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Recently, first results have become available from lattice quantum chromodynam-
ics (QCD) for two of the nucleon excitations, namely, the negative-parityN∗(1535)
and N∗(1650) resonances [1]. The axial charge of the nucleon ground state had
been studied before by different lattice-QCDgroups in quenched calculations and
with dynamical quarks [2–7]. In some of these works one has used chiral extrap-
olations (for a recent discussion of the associated problems see Ref. [8]), and the
bulk of results obtained for gA of the nucleon varies between about 1.10 ∼ 1.40.

Lately, the issue of axial constants of N∗ resonances has become debated a
lot due to the suggestion of chiral-symmetry restoration in the higher hadron
spectra [9,10]. According to this scenario there should appear chiral doublets
of positive- and negative-parity states and as a further consequence their axial
charges should became small or almost vanishing. The first parity partners above
the nucleon ground state are supposed to be the N∗(1440)−N∗(1535), the next
ones the N∗(1710)−N∗(1650). The axial charges of the negative-parity partners
in these pairs have been calculated in lattice QCD to be ∼0.00 and ∼0.55, respec-
tively [1]; for the positive-parity states no results are yet available.

We have performed a study of the axial charges of N∗ resonances in the
framework of the relativistic constituent quark model (RCQM). Specifically we
have extended a previous investigation of the nucleon axial form factors [11,12]

to the first JP = 1
2

±
nucleon excitations. Our approach relies on solving the eigen-

value problem of the Poincaré-invariant mass operator in the framework of rela-
tivistic quantummechanics. The axial current operator is chosen according to the
spectator model (SM) [13]. For the RCQM we employed in the first instance the
extended Goldstone-boson exchange (EGBE) RCQM [14], as it produces the most
elaborate nucleon and N∗ wave functions.

In Table 1 we present a selection of results for the axial charges gA of the
nucleon and the N∗(1440),N∗(1710),N∗(1535), as well as N∗(1650) resonances in
case of the EGBE RCQM. It is immediately evident that the EGBE RCQM pro-
duces reasonable values for the axial charges in all instances without any further
fittings. In the cases where a comparison is possible it produces the same pattern
as lattice QCD. The gA of the nucleon and ofN∗(1440) are practically of the same
size, with the theoretical result for the nucleon being quite close to the experi-
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mental value of gA=1.2695±0.0029 [15]. The nonrelativistic calculations cannot
produce this value, neither in the simplistic SU(6)×O(3) quark model nor in the
nonrelativistic limit of the RCQM. For the negative-parityN∗(1535) resonance the
gA is predicted to be compatible with 0, while for the negative-parity N∗(1650)
resonance it is 0.51; both cases agree with the lattice-QCD results of Ref. [1]. Acci-
dentally, the gA value of the nonrelativistic SU(6) ×O(3) quark model is similar
in the N∗(1650) case but the nonrelativistic limit of the EGBE RCQM shows devi-
ations for both of the 1

2

−
resonances. At this time nothing is known from lattice

QCD for the 1
2

+
resonances. For the latter, it would also be most interesting to

check our results against lattice QCD, and we look forward to corresponding cal-
culations.

Table 1. Predictions for axial charges gA of the EGBE in comparison to available lattice

QCD results [1-7], the values calculated by Glozman and Nefediev [9] within the SU(6) ×
O(3) nonrelativistic quark model, and the nonrelativistic limit from the EGBE RCQM.

State JP EGBE Lattice QCD SU(6) ×O(3) QM EGBE nonrel

N(939) 1
2

+
1.15 1.10∼1.40 1.66 1.65

N(1440) 1
2

+
1.16 – 1.66 1.61

N(1535) 1
2

−
0.02 ∼0.00 -0.11 -0.20

N(1710) 1
2

+
0.35 – 0.33 0.42

N(1650) 1
2

−
0.51 ∼0.55 0.55 0.64

It is particularly satisfying to find the RCQMpredictions for the axial charges
of the N∗(1535) and N∗(1650) resonances in agreement with the lattice-QCD re-
sults. We may thus be confident that at least for zero momentum-transfer pro-
cesses the mass eigenstates of these nucleon excitations as produced especially
with EGBE RCQM are quite reasonable. The latter is supposed to model the SBχS
property of low-energy QCD. This type of hyperfine interaction, which also intro-
duces an explicit flavor dependence, has been remarkably successful in describ-
ing a number of phenomena in low-energy baryon physics. Most prominently, it
produces the correct level orderings of the positive- and negative-parity N∗ res-
onances and simultaneously the ones in the other hyperon spectra, notably the
Λ spectrum. The RCQM with GBE dynamics does not have any mechanism for
chiral-symmetry restoration built in. As such it cannot be expected to produce
parity doublets due to this reason. Nevertheless the EGBE RCQM describes the
N∗ resonance masses with good accuracy (mostly within the experimental error
bars or at most exceeding them by 4%).
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Abstract. Three-quark nucleon interpolating fields in QCD have well-defined,UA(1) and

SUL(2) × SUR(2) chiral transformation properties: mixing of the [(1, 1
2
) ⊕ ( 1

2
, 1)] chiral

multiplet with one (of four available) [( 1
2
, 0) ⊕ (0, 1

2
)], or [(0, 1

2
) ⊕ ( 1

2
, 0)] fields can be

used to fit the isovector axial coupling g
(1)

A and thus predict the isoscalar axial coupling

g
(0)

A of the nucleon, in reasonable agreement with experiment. We also use a chiral meson-

baryon interaction to calculate themasses and one-pion-interaction terms of J = 1
2
baryons

belonging to the [(0, 1
2
) ⊕ ( 1

2
, 0)] and [(1, 1

2
) ⊕ ( 1

2
, 1)] chiral multiplets and fit two of the

diagonalized masses to the lowest-lying nucleon resonances thus predicting the third J =
1
2
resonance at 2030 MeV, not far from the (one-star PDG) state ∆(2150).

1 Introduction

Almost 40 years ago Weinberg [1] considered mixing of chiral multiplets in the
broken symmetry phase. In general such representation mixing may be compli-
cated, but if only a few states are mixed, it may have predictive power. For in-
stance, Weinberg used the mixing of [(1

2
, 0)⊕ (0, 1

2
)] and [(1, 1

2
)⊕ (1

2
, 1)] to explain

the nucleon’s isovector axial coupling constant g
(1)

A = 1.23, its value at the time
(the present value being 1.267). Weinberg’s idea predated QCD and did not even
invoke the existence of quarks, but it may still be viable in QCD. Indeed, this idea
was revived in the early 1990’s, since when it has been known by the name of
mended symmetry [2].

The nucleon also has an isoscalar axial coupling g
(0)

A , which has been esti-

mated from spin-polarized lepton-nucleon DIS data as g
(0)

A = 0.28 ± 0.16 [3], or
the more recent value 0.33 ± 0.03 ± 0.05 [4]. The question is if the same chiral
mixing angle can also explain the anomalously low value of this coupling? The
answer manifestly depends on the UA(1) chiral transformation properties of the
two admixed nucleon fields.

⋆ Talk delivered by V. Dmitrašinović
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In this paper we address this question using the UA(1) chiral transformation
properties of nucleon fields [6,7] as derived from the three-quark nucleon inter-
polating fields in QCD. If the answer to our question turns out in the positive,
we may speak about Weinberg’s idea being viable in QCD. To test the present
idea, besides the phenomenological study, we also investigate an extended linear
sigma model containing baryon resonances, where we evaluate the axial cou-
plings using baryon masses as input.

2 Three-quark nucleon interpolating fields

We start by summarizing the transformation properties of various quark trilinear
forms with quantum numbers of the nucleon as shown in Refs. [6,7]. It turns
out that every nucleon, i.e., spin- and isospin 1/2 field, besides having same non-
Abelian transformation properties, comes in two varieties: one with “mirror” and
another with “triple-naive” Abelian chiral properties.

In Table 1 we show the Abelian and non-Abelian chiral properties of the
nucleon interpolating fields in QCD, Ref. [6,7]. Here we shall use those results as
the theoretical input into our calculations. This constitutes aminimal assumption,
as one has no other guide to the chiral representations of the nucleon. In Refs. [5–
7] the local (non-derivative) spin 1

2
baryon operators

N1 = ǫabc(q̃aqb)qc, (1)

N2 = ǫabc(q̃aγ
5qb)γ5qc, (2)

were classified according to their Lorentz, chiral SUL(2)×SUR(2) (so-called “nai-
ve” chiral multiplet, whose axial charge is positive) and UA(1) group represen-
tations. Here we have introduced the “tilde-transposed” quark field q̃ as q̃ =

qTCγ5(iτ2), where C = iγ2γ0 is the Dirac field charge conjugation operator, τ2 is
the second isospin Pauli matrix. Once one allows for the presence of one deriva-
tive, such as the so-called “mirror” (0, 1

2
)⊕ (1

2
, 0), whose axial charge is negative,

Ref.[8],

N′
1 = ǫabc(q̃aqb)i∂µγ

µqc, (3)

N′
2 = ǫabc(q̃aγ

5qb)i∂µγ
µγ5qc. (4)

and the (1, 1
2
) ⊕ (1

2
, 1) nucleon chiral representation

N′
3 = i∂µ(q̃γνq)Γ

µν
3/2
γ5q, (5)

N′
4 = i∂µ(q̃γνγ5τ

iq)Γ
µν

3/2
τiq, (6)

also become Pauli allowed, see Table 1. Here Γµν

3/2
= gµν − 1

4
γµγν. We found

that indeed, as Gell-Mann and Levy [9] had postulated, the lowest-twist (non-
derivative) J= 1

2
nucleon field(s) form a (1

2
, 0) chiral multiplet, albeit there are

two such independent fields. There is only one set of J= 1
2
Pauli-allowed sub-

leading-twist (one-derivative) interpolating fields that form a (1, 1
2
) chiral multi-

plet, however.
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Table 1. The Abelian and the non-Abelian axial charges (+ sign indicates “naive”, −

sign “mirror” transformation properties) and the non-Abelian chiral mutiplets of JP =
1
2
, Lorentz representation ( 1

2
, 0) nucleon fields. The field denoted by 0 belongs to the

(1, 1
2
) ⊕ ( 1

2
, 1) chiral multiplet and is the basic nucleon field that is mixed with various

( 1
2
, 0) nucleon fields in Eq. (7).

case field g
(0)

A g
(1)

A SUL(2) × SUR(2)

I N1 −N2 −1 +1 ( 1
2
, 0) ⊕ (0, 1

2
)

II N1 +N2 +3 +1 ( 1
2
, 0) ⊕ (0, 1

2
)

III N
′

1 −N
′

2 +1 −1 (0, 1
2
) ⊕ ( 1

2
, 0)

IV N
′

1 +N
′

2 −3 −1 (0, 1
2
) ⊕ ( 1

2
, 0)

0 N
′

3 + 1
3
N

′

4 +1 + 5
3

(1, 1
2
) ⊕ ( 1

2
, 1)

3 Mixing of two chiral representations

Next consider the mixing of one of the fundamental chiral representations, as
shown in Table 1 and the “higher” representation (1, 1

2
) for the nucleon,

g
(1)

A mix. = g
(1)

A, α cos2 θ + g
(1)

A (1, 1
2

)
sin2 θ,

= g
(1)

A, α cos2 θ +
5

3
sin2 θ = 1.267. (7)

Here the suffixα corresponds to one of I-IV and the corresponding values of g
(1)

A, α

are given in Table 1. We have also used the fact that g
(1)

A (1, 1
2

)
= 5

3
, see Ref. [1,7].

This provides a possible solution to the nucleon’s axial coupling problem in
QCD. Three-quark nucleon interpolating fields in QCD have well-defined two-
fold UA(1) chiral transformation properties, see Table 1, that can be used to (nai-

vely) predict the isoscalar axial coupling g
(0)

A mix. as follows

g
(0)

A mix. = g
(0)

A, α cos2 θ+ g
(0)

A (1, 1
2

)
sin2 θ, (8)

together with the mixing angle θ extracted from Eq. (7). Note, however, that due

to the different (bare) non-Abelian g
(1)

A andAbelian g
(0)

A axial couplings, see Table
1, the mixing formulae Eq. (8) give substantially different predictions from one
case to another, see Table 2. We can see in Table 2 that the two candidates are
cases I and IV, with g

(0)

A = −0.2 and g
(0)

A = 0.4, respectively, the latter being

within 1-σ of the measured value g
(0)

A = 0.33 ± 0.08. The nucleon field in case I
is the well-known “Ioffe current”, which reproduces the nucleon’s properties in
QCD lattice and sum rules calculations. The nucleon field in case IV is a “mirror”
opposite of the orthogonal complement to the Ioffe current, an interpolating field
that, to our knowledge, has not been used in QCD thus far.

3.1 A SimpleModel

The next step is to try and reproduce this phenomenological mixing starting from
a model interaction, rather than per fiat. As the first step in that direction we
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Table 2. The values of the baryon isoscalar axial coupling constant predicted from the

naive mixing and g
(1)

A expt. = 1.267; compare with g
(0)

A expt. = 0.33 ± 0.03 ± 0.05.

case (g
(1)

A ,g
(0)

A ) g
(1)

A mix. θ g
(0)

A mix. g
(0)

A mix.

I (+1,−1) 1
3
(4 − cos 2θ) ±39.3o − cos 2θ -0.20

II (+1,+3) 1
3
(4 − cos 2θ) ±39.3o 2 + cos 2θ 2.20

III (−1,+1) 1
3
(1 − 4 cos 2θ) ±67.2o 1 1.00

IV (−1,−3) 1
3
(1 − 4 cos 2θ) ±67.2o −(1 + 2 cos 2θ) 0.40

must look for a dynamical source of mixing. One such mechanism is the sim-
plest chirally symmetric non-derivative one-(σ, π)-meson interaction Lagrangian,
which induces baryon masses via its σ-meson coupling. We shall show that only
the mirror fields couple to the (1, 1

2
) baryon chiral multiplet by non-derivative

terms; the naive ones require one (or odd number of) derivative. This is interest-
ing, as we have already pointed out that the mixing case IV seems a preferable
one from the phenomenological consideration of axial couplings.

We use the projection method of Ref. [10] to construct the chirally invariant
diagonal and off-diagonalmeson-baryon-baryon interactions involving the “mir-
ror” baryon B1 ∈ (0, 1

2
), the (B2, ∆) ∈ (1, 1

2
) baryon and one (σ, π) ∈ (1

2
, 1

2
) meson

chiral multiplets. Here all baryons have spin 1/2, while the isospin of B1 andB2 is
1/2 and that of ∆ is 3/2. The ∆ field is then represented by an isovector-isospinor
field ∆i, (i = 1, 2, 3). We found that for non-derivative mixing interaction the
following chirally invariant combination

L3 = −g3

[
B̄1(σ+

i

3
γ5τ · π)B2 + 4B̄1iγ5π

i∆i + h.c.

]
, (9)

with the coupling constant g3 induces an off-diagonal term in the baryon mass
matrix after spontaneous symmetry breaking 〈σ〉0 → fπ via its σ-meson coupling.
Of course this is in addition to the conventional diagonal interactions:

L1 = −g1B̄1 (σ− iγ5τ · π)B1, (10)

L2 = −
2

3
g2

[
B̄2(σ+

5

3
iγ5τ · π)B2 − 2∆̄i(σ+ iγ5τ · π)∆i

−
1√
3
B̄2τ

i(σ+ iγ5τ · π)∆i + h.c.
]
, (11)

In writing down the Lagrangians (9,10,11), we have implicitly assumed that the
parities of B1, B2 and ∆ are the same. In principle, their parities are arbitrary, ex-
cept for the parity of the ground state nucleon, which must be even. For instance,
if B2 has odd parity, the first term in the interaction Lagrangian Eq. (9) must in-
clude another γ5 matrix. Here we consider all possible cases for the parities of B2

and ∆.

Having established the mixing interaction Eq. (9), as well as the diagonal
terms Eqs. (10),(11), we calculate the masses of the baryon states, as functions
of the pion decay constant/chiral order parameter and (as yet undetermined)
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Born approximation coupling constants. We diagonalize the mass matrix and ex-
press the mixing angle in terms of diagonalized masses. We find the following
double-angle formulas for the mixing angles θ1,...,4, in the four different parities
scenarios

tan 2θ1 =

√
(2N + ∆)(2N∗− − ∆)

(∆−N +N∗−)
, (12)

tan 2θ2 =

√
(∆− 2N)(2N∗+ − ∆)

(N +N∗+ − ∆)
(13)

tan 2θ3 =

√
(2N − ∆)(2N∗− + ∆)

(∆−N +N∗−)
, (14)

tan 2θ4 =

√
−(∆+ 2N)(2N∗+ + ∆)

(N+N∗+ + ∆)
, (15)

where N is the nucleon ground state mass (940 MeV) and N∗±, ∆ are the masses
of the nucleon excited state, where ± indicates the parity of the N∗ state. These
angles correspond to the two (variable) parities as follows θ1 ↔ (N∗−, ∆+), θ2 ↔
(N∗+, ∆−), θ3 ↔ (N∗−, ∆−), θ4 ↔ (N∗+, ∆+), where ± indicates the parity of
the state. Note that the angle θ4 is necessarily imaginary so long as the ∆,N∗

masses are physical (positive), and that the reality of the mixing angle(s) imposes
stringent limits on the ∆,N∗ resonance masses in other three cases, as well. Next,
we use (some of) the observed resonancemasses to determine the mixing angle(s)
and thence calculate the axial couplings.

3.2 Results

Direct prediction

The four lowest-lying (besides the N(940)) candidate states in the PDG ta-
bles are: R(1440), N(1535), ∆(1620), ∆(1910), we use them to fit the free coupling
constants. Of the two “mass allowed” scenarios, however, none survive the ax-
ial coupling test. Perhaps our choice of input resonances is inadequate. Note that
one may “invert” this procedure, however, and use the isovector axial coupling
to predict one of the baryon masses, say the ∆’s, having fixed the other two, in
this case the nucleon’s N(940) and N∗(1440) or N∗(1535).

Inverse prediction

Next, we use the double-angle formulas Eqs. (12)-(15) for the mixing angles
θ1,...,4 together with the two observed nucleon masses to predict the ∆ masses
shown in the Table 3. We see that only the (N∗+, ∆−) parity case leads to a real-
istic prediction: The difference between the observed (one-star) S31(2150) [11] ∆
resonance mass and the predicted 2030 MeV may be neglected in view of the un-
certainties and typical widths of states at such (high) energies. We shall not attach
undue significance to this proximity in view of the rather uncertain status of this
resonance, at least not until it is confirmed by another experiment. This choice of
resonances leads to a reasonable πNN coupling constant (14.2 vs. 13.6 expt.) and
predicts a set of as yet not measured π-baryon couplings.
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Table 3. The values of the ∆ baryon masses predicted from the isovector axial coupling

g
(1)

A mix. = g
(1)

A expt. = 1.267 and g
(0)

A mix. = 0.4 vs. g
(0)

A expt. = 0.33 ± 0.08.

(N∗P , ∆P
′

) (N, N∗) ∆ (MeV) expt.

(−,+) N(940), R(1535) 2330 1910

(+,−) N(940), R(1440) 2030,2730 1620,2150

(−,−) N(940), R(1535) 1140 1620,2150

A comment about the comparatively high value of the ∆ mass seems to be
in order now: In the mid-1960-s Hara [12] noticed that the chiral transformation
rules for a (1, 1

2
) multiplet impose a strict and seemingly improbable mass rela-

tion among its two members: m∆ = 2mN. The mixing with the (1
2
, 0) multiplet

modifies this mass relation for the worse, i.e. it makes the ∆ even heavier. For this
reason, the lowest-lying ∆’s of either parity cannot be the chiral partners of the
nucleon ground state, as we initially assumed in our “direct prediction”.

4 Three-field mixing

A linear superposition of yet another field (except for the mixture of cases II and
III above) ought to give a perfect fit to both experimental values. Such an admix-
ture introduces new free parameters (besides the two already introduced mixing
angles, e.g. θ1 and θ4, we have the relative/mutual mixing angle θ14, as the two
nucleon fields I and IV may also mix). One may subsume/redefine the sum and
the difference of the two angles θ1 and θ4 into the new angle θ, whereas one may
define θ14

.
= ϕ (this relationship depends on the precise definition of the mixing

angles θ1, θ4 and θ14); thus we find two equations with two unknowns of the
general form:

5

3
sin2θ+ cos2θ

(
g

(1)

A cos2ϕ+ g
(1)′

A sin2ϕ
)

= 1.267 (16)

sin2θ + cos2θ
(
g

(0)

A cos2ϕ+ g
(0)′

A sin2ϕ
)

= 0.33 (17)

The values of the mixing angles obtained from this simple fit to the two baryon
axial coupling constants are shown in Table 4. This, however, is not just a mere fit:
when extending to the SUL(3)× SUR(3) symmetry, chiral transformation proper-
ties of the nucleon fields differ:N1−N2 ∈ [(3̄, 3)⊕(3, 3̄)],N1+N2 ∈ [(8, 1)⊕(1, 8)]

and (N
′

3 + 1
3
N

′

4) ∈ [(6, 3)⊕ (3, 6)], see Ref. [13]. From these chiral SUL(3)×SUR(3)

symmetry assignment we can also predict the F andD couplings (un-corrected for
the explicit SUF(3) symmetry breaking) in Table 4, which can be compared with
the experimental numbers. We have not calculated the SUF(3) symmetry break-
ing corrections, as yet, so we have not taken into account the “error bars” on the
mixing angle(s), which remains a task for the future. At any rate, it should be
clear that the predicted values are “in the right ball park” for most of the scenar-
ios considered here. Thus, the chiral multiplet mixing remains a viable theoretical
scenario for the explanation of the nucleon isoscalar axial couplings.
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Table 4. The values of the mixing angles obtained from the fit to the baryon axial coupling

constants and the predicted values of axial F and D couplings. Experimental values have

evolved from F=0.459 ± 0.008 and D=0.798 ± 0.008 in Ref. [14] to F=0.477 ± 0.001 and

D=0.835 ± 0.001 in Ref. [15]. Note that the new values are more than 2-σ away from the

old ones, and that the new F,D add up to F+D = 1.312 6= 1.269 ± 0.002.

case g
(0)

A expt. g
(1)

A expt. θ ϕ F D

I-II 1.267 0.33 39.3o 26.6o 0.399 0.868

I-III 1.267 0.33 49.6o 23.9o 0.333 0.934

I-IV 1.267 0.33 63.2o 53.9o 0.399 0.868

5 Summary and Discussion

We have shown that one can reproduce, within 1-σ uncertainty, the (unexpect-
edly small) isoscalar axial coupling of the nucleon by mixing (only) two (out of
five independent) nucleon interpolating fields 1 by fitting the isovector- axial cou-
pling. This solution to the nucleon spin problem does not invoke exotica such as
a) hidden strangeness; or b) polarized gluon components in the nucleon wave
function, in agreement with recent results of the COMPASS experiment [16],[17].
This scenario is quantitatively reproduced in a simple dynamical model which
then predicts the existence of the S31 resonance at 2160 MeV, in agreement with
the PDG tables [11]. By mixing three nucleon interpolating field chiral multiplets
one may simultaneously fit both the isovector and the isoscalar axial couplings
and predict the SU(3) F and D couplings, which have the correct size within the
expected O(20%) SU(3) symmetry breaking corrections.
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