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A B S T R A C T	   A R T I C L E   I N F O	

Container	 assignment	 strategy	 is	 crucial	 to	 the	 operation	 efficiency	 of rail‐
road	 container	 transshipping	 system.	 An	 effective	 container	 assignment	 ap‐
proach	 can	markedly	 improve	 integral	 operation	efficiency	of	 rail‐road	 con‐
tainer	transshipping	system.	In	this	paper,	the	container	assignment	problem	
in	rail‐road	transshipment	terminal	was	described	and	formulated	as	a	two‐
stage	 optimization	 model	 considering	 overlapping	 amount	 and	 operation	
distance	of	crane.	The	first	stage	optimization	model	was	to	optimize	contain‐
er	assigning	positions	for	minimizing	the	total	overlapping	amount	caused	by	
container	 assigned	 in	 the	 considered	 block	 at	 one	 planning	 period,	 and	 an
iterative	 solution	 procedure	 was	 proposed	 to	 obtain	 container	 assignment	
sets.	Based	on	 the	container	assignment	sets	obtained	by	 the	 first	stage,	 the	
second	 stage	 optimization	 model	 was	 to	 optimize	 the	 container	 assigning	
sequence	 for	decreasing	 the	 total	operation	distance	of	 crane,	 and	a	genetic	
algorithm	was	designed	to	obtain	the	optimal	container	handling	sequences	in	
container	assignment	process.	Computational	experiments	on	the	data	from	a	
rail‐road	transshipment	terminal	in	China	were	implemented	to	test	efficien‐
cy	 of	 the	 proposed	 approach.	 Computational	 results	 showed	 that	 the	 pro‐
posed	 approach	was	 effective	 to	 reduce	 overlapping	 amount	 and	 operation	
distance	 in	 container	assignment	process.	The	proposed	approach	 is	 signifi‐
cant	for	the	production	and	management	of	rail‐road	container	transshipping	
terminals.	
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1. Introduction 

Intermodal	 transportation	 is	defined	as	 the	successive	use	of	various	modes	of	 transportation	
(road,	 rail,	 air	 and	water)	without	 any	handling	 of	 the	 goods	 themselves	 during	 transfers	 be‐
tween	modes	[1].	In	rail‐road	intermodal	transshipping	system,	massive	quantities	of	containers	
are	carried	by	railway	for	long	distances,	and	short	distance	transshipping	and	delivery	are	un‐
dertaken	by	 container	 trucks.	 To	 enable	 containers	 efficiently	 transferred	between	 trains	 and	
trucks,	modern	 rail‐road	 transshipment	 terminals	are	 required,	which	have	advanced	modern	
handling	resources	and	efficient	scheduling	strategies.		

As	a	key	resource	of	rail‐road	transshipment	terminals,	storage	space	is	used	for	temporarily	
stockpiling	inbound	and	outbound	containers	unloaded	from	container	trains	and	trucks.	Stor‐
age	space	allocation	is	a	critical	scheduling	strategy	defined	as	the	temporary	allocation	of	the	
inbound/outbound	 containers	 to	 the	 storage	 blocks	 at	 each	 period	with	 aim	 of	 balancing	 the	
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workload	 between	 blocks	 in	 order	 to	minimize	 the	 storage/retrieval	 times	 of	 containers	 [2].	
Container	 assignment	 is	 an	 important	 decision	 making	 problem	 in	 storage	 space	 allocation	
strategy,	which	 is	a	vital	constraint	 for	other	strategies.	Therefore,	 it	 is	necessary	 for	rail‐road	
transshipment	terminals	to	optimize	their	container	assignment.	

Outbound	 containers	 assignment	 problem	 was	 formulated	 as	 a	 mixed‐integer	 linear	 pro‐
gramming	model,	whose	objectives	were	to	utilize	space	efficiently	and	make	loading	operations	
more	efficient	[3].	The	location	assignment	 for	arriving	outbound	containers	during	container‐
receiving	stage	was	formulated	as	two	novel	dynamic	programming	models,	and	compared	with	
existent	model	on	small‐scale	instances	[4].	A	novel	mixed‐integer	programming	model	was	de‐
veloped	to	integrate	storage	space	allocation	and	ship	scheduling	for	achieving	high	space	utili‐
zation,	 low	material	 loss,	 and	 low	 transportation	 costs	 [5].	 For	 improving	 the	 operations	 effi‐
ciency	for	retrieving	inbound	container	in	container	terminal,	three	optimization	models	under	
different	 strategies	 of	 storing	 containers	 were	 proposed,	 namely,	 a	 non‐segregation	model,	 a	
single‐period	 segregation	 model,	 and	 a	 multiple‐period	 segregation	 model	 [6].	 An	 ant‐based	
model	was	present	 for	 the	 storage	 space	 allocation	problem	 to	balance	operational	quantities	
among	different	blocks,	and	minimize	the	moving	distance	of	internal	trucks	between	container	
yards	and	berths	[7].	

For	solving	container	assignment	problem,	several	heuristic	algorithms	were	developed.	An	
efficient	GA	was	proposed	to	solve	the	extensional	container	assignment	problem	in	container	
terminal	 [2].	 For	 large‐scale	 SSAP	 instances,	 a	 two‐stage	heuristic	was	proposed.	 For	 the	 first	
stage,	 a	 neighborhood	 searching	 heuristic	 was	 present	 to	 generate	 the	 priority	 sequence;	 a	
rollout‐based	heuristic	was	developed	 to	 improve	 the	 incumbent	 solution	 in	 the	 second	 stage	
[8].	 An	 outer–inner	 cellular	 automaton	 algorithm	 (CAOI)	was	 developed	 to	 solve	 SSAP,	 using	
YBAP	and	SAP	as	an	integrated	optimization	process	[9].	

According	 to	 the	 literature	 review	above,	most	of	 studies	 focused	on	 container	 assignment	
problem	in	maritime	container	terminals.	These	studies	generally	decomposed	the	problem	into	
two	stages,	and	developed	different	heuristic	algorithms	to	solve	the	problem.	By	contrast,	spe‐
cific	 literature	 on	 rail‐road	 transshipment	 terminal	 is	 scarce.	 A	 two‐stage	 optimization	model	
was	proposed	to	balance	operational	quantities	and	reduce	overlapping	amount	of	inbound	con‐
tainers	[10].	A	container	slot	allocation	model	based	on	mixed	storage	mode	was	present	to	min‐
imize	 container	 overlapping	 amounts	 and	 a	 heuristic	 algorithm	was	 designed	 for	 solving	 the	
model	[11].	These	studies	only	focused	on	decreasing	the	overlapping	amounts,	and	did	not	con‐
sider	 the	 crane	 operation	 distance	 together	 in	 container	 assignment	 optimizing	 process.	 The	
operation	distance	is	also	an	important	indicator	for	storage	space	allocation	in	rail‐road	trans‐
shipment	terminals.	Some	studies	focused	on	crane	operation	optimization	without	considering	
container	overlapping	amount	[12,	13].		

Therefore,	we	 simultaneously	 consider	overlapping	 amount	 and	operation	distance	 in	 con‐
tainer	assignment	process.	The	main	contributions	of	this	paper	are	as	follows.	First,	we	present	
a	 two‐stage	approach	 for	 formulating	 the	 container	assignment	problem	 to	minimize	overlap‐
ping	amount	and	total	operation	distance	of	crane.	Second,	a	rolling	horizon	implement	strategy	
is	designed	for	obtain	an	approximate	optimal	solution.	The	proposed	approach	is	effective	for	
different	size	of	planning	periods.	

The	 remainder	of	 this	 paper	 is	 organized	 as	 follows.	The	 container	 assignment	problem	 in	
rail‐road	transshipment	terminals	is	described	in	Section	2,	and	formulated	in	Section	3.	A	roll‐
ing	horizon	implement	strategy	is	developed	in	Section	4.	Computational	results	are	discussed	in	
Section	5.	Section	6	covers	the	conclusion.	

2. Problem description 

A	 typical	 container	 transshipping	 system	of	 rail‐road	 transshipment	 terminals	 is	mainly	 com‐
posed	 by	 three	 subsystems,	 including	 loading‐unloading	 subsystem,	 storage	 space	 allocation	
subsystem	and	transport	subsystem,	which	is	shown	in	Fig.	1.		
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Fig.	1 A	typical	container	transshipping	system	in	rail‐road	transshipment	terminals	

	
These	three	subsystems	ensure	outbound	and	inbound	containers	can	be	quickly	transferred	

in	rail‐road	transshipment	terminals.	The	main	mission	of	storage	space	allocation	subsystem	is	
to	 assignment	 containers	 to	 the	 suitable	 positions.	 The	 assignment	 processing	 has	 two	 tasks,	
first	is	to	allocated	containers	to	blocks,	and	the	other	is	to	assign	container	to	slots.	Our	study	
only	focuses	on	the	second	task	to	assign	containers	in	considered	block.	

As	observed	in	Fig.	1,	assigned	containers	in	rail‐road	transshipment	terminals	can	be	classi‐
fied	into	the	following	two	kinds.		

 Rail	vehicle	unloading	containers	(RVUC):	 inbound	containers	are	on	rail	vehicles	before	
unloaded	and	assigned	to	container	yard.	

 Truck	unloading	containers	(TRUC):	outbound	containers	are	on	trucks	before	unloaded	
and	assigned	to	container	yard.		

The	operations	of	two	type	assigned	containers	are	shown	in	Fig.	2.	
By	simultaneously	considering	overlapping	amount	and	operation	distance,	we	can	decom‐

pose	the	container	assignment	problem	into	two	stages.		

 First	 stage:	 Assign	 optimal	 positions	 for	 TRUCs	 and	 RVUCs	 to	 minimize	 overlapping	
amount	and	obtain	container	assignment	sets.		

 Second	 stage:	 Optimize	 assigning	 sequence	 to	 minimize	 the	 total	 operation	 distance	 of	
crane	based	on	assignment	sets	obtained	in	the	first	stage.	Because	arriving	time	of	TRUC	
is	uncertain	and	discrete,	TRUC	assigning	sequence	cannot	be	optimized.	Therefore,	 this	
stage	optimization	is	only	for	the	RVUCs,	and	TRUCs	are	assigned	according	to	arriving	se‐
quence.	

	
Fig.	2	Operations	of	two	type	allocated	containers	

3. Problem formulation 

Based	 on	 the	 problem	described	 above,	 the	 container	 assignment	 problem	 in	 rail‐road	 trans‐
shipment	terminal	is	formulated	as	two‐stage	optimization	model.	
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3.1 Assumptions 

The	problem	is	formulated	based	on	the	following	assumptions.	

1) Initial	 assigning	amount	of	RVUCs	and	TRUCs	are	assumed	 to	be	known	at	beginning	of	
each	planning	epoch.	

2) Arrival	 and	 departure	 time	 of	 containers	 are	 got	 beforehand	 and	 no	 delay	 happens	 at	
planning	period.	

3) There	are	enough	resources,	i.e.,	gantry	cranes,	container	slots,	to	assign	containers	to	the	
considered	block.	

4) Containers	in	the	model	are	the	same	size.	

3.2 Notations and variables 

The	notations	and	variables	of	two‐stage	optimization	model	are	shown	in	Table	1.	
	

Table	1	Notations	and	variables	

Indexes	
,q r：	 row	index,	1 1q R r R   ，

,a b：	 bay	index,	1 1a B b B   ，

,e l：	 layer	index,	1 1e L l L   ，

( , , )r b l ：	 container	slot	( r row,b bay,	 l layer)	
,i j：	 assigning	index	

Parameters	
N：	 total	amount	of	RVUCs	and	TRUCs	
B：	 bay	amount	in	considered	block	
R：	 row	amount	in	considered	block	
L：	 maximum	layer	height	

( , , )r b ldet ：	 departure	time	of	container	in	  , ,r b l 	

Sets	

RVS ：	 container	set	of	RVUCs	

TRS ：	 container	set	of	TRUCs	

bS ：	 container	slots	set	in	considered	block	

Variables	

( , , )r b lS ：	 1,	if  , ,r b l has	container;	0,	otherwise.	

( , , )
i
r b lS ：	 1,	if	assigning	the thi container	to  , ,r b l ;	0,	otherwise.	

( , , ),( , , )
RVUC
r b l r b l eK  ：	

overlapping	of	  , ,r b l e generated	by	RVUC	assigned	to  , ,r b l .	1,	if	

( , , ) ( , , )r b l r b l edet det  ;	0,	otherwise.	

( , , ),( , , )
TRUC
r b l r b l eK  ：	

overlapping	of	  , ,r b l e generated	by	TRUC	assigned	to  , ,r b l .	1,	if	

( , , ) ( , , )r b l r b l edet det  ;	0,	otherwise.	

:iCW 	 1,	if	the thi container	is	RVUC;	0,	otherwise.	

( , , ) :i
r b ld 	 operation	distance	of	the	 thi 	container	

( , , ),( , , ) :ji
q a e r b lX 	 1,	if	the

thj container	assigned	immediately	begins	after	the	 thi 	container	assignment	
has	been	finished;	0,	otherwise.	

3.3 First stage optimization model 

In	the	first	stage,	RVUCs	and	TRUCs	are	assigned	to	optimal	container	slots	in	each	planning	pe‐
riod.	The	optimization	model	is	written	as	follows.	

1 1

( , , ),( , , ) ( , , ),( , , )
1 1 1

min [ (1 ) ]
N l l

RVUC TRUC
i r b l r b l e i r b l r b l e

i e e

CW K CW K
 

 
  

    																																						(1)	

( , , ) ( , , 1) 0, , ( , , ), ( , , 1)i
r b l r b l RV TR bS S i S S r b l r b l S         																																	(2)	
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1 1

( , , ) ( , , )
1 1

(1 ) 1 0, , ( , , ), ( , , )
l i

i n
r b l e r b l RV TR b

e n

S S i S S r b l r b l e S
 


 

            																				(3)	

1 12 2

( , , ) ( , , )
1 1 1

(1 ) (1 ) 0, ( , , )
R R

N N
i i

i r b l i r b l b
i r i r R

CW S CW S r b l S
 

   

        																							(4)	

1 12 2

( , , ) ( , , )
1 1 1

0, ( , , )
R R

N N
i i

i r b l i r b l b
i r i r R

CW S CWS r b l S
 

   

      																																(5)	

	
The	 objective	 function	 (Eq.	 1)	 is	 to	 minimize	 the	 total	 overlapping	 amount	 in	 considered	

block	at	one	planning	period.	The	first	part	is	the	overlapping	amount	caused	by	RVUCs,	and	the	
other	part	is	the	overlapping	amount	caused	by	TRUCs.	Constraint	(Eq.	2)	indicates	that	position	
upon	 empty	 container	 slot	 cannot	 be	 assigned.	 Constraint	 (Eq.	 3)	means	 that	 the	 subsequent	
operation	 container	 does	 not	 allow	 to	 be	 assigned	 below	 the	 previous	 operation	 containers.	
Constraint	 (Eq.	 4)	 is	 assignment	 preferences	 of	 TRUCs,	 which	 ensures	 assigning	 positions	 of	
TRUCs	 should	 be	 near	 to	 rail	 handling	 tracks	 in	 order	 to	 decrease	 loading	 time	 of	 container	
trains.	Constraint	(Eq.	5)	is	assignment	preferences	of	RVUCs,	which	ensures	assigning	positions	
of	RVUCs	should	be	near	to	truck	lane	for	reducing	loading	time	of	trucks.	

3.4 Second stage optimization model 

In	 the	 second	 stage,	 based	on	 container	 assignment	 sets	 obtained	 from	 the	 first	 stage,	RVUCs	
assigning	sequence	will	be	optimized	to	decrease	the	total	operation	distance	of	crane.	The	op‐
timization	model	is	written	as	follows.	

( , , ) ( , , )
1

min
N

i i
r b l r b l

i

S d

 																																																																									(6)	

( , , ) ( , , ),( , , )( ) ( ) , , , ( , , ), ( , , )i ji
r b l q a e r b l RV TR bd b i r b j r X i j S S r b l q a e S            														(7)	

( , , ),( , , )
1

1, , ( , , ), ( , , )
N

ji
q a e r b l RV TR b

j

X i S S r b l q a e S


        																																								(8)	

( , , ),( , , )
1

1, , ( , , ), ( , , )
N

ji
q a e r b l RV TR b

i

X j S S r b l q a e S


        																																								(9)	

( , , ) ( , , ) 0, , , ( , , ), ( , , )
( )( )

i j
r b l r b e

RV TR b

S S
i j S S r b l r b e S

i j l e


    

 
   																																					(10)	

	
The	objective	function	(Eq.	6)	is	to	minimize	RVUCs	operation	distance	in	considered	block	at	

one	planning	period.	Constraint	(Eq.	7)	represents	operation	distance	calculation	of	each	RVUCs.	
The	distance	includes	two	parts.	The	first	is	loaded	moving	distance	between	the	initial	and	final	
position	of	RVUC.	The	other	is	the	unloaded	moving	distance	from	the	final	position	of	one	oper‐
ation	to	the	initial	position	of	its	subsequent	operation.	Constraint	(Eq.	8)	and	constraint	(Eq.	9)	
are	assigning	sequence	constraints,	which	ensure	 that	each	RVUC	assigning	operation	at	most	
has	one	pre‐order	operation	and	one	 subsequent	operation.	Constraint	 (Eq.	10)	 indicates	 that	
the	assigned	RVUCs	must	be	operated	in	well‐defined	sequence.	

4. Solution algorithm 

For	solving	the	two‐stage	optimization	model	present	above,	a	rolling	horizon	implement	strate‐
gy	is	developed	in	this	section.	The	two‐stage	optimization	model	is	solved	in	each	planning	pe‐
riod	based	on	RVUCs	 and	TRUCs	 initial	 information	 at	 beginning	of	 each	planning	 epoch.	The	
implement	process	is	shown	in	Fig.	3.	
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Fig.	3	A	rolling	horizon	implement	process	

	

4.1 Iterative solution procedure for the first stage 

In	implement	process,	we	introduce	an	iterative	solution	procedure	for	the	first	stage	optimiza‐
tion	model	to	minimize	overlapping	amount	and	obtain	container	assignment	sets	at	one	plan‐
ning	period.	The	related	notations	are	described	in	Table	2.		

In	iterative	solution	procedure,	for	the	 thi container,	we	firstly	need	distinguish	the	container	
type.	 For	 TRUC,	 we	 search	 the	 optimal	 assigning	 positions	 from	 the	 row	 near	 the	 loading‐
unloading	track,	and	for	RVUC,	the	search	begins	at	the	row	near	the	truck	operation	lane.	After	
the	 iterative	 solution	 procedure,	 we	 can	 obtain	 container	 assignment	 set	 for	 the	 thi container.	
The	details	of	iterative	solution	procedure	are	shown	in	Table	3.	
	

Table	2	Notations	of	iterative	solution	procedure	

n :	 solution	index	

K :	 overlapping	amount	sets	

iF :	 feasible	assigning	set	of	the	 thi container	

iA :	 minimum	overlapping	amount	set	of	the	 thi container	which	belongs	to	RVUCs	

B 	 TRUCs	assignment	set	with	minimum	overlapping	amounts	

ssS 	 optimal	RVUCs	assignment	set	with	minimum	total	overlapping	amounts	
RVUC
iK 	 overlapping	amount	of	the	 thi container	belongs	to	RVUCs	
TRUC
iK 	 overlapping	amount	of	the	 thi container	belongs	to	TRUSs	
VU
nK 	 overlapping	amounts	generated	by	the	 thn feasible	solution	of	RVUCs	
RU
nK 	 overlapping	amounts	generated	by	the	 thn feasible	solution	of	TRUSs	

I 	 an	arbitrary	positive	big	number	
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Table	3	Iterative	solution	procedure	

Iterative	solution	procedure	

Step	1:	Parameter	initialization.	Set 1i  , 1r  , 1b  ,	K  ,
ssS  ,

iA  ,B  ,
iF  , RVUC

iK I , TRUC
iK I ,	go	

to	step	2.	
Step	2:	Distinguish	type	of	the thi container,	get

iF based	on	the	constraint	(2)	and	(3).	If	the
thi container	belongs	to	

TRUC,	go	to	step	3.	Otherwise,	let r R ,	then	go	to	step	6.	
Step	3:	If ( , , ) ir b l F  ,	go	to	step	4.	Otherwise,	assign	the	 thi container	to ( , , )r b l ,	calculate RU

nK ,	and	compare	with	

TRUC
iK .	If RU TRUC

n iK K ,	go	to	step	4.	Otherwise,	let	 TRUC RU
i nK K ,

( , , ){ }i
r b lB S ,	and	go	to	step	4.	

Step	4:	Let 1b b  .	Ifb B ,	go	to	step	3.	Otherwise,	let	 1r r  ,	then	go	to	step	5.	
Step	5:	If r R ,	go	to	Step	3.	Otherwise,	let	 { }TRUC

iK K K   ,
( , , ){ }i
r b lB B S   ,	then	go	to	step	10.	

Step	6:	If ( , , ) ir b l F  ,	go	to	step	7.	Otherwise,	assign	the	 thi container	to ( , , )r b l ,	calculate VU
nK ,	and	compare	with	

RVUC
vK .	If VU RVUC

n iK K ,	go	to	step	7.	Otherwise,	go	to	step	9.	

Step	7:	Let 1b b  .	If	 3 3i b i    ,	go	to	step	6.	Otherwise,	let 1r r  ,	then	go	to	step	8.	

Step	8:	If	 1r  ,	go	to	step	6.	Otherwise,	let	 { }RVUC
iK K K   ,

( , , ){ }i
i i r b lA A S   ,	then	go	to	step	10.	

Step	9:	If VU RVUC
n iK K ,	let

( , , ){ }i
i i r b lA A S   ,	then	go	to	step	7.	Otherwise,	let RVUC VU

i nK K , ( , , ){ }i
i r b lA S ,	and	go	to	

step	7.	
Step	10:	The thi container	assignment	is	finished.	Let 1r  , 1b  ,	 1i i  .	If	 i N ,	go	to	step	11,	otherwise,	go	to	step	
2.	

Step	11:	Procedure	terminates.	Obtain	overlapping	amount	of	the	period	p	based	onK ,	get ssS based	on	the	constraint	

(3)	and	the	mapping	relationship	of
iA .	

	

4.2 Genetic algorithm for the second stage 

Based	 on	 the	 optimal	 container	 assignment	 sets	 obtained	 from	 the	 first	 stage,	 a	 genetic	 algo‐
rithm	 is	developed	 for	optimizing	assigning	sequences	 to	minimize	 total	RVUCs	operation	dis‐
tance	at	one	planning	period.	Main	steps	of	genetic	algorithm	implementation	are	introduced	in	
the	following	subsections.	

Chromosome	representation	

Two‐dimensional	 encoding	 is	 employed	 for	 chromosome	 representation	 in	 this	 paper.	 Each	
chromosome	 represents	 a	 possible	 assigning	 sequence	 of	 RVUCs	 at	 one	 planning	 period,	 and	
includes	 genes	 are	 RVUCs	 amount	 in	 considered	 block	 at	 one	 planning	 period.	 Each	 gene	 in‐
cludes	five	parts,	which	are	RVUC	index,	row,	bay	and	layer	index	of	assignment	slot,	and	arrival	
period	of	RVUC.	The	sequence	of	gene	from	the	left	to	right	represents	the	assigning	sequence.	A	
sample	of	chromosome	representation	is	shown	in	Fig.	4.	In	the	sample,	there	are	6	RVUCs	to	be	
assigned,	gene1	represents	 the	5th	RVUC	arriving	at	 the	second	period	 is	assigned	to	 the	con‐
tainer	slot	(5,7,1),	and	the	whole	chromosome	means	the	six	RVUCs	are	assigned	according	to	
the	sequence	of	5‐(5,7,1)‐1‐(2,9,1)‐4‐(4,6,2)‐6‐(1,11,1)‐2‐(6,9,2)‐3‐(4,10,2).	

2 2 2 2 2 4

RVUC index

5 2 4 1 6 4

5 1 4 6 2 3

7 9 6 11 9 10

Row index of assignment slot

Bay index of assignment slot

Arrival period of RVUC

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6

1 1 2 1 2 2Layer index of assignmet slot

	
Fig.	4	A	Sample	of	chromosome	representation	
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Evaluation	of	fitness	value	

Some	of	chromosomes	generated	by	the	genetic	operators	do	not	violate	constraint	(10).	There‐
fore,	every	chromosome	must	be	verified	whether	its	corresponding	sequence	satisfies	the	con‐
straint.	If	it	satisfies	constraints	(10),	calculate	the	chromosome	fitness	value	based	on	Eq.	(11).	
Otherwise,	set	its	fitness	value	to	zero.	

( , , ) ( , , )
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1
N

i i
r b l r b l

i
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lue






																																																											(11)	

Genetic	operators	design	

In	the	developed	GA,	initial	generation	is	randomly	generated,	and	tournament	selection	is	em‐
ployed	as	selection	operator.	

 Crossover	operator	
Based	on	constraints	(Eq.	8)	to	(Eq.	10),	the	values	of	RVUC	index	cannot	to	be	lost	and	re‐
peated	in	offspring,	so	the	order	crossover	operator	is	employed	in	this	paper.	The	crosso‐
ver	operator	works	as	follows,	and	a	sample	of	crossover	operating	is	shown	in	Fig.	5.	
Setp1:	Randomly	select	a	substring	from	each	parent.	
Step2:	Copy	the	selected	substring	into	the	front	of	other	parent	to	produce	a	proto‐child.	
Step3:	Scan	the	first	layer	of	proto‐child	from	left	to	right,	and	delete	repeated	gene	values	
behind	the	substring.	An	offspring	is	produced.	

	
Fig.	5	A	sample	of	crossover	operating	

	
 Mutation	operator	

To	avoid	losing	and	repeating	of	RVUC	index	in	offspring,	we	use	the	inversion	mutation	
operator,	 which	 firstly	 chooses	 two	mutation	 points	 randomly,	 then	 inverts	 two	 points	
genes.	A	sample	is	shown	in	Fig.	6.	

	
Fig.	6	A	sample	of	mutation	operating	
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5. Computational experiments: Results and discussion 

To	illustrate	the	approach	proposed	above,	computational	experiments	are	conducted	by	using	
the	data	from	a	rail‐road	transshipment	terminal	in	China.	For	evaluating	efficiency	of	the	pro‐
posed	approach,	some	comparisons	are	made.	All	experiments	are	implemented	based	on	a	per‐
sonal	computer	with	Intel	Core(TM)	i5‐2450M	@	2.50GHz	processors	and	4	GB	RAM.	

Parameters	 related	 to	 the	 rail‐road	 transshipment	 terminal	 are	 introduced	 as	 follows.	 The	
container	 yard	of	 terminal	has	 four	blocks.	Each	block	 includes	20	bays,	6	 rows	and	2	 layers.	
Most	of	RVUCs	and	TRUCs	are	handled	no	more	than	two	days	after	they	assigned	to	blocks,	so	
we	set	two	days	as	a	planning	horizon,	one	day	as	a	planning	epoch	and	six	hours	as	a	planning	
period.	Therefore,	each	planning	horizon	has	two	planning	epochs	or	eight	planning	periods.	

Firstly,	we	choose	a	planning	epoch	to	 implement	 the	proposed	approach.	The	 initial	 infor‐
mation	of	RVUCs	and	TRUCs	in	considered	block	at	one	planning	epoch	is	shown	in	Table	4.	

Based	on	the	initial	information	in	Table	4,	the	iterative	solution	procedure	for	the	first	stage	
is	conduct	to	obtain	RVUCs	and	TRUCs	assignment	sets	with	minimum	overlapping	amount.	For	
evaluating	 improvement	of	 the	proposed	approach	 (PA),	we	make	a	comparison	with	random	
search	algorithm	(RSA)	which	 is	used	 in	 rail‐road	 transshipment	 terminals.	Computational	 re‐
sults	of	the	first	stage	are	shown	in	Table	5.	

	
Table	4	Initial	information	at	one	planning	epoch	

Planning	period	1	 Planning	period	2	 Planning	period	3	 Planning	period	4	

No.	 T	 At	 Dt	 No.	 T	 At Dt No. T At Dt No.	 T	 At	 Dt
1	 I	 2	 34 1	 I	 6 38 1 II 13 26 1	 II	 18	 72
2	 I	 2	 19 2	 I	 6 32 2 II 13 26 2	 II	 18	 72
3	 I	 2	 17 3	 I	 6 20 3 II 15 26 3	 II	 20	 48
4	 I	 2	 32 4	 I	 6 32 4 II 15 48 4	 II	 20	 72
5	 I	 2	 38 5	 I	 6 40 5 II 17 72 5	 I	 21	 55
6	 I	 2	 32 6	 I	 6 40 6 I 17 34 6	 I	 21	 55
7	 I	 2	 34 7	 I	 6 40 7 I 17 56 7	 I	 21	 64
8	 I	 2	 32 8	 I	 6 38 8 I 17 37 8	 I	 21	 45
9	 I	 2	 38 9	 I	 6 32 9 I 17 37 9	 I	 21	 58
10	 I	 2	 20 10	 II	 7 26 10 I 17 38 10	 I	 21	 40
11	 I	 2	 20 11	 II	 7 26 11 I 17 32 11	 I	 21	 67
12	 I	 2	 35 12	 II	 9 26 12 I 17 32 12	 I	 21	 62
13	 I	 2	 22 13	 II	 9 48 13 I 17 44 13	 I	 21	 38
14	 I	 2	 38 14	 II	 9 48 14 I 17 36 14	 I	 21	 38
15	 I	 2	 56 15	 II	 10 48 15 I 17 36 15	 I	 21	 62
16	 I	 2	 15 16	 II	 10 48 16 I 17 36 16	 I	 21	 59
17	 I	 2	 34 17	 II	 10 48 17 I 17 40 17	 II	 22	 48
18	 I	 2	 38 18	 II	 10 48 18 I 17 40 18	 II	 22	 48
19	 I	 2	 63 ‐	 ‐	 ‐ ‐ 19 I 17 34 19	 II	 23	 48
20	 I	 2	 20 ‐	 ‐	 ‐ ‐ 20 II 18 48 20	 II	 23	 72
21	 I	 2	 36 ‐	 ‐	 ‐ ‐ 21 II 18 72 21	 II	 23	 72
22	 II	 4	 26 ‐	 ‐	 ‐ ‐ 22 II 18 72 ‐	 ‐	 ‐	 ‐
23	 II	 6	 26 ‐	 ‐	 ‐ ‐ ‐ ‐ ‐ ‐ ‐	 ‐	 ‐	 ‐
24	 II	 6	 48 ‐	 ‐	 ‐ ‐ ‐ ‐ ‐ ‐ ‐	 ‐	 ‐	 ‐

Notes:	T	denotes	Type	(I－RVUC,	II—TRUC);	At	denotes	the	arrival	period	of	containers	in	a	planning	horizon;	Dt	denotes	the	depar‐
ture	period	of	containers	in	a	planning	horizon.	

Table	5	Comparison	between	PA	and	RSA	in	the	first	stage	at	one	planning	epoch	

Planning	period	 Overlapping	amount	(PA)	 Overlapping	amount	(RSA) GAP1	
1	 4 9 55.6	%	
2	 2 5 60.0	%	
3	 3 7 57.1	%	
4	 2 4 50.0	%	

Total	amount	 11 25 56.0	%	
Notes:	GAP1=	(overlapping	amount	obtained	by	RSA	‐	overlapping	amount	obtained	by	PA)	·	100/	overlapping	amount	obtained	by	
RSA.	
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As	observed	in	Table	5,	the	overlapping	amount	has	been	decreased	in	each	planning	period.	
Based	on	RVUCs	assignment	 sets	obtained	by	 the	 first	 stage,	 genetic	 algorithm	 for	 the	 second	
stage	 is	conducted	to	optimize	assigning	sequence.	For	50	 independent	runs,	 the	average	time	
consumption	of	each	planning	period	is	2.3	min,	the	average	time	consumption	of	each	planning	
epoch	is	11.7	min,	which	can	meet	requirement	of	practical	operations	in	rail–truck	transship‐
ment	terminals.	In	order	to	evaluate	our	approach,	we	compare	the	operation	distance	obtained	
by	our	approach	with	average	operation	distance	of	RVUC	assignment	sets	(AOD).	The	computa‐
tional	results	of	the	second	stage	are	shown	in	Table	6.	

As	shown	in	Table	6,	operation	distance	has	been	reduced	by	optimizing	assigning	sequence	
at	each	planning	period.	The	decrease	of	operation	distance	can	directly	improve	container	as‐
signment	 efficiency.	 For	 further	 evaluating	 performance	 of	 the	 proposed	 approach,	 computa‐
tional	experiments	on	30	days	are	implemented.	The	experimental	results	are	shown	in	Fig.	7.	
	

Table	6	Comparison	between	PA	and	AOD	in	the	second	stage	at	one	planning	epoch	

Planning	period	 Operation	distance	(PA)	(m)	 Operation	distance	(AOD)	(m)	 GAP2	

1	 836.4	 875.5 4.5 %
2	 340.6	 356.5 4.5 %
3	 597	 622 4.0 %
4	 476.4	 507.5 6.1 %

Total	amount	 2250.4	 2361.5 4.7 %
Notes:	GAP2=	(operation	distance	obtained	by	AOD	‐	operation	distance	obtained	by	PA)	•	100/	operation	distance	obtained	by	AOD.	

 

 
(a) 

 
(b) 

 
(c) 

Fig.	7	Overlapping	amount	in	30	days:	(a)	overlapping	amount	comparison	between	PA	and	RSA	in	30	days;	
(b)	GAP1	in	30	days;	(c)	GAP2	in	30	days	
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As observed in Fig. 7(a) and (b), the overlapping amount caused by RVUCs and TRUCs as-
signed are prominently reduced at each period of 30 days, and average of GAP1 is 44.8 %. Almost 
half of container re-handling operations have been eliminated by optimizing assignment of 
RVUCs and TRUCs. On the basis of minimum overlapping amount, RVUC assignment sequences 
are optimized to minimize the operation distance at each period, and the average of GAP2 is 4.1 
% shown in Fig. 7(c). The decreases of overlapping amount and operation distance can directly 
improve container loading-unloading operation and cranes utilization efficiency. The experi-
mental results of different size planning periods indicate that the proposed approach is effective 
and efficient for container assignment in rail-road transshipment terminals. 

6. Conclusion 
In this paper, container assignment problem of rail-road transshipment terminals was consid-
ered and formulated as a two-stage optimization model. The first stage was to optimize assign-
ment positions to minimize overlapping amount, and the second stage was to optimize assigning 
sequence to minimize the operation distance. For solving the model, an iterative solution proce-
dure was proposed to minimize overlapping amount in the first stage, and a genetic algorithm 
was developed to minimize operation distance in the second stage. Computational experiments 
were conducted by using real-life data, and results showed that our approach could reduce over-
lapping amount and operation distance while containers assigning, and remarkably improve 
efficiency of containers storage allocation. 

The proposed approach cannot be directly used to optimize other container logistics system, 
etc. water-rail and water-road transshipment system. Because each system has its specific con-
tainer assignment rules, optimization problem has different constraints. These logistics process-
es optimization can draw on our problem solving procedure, and proposed similar approach 
based on these characteristics. Our approach can serve as an important reference for container 
assignment problem. 

In future, considering the uncertainty of container arrival-departure time which caused by 
the delay of trains and trucks, to propose the automatic container assignment optimization 
model under uncertainty is a possibility for further research. 
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