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Image categorization is the problem of classifying images into one or more of severa! possible 
categories or classes, which are defined in advance. Classifiers can be trained using machine learning 
algorithms, but existing machine learning algorithms cannot work with images directly. This leads to 
the needfor a suitable way ofrepresenting or describing images such that learning algorithms can work 
with them. We consider a representation based on texture segmentation and a similarity measure 
between segmented images which has been used successfully in the related area of image retrieval. A 
generalized kernel for use with the support vector machine (SVM) algorithm can be builtfrom such a 
similarity measure. We compare this approach with a more straightforward representation based on 
autocorrelograms, and we show that these two representations can be combined to obtain classifiers 
with higher categorization accuracy. 

1 Introduction 
Besides textual and relational data, people increasingly 
have to deal with pictorial data, or data in the form of 
images. Large pictorial databases are being produced as 
archives digitize their collections, and additionally the 
World Wide Web contains a huge number of images. 
Apart from purely technical problems of storing and 
processing such large amounts of data, the emergence of 
large collections of images opens the problems of 
enabling the users to make sense of this data and find 
what they need. Image categorization deals with one 
aspect of this problem: given a set of images and a set of 
predefined categories or classes, we assume that each 
image should belong to one or possibly several of these 
categories. For a large collection it would be impractical 
to have a human observer categorize ali the images, so 
we want to be able to classiiy the images automatically 
after a small number of images has been classified 
manually to be used for training the automatical 
classifiers. 

However, this view of image categorization as a 
machine learning task immediately opens up a new 
problem: existing machine learning algorithms generally 
cannot work with images directly. Instead, they often 
assume they will be dealing with instances described by 
vectors or tuples. We need to be able to represent images 
using structures of this kind to make use of existing 
machine learning algorithms. 

1.1 Related work in image retrieval 
We can build on existing work in image retrieval, 

which is a related area where the problem of represent
ation has already been encountered. In image retrieval, 
the user poses a query to the system and the system 

should find images that are somehovv relevant to the 
query. Thus a way of representing the query, a way of 
representing images, and a way of comparing a query 
and an image (to determine if the image is relevant with 
regard to this query) are needed. One approach that is 
both technically feasible and useful enough to be 
commonly used in practice (e.g. in web image search 
engines such as Google) is to describe each image using 
a few keywords, and the user's query can then request 
images whose description includes or excludes particular 
keywords. However, this approach is only feasible if 
textual descriptions of images can be obtained auto-
matically (e.g. from the HTML file that linked to an 
image); it is usually too costly to have a human 
maintainer prepare such descriptions manually for a 
larger database. In addition, this textual approach suffers 
from problems of polysemy: different people would use 
different words to describe an image, and the same words 
may mean different things to different people. Therefore 
it is often desirable to rely solely on what can be 
automatically extracted from the images themselves. The 
user's query is then often simply a request to look for 
images similar to a given query image or sketch (this 
approach is known as "querying by contenf', or "content-
based image retrieval"). 

There are several close parallels betvveen image 
retrieval and image categorization. In categorization, if a 
new image is similar to training images from a particular 
category, it should probably itself belong to that 
category; in content-based image retrieval, if an image 
from the database is similar to the query image, it should 
probably be shown to the user. Thus we see that both 
areas need a way of representing images and assessing 
similarity between them. Many image representations 
and similarity measures have been proposed in image 
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retrieval, and we would like to examine some of them 
from the point of view of image categorization as well. 

One popular class of image representations is based 
on simplifying the image by approximating the color of 
each pixel by the nearest color from a predefined and 
fixed color palette; this can also be seen as partitioning 
(or guantizing) the space of ali possible colors. Some 
information is then recorded about the presence of each 
color on the image. When simply the proportion of the 
image covered by (the pixels of) that color is stored, the 
resulting description is called a histogram [11]. However, 
this disregards ali spatial information (how the color is 
distributed around the image): for example, a large patch 
of red would affect the histogram of an image in the 
same way as a large number of red pixels scattered ali 
over the image, which is surely undesirable. 

Several improved histogram-like representations of 
images have been proposed. For example, an auto-
correlogram [4] records, for each color c and for a few 
small integers d, the probability that a pixel, chosen 
randomly at distance d from a randomly chosen pixel of 
color C, will itself be of the color c. This retains infor
mation about the amount of a color present on the image, 
but also records something about the spatial arrangenient 
of each color. Stili, ali "global" representations of this 
type can be seen as somewhat rigid as they record a 
strictly fixed amount of data for each image. They cannot 
take into account the fact that some images are more 
complex than others, that an image may contain several 
objects, or that it may be helpfiil to distinguish between 
an (interesting) object and (uninteresting) background. 

1.2 Image segmentation 
Another, more sophisticated, class of image repre
sentations is based on segmentation, or dividing an image 
into a set of regions such that each region is roughIy 
homogeneous in color and/or texture. Each image is then 
represented by a set of regions; each region is typically 
described by a short vector that is a by-product of the 
segmentation procedure (containing e.g. the average 
color of the region, information about texture, and so on). 
Additionally, the location of each region on the image 
(i.e. which parts of the image are covered by that region) 
is often recorded as vvell. In general, regions might 
overlap, and each region might itself be composed of 
several disjoint parts; this is not necessarily problematic 
as they need not be shown to the user, and image 
similarity measures usually permit the regions to be 
disconnected,'^and sometimes work with overlapping 
regions as well. Representations based on segmentation 
can adapt vvell to differences in complexity between 
images, and have been used successfully in image 
retrieval [NRS99, WLWOO]. 

Various segmentation algorithms have been 
proposed in the context of image retrieval [NRS99, 
WLWOO]. These approaches are usually based on 
dividing the image into a grid of small "windows" (e.g. 
4x4 pixels); each window is described by a short vector 
(containing e.g. the average color and possibly a few 
coefficients from the higher-frequency bands of a 

Nvavelet transform, in order to capture the presence of 
edges or texture), and these vectors are then clustered. 
Each of the resulting clusters contains vectors that lie 
close together in their vector space, and such vectors 
hopefully correspond to windows that are similar in 
appearance; therefore it makes sense to form a region 
from such a group of windows. The region thus obtained 
can be described by the centroid of the cluster, i.e. by the 
average of the vectors that describe the windows from 
which the region was formed. 

To use segmentation for image retrieval, it is also 
necessary to introduce a measure of similarity between 
segmented images. Such measures usually examine pairs 
of individual regions (one region from each image) and 
combine the measures of similarity or difference between 
regions into a single similarity measure betvveen entire 
images. For example, the integrated region matching 
(IRM) measure [8] defines the distance betvveen two 
images as a vveighted sum of distances betvveen regions, 
in which the vveights are chosen so as to allow larger 
regions to have a larger influence on the similarity 
between images. 

To use the representations described above for image 
categorization, one could use global representations (e.g. 
autocorrelograms) in combination with any of several 
machine learning algorithms (such as support vector 
machines, SVM); or use a segmentation-based similarity 
measure with an algorithm that allows an arbitrary 
similarity measure to be plugged into it (e.g. the nearest-
neighbor method). However, our earlier work [1] has 
shown that the nearest neighbor method, in combination 
with segmentation-based image similarity measures, 
results in rather unimpressive performance in comparison 
to SVM and global representations. It is therefore our 
goal to try using segmentation together with support 
vector machines. The main challenge here is that the 
SVM in its original formulation assumes aH training and 
test examples to be described by vectors with the same 
number of components, while in the čase of segmentation 
the description of each image has more structure than 
that, and the number of regions can also vary from image 
to image. 

2 Support vector machines 
Support Vector Machines (SVMs) [3] are a relatively 
recent family of machine learning algorithms that have 
been used successfully in many application domains. In 
the most elementary form of this method, we assume that 
each training example is a vector from some d-
dimensional real space, and that there are exactly two 
classes, called positive and negative. Several extensions 
to multiclass problems are possible [5], usually by con-
verting one multiclass learning problem into several two-
class problems (e.g. training one classifier for each pair 
of classes to separate members of one class from those of 
the other class). 

In SVM learning, we want to separate the positive 
vectors from the negative ones using a hyperplane such 
that the positive training vectors lie on one side of the 
plane and the negative ones lie on the other side. 
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Additionally, to help make the classifier more robust and 
more reliable for use on unseen test vectors, we want the 
training vectors to lie as far from the separating 
hyperplane as possible. Maximizing this distance (known 
as the margiri) from the plane to the nearest training 
examp!e can be čast as an optimization problem in the 
following way. 

Let Xi be the /th training vector, and >>, its label 
(which equals +1 for positive examples and-1 for 
negative training examples. A hyperplane can be 
described by the equation w'x + b = Q, where w is the 
"normal", i.e. a vector perpendicuiar to the plane, and b 
is a threshold that determines the actual location of the 
plane in space. v/x denotes the dot product of the vectors 
w and X. Given a particular vector x, we can determine 
what side of the plane it lies on by examining whether 
\/x + Z> is positive or negative. However, to ensure that 
the training examples do not lie too close to the plane, we 
must also insist that v/x + b has a large enough absolute 
value. We can describe this using the following 
conditions: 

yj= \ =^ w^Xi + b>l and j , = -1 => w^xi + b<-\, 

or, more concisely: yi(w^Xi + b) > \ for ali training 
instances /. If ali training examples satisfy these con
ditions, the space betvveen the hyperplanes w^x + b = \ 
and w^x + b = -I is empty; to maximize the breadth of 
this margin space, we need to maximize the distance 
betvveen these two planeš, which equals 2/||w||. Maxi-
mizing the margin is thus equivalent to minimizing ||w||̂  
subject to the above conditions. 

This optimization problem is usually also extended 
to allow some training instances to be misclassified (or at 
least lie vvithin the margin, though perhaps on the correct 
side of the separating plane) if this leads to a wider 
margin on the other training instances (the soft margin 
formulation of SVM). 

Solving the optimization problem gives us the values 
of w and b, and the resulting classifier simply works 
according to the formulaprediction(x) = sgn[w''x + b]. 

Using standard techniques from optimization theory, 
this optimization problem can be transformed into a 
"dual" form. It tums out that the dual form, as well as the 
resulting classification rule, can be expressed so that the 
training vectors need never be accessed directly, as long 
as we are able to compute the dot product of any two 
vectors. In particular, the normal w can be written as w = 
Z, aiyiXi, where the a/ coefficients are obtained by solving 
the dual optimization problem. The classifier can then be 
described asprediction(x) = sgn[b + S, aiyixi'x]. 

Now suppose we used some mapping ep to map our 
original instances X; into some other (possibly higher-
dimensional) vector space F. Let Â (x„ Xj) := (cp(x,), 
(p(Xy));.- be a function that, given two instances x, and Xj, 
computes the dot product (-,•)/;• (in the new space F) of 
their images (p(x;) and (p(xy) under the mapping ep. It 
follovvs from the above that we could train a hyperplane 
in F vvithout ever working with the mapped vectors (p(x;) 
explicitly, as long as we are able to compute A'(x„ Xj) for 
any two vectors Xi and Xj. The function K defined in this 

way is knovvn as a kernel. The importance of kernels 
arises from the fact that the mapping (p need not be 
linear, and for a nonlinear (p a hyperplane in F could 
correspond to some highly nonlinear separation surface 
in the original space. In this way, kernels allow the SVM 
algorithm to induce nonlinear models while preserving 
the optimization framevvork essentially intact. The appeal 
of kernels stems from the fact that a wisely chosen 
function K can be simple to compute and yet correspond 
to a complex nonlinear mapping into some very high-
dimensional space F. 

A kernel corresponds to a dot product in some vector 
space and can therefore in some sense be seen as a sort of 
similarity measure: the dot product of two vectors (if 
their length is fixed) is greatest when they point in the 
same direction, and then decreases as the angle between 
them increases, eventually becoming O (for orthogonal 
vectors) and even negative, reaching the minimum if the 
two vectors point in exactly the opposite direction. 

However, the converse is not true: that is, not every 
similarity measure corresponds to a scalar product in 
some vector space. If we used a non-kernel similarity 
measure as if it were an actual kernel, we would no 
longer have the mathematical guarantees that the SVM 
training algorithm would converge, and even if it 
converged there would be no theoretical grounds to 
expect the resulting classifier to have good performance. 

3 Generalized kernels 
Generalized SVMs have been proposed by Mangasarian 
[9] to allow an arbitrary similarity function to be used in 
a way analogous to a kernel. In the previous section we 
have seen that SVM can learn nonlinear models of the 
form 

prediction{x) = sgn[b + Z, a;yi K{Xj, x)] 

where K(xi, x) = ((p(x,), (p(x))/.- for some mapping (p to 
some space F and some dot product(-,-)f in F. 

Now if some arbitrary function K were used instead 
of a proper kernel function, again giving us a classifier of 
the form sgn[i + Z;,a;_K/^(^/,x)], this might sfill be a 
perfectly reasonable and useful classifier, but it wouldn't 
necessarily correspond to some hyperplane in some 
vector space F to which the instances Xi and x might have 
been mapped. Thus we couldn't obtain the a; values 
using the criterion of maximizing the margin, because 
there wouldn't even be a hyperplane whose margin to 
maximize. Instead, [9] proposes to minimize the value 
aJHa (subject to the same constraints as before, i.e. that 
our training instances should lie on the correct side of the 
separation surface) for some positive definite matrix H. 
(This problem has a very similar structure to the dual 
form of the original SVM optimization problem, and is in 
fact equivalent to it if K really corresponds to a dot 
product and a suitable matrix H is chosen.) 

In the simplest čase of the generalized SVM, we 
would take H = I (the identity matrix) and thus minimize 
2, a^. This can be interpreted intuitively as looking for a 
separation surface that can be expressed in the simplest 
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possible way, possibly with many a, equal to O (i.e. 
vvithout really using the training example Xi in the 
description of the separating surface). 

It can be shown that the formulation for / / = / is 
equivalent to mapping each instance x into the vector 
{K(x, Xi), ..., K{x, x„)) of its "similarities" (as measured 
by K) to ali the training instances X\,... ,x„, and then 
using an ordinary linear support vector machine over this 
new representation. For the problem of image 
categorization, this amounts to the intuitively appealing 
suggestion that two images should be treated as similar if 
they exhibit a similar pattern of similarities to known 
training images. 

4 Region clustering 
In this section we consider another approach to using 
segmentation-based representations for image categori
zation. Each image has its own set of regions and regions 
belonging to different sets are in a sense quite 
independent of each other. This leads to the need for 
special similarity measures that compare two images by 
considering ali pairs of regions and aggregating the 
similarities of regions into a measure of similarity 
between the images. 

As an alternative, we propose to bring the region-
based representations of images to a "common 
denominator" by clustering the descriptions of aH the 
regions of ali the training images. The hope here is that 
each cluster would correspond to a group of similar 
regions from several images, while regions from separate 
clusters would be quite different in appearance. Thus, 
when comparing two images, if a region of one image 
belongs to a different cluster than some region of the 
other image, there would be no need to compare these 
two regions in any particular way, because knovving that 
they belong to different clusters already indicates that 
they are different in appearance and cannot really 
contribute towards the similarity of the two images under 
consideration. 

Therefore, an image would then be described by 
recording, for each cluster of regions, what proportion of 
the area of this image is covered by regions of this 
cluster. If there are d region clusters, each image would 
now be represented by a J-dimensional real vector (with 
possibly many zero-value components, as there wou!d 
probably be much more clusters than an average image 
has regions). With ali images represented in this same d-
dimensional space, we can then use the ordinary linear 
support vector machine to train classifiers. 

5 Experiinental evaluation 
To compare the approaches described in the previous 
sections, we conducted experiments on the misc 
database, which is publicly available (http://www-
db.stanford.edu/IMAGE/) and has already been used in 
image retrieval literature [13, 10], as well as in our 
earlier work on image categorization [1]. This database 
contains approximately 10000 small photographic 

images (of sizes around 128 by 96 pixels). It is 
thematically very diverse. 

We selected 1172 images from the database and 
manually assigned each of them to one of 14 categories 
(butterflies, US flag, sunsets, autumn, flovvers, planets, 
satellite images of Earth, cars, mountains, clouds, sea, 
surfboards, sailboats, prairie animals). The intention of 
this selection was to have categories of varying size and 
difficulty. The smallest category (flags) contains 32 
images, and the largest (sunsets) contains 224 images. 
Some of the categories, such as sunsets or flovvers, have 
characteristic and easily recognizable color distributions, 
while some categories are quite similar in this respect 
and would therefore be more difficult to distinguish (e.g. 
sea and clouds, both of which have a lot of blue and 
white pixels). 

To train the SVM classifiers, we used the LibSvm 
[2] program, which has the advantage of natively 
supporting multiclass problems. It ušes the all-pairs 
approach to convert a multiclass problem to several two-
class problems: for each pair of classes, a classifier is 
trained to distinguish members of one class from 
members of the other class. To classily a new example, it 
is shown to aH the classifiers, each of vvhich then votes 
for either one or the other of the two classes vvhich it has 
been trained to separate. The class vvith the greatest 
number of votes is then adopted as the final prediction. 

We compared the follovving approaches to image 
categorization: 

1. Images are represented in the HSV (hue, 
saturation, value) color space, vvhich is quantized into 
256 colors (the H axis is split into 16 equal ranges and 
the S and V axes into 4 equal ranges). Each image is then 
described by an autocorrelogram in the resulting 
quantized color space. The autocorrelograms are 1024-
dimensional vectors and are used as input for linear 
SVM. 

2. Images are segmented into regions using the 
segmentation algorithm from WALRUS [10]. The IRM 
similarity metric [8] is then used to construct a 
generalized kernel as described in Section 3 above. In 
other vvords, each image is represented by a vector of its 
IRM similarities to aH the training images; these vectors 
are then used as input for linear SVM. 

3. Images are segmented as in the previous 
paragraph. Each region is described by a short (12-
dimensional) vector, vvhich is a by-product of the 
segmentation algorithm. The vectors resulting from aH 
the regions of ali the training images are then clustered 
(here we use the same algorithm, BIRCH [14], that is 
also used by WALRUS during segmentation). An image 
is then described by a sparse vector specifying vvhat 
proportion of the area of the image is covered by regions 
from each region cluster. Depending on the parameters of 
the segmentation, the average number of regions per 
image might vary from less than ten to more than a 
hundred; then, depending on the parameters of the 
clustering, the number of region clusters (and hence the 
dimensionality of the space in vvhich our images are novv 
represented) is usually on the order of a fevv hundred. 

http://www-
http://db.stanford.edu/IMAGE/
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Once images are represented in this way, linear SVM can 
be used to train classifiers for them. 

For the sake of comparison, we also report the 
performance of the nearest neighbor method with the 
IRM similarity metric (that is, each image is predicted to 
belong to the same class as the most simiiar training 
image). Ali performance values reported here are 
averages (and standard errors) based on tenfold stratified 
cross-validation. 

Method 
Autocorrelograms 

Generalized kernels 
Region clustering 

Nearest neighbors + IRM 

Classiflcation accuracy 
80.2 % ± 1.3 % 
79.0% ± 1 . 3 % 
70.0% ±1 .6% 
69.1% ± 1 . 3 % 

As expected, the nearest-neighbor method is in general 
less successfiil than the approaches based on SVM. 
However, it turns out that the two segmentation-based 
approaches do not outperform the representation based 
on autocorrelograms. The performance of the generalized 
kernel method is not significantly different (using a 
paired t-test) from that of autocorrelograms, and the 
generalized kernel method has the additional 
disadvantage of much greater computational cost. 

In addition, the performance of the region clustering 
approach is remarkably poor. A closer examination 
suggests that the partitioning of regions into region 
clusters is problematic and unstable. For example, if the 
centroid of each cluster is recorded and then ali regions 
are distributed to the cluster with the nearest centroid, 
most of the regions will tend to move to a different 
cluster than they were originally attached to. This means 
that two otherwise simiiar regions might fall into 
different clusters by pure chance, and the similarity 
between their images would thus go unnoticed. The 
authors of the BIRCH clustering algorithm were aware of 
the possibility of such problems, and proposed several 
redistribution passes where the regions are redistributed 
to the nearest centroids, but in our experiments this did 
not lead to a really stable partition even after five or ten 
such passes. 

An alternative way of making use of the region 
clustering approach might be to include the test images in 
the region clustering phase. This really amounts to a 
form of transduction, i.e. using test data as if it was 
simply additional unlabeled training data. It ensures that 
both the training images and the test images are really 
being represented in a space that treats both groups of 
images equally. In this setting, the performance of the 
region clustering increases considerably, and it achieves 
an accuracy of 86.4 % ± 1.0 %. However, for the 
comparison with other methods to be fair, transduction 
should also be included in the SVM learning process. 
Since LibSvm does not support tranduction, we used the 
SvmLight program [6] for these experiments; it 
implements Joachims' transductive SVM algorithm [7]. 
With transductive SVM, region clustering achieves an 
average accuracy of 91.9 % ± 1.0 %, while 
autocorrelograms achieve an accuracy of 90.7 % ± 1.1 %. 

Although this difference is not really significant from a 
practical point of view (a t-test shows that it is 
statistica]ly significant at a confidence level of 0.945, 
slightly below the usual 0.95), it suggests that the region 
clustering approach does have at least some potential to 
be useful. 

Finally, we also considered combining several 
representations. An analysis of classiflcation errors 
shows that classifiers based on different representations 
often make mistakes on different test images; that is, a it 
often happens that a test image is classified correctly by 
one classifier but incorrectly by another. For example, 
consider the classifiers based on autocorrelograms and on 
generalized kernels (with the IRM measure). Of the 1172 
images, 828 are classified correctly by both; 120 only by 
the former; 100 only by the latter; and 128 are mis-
classified by both. (To obtain these numbers, each image 
was classified by a model obtained from that 90% of the 
dataset vvhich does not contain the image under consider-
ation.) 

Thus it seems that some advantage could be gained 
by combining the features of both of these 
representations. Many approaches exist for combining 
several classifiers, but with SVM, this can be done in a 
particularly simple way. If we have two representations, 
(t)i: X-^F[ and ^2,'- ^-^Pi, combining their features (or 
attributes) vvould be equivalent to a new representation (S)\ 
X^F{KF2 defined by the formula ^{x) = ((j)i(x), i)2{x)). 
Now if the kernels A î(x„ xj) and K2{x,, Xj) correspond to 
some dot product on Fi and F2, respectively, the fiinction 
K{Xi, Xj) := Ki{xi, Xj) + K2{Xi, Xj) is a dot product on F]XF2. 
Thus we can obtain the equivalent of a combined 
representation simply by computing the sum of two 
kernels. 

In our experiments, the combination of the 
autocorrelogram representation and the generalized 
kernel using the IRM similarity measure achieved a 
categorization accuracy of 83.7% ± 1 . 4 %. A t-test 
shows that this performance level is significantly better 
than that of either of these two representations 
individually. 

6 Conclusions and future work 
Our experiments show that it is difficult to use seg
mentation-based image representation methods in image 
categorization. Relatively complex ways of using Infor
mation obtained from segmentation, such as the 
generalized kernel approach and (to a lesser extent) the 
region clustering approach, have been found able to 
compete with a simpler and more straightforward 
approach such as autocorrelograms but not to signifi-
cantly outperform it. In the presence of unlabeled test 
images, the region clustering approach performs really 
well (relative to other representations) if a transductive 
SVM learner is not available. We have shown that it is 
possible to use segmentation-based representation in 
combination with another representation to achieve a 
small but significant increase of categorization accuracy. 

We nonetheless believe that there must be ways of 
using segmentation more profitably for image catego-
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rization, just as it is used in image retrieval, and that this 
is stili an interesting topic for fiiture work. In particular, 
it would be interesting to further explore the influence of 
the clustering algorithm used in the region clustering 
approach, and to look for more stable clustering algo-
rithms that would allovv the region clustering approach to 
perform better in the inductive in additional to the trans-
ductive setting. 

In addition, as segmentation is a relatively complex 
task, and segmentation algorithms usually depend on 
several parameters, it would be interesting to explore the 
influence of these various parameters on the 
segmentation (and consequently on image categorization) 
in a more systematic way. 

The region clustering approach could also be 
augmented by taking the similarity between different 
clusters into account. Currently, regions that belong to 
different clusters contribute to different components of 
the sparse vectors that describe our images, and therefore 
vvhatever similarity might exist between two regions 
from different clusters cannot contribute anything 
towards our algorithm's perceived similarity between 
their two images. Acknowledging that regions can be at 
least somewhat similar even if they belong to different 
clusters might lead to an improved representation, but 
wou!d (if taken to the extreme čase) again require us to 
do the equivalent of comparing every region of one 
image with every region of the other image, which is 
what the region clustering approach was designed to 
avoid in the first plače. Perhaps one could determine 
(from the region clustering process itself), for each 
region cluster, just a few most similar clusters and then 
compare pairs of regions from the closely similar clusters 
but ignore pairs of regions from entirely unrelated 
clusters. 

Region clustering could also be integrated with 
segmentation. Currently, segmentation is being per-
formed separately on each image, by clustering the 
descriptions of its 4x4 pixel windows; then, the region 
descriptions of ali the images in the training set are 
clustered to form region clusters. These two steps could 
be merged by considering the descriptions of ali 
windows from ali the images as a single large set and 
performing clustering on this. Each image would then be 
represented by a vector of values showing what 
proportion of the image is covered by windows 
belonging to a particular cluster. 

Combination of several kemels could also be 
pursued further, particularly in the direction of 
combining more than two classifiers and using weighted 
sums of kemels. 

Additionally, the methods considered here should be 
tested on other datasets, as (given that widely different 
methods achieve highly similar categorization accuracy 
values on the present dataset) it is perhaps simply 
unrealistic to expect better performance on the current 
dataset, as the categories have an essentially "semantic" 
motivation that the current image representation methods 
simply cannot capture. 
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