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Abstract

Digraphs are considered by means of eigenvalues of the matrix AAT , and similarly
ATA, where A is the adjacency matrix of a digraph. The common spectrum of these
matrices is called non-negative spectrum orN -spectrum of a digraph. Several properties of
the N -spectrum are proved. The notion of cospectrality is generalized, and some examples
of cospectral (multi)(di)graphs are constructed.
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1 Introduction
Spectral (di)graph theory means usage of linear algebra tools and techniques in the study
of (di)graphs. It is a very well developed mathematical field (see [8] or [6]) with many
applications (see, for example, [2] and [15]).

For any (di)graph matrix M , one can build a spectral (di)graph subtheory, and then
be able to study (di)graphs by means of eigenvalues of the matrix M . We will denote
these eigenvalues M -eigenvalues. In general case, in order to avoid confusion, to any
notion in the corresponding subtheory a prefix ’M ’ should be added. Frequently used
graph matrices are the adjacency matrix A, the Laplacian L = D − A and the signless
Laplacian Q = D + A, where D is a diagonal matrix of vertex degrees. The spectral
(di)graph theory then consolidates all these particular subtheories together with interaction
tools.

In this paper, digraphs are considered by means of eigenvalues of the matrix AAT ,
and similarly ATA, where A is the adjacency matrix of a digraph. The common spectrum
of these matrices is denoted N -spectrum and called non-negative spectrum of a digraph.
According to [5], the N -spectrum of a digraph was not considered in the mathematical
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literature so far. Since the matrices AAT and ATA appear in applications (see, for exam-
ple, [11] and [12]), we believe that introduced notion and presented results could be useful
to mathematicians and informaticians. Namely, N -spectrum can facilitate the examina-
tion of digraphs since frequently used adjacency matrix of a digraph is not symmetric in
general case, and therefore its spectrum consists of complex numbers. It is well known
that digraphs serve as models for different processes and phenomena in computer sciences,
where some spectrally based techniques are used in investigations. By this approach some
new conclusions and comparisons of existing results could be made.

The paper is organized as follows:
In Section 2 basic digraph terminology is given and some elementary facts related to

the matricesAAT andATA and their spectrum are pointed out. Since this paper represents
the first mathematical paper on the N -spectrum, elementary observations useful for further
work are presented in Section 3. In Section 4 the effect of certain digraph operations and
transformations on the N -spectrum is studied. One family of N -cospectral digraphs is de-
termined in this section. Structural similarity (i.e. values and layout of entries in the matrix)
of the matrix AAT of some digraph with the adjacency or the signless Laplacian matrix of
some multigraph, has motivated us to generalize the notion of cospectrality in Section 5.
The study of cospectrality with respect to different (multi)(di)graph matrices could be use-
ful in finding connections between different spectral subtheories that are based on these
matrices, and, what is more important, in finding new pairs of cospectral (multi)(di)graphs
in particular spectral subtheory. That way, certain pairs of multigraps that are cospectral
with respect to the adjacency matrix are found. The study of spectral subtheory based
on the signless Laplacian matrix is currently used (see, for example, [7]), so the paper is
concluded with some examples of digraphs and multigraphs whose N - and Q-spectrum,
respectively, are the same.

2 Preliminaries

Let D = (V (D), E(D)) be a digraph of order n with the set of vertices V (D) = {v1, v2,
. . . , vn}. The set of edges E(D) consists of ordered pairs of vertices, and we suppose that
the loops, i.e. the edges of the form (vi, vi) are permitted, but multiple edges are not. The
adjacency matrix A = [aij ] of D is the binary matrix of order n, such that aij = 1, if there
is an edge from vi to vj , and otherwise aij = 0.

If e = (vi, vj) is the edge of D, we say that vi is the initial vertex of e, while vj is the
terminal vertex. The vertex vj ∈ V (D) is the out-neighbour of the vertex vi ∈ V (D) if
there is the edge (vi, vj) ∈ E(D). The vertex vk ∈ V (D) is the in-neighbour of the vertex
vi ∈ V (D) if there is the edge (vk, vi) ∈ E(D). The out-degree of vertex vi, denoted
by outdegD(vi) or d+D(vi), is the number of edges of which it is the initial vertex, while
the in-degree of vi, denoted by indegD(vi) or d−D(vi), is the number of edges of which vi
is the terminal vertex. A loop at some vertex contributes 1 to both the in-degree and the
out-degree of that vertex.

Let us suppose that the edges of D are ordered as e1, e2, . . . , em. The in-incidence
matrix of D is the n by m matrix Bin = [bij ] such that bij = 1 if ej = (vk, vi) for some
vertex vk, and otherwise bij = 0. The out-incidence matrix Bout = [gij ] of the digraph D
is the n by m matrix such that gij = 1 if ej = (vi, vl) for some vertex vl, and otherwise
gij = 0. It is a matter of routine to check that A = BoutB

T
in holds.

The characteristic polynomial det(λI−A) of A is the characteristic polynomial of the



I. M. Jovanović: Non-negative spectrum of a digraph 169

digraph D, and the eigenvalues of A are the eigenvalues of D. For the remaining notation
and terminology related to digraphs, and also graphs, we refer the reader to [5], [2], [3],
[1], [8] and [6].

In this paper we are interested in the structural characteristics of a digraph D related
to the spectrum of matrices AAT and ATA, where A is the adjacency matrix of D. The
matrices AAT and ATA are non-negative, square and symmetric. One can easily check
that these matrices are positive semi-definite (see, for example, [14]), which means that
their eigenvalues are non-negative.

The entries of the matrices AAT and ATA are characterised by the following proposi-
tion (see [12]):

Proposition 2.1. The (i, j)-entry of the matrix AAT (ATA) of D is equal to the number of
common out-neighbours (in-neighbours) of vi and vj . Diagonal entries of the matrix AAT

(ATA) represent out-degrees (in-degrees) of the vertices of D.

According to the previous observations, one can introduce the following notation: Nout

= AAT andNin = ATA. The characteristic polynomial det(λI−Nin) ofNin is theNin-
characteristic polynomial of D, while the characteristic polynomial det(λI − Nout) of
Nout is the Nout-characteristic polynomial of D. Since the spectrum of Nout and Nin is
the same (see [14]), it can be denoted by the single name - the N -spectrum. Therefore, the
characteristic polynomialsN(x) of these matrices can be named theN -polynomials. How-
ever, we underline that through the investigation we mainly considered Nout(D) matrix of
D, whose spectrum is denoted by η1 ≥ η2 ≥ . . . ≥ ηn. The N -spectral radius ρN (D) of
D is defined to be the spectral radius of Nout(D), and similarly Nin(D).

Remark 2.2. For the N -spectrum η1, η2, . . . , ηn of a digraph D with m edges the follow-
ing holds:

• The numbers η1, η2, . . . , ηn are real and non-negative,

• η1 + η2 + . . .+ ηn = m,

• D is consisted of only isolated vertices if and only if η1 = η2 = . . . = ηn = 0.

3 Some basic results
In this section we give some elementary results that we will use in the subsequent sections.

Let us remind you that a digraph D is r-regular if the in-degree and the out-degree of
each its vertex are equal to r. By use of the basic combinatorial principles for counting
one can easily check that the row sum for each row of the matrix Nout(D) is equal to
r + r(r − 1) = r2. Now, we can prove the following lemma:

Lemma 3.1. N -spectral radius ρN (D) of a r-regular digraph D of order n is r2.

Proof. Since Nout(D) is the square, non-negative matrix with equal row sums, according
to Theorem of Frobenius (see [4]) the spectral radius of this matrix is r2.

Remark 3.2. The eigenvector that corresponds to the N -eigenvalue r2 of a r-regular di-
graph D is all-1 vector.
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Example 3.3. The complete digraph of order n is the digraph
↔
Kn in which for each pair of

vertices there is an edge, including a loop at each vertex. The N -characteristic polynomial
of this digraph is:

N ↔
Kn

(x) = (x− n2)xn−1,

and thus its N -spectrum is: n2, [0]n−1.

Here, and in the further text, an eigenvalue η of the multiplicity k is denoted by [η]k.
Let us now consider connected digraphs whose vertices do not have the common out-

neighbours. If D = (V (D), E(D)) is such a digraph, then indegD(vi) ≤ 1 must hold for
each vertex vi ∈ V (D).

Let us remind you that a rooted oriented tree, briefly rooted tree, is an oriented tree with
a specific vertex v1, called the root, such that for every other vertex vj the path connecting
v1 to vj is a directed path from v1 to vj . This means that D is connected, indeg(v1) = 0
and indegD(vi) = 1 for every other vertex vi of D, and vice versa according to Theorem
15.2 from [1]. It is obvious that vertices of a rooted tree do not have the common out-
neighbours.

If in a digraph D whose vertices do not have the common out-neighbours there are
at least two vertices such that their in-degrees are equal to 0, D would not have been
connected, i.e. D would consist of at least two connected components.

Since in a rooted tree there is unique vertex v1 such that indeg(v1) = 0, one can add
one extra edge to obtain a digraph where there is no pair of vertices with common out-
neighbours. We distinguish two possibilities: this extra edge is a loop at v1, i.e. (v1, v1) or
it is an edge (vx, v1), for exactly one vertex vx of a rooted tree. Hence, we can say that a
resulting digraph is a unicyclic digraph derived from a rooted tree (Figure 1).

Figure 1: Unicyclic digraphs whose vertices do not have the common out-neighbours

That way, the following proposition is proved:

Proposition 3.4. D is a connected digraph whose vertices do not have the common out-
neighbours if and only if it is a rooted tree or a unicyclic digraph that can be derived from
a rooted tree.

Remark 3.5. Since the matrixNout(D) of a connected digraphD such that there is no pair
of vertices with the common out-neighbours in D is the diagonal matrix of vertex degrees,
the N -spectrum of D is: outdegD(v1), outdegD(v2), . . . , outdegD(vn).
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Remark 3.6. The converse digraph Conv(D) of a digraph D is obtained by reversing the
direction of each edge ofD (see [2]). So, a digraph whose vertices do not have the common
in-neighbours is the converse digraph of a rooted tree or of a unicyclic digraph that can be
derived from a rooted tree.

Example 3.7. The N -characteristic polynomial of a rooted tree D is:

ND(x) = xl
∏

vi∈U(D)

(x− outdeg(vi)),

where l is the number of vertices vx such that outdegD(vx) = 0, while U(D) ⊂ V (D) is
the set of vertices whose out-degree is at least 1.

The digraph
→
Pn is the special case of a rooted oriented tree. If V (

→
Pn) = {v1, v2, . . . ,

vn} is the set of vertices of this digraph, then its set of edges consists of the pairs of vertices

(vi, vi+1), for i = 1, 2, . . . , n− 1. The N -characteristic polynomial of
→
Pn is:

N→
Pn

(x) = x(x− 1)n−1.

1-regular digraph
→
Cn is the special case of a unicyclic digraph derived from a rooted

tree. Its N -characteristic polynomial is:

N→
Cn

(x) = (x− 1)n. (3.1)

4 Some digraph operations and transformations
We open this section with the result related to theN -spectrum of the complement of a given
regular digraph.

The complement DC = (V (DC), E(DC)) of a digraph D = (V (D), E(D)) has the
vertex set V (DC) = V (D) and e ∈ E(DC) if and only if e /∈ E(D). Also, there is a
loop at vertex vi in DC if and only if there is no loop at vi in D. Similarly to the proof of
Theorem 2.1.2 from [6] for regular graphs we can prove the following:

Proposition 4.1. If the N -eigenvalues of a r-regular digraph D of order n are ηi(D), i =
1, 2, . . . , n, then the N -eigenvalues of DC are η1(DC) = (n− r)2 and ηi(DC) = ηi(D),
i = 2, 3, . . . , n.

Proof. If AD is the adjacency matrix of D and J is all-1 matrix, we find:

Nout(D
C) = J2 −ADJ − JAT

D +ADA
T
D = (n− 2r)J +Nout(D),

because the row sum for each row of AD is equal to r.

Let us denote by D
′

the digraph obtained from a connected digraph D by deleting the
edge (vi, vj). Then we have: Nout(D) = Nout(D

′
) +M . Here, M = [mpq] is the square

matrix of order n such that mii = 1 and mil = mli = 1 for each pair of vertices vi, vl such
that (vi, vj), (vl, vj) ∈ E(D), where l ∈ {1, 2, . . . , n} \ {i}.

Theorem 4.2. (Interlacing theorem - edge version) Let D be a connected digraph of
order n whose N -spectrum is η1(D) ≥ η2(D) ≥ · · · ≥ ηn(D), and there is at least one
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vertex vj inD such that indegD(vj) = 1. LetD
′

be a digraph obtained fromD by deleting
an edge (vi, vj). If the N -eigenvalues of D

′
are η1(D

′
) ≥ η2(D

′
) ≥ · · · ≥ ηn(D

′
), then

η1(D) ≥ η1(D
′
) ≥ η2(D) ≥ η2(D

′
) ≥ . . . ηn(D) ≥ ηn(D

′
) ≥ 0.

Proof. Since the spectrum of the matrix M consists of [1] and [0]n−1, the proof follows
from Courant-Weyl inequalities (see, for example [6]).

Remark 4.3. By considering Nin matrix of a digraph, one can prove that the previously
given Interlacing theorem holds also for a connected digraph D in which there is at least
one vertex vj such that outdegD(vj) = 1, and for its subdigraph D

′
obtained from D by

deleting an edge (vj , vi), for some vertex vi.

In general case, such the N -eigenvalue interlacing does not hold. Namely, we have the
following example.

Example 4.4. For the digraph D that is depicted on Figure 2 and the digraph D
′

that is
obtained from D by deleting the edge (1, 3), the N -interlacing property holds, i.e. for the
N -spectra of these digraphs we have the following inequalities: 4.390 ≥ 3.879 ≥ 1.838 ≥
1.653 ≥ 1 ≥ 1 ≥ 0.544 ≥ 0.468 ≥ 0.228 ≥ 0.

On the other hand, the N -eigenvalues of the digraphs D1 (Figure 2) and D
′

1, that is
obtained from D1 by deleting the edge (1, 3), are 5.303 ≥ 1.697 ≥ 1 ≥ 1 ≥ 0, and
similarly 4.115 ≥ 1.764 ≥ 1 ≥ 1 ≥ 0.139, so the N -interlacing property does not hold in
this case.

Figure 2: Digraphs D and D1 from Example 4.4

Now, we will consider a digraph D∗ obtained from a connected digraph D by adding a
pendant edge at the vertex vi of D (i.e. an edge of the form (vx, vi) such that indegD∗(vx)
= 0 and outdegD∗(vx) = 1, or an edge of the form (vi, vx) such that indegD∗(vx) = 1
and outdegD∗(vx) = 0).

The following statement obviously holds.

Proposition 4.5. Let D∗ denotes a digraph obtained from a connected digraph D of order
n by adding a pendant edge (vn+1, vi) at the vertex vi such that indegD(vi) = 0. Then the
N -characteristic polynomial of D∗ is: ND∗(x) = (x− 1)ND(x).

Let us denote by Dvk a digraph obtained from a digraph D by deleting the vertex vk,
and let µD(vi, vj) = 1, if (vi, vj) ∈ E(D), and otherwise µD(vi, vj) = 0, for i, j ∈
{1, 2, . . . , n}.
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Definition 4.6. The digraph Dout
(vk,vi)

is the out-(vk, vi)-shrinking of D if for the edge
(vk, vi) in E(D), V (Dout

(vk,vi)
) = V (Dvk) and

E(Dout
(vk,vi)

) = E(Dvk) ∪ {(vj , vi)|µD(vj , vk) = 1, for each j 6= k}.

It is obvious that Dout
(vk,vi)

is a multidigraph in general case, and that if indegD(vi) = 1

then the matrix Nout(D
out
(vk,vi)

) equals the matrix obtained from Nout(D) by deleting the
k-th row and the k-th column.

Theorem 4.7. Let D∗ denotes a digraph obtained from a connected digraph D of order
n by adding the pendant edge (vj , vi) at the vertex vi such that (vk, vi) ∈ E(D) and
indegD(vi) = 1. Then

ND∗(x) = (x− 1)ND(x)−NDout
(vk,vi)

(x),

where NDout
(vk,vi)

(x) is the N -characteristic polynomial of the digraph Dout
(vk,vi)

that is the

out-(vk, vi)-shrinking of a digraph D.

Proof. Since indegD∗(vi) = 2, we have

Nout(D
∗) =

(
Nout(D) r
rT 1

)
(n+1)×(n+1)

,

where r = (0, . . . , 0, 1︸︷︷︸
k

, 0, . . . , 0)T is the vector of order n. The only no null coordinate

of the vector r corresponds to the common out-neighbour of vk and vj . By expanding the
determinant of the matrix xI −Nout(D

∗) by the last row we get:

ND∗(x) = det (xI −Nout(D
∗)) = (x− 1)ND(x) + (−1)(n+1)+k · det (M |r) ,

where the matrix M is obtained from xI −Nout(D) by deleting the k-th column. Now, by
expanding the determinant of the matrix (M |r) by the last column, we have:

ND∗(x) =(x− 1)ND(x) + (−1)(n+1)+k(−1)k+n det
(
xI −M

′
)

=

(x− 1)ND(x)− det
(
xI −M

′
)
,

where M
′

is obtained from the matix Nout(D) by deleting the k-th row and k-th column.

The line digraph L(D) of a digraph D (see, for example [5]) is the digraph whose
vertices are the edges e1, e2, . . . , em of D such that there is an edge from ei to ej in L(D)
if and only if the terminal vertex of ei equals the initial vertex of ej in D. If an edge ep is
a loop at some vertex of D, then it becomes a loop at ep in L(D).

Some results on adjacency spectra and energies of iterated line graphs are exposed in
[13]. On the similar way, we can define iterated line digraphs. If D = L0(D) is a digraph
and L(D) = L1(D) is its line digraph, then Lk(D), k = 2, 3, . . . defined recursively by the
formula Lk(D) = L

(
Lk−1(D)

)
are the iterated line digraphs ofD. The line digraph of an

r-regular digraph is also r-regular digraph. More precisely, the line digraph L1(D) of an r-
regular digraphD of order n is the r1 = r-regular digraph of order n1 = nr. Consequently,
Lk(D), k = 2, 3, . . . is the rk = r-regular digraph of order nk = rnk−1 = rkn, where
nk−1 is the order of the digraph Lk−1(D).
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Theorem 4.8. The N -eigenvalues of the line digraph L(D) of a r-regular digraph D are:
[r2]n, [0](r−1)n.

Proof. We will determine the N -characteristic polynomial NL(D) of L(D) related to the
Nout(L(D)) matrix.

AsL = BT
inBout is the adjacency matrix of the line digraphL(D) ofD (see [5]), where

Bin and Bout are the in-incidence matrix and the out-incidence matrix of D, respectively,
we find: Nout(L(D)) = rBT

inBin. Here, we have that the diagonal matrix whose entries
are the out(in)-degrees of vertices in D is: ∆ = rI = BinB

T
in = BoutB

T
out.

According to Lemma 8.2.3. from [10] we get:

det
(
I −BinB

T
in

)
= det

(
I −BT

inBin

)
,

i.e.

det
(
In − x−1rIn

)
= det

(
Im − x−1

1

r
Nout(L(D))

)
.

Furthermore we have:

xm−n det (xIn − rIn) = det

(
xIm −

1

r
Nout(L(D))

)
,

and also

det ((x− r + 1)In − In) = xn−m
1

rm
det (rxIm −Nout(L(D))) .

According to (3.1) we find:

N→
Cn

(x− r + 1) = xn−m
1

rm
NL(D)(rx),

i.e.
NL(D)(x) = xm−n(x− r2)n,

and the proof follows.

Therefore the N -spectrum of the line digraph Lk(D) of a r-regular digraph D of order

n consists of
[
r2
]nk =

[
r2
]nrk

and [0]
(r−1)nk = [0]

(r−1)rkn, and hence we have the
following corollary:

Corollary 4.9. Let D1 and D2 be two r-regular digraphs of order n (not necessary N -
cospectral). Then for all k ≥ 1 digraphs Lk(D1) and Lk(D2) are N -cospectral.

This way, we found a family of N -cospectral mates (i.e. the digraphs whose N -spectra
are the same). We will continue examination of cospectrality in the next section.

5 Cospectrality relation
Let Dn

M be the set of (multi)(di)graphs D of order n with the associated spectrum σM (D)
related to some (multi)(di)graph matrix M . Let us introduce the relation ρ ⊆ Dn

M1
×Dn

M2

between sets Dn
M1

and Dn
M2

, for some (multi)(di)graph matrices M1 and M2 in the follow-
ing way: we say that the (multi)(di)graph D1 is in the relation ρ with the (multi)(di)graph
D2, i.e. D1ρD2 if and only if σM1

(D1) = σM2
(D2). So, the relation ρ is the cospec-

trality relation, while D1 and D2 form an (M1,M2)-cospectral mate. That way, we can
generalize the notion of cospectrality:
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Definition 5.1. Let M1 and M2 be some (multi)(di)graph matrices. If the (multi)(di)graph
D1 ∈ Dn

M1
is in the cospectrality relation ρ with the (multi)(di)graph D2 ∈ Dn

M2
, i.e. the

M1-spectrum of a (multi)(di)graph D1 is equal to the M2-spectrum of a (multi)(di)graph
D2, then D1 and D2 are called (M1,M2)-cospectral (multi)(di)graphs.

It is obvious that ρ is the equivalence relation on the set Dn
M , in which case (multi)(di)-

graphs D1 and D2 such that D1ρD2 are M -cospectral. As a result of the composition of
the cospectrality relations, one can get some new pairs of cospectral (multi)(di)graphs, as
follows.

Let us consider the set Dn
N of digraphs D of order n with the associated N -spectrum

σN (D). Clearly,N is related toNout orNin matrix of a digraph. Let us denote by GnA+ and
GnA− the sets of out-multigraphs and in-multigraphs, respectively with the corresponding
adjacency spectra. The in-multigraph M−D ∈ GnA− and the out-multigraph M+

D ∈ GnA+ are
associated to a digraph D ∈ Dn

N in the following way:

Definition 5.2. The in-multigraph M−D = (V (M−D ), E(M−D )) of a digraph D is the multi-
graph such that V (M−D ) = V (D), {vi, vj} ∈ E(M−D ) if and only if there is a vertex
vk ∈ V (D) such that (vk, vi), (vk, vj) ∈ E(D), and for each edge (vk, vi) in D there is a
loop at vi in M−D .

Definition 5.3. The out-multigraphM+
D = (V (M+

D ), E(M+
D )) of a digraphD is the multi-

graph such that V (M+
D ) = V (D), {vi, vj} ∈ E(M+

D ) if and only if there is a vertex vk
such that (vi, vk), (vj , vk) ∈ E(D), and for each edge (vi, vk) in D there is a loop at vi in
M+

D .

According to the previous definitions, one can notice the cospectrality relation, say
ρ−, between sets GnA− and Dn

N , and similarly the cospectrality relation, say ρ+, between
sets Dn

N and GnA+ . As the result of the composition of relations ρ+ and ρ− the pairs of
A-cospectral multigraphs M−D and M+

D are getting. That way we have:

Theorem 5.4. Multigraphs M−D and M+
D are A-cospectral.

So, the exposed construction is a way for obtaining new pairs of cospectral and not
necessarily isomorphic multigraphs.

Example 5.5. The adjacency matrix of the in-multigraph M−D , and similarly the out-
multigraph M+

D , that is associated to the digraph D (which is depicted on Figure 3) is:

A(M−
D ) = Nin(D) =


2 0 2 0
0 1 1 0
2 1 3 0
0 0 0 1

, and A(M+
D) = Nout(D) =


2 1 0 1
1 2 0 2
0 0 1 0
1 2 0 2

.

Remark 5.6. Multigraphs M−D and M+
D associated to a digraph D are simple graphs only

in the case when digraph D is a set of isolated vertices. If we permit existence of single

loops (i.e. loops of multiplicity one) in a simple graph, the primary digraph D can be
→
Cn

or
→
Pn. In this case, multigraphs M−D and M+

D are the sets of isolated loops or the disjoint
unions of isolated loops and a single isolated vertex, and therefore M−D and M+

D are not
only A-cospectral but also isomorphic.
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Figure 3: Digraph D from Example 5.5 and associated multigraphs M−D and M+
D , respec-

tively

There are many examples where the multigraphs M−D and M+
D associated to a given

digraph D are isomorphic, so the investigation of such multigraphs can be the subject of
future research. If a primary digraph D is such that if (vi, vj) ∈ E(D) then also (vj , vi) ∈
E(D), for all vi, vj ∈ V (D), it is obvious that the associated multigraphs M−D and M+

D

will be isomorphic. We also have:

Proposition 5.7. Multigraphs M−D and M+
D associated to a digraph D of prime order,

n > 2, with circulant adjacency matrix are isomorphic.

Proof. Since Nin(D) and Nout(D) are circulant matrices with the same eigenvalues, ac-
cording to Theorem 1 from [9] they are permutationally similar.

For an integer n ≥ 2 and a set S ⊆ {1, 2, . . . , n− 1} the circulant digraph Cn(S) is a
digraph such that V (Cn(S)) = {1, 2, . . . , n} and E(Cn(S)) = {(i, i + j (modn)) : 1 ≤
i ≤ n, j ∈ S}. Circulant digraphs are of great interest in the graph and digraph theory and
their applications (see [2]).

Proposition 5.8. Multigraphs M−D and M+
D associated to a circulant digraph Cn(S) are

isomorphic.

Proof. Since the converse digraph Conv(Cn(S)) of Cn(S) is isomorphic to Cn(S) (ac-
cording to Proposition 2.14.1 from [2]) and since Nin(Cn(S)) = Nout(Conv(Cn(S))),
and similarly Nout(Cn(S)) = Nin(Conv(Cn(S))), the proof follows.

Example 5.9. The matrix Nout(D) of the 2-regular digraph D that is depicted on Figure 4
structurally corresponds to the signless Laplacian matrix Q(M) of the 2-regular graph M ,
also depicted on Figure 4, i.e.

Nout(D) =


2 1 1 0
1 2 0 1
1 0 2 1
0 1 1 2

 =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

+


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 = Q(M).
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That way, one can notice the cospectrality relation ρ ⊆ Dn
N × GnQ between set Dn

N of di-
graphs D of order n with the associated N -spectrum σN (D) and the set GnQ of multigraphs
M of order n with the associated Q-spectrum σQ(M).

Figure 4: Triplet of (N,A,Q)-cospectral digraph D, multigraph M−D = M+
D and graph

M , respectively

This one and similar examples have motivated us to examine some new (N,Q)-cospectral
mates. Furthermore, the multigraph M that makes (Q,N)-cospectral mate with a given
digraph D can be used in determining some isomorphic multigraphs M−D and M+

D , as
follows:

Proposition 5.10. Let D be a connected r-regular digraph of order n. If Nout(D) =
Q(M) holds for some multigraph M , then r = 0 or r = 2.

Proof. We have Nout(D) = rI + C, where row sum of C is r(r − 1) for each row.
If Nout(D) is the signless Laplacian matrix of some multigraph without loops, then

r = r(r − 1) holds, which implies r = 0 or r = 2. On the other hand, if Nout(D) is the
signless Laplacian matrix of a multigraph with loops, then the number of loops at some
vertex is (r − (r − 1)r)/2, which means that r = 0 or r = 2.

Remark 5.11. The statement from the previous proposition also holds in the case of the
matrixNin(D). Beside that, the multigraphM is the connected r-regular multigraph with-
out loops. Therefore, we conclude that multigraphs M−D and M+

D associated to some 2-
regular digraph D are isomorphic.

In order to examine (N,Q)-cospectrality, we will introduce some binary digraph op-
erations. Still, according to the nature and the mutual relationships between entries of
matrices Nout(D) and Q(M) of some digraph D and some multigraph M , respectively,
one can suspect poor variety in terms of the structure and the order (i.e. number of ver-
tices) of the (N,Q)-cospectral mates (that could be obtained by direct comparing of these
matrices).

Let D1 = (V (D1), E(D1)) and D2 = (V (D2), E(D2)) be two disjoint digraphs (i.e.
digraphs with no common vertices nor edges).

Definition 5.12. The out-join D1∇outD2 of two disjoint digraphs D1 = (V (D1), E(D1))
and D2 = (V (D2), E(D2)) is the digraph D = (V (D), E(D)) such that V (D) =



178 Ars Math. Contemp. 12 (2017) 167–182

V (D1) ∪ V (D2) and E(D) = E(D1) ∪ E(D2) ∪ {(u, v)|u ∈ V (D1), v ∈ V (D2)},
for each u ∈ V (D1) and v ∈ V (D2).

It is obvious that this digraph operation is not commutative, i.e. D1∇outD2 6= D2∇out

D1. Nout(D) matrix of the digraph D which is obtained by out-joining is:

Nout(D) = Nout(D1∇outD2) =

(
A1 J
O A2

)(
AT

1 OT

JT AT
2

)
=(

Nout(D1) + JJT (A2J
T )T

A2J
T Nout(D2)

)
,

where A1 and A2 are the adjacency matrices of digraphs D1 and D2, respectively, while J
is all-1 matrix. Each entry of the j-th row of the matrix A2J

T is equal to outdegD2
(uj),

where uj ∈ V (D2).
In the same way one can define:

Definition 5.13. The in-join D1∇inD2 of two disjoint digraphs D1 = (V (D1), E(D1))
and D2 = (V (D2), E(D2)) is the digraph D = (V (D), E(D)) such that V (D) =
V (D1) ∪ V (D2) and E(D) = E(D1) ∪ E(D2) ∪ {(v, u)|v ∈ V (D2), u ∈ V (D1)},
for each u ∈ V (D1) and v ∈ V (D2).

Definition 5.14. The join D1∇D2 of two disjoint digraphs D1 = (V (D1), E(D1)) and
D2 = (V (D2), E(D2)) is the digraph D with the vertex set V (D) = V (D1) ∪ V (D2),
whose set of edges is E(D) = (E(D1∇outD2) ∪ E(D1∇inD2)) \ (E(D1) ∪ E(D2)).

Proposition 5.15. Let D = D1∇outD2 be the digraph obtained by out-joining two con-
nected disjoint digraphs D1 and D2 of orders n1 and n2, respectively. If Nout(D) =
Q(M) holds for some multigraph M , then:

1. D1 is an isolated vertex, while D2 is a unicyclic digraph derived from a rooted tree.

2. D1 =
↔
K1, while D2 is a rooted tree;

3. D2 is an isolated vertex, and:

(a) if n1 = 1, then D1 =
↔
K1,

(b) if n1 = 2, then D1 is any of digraphs depicted on Figure 5,
(c) if n1 = 3, then D1 is 1-regular digraph,
(d) if n1 ≥ 4, then there is no digraph D1 such that the statement given by the

proposition holds.

Proof. Let us denote by V (D1) = {u1, u2, . . . , un1
} and V (D2) = {v1, v2, . . . , vn2

} the
sets of vertices of digraphs D1 and D2, respectively.

If Nout(D) = [nij ] is the signless Laplacian matrix of some multigraph M , then by
observing its rows n1 + 1, n1 + 2, . . . , n1 + n2, one can conclude that the number:

(1− n1) outdegD2(vp)−
n2∑

q=1,q 6=p

npq(Nout(D2)),
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Figure 5: Digraphs from Proposition 5.15

for each p = 1, 2, . . . , n2, is zero or even positive integer. This means that n1 = 1 and D2

is a digraph such that there are no vertices with the common out-neighbours or D2 is an
isolated vertex.

In the former case, by observing rows 1, 2, . . . , n1 of Nout(D), one concludes that:

outdegD1
(uk) + n2 −m2,

for each k = 1, 2, . . . , n1, is zero or even positive integer. Here m2 is the number of edges
of D2, and the proof for statements 1. and 2. follows.

If D2 is an isolated vertex, then by observing rows 1, 2, . . . , n1 of Nout(D), we get
that:

outdegD1
(uk)−

n1∑
l=1,l 6=k

nkl(Nout(D1))− n1 + 2, (5.1)

for each k = 1, 2, . . . , n1, is zero or even positive integer. Let us consider the structure of
D1.

If n1 = 1 or n1 = 2, statements (a) and (b) follows from (5.1) by direct computation.
If n1 = 3, then 3 ≥ outdegD1

(uk) ≥ 1 must hold for each k = 1, 2, 3. Let us suppose
that outdegD1

(u1) = 3. This implies indegD1
(u1) = indegD1

(u2) = indegD1
(u3) = 1,

and since the out-degree of u2 and u3 must be at least 1, (5.1) will be a negative num-
ber for at least one k. One can analyse the case when outdegD1(u1) = 2 the same
way. And finally, if outdegD1(u1) = 1, (5.1) is a non-negative integer if and only if∑3

l=2 n1l(Nout(D1)) = 0. Since the out-degree of each vertex in D1 must be at least 1,
D1 is 1-regular digraph.

Now, we will prove that there is no digraph Dn1 of order n1 ≥ 4 such that (5.1) is zero
or even positive integer. The proof will be carried out by use of the mathematical induction
on the number of vertices n1 of Dn1

.
If n1 = 4, analogously as in the case when n1 = 3, one can show that there is at least

one vertex, for example uk, inD4 such that outdegD4
(uk) <

∑4
l=1,l 6=k nkl(Nout(D4))+2,

where k ∈ {1, 2, 3, 4}. Let us suppose that in a digraph Ds of order s > 4 there is at least
one vertex such that (5.1) is a negative number. Let us consider a digraph Ds+1 of order
s + 1. By deleting an arbitrary vertex of Ds+1 we get a digraph Ds of order s, where,
according to the inductive hypothesis, we can find at least one vertex, say ux, such that

outdegDs
(ux) <

s∑
q=1,q 6=p

nxq(Nout(Ds)) + s− 2.
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If we return the removed vertex and all edges that are incident to it, we get the following
inequalities:

outdegDs+1
(ux) ≤ outdegDs

(ux) + 1 <

s∑
q=1,q 6=i

nxq(Nout(Ds)) + s− 2 + 1 ≤
s+1∑

q=1,q 6=p

nxq(Nout(Ds+1)) + s− 1.

Hence, according to the principle of the mathematical induction, when D2 is an isolated
vertex, there is no digraph D1 of order n1 ≥ 4 such that Nout(D) = Nout(D1∇outD2) =
Q(M).

Proposition 5.16. Let D = D1∇D2 be the digraph obtained by joining two connected
disjoint digraphs D1 and D2 of orders n1 and n2, respectively. If Nout(D) is the signless
Laplacian matrix of some multigraph, then:

1. D1 is an isolated vertex, while D2 is any of digraphs depicted on Figure 6;

2. D1 = D2 =
↔
K1;

3. there are no digraphs D1 and D2 of orders n1, n2 ≥ 3 such that the statement given
by the proposition holds.

Figure 6: Digraphs from Proposition 5.16

Proof. Let us denote by V (D1) = {v1, v2, . . . , vn1
} and V (D2) = {u1, u2, . . . , un2

} the
sets of vertices of digraphs D1 and D2, respectively. We have:

Nout(D) = Nout(D1∇D2) =

(
A1 JT

J A2

)(
AT

1 JT

J AT
2

)
=(

Nout(D1) + JTJ A1J
T + JTAT

2

(A1J
T + JTAT

2 )T Nout(D2) + JJT

)
,

where A1 and A2 are the adjacency matrices of digraphs D1 and D2, respectively.
If Nout(D) = [nij ] is the signless Laplacian matrix of some multigraph, we have:

(1− n2) outdegD1
(vi) + (2− n1)n2 −

n1∑
j=1,j 6=i

nij(Nout(D1))−m2 = 2w1, (5.2)

for some non-negative integer w1 and i = 1, 2, . . . , n1, and

(1− n1) outdegD2
(uk) + n1 (2− n2)−

n2∑
l=1,l 6=k

nij(Nout(D2))−m1 = 2w2, (5.3)
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for some non-negative integer w2 and k = 1, 2, . . . , n2, where m1 and m2 are the numbers
of edges of digraphs D1 and D2, respectively.

First, let us prove that n1 < 3. Since (5.2) means that:

(1− n2) outdegD1(vi) ≥ (n1 − 2)n2 +

n1∑
j=1,j 6=i

nij(Nout(D1)) +m2

holds for each i = 1, 2, . . . , n1, if we suppose that n1 ≥ 3, we get:

0 ≥ 1 +

n1∑
j=1,j 6=i

nij(Nout(D1)) +m2,

that is a contradiction. In the same way, one can prove that n2 < 3.
Statements 1. and 2. from the proposition one can get by direct analysis of (5.2) and

(5.3).
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