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Abstract: Analytical solutions of plate equation for square diaphragms provide quick estimation of the output characteristics of 

pressure sensors before fi nite element method (FEM) analysis. In this work, we analyze the limitations of using the model of a plate 

for the diaphragm of a piezoresistive pressure sensor. A comparison of various solutions of plate equations available in literature with 

FEM solution of plate is also carried out. Based on the above analysis, the most accurate analytical solution is determined. Using this 

solution, the methodology of obtaining the sensitivity and non-linearity of piezoresistive pressure sensors is delineated. This study 

shows the scope and limitations of using analytical solutions of plate equations for obtaining the output characteristics of a pressure 

sensor. 
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Študija analitčne rešitve enačbe plošče za 
mikrosenzorsko tlačno opno: omejitve, primerjava 
in uporaba
Izvleček: Analitične rešitve enačbe plošče za kvadratno opno predstavljajo hitro ocenitev izhodnih karakteristik senzorjev tlaka še pred 

analizo z metodo končnih elementov (FEM). V delu predstavljamo omejitve uporabljene metode na opni piezorezistivnega senzorja 

tlaka. Opravljena je tudi primerjava različnih objavljenih rešitev enačbe plošče s FEM rešitvijo. Na osnovi te analize je določena najboljša 

rešitev, ki je uporabljena za določitev občutljivosti in nelinearnosti piezorezistivnega senzorja tlaka. Študija predstavlja omejitve 

uporabe metode za določevanje izhodnih karakteristik senzorja.
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1 Introduction

Pressure sensors constitute a major portion of sales in 
the microelectromechanical systems (MEMS) mechani-
cal sensors market [1]. Various transduction mecha-
nisms are used in these sensors to convert the pressure 
input into an electrical signal. Based on these transduc-
tion mechanisms, pressure sensors can be classified 
as capacitive, piezoresistive, piezoelectric, optical and 
resonant [2, 3]. Piezoresistive pressure sensors have 
several advantages like small size, high linearity, high 
reliability and simple IC fabrication [4]. These sensors 
are used in applications like tire pressure monitoring 

system (TPMS), intracranial pressure measurement, 
aircraft gas turbine combustion control and chemi-
cal processing. Piezoresistive pressure sensors usually 
consist of four resistors (also known as piezoresistors), 
connected in a Wheatstone bridge arrangement, on 
top of a diaphragm. The diaphragm of a pressure sen-
sor is formed by bulk micromachining of silicon using 
wet chemical etchants or dry etching using deep-
reactive-ion-etching (DRIE). When the diaphragm of 
a sensor is stressed (under the influence of a pressure 
load), the resistance of the piezoresistors changes due 
to piezoresistivity. Thus, the output of the Wheatstone 
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bridge gives an estimate of the pressure input. In or-
der to estimate the output characteristics of the sensor 
prior to fabrication, finite element method (FEM) based 
tools are used. However, analytical methods help in ob-
taining a quick estimate of the important output pa-
rameters like sensitivity and linearity before moving on 
to time consuming FEM based simulations [5, 6]. The 
diaphragm of a pressure sensor can be assumed to be 
a thin plate clamped at the edges. However, the above 
assumption has some flaws owing to the difference in 
the boundary condition in a plate and in an actual pres-
sure sensor diaphragm as shown in Fig. 1. For square 
diaphragm based pressure sensors, no accurate solu-
tions are available for plate equations. Over the years 
various approximate solutions have been proposed 
in the literature for the diaphragm deflection [6-10]. 
The diaphragm deflection is related with the surface 
stresses on the diaphragm and thus is related with the 
output of the sensor.

Figure 1:  Cross-section and boundary conditions.
(a) Plate. (b) Diaphragm etched using deep-reactive-
ion-etching. (c) Diaphragm etched using wet bulk mi-
cromachining.

In this paper, we first analyze the effect of boundary con-
ditions on deflection and stress on the diaphragm using 
FEM tools. Next, the accuracy of different analytical solu-
tions of plate equations for square diaphragm available 
in literature is estimated by comparing them with FEM 
simulations of a plate. Finally, using the most accurate 
analytical solution, the methodology for obtaining sen-
sitivity and linearity of the sensor is delineated.

2 Governing equations

The differential equation for a two dimensional square 
plate (as shown in Fig. 2) with a uniform pressure load, 
P, can be expressed as [11]:
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where D = Eh3/12(1-v2) is the flexural rigidity of the dia-
phragm, and w is the deflection of the diaphragm at 
(x,y). E is the Young’s modulus of silicon, h is the thickness 
of the diaphragm, and ν is the Poisson’s ratio of silicon.

Figure 2: Schematic of a square plate.

The boundary conditions for the plate shown in Fig. 2 
are as follows: 
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The solution of Eq. (1) with the above boundary con-
ditions yields an expression for w(x,y). This expression 
can then be plugged into Eq. (6) and Eq. (7) to obtain 
the surface stresses of the diaphragm. 
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where σx and σy are the x- and y-directed surface 
stresses, respectively. In the above equations, it is as-
sumed that the diaphragm bending is elastic and the 
diaphragm deflection is small compared to diaphragm 
thickness (less than 1/5th of the diaphragm thickness).

3 Effect of clamping conditions

The clamping conditions used in a plate rigidly clamped 
at all the four edges (Fig. 1 (a)) are different from those 
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found in actual pressure sensor fabricated using DRIE 
and Wet bulk micromachining (WBM) as shown in Fig. 
1 (b) and 1 (c), respectively. This boundary condition af-

fects the magnitude of stress and the stress distribution 
on the top surface of the diaphragm where the piezo-
resistors are placed. In order to determine the effect 
of this boundary condition on the stress distribution, 
the x-direction stress for the three models (as shown in 
Fig. 1 (a)–(c)) are compared using FEM tool Coventor-
ware. A square diaphragm of size 1000 μm x 1000 μm 
is used in the simulations. Simulations are performed 
for diaphragm thicknesses of 30 μm, 40 μm, 50 μm and 
60 μm. A pressure load of 10 Bar is applied on all the 
diaphragms for these simulations. The x-directed stress 
along the cutline as shown in Fig. 3 is determined us-
ing these simulations. Fig. 4 shows the result of these 
simulations. It is clear from the result that the stress dis-
tribution is dependent upon the clamping conditions 
used for the simulations. In the DRIE and WBM model, 
the stress extends beyond the edge of the diaphragm 
(at x = 500 μm). The DRIE and WBM model show stress 
values close to each other in all the cases. However, it 

Figure 3: Top view of cutline along x-axis.

Figure 4: X-directed stress along cutline in diaphragm with different thicknesses. (a) 30 μm. (b) 40 μm. (c) 50 μm. (d) 
60 μm.
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can be observed that as the thickness of the diaphragm 
increases, the stresses near the edge of the diaphragm 
for the plate model is farther away from other mod-
els (as shown in the region encircled by dotted lines). 
This indicates that the diaphragm in a pressure sen-
sor can be approximated by the plate model only for 
thin diaphragms and the plate equations can be used 
in such a situation. Also, the piezoresistors cannot be 
placed outside the diaphragm edges when plate equa-
tions are used to analyze the diaphragm as the stress 
fields outside the diaphragm edges cannot be evalu-
ated. Thin diaphragms are more sensitive and less lin-
ear and the vice versa is true for thick diaphragms. For 
good sensitivity and linearity, diaphragm must neither 
be too thick nor too thin. Analytical solutions of plate 
equations provide sufficiently accurate solutions in this 
regime as they are valid in such cases.

4 Comparison of different solutions for 
plate equation with FEM

For the square diaphragm, many approximate solu-
tions are available in literature. These define the deflec-
tion (w) of the diaphragm at a given (x,y). Some of these 
solutions are [6-8]:
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Sometimes, a modified differential equation as shown 
in (12) is used for obtaining the solution of membrane 
on (100) plane with edges directed along <110> direc-
tion. This equation considers the anisotropic nature of 
the material properties of silicon.
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coefficient and characterizes the anisotropy in silicon. 
G is the shear modulus. For a square diaphragm, some 
of the proposed solutions for (12) are [9-10]:
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where n is an even positive integer, i, j = 0,2,4,6,…..n, kij 
are the shape factors. The shape factors for n=4 is given 
in Table 1. In all the equations above, a = b, due to the 
diaphragm being square in shape.

Table 1: Shape factors for n = 4

Eq. (13) Eq. (14)
k00 1 1
k20 0.233 0.0284
k02 0.233 0.0284
k22 0.252 0.0123
k40 -0.00166 0.0038
k04 -0.00166 0.0038
k42 0.13 0.0030
k24 0.13 0.0030
k44 -0.235 0.0016

The deflection of diaphragm obtained by the solutions 
of plate equations given by Eqs. (8), (9), (10), (11), (13), 
and (14) are compared with FEM solution in order to 
find the most accurate solution. A diaphragm size of 
1000 μm × 1000 μm and diaphragm thickness of 30 
μm are chosen for the comparative study. A pressure 
of 10 Bar is applied. Fig. 5 shows the combined plot of 
diaphragm deflection (along the x-axis) obtained using 
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different analytical equations. These solutions are com-
pared with solution obtained using FEM. The material 
properties of silicon used in analytical solutions are as 
follows: Young’s modulus (E) = 169.8 GPa and Poisson’s 
ratio (ν) = 0.066. Orthotropic properties of silicon are 
used in the FEM solution [12]. To find the most accu-
rate solution, the root mean square deviation (RMSD) 
of each of the solution (from the FEM solution) is ob-
tained using the following formula:

 ( )
n

DefDef
RMSD

n

i FEMiAnalyticali∑= −
= 1

2

,,         (15)

where n is the total number of points where the deflec-
tion is calculated on the cutline along x-axis, Defi,analytical 
is the diaphragm deflection obtained by the particular 
analytical solution at point i, Defi,FEM is the diaphragm 
deflection obtained by FEM solution at point i. The cal-
culated value of RMSD is enlisted in Table 2.

Table 2: Root mean square deviation (RMSD) from FEM 
solution

Equation no. RMSD
(8) 0.1994
(9) 0.2400

(10) 0.3906
(11) 0.2024
(13) 0.1414
(14) 0.1796

Figure 5: Comparison of diaphragm deflection ob-
tained using different analytical solutions and FEM.

Table 2 indicates that the RMSD value obtained for Eq. 
(13) is the lowest. Hence, the solution given in Eq. (13) 
provides the most accurate picture of the diaphragm de-
flection for a plate and is chosen for calculating the out-
put of the piezoresistive pressure sensor in next section.

5 Sensitivity and linearity calculations 
using analytical solution

Consider a pressure sensor diaphragm with four piezo-
resistors connected in Wheatstone bridge as shown in 
Fig. 6. The relative change in resistance of each resistor 
can be given by [13]:

 
ttllR

R
σπσπ +=

Δ
                   (16)

where πl and πt are the longitudinal and transverse 
piezoresistive coefficients, respectively. σl and σt are 
the longitudinal and transverse stress, respectively.

Figure 6: Top view of a piezoresistive pressure sensor 
diaphragm with piezoresistors.

The piezoresistors on the diaphragm have a finite size 
and therefore the stress on the piezoresistors must be 
calculated by averaging the stresses as shown in Eqs. 
(17) and (18).
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where σxave and σyave are the average x- and y-directed 
stresses at the piezoresistor location, respectively. A is 
the area of each piezoresistor. Substituting σx ave for σl 
and the value of σy ave for σt in Eq. (16), we obtain:
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R
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                 (19)

A computer program is developed using the solution 
of plate equation and the change in resistance of piezo-
resistors on the diaphragm. The four piezoresistors are 
placed at the center of the edges of the diaphragm in 
order to experience maximum stresses. The program 

S. Santosh Kumar et al; Informacije Midem, Vol. 45, No. 1 (2015), 80 – 86



85

calculates the stress distribution at the surface of the 
diaphragm using Eqs. (6) and (7) and the longitudinal 
and transverse stresses over the piezoresistors are av-
eraged to find the change in resistance of each resis-
tor. The piezoresistors are assumed to be aligned along 
<110> direction on (100) plane. The piezoresistors are 
assumed to have p-type doping, for maximum sensi-
tivity [14]. The Wheatstone bridge is provided with an 
input of 5 V. The sensitivity of the pressure sensor is the 
relative change in the output voltage per unit change 
in applied pressure [6]. The pressure vs. output voltage 
graph is not a straight line and the nonlinearity of the 
sensor is calculated using an end point straight line 
[6]. To demonstrate the usage of analytical equations, 
different sensor structures with diaphragm sizes and 
thicknesses are chosen as shown in Table 3. A pres-
sure of 10 Bar is applied on each of these models. Four 
piezoresistors are placed at the edge of the diaphragm 
with dimensions: 100 μm (length) × 10 μm (width). It is 
assumed that the contact with the resistor is made at 
the two ends of the resistor. Usage of analytical solu-
tions for analyzing pressure sensor diaphragms entails 
that the diaphragm must neither be too thin nor too 
thick. The reason for the same has been explained in 
the earlier section. As a thumb rule, for a particular 
diaphragm size and thickness chosen in Table 3, the 
diaphragm deflection at full scale pressure is kept be-
tween 1/5th and 1/10th of diaphragm thickness. The sen-
sitivity plots of the different models are shown in Fig. 7 
and the non-linearity plots is shown in Fig. 8. To find the 
sensitivity of a particular model, the slope of the curve 
must be divided by the supply voltage (5 V). The non-
linearity of the sensor is the maximum percentage non-
linearity for the particular sensor structure. The sensi-
tivity and non-linearity for a particular pressure range 
can be optimized according to requirement by varying 
the diaphragm size, diaphragm thickness, piezoresistor 
dimensions and piezoresistor placement. However, the 
limitations and conditions required for using analytical 
solutions as explained earlier must be considered dur-
ing design optimization.

Table 3: Dimensions for different sensor structures 
(Pressure – 10 Bar)

Model no. Diaphragm size 
(μm × μm)

Diaphragm 
thickness (μm)

1 600 × 600 15
2 800 × 800 22
3 1000 × 1000 30
4 1200 × 1200 35
5 1400 × 1400 42
6 1600 × 1600 48

6 Conclusions

This paper gives a description of the various analytical 
solutions of plate equation available in literature and 
delineates the limitation of using these solutions for 
modeling the diaphragm of a piezoresistive pressure 
sensor. However, analytical solutions of a plate can be 
used for obtaining the sensitivity and non-linearity of 
a pressure microsensor when the diaphragm is neither 
too thick nor too thin. The various analytical solutions 
are also compared with FEM solution to obtain the 
most accurate solution. The method for obtaining the 
output characteristics of the sensor using analytical 
equations is also explained. Using the method shown 
in this paper, analytical solutions can be used for the 
first level design and optimization of a piezoresistive 
pressure sensor. This may then be followed up by FEM 
simulations for the optimized model. Analytical meth-
ods help in saving time compared to FEM method.

Figure 7: Sensitivity plots for different models.

Figure 8: Non-linearity plots for different models.
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