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Abstract. We propose a new method to study mixed symmetric multiplets of baryons in

the context of the 1/Nc expansion approach. The simplicity of the method allows to better

understand the role of various operators acting on spin and flavour degrees of freedom.

The method is tested on two and three flavours. It is shown that the spin and flavour

operators proportional to the quadratic invariants of SUS(2) and SUF(3) respectively are

dominant in the mass formula.

1 Introduction

The 1/Nc expansion method proposed by ’t Hooft [1] is a valuable tool to study

nonperturbative dynamics in a perturbative approach, in terms of the parameter

1/Nc whereNc is the number of colors. The double line diagrammatic method of
’t Hooft implemented by Witten [2] to describe baryons gives convenient power

counting rules for Feynman diagrams. According to Witten’s intuitive picture, a
baryon containingNc quarks is seen as a bound state in an average self-consistent

potential of a Hartree type and the corrections to the Hartree approximation are

of order 1/Nc. These corrections capture the key phenomenological features of
the baryon structure.

Ten years after ’t Hooft’s work, Gervais and Sakita [3] and independently

Dashen and Manohar in 1993 [4] discovered that QCD has an exact contracted
SU(2Nf)c symmetry when Nc → ∞, Nf being the number of flavors. For ground

state baryons the SU(2Nf) symmetry is broken by corrections proportional to

1/Nc. Since 1993-1994 the 1/Nc expansion provided a systematic method to an-
alyze baryon properties such as ground state masses, magnetic moments, axial

currents, etc [5–8].

A few years later the 1/Nc expansion method has been extended to excited
states also in the spirit of the Hartree approximation [9]. It was shown that for

mixed symmetric states the SU(2Nf) breaking occurs at orderN0c instead of 1/Nc
as for the ground and symmetric excited states.

⋆ Talk delivered by Fl. Stancu
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Presently a lattice test of 1/Nc baryon masses relations has been performed

[10]. The lattice data clearly display both the 1/Nc and the SU(3) flavour symme-

try breaking hierarchies.

Also, it was shown that the NN potential has an 1/N2c expansion and the
strengths of the leading order central, spin-orbit, tensor and quadratic spin-orbit

forces gave a qualitative understanding of the phenomenological meson exchange

models [11].

2 The mass formula

Here we are concerned with baryon spectra. The general form of the baryon mass

operator is [12]

M =
∑

i

ciOi +
∑

i

diBi (1)

with the operatorsOi having the general form

Oi =
1

Nn−1
c

O
(k)

ℓ ·O(k)

SF , (2)

where O
(k)

ℓ is a k-rank tensor in O(3) and O
(k)

SF a k-rank tensor in SU(2), but in-
variant in SU(Nf). The latter is expressed in terms of SU(Nf) generators S

i, Ta

and Gia acting on spin, flavour and spin-flavour respectively. For the ground

state one has k = 0. Excited states require k = 1 terms, which correspond to the
angular momentum component and the k = 2 tensor term

L(2)ij
q =

1

2

{
Liq, L

j
q

}
−
1

3
δi,−jLq · Lq . (3)

The first factor in (2) gives the order O(1/Nc) of the operator in the series

expansion and reflects Witten’s power counting rules. The lower index i repre-
sents a specific combination of generators, see examples below. The Bi are SU(3)

breaking operators. In the linear combination, Eq. (1), ci and di encode the QCD

dynamics and are obtained from a fit to the existing data. It is important to find
regularities in their behaviour [13] and search for a possible compatibility with

quark models [14].

A considerable amount of work has been devoted to ground state baryons

summarized in several review papers as, for example, [5–7]. The ground state is
described by the symmetric representation [Nc]. For Nc = 3 this becomes [3] or

[56] in an SU(6) dimensional notation.

In the following we shall concentrate on the description of excited states only
and the motivation will be obvious.

3 Excited states

Excited baryons can be divided into SU(6) multiplets, as in the constituent quark

model. If an excited baryon belongs to the [56]-plet the mass problem can be
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treated similarly to the ground state in the flavour-spin degrees of freedom, but

one has to take into account the presence of an orbital excitation in the space

part of the wave function [15,16]. If the baryon belongs to the mixed symmetric
representation [21], or [70] in SU(6) notation, the treatment becomes much more

complicated.

There is a standardway to study the [70]-plets which is related to the Hartree

approximation [9]. An excited baryon is described by symmetric core plus an

excited quark coupled to this core, see e.g. [17–20]. In that case the core can be
treated in a way similar to that of the ground state. In this method each SU(2Nf)

× O(3) generator is splitted into two terms

Si = si + Sic; Ta = ta + Tac ; Gia = gia +Giac , ℓi = ℓiq + ℓic, (4)

where si, ta, gia and ℓiq are the excited quark operators and Sic, T
a
c , G

ia
c and ℓic

the corresponding core operators.

In this procedure the wave function is approximated by the term which cor-

responds to the normal Young tableau, where the decoupling of the excited quark
is straightforward. The other terms needed to construct a symmetric orbital-flav-

our-spin state are neglected, i.e. antisymmetry is ignored. An a posteriori justifi-

cation is given in Ref. [21].

But the number of linearly independent operators constructed from the gen-

erators given in the right-hand side of Eqs. (4) increases tremendously the num-
ber of terms in the mass formula so that the number of coefficients to be deter-

mined usually becomes much larger than the experimental data available. Con-

sequently, in selecting the most dominant operators one has to make an arbitrary
choice, as for example in Ref. [17]. In particular the isospin operator as t · Tc/Nc
, although important, has been entirely ignored without any reason.

A solution to this problem has been found in Ref. [22], where the separation

into a symmetric core and an excited quark is not necessary. The key issue is the
knowledge of thematrix elements of the SU(2Nf) generators formixed symmetric

states described by the partition [Nc−1, 1] for arbitraryNc. These can be obtained

by using a generalized Wigner-Eckart theorem [23]. Using SU(2Nf) generators
acting on thewhole system, the number of operators up to 1/Nc order in the mass

formula is considerably reduced so that the physics becomes more transparent,

as we shall see below.

3.1 The SU(4) case

The SU(4) case has been presented in Ref. [22]. Its algebra is

[Si, Sj] = iεijkSk, [Ta, Tb] = iεabcTc,

[Gia, Gjb] = i
4
δijεabcTc + i

2
δabεijkSk, (5)

with i, a = 1, 2, 3. The matrix elements of the SU(4) generators were extracted

from Ref. [23], initially proposed for nuclear physics where SU(4) symmetry is
nearly exact. The transcription to a system ofNc quarks was straightforward. In-

stead of 12 operators up to orderO(1/Nc) presented in Ref. [17] we needed only 6
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operators for 7 experimentally known three- and four-star nonstrange resonances

(no mixing angles). We have introduced the spin and isospin operators on equal

footing, as seen from Table 1, and obtained the new result that the isospin term
O4 becomes as dominant in ∆ resonances as the spin term O3 does in N∗ reso-

nances, as indicated by the comparable size of the coefficients c3 and c4 in Table 1.
Column 5 proves that by the removal of O4 the fit deteriorates considerably.

Table 1. List of operators Oi and coefficients ci in the N = 1 band revisited, 7 resonances

of 3 and 4 stars status, no mixing angles.

Operator Fit 1 (MeV) Fit 2 (MeV) Fit 3 (Mev) Fit 4 (MeV) Fit 5 (MeV)

O1 = Nc l1 481 ± 5 482 ± 5 484 ± 4 484 ± 4 498 ± 3

O2 = ℓisi −31 ± 26 −20 ± 23 −12 ± 20 3 ± 15 38 ± 34

O3 = 1
Nc
SiSi 161 ± 16 149 ± 11 163 ± 16 150 ± 11 156 ± 16

O4 = 1
Nc
TaTa 169 ± 36 170 ± 36 141 ± 27 139 ± 27

O5 = 15
Nc
L(2)ijGiaGja −29 ± 31 −34 ± 30 −34 ± 31

O6 = 3
Nc
LiTaGia 32 ± 26 35 ± 26 −67 ± 30

χ2dof 0.43 0.68 0.94 1.04 11.5

3.2 The SU(6) case

Below we present preliminary results for SU(6). The group algebra is

[Si, Sj] = iεijkSk, [Ta, Tb] = ifabcTc,

[Si, Gja] = iεijkGka, [Ta, Gjb] = ifabcGic,

[Gia, Gjb] = i
4
δijfabcTc + i

2
εijk

(
1
3
δabSk + dabcGkc

)
, (6)

with i = 1,2,3 and a = 1,2,...,8. The analytic work was based on the extension of
Ref. [23] from SU(4) to SU(6) in order to obtain matrix elements of all SU(6) gener-

ators between symmetric [Nc] states first [24], followed later by matrix elements
of all SU(6) generators betweenmixed symmetric states [Nc−1, 1] states [25]. The

latter work has been recently completed by some new isoscalar factors required

by the physical problem [26].

Theoretically the [70, 1−] multiplet has 5 octets (N,Λ, Σ, Ξ), 2 decuplets (∆,Σ,

Ξ,Ω) and two flavour singletsΛ1/2 andΛ3/2. In the fit we take into account the 17

experimentally known resonances having a 3 or 4 star status and the two known
mixing angles between the 2NJ and

4NJ (J = 1/2, 3/2) states. Table 2 exhibits the
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9 operators used in the mass formula, from which the three Bi’s break explicitly

the SU(3) symmetry. The corresponding fitted coefficients ci and di are indicated

under a preliminary fit named Fit 1. We remind that in the symmetric core + ex-
cited quark procedure fifteen Oi (flavour invariants) and four Bi operators were

included in the fit [27]. However the flavour operator 1/Nc t · Tc was omitted,
without any justification.

Like for nonstrange baryons, one can see that the dominant operators are the
spin O3 and flavour O4. The latter has the form explained in Ref. [25]. It recovers

the matrix elements of O4 = 1/Nc T
aTa of nonstrange baryons (see Table 1).

The operators O3 and O4 have similar values for the corresponding coefficients,
which proves the importance of the flavour operators in the fit, like for the SU(4)

case.

Table 2. Operators and their coefficients in the mass formula obtained from a numerical

fit, mixing angles included, S denotes the strangeness.

Operator Fit 1 (MeV)

O1 = Nc l1 476.11 ± 4.09

O2 = lisi 63.6 ± 22.6

O3 = 1
Nc
SiSi 165 ± 15

O4 = 1
Nc

(TaTa − 1
12
Nc(Nc + 6)) 181.95 ± 11.6

O5 = 3
Nc
LiTaGia −19.4 ± 6

O6 = 15
Nc
L(2)ijGiaGja 8.5 ± 0.3

B1 = - S 163.90 ± 12.04

B2=
1
Nc
LiGi8 − 1

2

q

3
2
O2 33.96 ± 31.55

B3 =
1
Nc
SiGi8 − 1

2
√
3
O3 112.46 ± 62.14

χ2dof 2.85

In Tables 1 and 2 the operator O2 contains the one-body part of the spin-orbit
term, defined in Ref. [17], while O5, O6 and B2 contain the total orbital angular

momentum components Li, as in Eq. (3). Using the total spin-orbit term it would

hardly affect the fit. The contribution of terms containing the angular momen-
tum is generally small, like for nonstrange baryons [22], see Table 1. The SU(3)

breaking operator B1 turns out to be important, as expected.
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The χ2dof = 2.85 is larger than desired. We found that the basic reason is that

it is hard to fit the mass of Λ(1405) to be so low. The difficulty is entirely similar

to that of quark models, where Λ(1405) appears too high. An artificially larger
mass of the order of 1500 MeV considerably improves the fit, leading to χ2dof < 1.

More fits will be presented elsewhere [26].

The difference between our results and those of Ref. [18] can partly be ex-
plained as due to the difference in the wave function. In Ref. [18] only the compo-

nent with Sc = 0 is taken into account and this component brings no contribution

to the spin term in flavour singlets, so that the mass of Λ(1405) remains low. In
our case, where we use the exact wave function, both Sc = 0 and Sc = 1 parts of

the wave function contribute to the spin term. This makes the spin term contri-
bution identical for all states of given J irrespective of the flavour, which seems to

us natural. Then, in our case, with a non vanishing spin term in flavour singlets

as well, the mass formula accomodates a heavier Λ(1405) than the experiment,
like in quark models (for a review on the controversial nature of Λ(1405) see, for

example, Ref. [30] where one of the authors S.F. Tuan has predicted together with
D.H. Dalitz this resonance in 1959, discovered experimentally two years later.)

4 Conclusion

The 1/Nc expansion method provides a powerful theoretical tool to analyze the
spin-flavour symmetry of baryons and explains the success of models based on

this symmetry. We have shown that the dominant contributions come from the

spin and flavour terms in the mass formula both in SU(4) and SU(6). The terms
containing angularmomentum bring small contributions, which however slightly

improve the fit. It is hard to fit the mass of Λ(1405), a notorious problem in re-
alistic quark models [28,29]. This suggests again a more complex nature of this

resonance, as, for example, a coupling to a K̄N system , which might survive in

the largeNc limit [31,32].
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