dihedral, one has M = (R(a%)). Let C = Cq(M).
Then R(a) € C and R(b) ¢ C. It follows that C is a proper subgroup of G. Since
G/E acts regularly on A, C, fixes every element in A. Since C4, centralizes M, C,
fixes every vertex in the orbit Q8, U Q3, of M containing 1g. Clearly, C;, < G1,, so
C1,/(C1, NG;,) < Zy. As we have shown that G, acts faithfully on Qf, it follows that
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C1, NG}, = 1since C,, fixes 4, pointwise, and hence C, < Zs. On the other hand, as
G7, < Zgy, one has |G| | 4-4n = 16n. Since C' < G and R(a) € C, one has |C] = kn
with & | 8.

Suppose that 3 1 n. For any odd prime divisor p of n, let P be a Sylow p-subgroup
of (R(a)). Then P is also a Sylow p-subgroup of C. If P is not normal in C, then by
Sylow’s theorem, we have |C' : No(P)| = k'p + 1 | 8 for some integer k’. Since p # 3,
one has p = 7 and k' = 1. This implies that |C| = 8| N¢(P)|, and so |C| = 8n due to
R(a) € Cand C < G. Since Cy, < Zsg, one has |C : C,| > 4n, and so C' is transitive
on V(I'). Moreover, we have Co(P) = N¢o(P) = (R(a)). By Burnside theorem, C
has a normal subgroup M such that C = M x P. Then the quotient graph I'j; of I’
relative to M would be a cycle of length | P|, and the subgraph induced by each orbit of M
is just a perfect matching. This implies that M is just the kernel of G acting on V (I"js).
Furthermore, C'/M is a vertex-transitive subgroup of Aut (I'57). Since '/ is a cycle, C/M
must contain a subgroup, say B/M acting regularly on V' (I"js). Then B will be regular on
V(T'), and so by Proposition 2.1, T" is a Cayley graph, a contradiction. Therefore, P < C,
and since C' < G, one has P <G, implying P < N. By the arbitrariness of P, n/|N| must
be even, contrary to Lemma 7.7. Thus, 3 | n, as claimed.

The following claim shows that t = 1 or 2.

Claim 3¢ < 2.

By way of contradiction, suppose that ¢t > 2. Let C = C¢(T'). Then (R(a)) < C and
R(H) & C'since |T| =t > 2. Clearly, C1, < Ei,. As C1, centralizes T', Cy, will fixes
every vertex in €, since 2, is an orbit of T containing 1o. Since I'[BJ U BY] = Cy,
(1, fixes every vertex in this 4¢-cycle, and so C, < G’{O = 1 (by Claim 2). Thus, C
acts semiregularly on V(I'). If C = (R(a)), then by N/C-theorem, we have G/(R(a)) =
G/C < Aut(T). Since T < N < (R(a)) is cyclic, Aut (T") is abelian. It then follows
that R(H)/C < G/C, and hence R(H) < G, a contradiction. If C > (R(a)), then
|C| = 2n because I is non-Cayley. Since Hy and H; are not blocks of imprimitivity of
G on V(I'), C does not fix Hy setwise, and so R(H)C is transitive on V(I'). Clearly,
RH)NC = (R(a)),so |[R(H)C| = |R(H)||C|/|{R(a))| = 4n. 1t follows that R(H)C
is regular on V (I"), contradicting that I" is non-Cayley.

By Claim 3, we only need to consider the following two cases:

Caselt = 1.

In this case, by Claim 1, we have R = {b,ba’} and L = {b,ba* ~*}. For convenience,
we let n = 2¢. Then R = {b,ba’} and L = {b, ba’~*}.

By Proposition 2.3 (1), the connectedness of T implies that (a’, a*) = (a). Then either
(i,2¢) = 1, or i = 2k with (k,2¢) = 1 and ¢ is odd. Recall that H = (a,b | a** = b? =
1,bab = a~1). Forany \ € Z},, let v be the automorphism of H induced by the map

a* —a, b b.
So if (¢,2¢) = 1, then we have
(R, L)* = ({b,ba}, {b,ba"""}),
and if ¢ = 2k with (k,2¢) = 2 and £ is odd, then we have
(R, L)™* = ({b,ba”}, {b,ba"?}).
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So by Proposition 2.3 (3), we have
(R,L,S) = ({b,ba}, {b,ba" '}, {1}) or ({b,ba®}, {b,ba" 2}, {1})(¢is odd).

Suppose that £ is even. Then (R, L, S) = ({b,ba}, {b,ba’'},{1}). Since ¢ is even,
one has (2¢,£+1) = 1 and (£ +1)? = 1 (mod 2¢). Then it is easy to check that ap 1 is an
automorphism of H of order 2 that swaps {b, ba} and {b, ba*~'}. By Proposition 2.4, we
have dq,,,,11 € I, and then ' = BiCay(H, {b, ba}, {b,ba*"'},{1}) is a Cayley graph, a
contradiction.

Now we assume that n = 2¢ with £ = 2m + 1 for some integer m. Let

I'y = BiCay(H, {b,ba}, {b,ba*™},{1}),Ty = BiCay(H, {b,ba’}, {b,ba*" "1}, {1}).

Direct calculation shows that (n,2m — 1) = 1, and 2m(2m — 1) = 2 (mod n). Then
the automorphism az,,—1 : @ — a*™~1 b+~ b maps the pair of two subsets ({b, ba},
{b,ba®™}) to ({b,ba*"~ 1}, {b,ba’}). So, we have (R, L, S) = ({b,ba}, {b,ba®"},{1}).
By Lemma 4.1 and Theorem 1.2, ' & MCL(4m, 2) and I is non-Cayley if and only if
31 (2m + 1). Note that 3 { (2m + 1) is equivalent to m # 1 (mod 3). So we obtain the
first family of graphs in Theorem 7.6.

Case2t =2.

In this case, by Claim 1, we have R = {b,ba’} and L = {ba?,ba’t ~} or {ba?,
ba i ~"}. We still use the following notation: For any A € Z3,, let av) be the automorphism
of H induced by the map

a*—a, b b.

Note that
({b.ba'}, {ba¥,ba™ )7t = ({b,ba ™"}, {ba¥ ba¥ =9},
By replacing —¢ by ¢, we may always assume that
(R,L) = ({b,ba’}, {ba? bai~?}).

By Claim 2, we have 3 | n. So we may assume that n = 12m for some integer m.
Then we have ' _
(R,L) = ({b,ba'}, {ba®™, ba*"~"}).

Since T is connected, by Proposition 2.3, we have (a’,a®™) = (a). If m is odd, by
Lemma 6.1, I" will be a Cayley graph which is impossible. Thus, m is even. It then follows
that (a’) N (a®™) > 1 since (a*,a*™) = (a*)(a®™) = (a). Since (a®™) = Z4, one has
|{(a’) N (a®>™)| = 2 or 4. For the former, we would have |{a‘)| = 6m, and since m is
even, one has 4 | |(a’)], and hence a®™ € (a'), a contradiction. Thus, we have |{a’) N
(a®™)| = 4, that is, (a’) = (a). So (i,12m) = 1, and then o; € Aut(H) which maps
({b,ba’}, {ba®™, ba®>™~}) to ({b,ba}, {ba®™, ba®>™~1}) or ({b,ba}, {ba’™, ba=3m"1}).
Then

(R,L,S) = ({b,ba}, {ba®™, ba>" "1}, {1}) or ({b, ba}, {ba®™ ba=3""1}), {1}.

If m = 2 (mod 4), then by Lemma 6.2, we see that I" will be a Cayley graph, a con-
tradiction. Thus, m = 0 (mod 4). Clearly, (3m — 1,12m) = 1, and hence the map
a v+ a1, b — ba%" induces an automorphism, say 3 of H. It is easy to check that

({b,ba}, {ba®™,ba®>"~'})7 = ({ba®™, ba™*" "'}, {b, ba}).
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Thus,
(R,L,S) = ({b,ba}, {ba"™, ba>" "1}, {1}).

By Proposition 5.1, I is a non-Cayley graph. Let m = 4/ for some integer /. Then n = 48/
and then we get the second family of graphs in Theorem 7.6. This completes the proof of
Theorem 7.6. O

7.4 Proof of Theorem 1.3

By [20, Theorem 1.2], if I" is O- or 1-type, then I' is a Cayley graph. Let I' be of 2-
type. Suppose that I is a non-Cayley graph. Let G < Aut (") be minimal subject to that
R(H) < G and G is transitive on V(T"). If T is arc-transitive or Hy and H; are blocks
of imprimitivity of G on V (I'), then by [20, Theorem 1.1] and Proposition 7.2, we obtain
the graphs in part (1)—(3) of Theorem 1.3. Otherwise, I' is not arc-transitive and Hy and
H; are not blocks of imprimitivity of G on V(T"), by Theorem 7.6, we obtain the last two
families of graphs of Theorem 1.3. O
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