The multisubset sum problem for finite abelian groups

Amela Muratović-Ribić
University of Sarajevo, Department of Mathematics, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
Qiang Wang *
School of Mathematics and Statistics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada

Received 28 October 2013, accepted 29 August 2014, published online 11 June 2015

Abstract

We use a similar techique as in [2] to derive a formula for the number of multisubsets of a finite abelian group G with any given size and any given multiplicity such that the sum is equal to a given element $g \in G$. This also gives the number of partitions of g into a given number of parts over a finite abelian group.

Keywords: Composition, partition, subset sum, polynomials, finite fields, character, finite abelian groups.

Math. Subj. Class.: 11B30, 05A15, 20K01, 11 T06

1 Introduction

Let G be a finite abelian group of size n and D be a subset of G. The well known subset sum problem in combinatorics is to decide whether there exists a subset S of D which sums to a given element in G. This problem is an important problem in complexity theory and cryptography and it is NP-complete (see for example [3]). For any $g \in G$ and i a positive integer, we let the number of subsets S of D of size i which sum up to g be denoted by

$$
N(D, i, g)=\#\left\{S \subseteq D: \# S=i, \sum_{s \in S} s=g\right\}
$$

[^0](i) This work is licensed under http://creativecommons.org/licenses/by/3.0/

When D has more structure, Li and Wan made some important progress in counting these subset sums by a sieve technique [3, 4]. Recently Kosters [2] gives a shorter proof of the formula obtained by Li and Wan earlier, using character theory.

$$
N(G, i, g)=\frac{1}{n} \sum_{s \mid \operatorname{gcd}(\exp (G), i)}(-1)^{i+i / s}\binom{n / s}{i / s} \sum_{d \mid \operatorname{gcd}(e(g), s)} \mu(s / d) \# G[d]
$$

where $\exp (G)$ is the exponent of $G, e(g)=\max \{d: d \mid \exp (G), g \in d G\}, \mu$ is the Möbius function, and $G[d]=\{h \in G: d h=0\}$ is the d-torsion of G.

More generally, we consider a multisubset M of D. The number of times an element belongs to M is the multiplicity of that member. We define the multiplicity of a multisubset M is the largest multiplicity among all the members in M. We denote

$$
M(D, i, j, g)=\#\left\{\text { multisubset } M \text { of } D: \text { multiplicity }(M) \leq j, \# M=i, \sum_{s \in M} s=g\right\}
$$

It is an interesting question by its own to count $M(D, i, j, g)$, the number of multisubsets of D of cardinality i which sum to g where every element is repeated at most j times. If $j=1$, then $M(D, i, j, g)=N(D, i, g)$. If $j \geq i$, this problem is also equivalent to counting partitions of g with at most i parts over D, which is $M(D, i, i, g)$. In this case we use a simpler notation $M(D, i, g)$ because the second i does not give any restriction.

Another motivation to study the enumeration of multisubset sums is due to a recent study of polynomials of prescribed ranges over a finite field. Indeed, through the study of enumeration of multisubset sums over finite fields [5], we were able to disprove a conjecture of polynomials of prescribed ranges ove a finite field proposed in [1]. Let \mathbb{F}_{q} be a finite field of q elements and \mathbb{F}_{q}^{*} be the cyclic multiplicative group. When D is \mathbb{F}_{q} (the additive group) or \mathbb{F}_{q}^{*}, counting the multisubset sum problem is the same as counting partitions over finite fields, which has been studied earlier in [6].

In this note, we use the similar method as in [2] to obtain $M(D, i, j, g)$ when $D=G$. However, we work in a power series ring instead of a polynomial ring.

Theorem 1. Let G be a finite abelian group of size n and let $g \in G, i, j \in \mathbb{Z}$ with $i \geq 0$ and $j \geq 1$. For any $s \mid n$, we define

$$
C(n, i, j, s)=\sum_{\substack{k \geq 0,0 \leq t \leq \frac{n \operatorname{gcd}(s, j+1)}{s}, s k+t \cdot \operatorname{cmm}(s, j+1)=i}}(-1)^{t}\binom{n / s+k-1}{k}\binom{\frac{n \operatorname{gcd}(s, j+1)}{s}}{t} .
$$

Then we have

$$
M(G, i, j, g)=\frac{1}{n} \sum_{s \mid \operatorname{gcd}(\exp (G), i)} C(n, i, j, s) \sum_{d \mid \operatorname{gcd}(s, e(g))} \mu(s / d) \# G[d]
$$

where $\exp (G)$ is the exponent of $G, e(g)=\max \{d: d \mid \exp (G), g \in d G\}, \mu$ is the Möbius function, and $G[d]=\{h \in G: d h=0\}$ is the d-torsion of G.

As a corollary, we obtain the main theorem in [2] when $j=1$.

Corollary 1. (Theorem 1.1 in [2]) Let G be a finite abelian group of size n and let $g \in G$ and $i \in \mathbb{Z}$. Then we have

$$
N(G, i, g)=\frac{1}{n} \sum_{s \mid \operatorname{gcd}(\exp (G), i)}(-1)^{i+i / s}\binom{n / s}{i / s} \sum_{d \mid g c d(s, e(g))} \mu(s / d) \# G[d]
$$

where $\exp (G)$ is the exponent of $G, e(g)=\max \{d: d \mid \exp (G), g \in d G\}, \mu$ is the Möbius function, and $G[d]=\{h \in G: d h=0\}$ is the d-torsion of G.

Moreover, when $j \geq i$, the formula gives the number of partitions of g with at most i parts over a finite abelian group. To avoid confusion the multiset consisting of a_{1}, \ldots, a_{n} is denoted by $\left\{\left\{a_{1}, \ldots, a_{n}\right\}\right\}$, with possibly repeated elements, and by $\left\{a_{1}, \ldots, a_{n}\right\}$ the usual sets. We define a partition of the element $g \in G$ with exactly i parts in D as a multiset $\left\{\left\{a_{1}, a_{2}, \ldots, a_{i}\right\}\right\}$ such that all a_{k} 's are nonzero elements in D and

$$
a_{1}+a_{2}+\ldots+a_{i}=g
$$

Then the number of these partitions is denoted by $P_{D}(i, g)$, i.e.,

$$
P_{D}(i, g)=\left|\left\{\left\{\left\{a_{1}, a_{2}, \ldots, a_{i}\right\}\right\} \subseteq D: a_{1}+a_{2}+\ldots+a_{i}=g, a_{1}, \ldots, a_{i} \neq 0\right\}\right| .
$$

It turns out $M(D, i, g)=\sum_{k=0}^{i} P_{D}(k, g)$ is the number of partitions of $g \in G$ with at most i parts in D.

Corollary 2. Let G be a finite abelian group of size n and let $g \in G$. Then the number of partitions of g over G with at most i parts is

$$
\frac{1}{n} \sum_{s \mid \operatorname{gcd}(\exp (G), i)}\binom{n / s+i / s-1}{i / s} \sum_{d \mid g c d(s, e(g))} \mu(s / d) \# G[d] .
$$

where $\exp (G)$ is the exponent of $G, e(g)=\max \{d: d \mid \exp (G), g \in d G\}, \mu$ is the Möbius function, and $G[d]=\{h \in G: d h=0\}$ is the d-torsion of G.

Proof. The number is $M(G, i, j, g)$ when $j \geq i \geq 0$. If $j \geq i$, then the linear Diophantine equation $s k+t \cdot \operatorname{lcm}(s, j+1)=i$ reduces to $s k=i$ and $t=0$. The rest of proof follows immediately.

In Section 2, we prove our main theorem and derive Corollary 1 as a consequence. In Section 3, we extend our study to a subset of a finite abelian group and make a few remarks on how to obtain the number of partitions over any subset of a finite abelian group.

2 Proof of Theorem 1

To make this paper self-contained, we recall the following lemmas (see Lemmas 2.1-2.4 in [2]). Let G be a finite abelian group of size n. Let \mathbb{C} be the field of complex numbers and $\hat{G}=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$ be the group of characters of G. Let $\chi \in \hat{G}$ and $\bar{\chi}$ be the conjugate character which satisfies $\bar{\chi}(g)=\overline{\chi(g)}=\chi(-g)$ for all $g \in G$. We note that a character χ can be naturally extended to a \mathbb{C}-algebra morphism $\chi: \mathbb{C}[G] \rightarrow \mathbb{C}$ on the group ring $\mathbb{C}[G]$.

Lemma 1. Let $\alpha=\sum_{g \in G} \alpha_{g} g \in \mathbb{C}[G]$. Then we have $\alpha_{g}=\frac{1}{n} \sum_{\chi \in \hat{G}} \bar{\chi}(g) \chi(\alpha)$.

Lemma 2. Let m be a positive integer and $g \in G$. Then

$$
\sum_{\chi \in \hat{G}, \chi^{m}=1} \chi(g)=\delta_{g \in m G} \# G[m]
$$

where $\delta_{g \in m G}$ is 1 if $g \in m G$ and it is zero otherwise.
Lemma 3. Let $\chi \in \hat{G}$ be a character and m be its order. Then we have

$$
\prod_{\sigma \in G}(1-\chi(\sigma) Y)=\left(1-Y^{m}\right)^{n / m}
$$

Lemma 4. Let $g \in G$. The number $e(g)$ is equal to $\operatorname{lcm}\{d: d \mid \exp (G), g \in d G\}$. For $d \mid \exp (G)$ we have $g \in d G$ if and only if $d \mid e(g)$.

Let us present the proof of Theorem 1. We use the multiplicative notation for the group. Proof. Fix $j \geq 1$. Working in the power series ring $\mathbb{C}[G][[X]]$ over the group ring, the generating function of $\sum_{g \in G} M(G, i, j, g) g$ is

$$
\sum_{i=0}^{\infty} \sum_{g \in G} M(G, i, j, g) g X^{i}=\prod_{\sigma \in G}\left(1+\sigma X+\cdots+\sigma^{j} X^{j}\right)=\prod_{\sigma \in G} \frac{1-\sigma^{j+1} X^{j+1}}{1-\sigma X} \in \mathbb{C}[G][[X]]
$$

Using Lemma 1, we write

$$
\sum_{i=0}^{\infty} M(G, i, j, g) X^{i}=\frac{1}{n} \sum_{\chi \in \hat{G}} \bar{\chi}(g) \prod_{\sigma \in G} \frac{1-\chi^{j+1}(\sigma) X^{j+1}}{1-\chi(\sigma) X}
$$

Separating the first sum on the right hand side, we obtain

$$
\sum_{i=0}^{\infty} M(G, i, j, g) X^{i}=\frac{1}{n} \sum_{s \mid \exp (G)} \sum_{\chi \in \hat{G}, \operatorname{ord}(\chi)=s} \bar{\chi}(g) \prod_{\sigma \in G} \frac{1-\chi^{j+1}(\sigma) X^{j+1}}{1-\chi(\sigma) X}
$$

For each fixed χ of the order s, we know that χ^{j+1} has the order $\frac{s}{\operatorname{gcd}(s, j+1)}$. Therefore by Lemma 3, we simplify the above as follows:

$$
\begin{equation*}
\sum_{i=0}^{\infty} M(G, i, j, g) X^{i}=\frac{1}{n} \sum_{s \mid \exp (G)} \sum_{\chi \in \hat{G}, \operatorname{ord}(\chi)=s} \bar{\chi}(g) \frac{\left(1-X^{\operatorname{lcm}(s, j+1)}\right)^{\frac{n \operatorname{gcd}(s, j+1)}{s}}}{\left(1-X^{s}\right)^{n / s}} . \tag{2.1}
\end{equation*}
$$

Note that

$$
\sum_{\chi \in \hat{G}, \chi^{s}=1} \bar{\chi}(g)=\sum_{d \mid s} \sum_{\chi \in \hat{G}, \operatorname{ord}(\chi)=d} \bar{\chi}(g) .
$$

By Lemma 2 and the Möbius inversion formula, we obtain

$$
\sum_{\chi \in \hat{G}, o r d(\chi)=s} \bar{\chi}(g)=\sum_{d \mid s} \mu(s / d) \sum_{\chi \in \hat{G}, \bar{\chi}^{d}=1} \bar{\chi}(g)=\sum_{d \mid s} \mu(s / d) \delta_{g \in d G} \# G[d] .
$$

Because $d|s| \exp (G)$, by Lemma 4, $g \in d G$ if and only if $d \mid e(g)$. Hence

$$
\sum_{\chi \in \hat{G}, o r d(\chi)=s} \bar{\chi}(g)=\sum_{d \mid s} \mu(s / d) \delta_{g \in d G} \# G[d]=\sum_{d \mid \operatorname{gcd}(s, e(g))} \mu(s / d) \# G[d] .
$$

Plugging this into Equation (2.1), we get

$$
\sum_{i=0}^{\infty} M(G, i, j, g) X^{i}=\frac{1}{n} \sum_{s \mid \exp (G)} \sum_{d \mid g c d(s, e(g))} \mu(s / d) \# G[d] \frac{\left(1-X^{\mathrm{lcm}(s, j+1)}\right)^{\frac{n \operatorname{gcd}(s, j+1)}{s}}}{\left(1-X^{s}\right)^{n / s}}
$$

By applying the binomial theorem to the right hand side and comparing coefficients of X^{i} in both sides, we single out $M(G, i, j, g)$ and obtain

$$
M(G, i, j, g)=\frac{1}{n} \sum_{s \mid \exp (G)} \sum_{d \mid g c d(s, e(g))} \mu(s / d) \# G[d] C(n, i, j, s)
$$

After bringing $C(n, i, j, s)$ out of the inner sum we complete the proof.
Finally we remark that we can derive Corollary 1 using $N(G, i, g)=M(G, i, 1, g)$. When $j=1$, let us consider $s k+t \cdot \operatorname{lcm}(s, j+1)=s k+t \cdot \operatorname{lcm}(s, 2)=i$. If s is even, we obtain $s k+s t=i$ and thus $k+t=i / s$. Note that we have the following power series expansions

$$
\begin{aligned}
& \frac{1}{(1-x)^{n / s}}=\sum_{k=0}^{\infty}\binom{n / s+k-1}{k} x^{k} \\
& (1-x)^{2 n / s}=\sum_{t=0}^{2 n / s}(-1)^{t}\binom{2 n / s}{t} x^{t}
\end{aligned}
$$

and

$$
(1-x)^{n / s}=\sum_{j=0}^{n / s}\binom{n / s}{j}(-1)^{j} x^{j}
$$

Now we compare the coefficients of the term $x^{i / s}$ in both sides of

$$
\frac{1}{\left(1-x^{s}\right)^{n / s}}\left(1-x^{s}\right)^{2 n / s}=\left(1-x^{s}\right)^{n / s}
$$

after expanding these power series. Hence we obtain

$$
C(n, i, 1, s)=\sum_{\substack{k+t=i / s \\ k \geq 00 \leq t \leq 2 n / s}}(-1)^{t}\binom{n / s+k-1}{k}\binom{2 n / s}{t}=(-1)^{i / s}\binom{n / s}{i / s}
$$

Moreover, $C(n, i, 1, s)=(-1)^{i+i / s}\binom{n / s}{i / s}$ because i is even.
Similarly, if s is odd, we obtain $s k+2 s t=i$ and thus $k+2 t=i / s$. Moreover, $i+i / s$ is even. Using

$$
\left(1-x^{2 s}\right)^{n / s} \frac{1}{\left(1-x^{s}\right)^{n / s}}=\left(1+x^{s}\right)^{n / s}
$$

we obtain

$$
C(n, i, 1, s)=\sum_{\substack{k+2 t=i / s \\ k \geq 0,0 \leq t \leq n / s}}(-1)^{t}\binom{n / s+k-1}{k}\binom{n / s}{t}=(-1)^{i+i / s}\binom{n / s}{i / s}
$$

3 A few remarks

In this section we study $M(D, i, j, g)$ where $j \geq i$ and D is a subset of G. We recall that in this case we use the notation $M(D, i, g)$ because j does not really put any restriction. First of all, we note that

$$
\sum_{i=0}^{\infty} \sum_{g \in G} M(G \backslash\{0\}, i, g) g X^{i}=\prod_{\sigma \in G, \sigma \neq 0} \frac{1}{1-\sigma X}=(1-X) \sum_{i=0}^{\infty} \sum_{g \in G} M(G, i, g) g X^{i}
$$

By Corollary 2, we obtain

$$
\begin{aligned}
& M(G \backslash\{0\}, i, g) \\
= & \frac{1}{n}\left(\sum_{s \mid \operatorname{gcd}(\exp (G), i)}\binom{n / s+i / s-1}{i / s} \sum_{d \mid g c d(s, e(g))} \mu(s / d) \# G[d]\right. \\
& \left.-\sum_{s \mid \operatorname{gcd}(\exp (G), i-1)}\binom{n / s+(i-1) / s-1}{(i-1) / s} \sum_{d \mid g c d(s, e(g))} \mu(s / d) \# G[d]\right) .
\end{aligned}
$$

We note $M(G \backslash\{0\}, i, g)=P_{G}(i, g)$. Therefore we obtain an explicit formula for the number of partitions of g into i parts over G. More generally, let $D=G \backslash S$, where $S=\left\{u_{1}, u_{2}, \ldots, u_{|S|}\right\} \neq \emptyset$. Denote by $M_{S}(G, i, g)$ the number of multisubsets of G of sizes i that contain at least one element from S. Then the number of multisubsets of $D=G \backslash S$ with i parts which sum up to g is equal to

$$
M(G \backslash S, i, g)=M(G, i, g)-M_{S}(G, i, g)
$$

Note that $M(G, 0,0)=1$ and $M(G, 0, s)=0$ for any $s \in G \backslash\{0\}$. The principle of inclusion-exclusion immediately implies that $M_{S}(G, i, g)$ is given in the following formula. We note that the formula is quite useful when the size of S is small in order to compute $M(G \backslash S, i, g)$.
Proposition 1. For all $i=1,2, \ldots$ and $g \in G$ we have

$$
\begin{gathered}
M_{S}(G, i, g)=\sum_{u \in S} M(G, i-1, g-u)-\ldots \\
+(-1)^{t-1} \sum_{\left\{u_{1}, u_{2}, \ldots, u_{t}\right\} \subseteq S} M\left(G, i-t, g-\left(u_{1}+u_{2}+\ldots+u_{t}\right)\right)+\ldots \\
+(-1)^{i-2} \sum_{\left\{u_{1}, u_{2}, \ldots, u_{i-1}\right\} \subseteq S} M\left(G, 1, g-\left(u_{1}+u_{2}+\ldots+u_{i-1}\right)\right)+ \\
(-1)^{i-1} \sum_{\left\{u_{1}, u_{2}, \ldots, u_{i}\right\} \subseteq S} M\left(G, 1, g-\left(u_{1}+u_{2}+\ldots+u_{i}\right)\right) .
\end{gathered}
$$

Proof. Fix an element $g \in G$. Denote by \mathcal{A}_{u} the family of all the multisubsets of G with i parts which sum up to g and each multisubset also contains the element u. The principle of the inclusion-exclusion implies that

$$
\begin{equation*}
\left|\cup_{u \in S} \mathcal{A}_{u}\right|=\sum_{u \in S}\left|\mathcal{A}_{u}\right|-\sum_{\left\{u_{1}, u_{2}\right\} \subseteq S}\left|\mathcal{A}_{u_{1}} \cap \mathcal{A}_{u_{2}}\right|+\ldots \tag{3.1}
\end{equation*}
$$

It is obvious to see $\left|\mathcal{A}_{u_{1}} \cap \mathcal{A}_{u_{2}}\right|=M\left(G, i-2, g-\left(u_{1}+u_{2}\right)\right)$ etc. by definition and the result follows directly.

Acknowledgements

We thank anonymous referees for their helpful suggestions.

References

[1] A. Gács, T. Héger, Z. L. Nagy, D. Pálvölgyi, Permutations, hyperplanes and polynomials over finite fields, Finite Field Appl. 16 (2010), 301-314.
[2] M. Kosters, The subset problem for finite abelian groups, J. Combin. Theory Ser. A $\mathbf{1 2 0}$ (2013), 527-530.
[3] J. Li and D. Wan, On the subset sum problem over finite fields, Finite Field Appl. 14 (2008), 911-929.
[4] J. Li and D. Wan, Counting subset sums of finite abelian groups, J. Combin. Theory Ser. A 119 (2012), no. 1, 170-182.
[5] A. Muratović-Ribić and Q. Wang, On a conjecture of polynomials with prescribed range, Finite Field Appl. 18 (2012), no. 4, 728-737.
[6] A. Muratović-Ribić and Q. Wang, Partitions and compositions over finite fields, Electron. J. Combin. 20 (2013), no. 1, P34, 1-14.

[^0]: *Research is partially supported by NSERC of Canada.
 E-mail addresses: amela@pmf.unsa.ba (Amela Muratović-Ribić), wang @ math.carleton.ca (Qiang Wang)

