Original scientific article UDC 581.52:547.4(497.4) Received: 2010-05-21 RELATION BETWEEN CSR FUNCTIONAL SIGNATURES OF DRY GRASSLANDS FROM TWO CONTRASTING GEOLOGICAL SUBSTRATES Sonja ŠKORNIK Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Koroška 160, Slovenia E-mail: sonja.skornik@uni-mb.si Klavdija HARTMAN Cinžat 1 7, SI-2343 Fala, Slovenia Mitja KALIGARIC Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Koroška 160, Slovenia ABSTRACT The paper presents floristic and functional comparison of two adjacent and structurally similar plant communities - calcareous (Bromion erecti) and silicicolous (Nardo-Agrostion tenuis) dry grasslands. For functional comparison Grime's CSR triangle theory of plant strategies was used. The analysis of species composition showed great differences between both dry grassland types. Higher relative proportions of S component and lower relative proportions of C components in silicicolous grasslands suggest that those habitats generally experience higher intensities of stress when compared to calcareous grasslands, presumably owing to low resource availability on high-acidic sites and also due to their occurrence in higher altitudes. Key words: calcareous dry grasslands, silicicolous dry grasslands, species composition, plant functional types, plant traits, Slovenia RELAZIONE TRA SIGLE FUNZIONALI CSR Dl PASCOLI ARIDI SU DUE SUBSTRATI GEOLOGICI CONTRASTANTI SINTESI L'articolo presenta la comparazione floristica e funzionale fra due comunita vegetali adiacenti e strutturalmente simili - calcarea (Bromion erecti) e silicea (Nardo-Agrostion tenuis) di pascoli aridi. Per la comparazione funzionale e stato usato il modello CSR di Grime, inerente alle strategie ecologiche delle piante. L'analisi della composizione delle specie ha evidenziato notevoli differenze fra i due tipi di pascoli aridi. Maggiori proporzioni relative della componente S e minori proporzioni della componente C nei pascoli aridi silicei suggeriscono che tali habitat generalmente sono sottoposti a maggiori intensita di stress in confronto ai pascoli aridi calcarei. Tale risultato presumibilmente e collegato alla minore disponibilita di risorse in siti ad alta acidita e al fatto che tali pascoli si trovano ad altitudini elevate. Parole chiave: pascoli aridi calcarei, pascoli aridi silicei, composizione di specie, tipi funzionali vegetali, caratteristiche morfologiche vegetali, Slovenia Sonja ŠKORNIK et a/.: RELATION BETWEEN CSR FUNCTIONAL SIGNATURES OF DRY GRASSLANDS ..., 101-112 INTRODUCTION The traditional approach to vegetation classification is taxonomic in nature and usually performed at the species level (Duckworth ef a/., 2000). On a large scale, predictions based on plant species are geographically bound (Woodward & Cramer, 1996). On a small scale, species are in some cases so widely spread and variable that by describing communities by species composition we may not perceive relevant patterns occurring below the resolving power of species (Diaz ef a/., 1992). Consequently, classifying plant species according to their higher taxonomical level has strong limitations when it comes to answering important ecological questions at the scale of ecosystems, landscapes or biomes (Keddy, 1992; Korner, 1993). A promising way for answering such questions, as well as various other ecological questions, is by classifying plant species by their shared biological characteristics that relate to function, rather than by phylogeny (Grime ef a/., 1988; Lavorel ef a/., 1997; Diaz ef a/., 2002). These alternative classes are often referred to as plant functional types or groups (Leishman & Westoby, 1992; Grime ef a/., 1988; Gitay & Noble, 1997). Plant functional types can be defined as groups of plant species sharing similar functioning at the organismic level, similar responses to environmental factors (e.g., temperature, water availability, nutrients, fire and grazing), and/or similar roles in (or effects on) ecosystems or biomes (e.g., productivity, nutrient cycling, flammability and resilience) (Walker, 1992; Chapin ef a/., 1996; Nobble & Gitay, 1996; Diaz & Cabido, 1997; Lavorel ef a/., 1997; Grime, 2001). With plant functional types, comparisons between communities of widely differing composition can be facilitated (Diaz ef a/., 2004). The underlying bases for schemes of plant functional types can vary widely (Ramenskiy, 1938; Hermy & Stieperaere, 1985; Grime, 2001). One of three-type schemes, the so-called "CSR plant strategy theory" (Grime, 1974, 1977, 1979, 2001) is particularly efficient in the balance between the power of its predictions and the simplicity of its assumptions (Hunt ef a/., 2004). Grime (1974, 1977, 1979, 2001) developed a classification based on how plants deal with two groups of external environmental factors, stress and disturbance. This scheme results in three primary plant strategies: competitors (C), stress-tolerators (S), and ruderals (R) and several intermediate strategies. The position of any species can be displayed upon a triangular ordination diagram (Grime, 1974, 2001; Hodgson ef a/., 1999). Each strategy is characterized by a distinct set of ecological, morphological and physiological traits and is found in species occupying habitats of a particular kind (Grime ef a/., 1988). Hodgson ef a/. (1999) developed a methodology that classifies unknown herbaceous subject based on validated "soft" traits (/.e. relatively unde- manding), allowing practical ordination of wild plants within CSR space. The position in CSR diagram can be determined also for an entire vegetation sample (relevé). Hunt ef a/. (2004) presented a quantitative tool which facilitates the reduction of herbaceous plant communities to collections of functional types. The whole community is given a "functional signature", a three-part numerical index which concisely represents the balance between the different functional attributes that are present among the component species (Hunt ef a/., 2004). The integrative power of the CSR signature is useful in comparative studies involving widely differing samples (Hunt ef a/., 2004). Although Grime's CSR triangle theory has been often criticized (Tilman, 1988; Silvertown ef a/., 1992; Wilson & Lee, 2000), Grime's ideas remain fundamental to the development of functional classifications and functional interpretation of plant communities (Hills ef a/., 1994; Caccianiga ef a/., 2006; Pipenbaher ef a/., 2008; Zelnik & Carni, 2008). The aim of the present study was to determine whether two contrasting geological substrates - calcareous and silicicolous, affect the CSR functional signatures of related grasslands, being floristically substantially distinct. We actually compared species composition and plant life strategies as defined by Grime (1974) of two adjacent and structurally-similar plant communities on acidic and calcareous soils from the central part of Slovenia - acidic Matgrass (Nardus sfr/cfa) grasslands and species-rich calcareous grasslands. We applied the method of Hodgson ef a/. (1999) to allocate CSR plant functional types and the approach of Hunt ef a/. (2004) to derive a functional signature for the researched grasslands communities. These vegetation types were created by traditional, infrequent low intensity grazing or mowing with no external inputs (fertilizers) in the past (Skornik, 2003; Kaligaric ef a/., 2006). They represent grasslands of moderate productivity and despite contrasting geological substrates both vegetation types represent habitats subject to a similar combination of intermediate level of disturbance and stress due to nutrient poor and shallow rocky soils which experience desiccation during the summer. We hypothesized that despite wide differences in plant species composition there are no significant differences in functional signatures between calcareous and silicicolous grassland types with respect to C, S and R components, since they both represent habitats experiencing nearly comparable effects of climate and land-use. MATERIALS AND METHODS Study area The studied calcareous semi-dry grasslands appear only in small fragments in the hilly region of pre-Alpine and pre-Pannonian region and on low Dinaric and pre- Sonja ŠKORNIK et al.: RELATION BETWEEN CSR FUNCTIONAL SIGNATURES OF DRY GRASSLANDS ..., 101-112 Fig. 1: Map of Slovenia with locations of the collected relevés of calcareous (•) and silicicolous (O) dry grasslands. SI. 1: Karta Slovenije z lokalitetami popisov suhih travnikov na apnencih (•) in silikatih (O). Dinaric karst plateau at ca. 500-1100 m a.s.l. (Fig. 1). The geological substrate is made of calcareous limestone and dolomite. The climate is continental with mild to hot summers and cold winters. Mean annual temperature is between 6 and 10.5"C. The average annual precipitation is between 1000 and 1300 mm. The relevés of studied calcareous semi-dry grasslands belong to species-rich meadows from the Bromion erecti alliance described as association Scabioso hladnikianae-Caricetum humilis (Skornik, 2001). These grasslands are distributed over exposed sunny and dry areas and are therefore rich in xero-thermophilous and basiphilous species. The silicicolous Matgrass grasslands were studied on the summit areas of Pohorje Mountains (NE Slovenia) (Fig. 1) at altitudes at ca. 1500 m a.s.l. We analysed relevés of association Homogyno alpinae-Nardetum (alliance Nardo-Agrostion tenuis, order Nardetalia) (Kaligaric & Skornik, 2002). Pohorje, the most dominant mountain range in the NE Slovenia, is situated at the south-easternmost edge of the Central (non-carbonate) Alps. The main characteristic of these grasslands are acid soils (pH less than 4.0), the result of the non-carbonate geological bedrock, predominantly metamor-phic rocks and granodhiorythic lacolith (Hinterlechner-Ravnik, 1995). The study area has the montane climate with fresh summers and cold winters. The average temperature in the coldest month is below -3"C and in the warmest month above 10"C. The average annual pre- cipitation is approx. 1336 mm (Ribniska koca, 1530m) (Furlan, 1980). These grasslands occur mainly on flat plains and gentle sloping ridges with very dry and shallow soils, poor with minerals and with low pH values (Kaligaric & Skornik, 2002). They are rich in species designated as xerophilous and acidophilous species. Vegetation survey We analysed 30 relevés of dry grasslands on calcareous bedrock - association Scabioso hladnikianae-Caricetum humilis (Skornik, 2001) and 32 vegetation relevés of dry grasslands on silicicolous bedrock - association Homogyno alpinae-Nardetum (Kaligaric & Skornik, 2002). Relevés were collected using standard procedure of the sigmatistic method (Braun-Blanquet, 1964; Westhoff & van der Maarel, 1973; Dierschke, 1994). Allocating a CSR plant functional type to plant species and vegetation samples (relevés) The CSR scheme takes into account a number of different plant traits (Hodgson et al., 1999). To determine one of 19 CSR functional types for 122 plant species recorded in 62 analysed vegetation relevés we used a rapid method for attribution of CSR type from simple measurements and data published by Hodgson et al. (1999). We used the following plant traits: canopy Sonja ŠKORNIK et al.: RELATION BETWEEN CSR FUNCTIONAL SIGNATURES OF DRY GRASSLANDS ..., 101-112 height, leaf dry matter content, flowering period, flowering start, lateral spread, leaf dry weight, specific leaf area. Traits were chosen from our own database (protocol standardized by Cornelissen et al., 2003). Calculations of CSR coordinates were made by entering these data into the spreadsheets of Hodgson et al. (1999), made available for this purpose at www.ex.ac.uk/ ~rh203/allocating_csr.html. For 21 plant species we used data from a look-up table with CSR types for 1000 European species (source J. G. Hodgson, UCPE Sheffield). The relative proportions of CSR functional types for our 62 samples (relevés) of vegetation were calculated and plotted in CSR triangle by using spreadsheet-based tools of Hunt et al. (2004), available at www.people. exeter.ac.uk/rh203/allocatingcsr.html. To test differences in relative proportions of C-, Sand R-strategists among relevés of calcareous and silici-colous dry grasslands, we used a Student's t-test for independent samples (SPSS Inc., 2006), since the data were sufficiently normally distributed (Shapiro-Wilks and Lilliefors tests). Nomenclature Taxonomic nomenclature follows Martincic et al. (2007), syntaxonomic nomenclature follows Mucina et al. (1993), Grabherr & Mucina (1993) and Skornik (2003). RESULTS The total number of vascular plant species recorded in 62 relevés of studied grassland communities was 143 with 105 in the calcareous (mean=45±6.8 per plot, N=30) and 45 (mean=16±3.8 per plot, N=32) in the silicicolous grasslands. There are only 7 common species, namely Antennaria dioica, Anthoxanthum odora-tum, Cruciata glabra, Gymnadenia conopsea, Luzula campestris, Potentilla erecta and Veronica chamaedrys, 98 exclusive to the calcareous and 38 exclusive to the silicicolous semi-dry grasslands. All species are listed in Appendix 1. Characteristic of calcareous semi-dry grasslands are particularly many calciphilous and xerophilous species, such as Acinos alpinus, Anthericum ramosum, Bromop-sis erecta, Centaurea scabiosa subsp. fritschii, Globularia punctata, Helianthemum ovatum and Koeleria pyrami-data, which are absent on non-carbonate soil. In silicicolous grasslands calcifuge species which can tolerate soil with lower pH values appear, such as Arnica montana, Calluna vulgaris, Carex pilulifera, Festuca rubra, Hieracium pilosella, Nardus stricta and Ranunculus acris. Ordination of species within CSR space (Tab. 1) demonstrate that CR, SC, CSR and the combination of SC and CSR types are prevalent strategies of plant species on both calcareous and silicicolous semi-dry grasslands. The most frequent are competitive-ruderals (CR), which were especially strongly represented in the species composition of silicicolous semi-dry grasslands (33.34%). Examples of competitive-ruderals are species Agrostis capillaris, Carlina acaulis, Cirsium pannonicum, Linum catharticum, Plantago media, Rhinanthus gla-cialis and Stellaria graminea. Stress-tolerant competitors (SC) included some grasses, sedges and rushes, e.g. Carex flacca, Deschampsia caespitosa, Luzula luzuloi-des and Molinia caerulea. CSR strategists include small geophytes (e.g. Orchis tridentata, Orchis ustulata and Primula veris), small deep-rooted forbs with rosettes (e.g. Antennaria dioica, Plantago lanceolata, Scabiosa columbaria, Silene vulgaris) and small sedges like Carex ornithopoda (Append. 1 ). Tab. 1: CSR strategies of 143 plant species recorded in 62 relevés of dry grasslands from calcareous (30 relevés) and silicicolous (32 relevés) geological substrates. Values are percentage frequencies. Tab. 1: CSR strategije 143 rastlinskih vrst suhih travnikov na karbonatni (30 popisov) in silikatni (32 popisov) geološki podlagi. Vrednosti v tabeli ustrezajo frekvencam (%) pojavljanja vrst. Calcareous Silicicolous N of relevés 30 32 N of plant species 105 45 CSR plant strategy C 2.9 0.0 S 1.0 0.0 R 0.0 0.0 CR 19.1 33.3 SR 1.0 0.0 SC 17.1 11.1 CSR 17.1 8.9 C/CR 4.8 2.2 C/SC 3.8 2.2 C/CSR 3.8 0.0 CR/CSR 1.9 4.4 R/CR 2.9 4.4 R/CSR 0.0 0.0 R/SR 1.0 0.0 SR/CSR 4.8 2.2 SC/CSR 5.7 15.6 S/SC 5.7 6.7 S/CSR 5.7 6.7 S/SR 1.9 2.2 Sonja SKORNIK et a!.: RELATION BETWEEN CSR FUNCTIONAL SIGNATURES OF DRY GRASSLANDS ..., 101-112 The positions of calculated functional signatures for all 62 relevés of studied grasslands in CSR space are presented in Figure 2. Relevés are arranged on the right side of the triangle along the line, where stress and competition in various equilibria are the most important determinants of the vegetation. When calculating functional signatures, we considered the percentage of abundance of each plant species in relevé. Differences in functional signatures within the samples (relevés) of both vegetation types are due to fluctuations in abundance of dominant species which can be linked to differences in soil characteristics of microhabitat or to disturbance abundance (Fig. 2). Relevés of calcareous grassland positioned in the upper part of the triangle represent less-managed grasslands that exhibit conditions favourable to the species with stressed C component, such as Brachypodium pinnatum, Centaurea scabiosa subsp. fritschii and Peucedanum oreoseli-num. The relative importance of S-coordinate in the part of relevés of silicicolous grasslands was revealed due to the strong dominance of stress-tolerant grass species Nardus stricta in those vegetation samples. The comparison of relative proportions of C, S and R components among relevés showed significantly (P <0.0001) higher relative proportions of S component (mean=0.52, N=32) in silicicolous grasslands than in calcareous grasslands (mean=0.37, N=30). On the other hand, calcareous grasslands had significantly (P C Fig. 2: CSR ordination of releves (N=62, 143 species) of dry grasslands from calcareous and silicicolous geological substrates. Legend: ■ - calcareous dry grasslands; O - silicicolous dry grasslands. Sl. 2: CSR ordinacija popisov (N=62, 143 vrst) suhih travnikov na karbonatni in silikatni geološki podlagi. Legenda: ■ - popisi karbonatnih suhih travnikov; O -popisi silikatnih suhih travnikov. <0.0001) higher relative proportions of C component (mean=0.46, N=30) than acid grasslands (mean=0.31, N=32). DISCUSSION As expected and observed for a long time (e.g., Gigon, 1987, Grime, 1979; Partel, 2002), great floristic differences between the calcareous and non-calcareous (silicolous) grasslands were found. These habitats have only a few common species and many species related to either basic or acidic soil pH. It is generally accepted that the main reason why some substrates host different plant species than others lies in chemical processes and factors rather than in physical ones (temperature, moisture, etc.) (Kinzel, 1983; Gigon, 1987). The calcareous grasslands are characterized by high species richness, typical of these semi-natural grasslands (Bromion erecti) in extensive use, which are among the most species-rich habitats in Europe (Willems et a/., 1993). Partel (2002) and Ewald (2003) suggest that the relationship between local species density and soil pH is determined by regional species pool size (Zobel et a/., 1998), which in turn reflects the relative abundance of soil types during the evolutionary history of the flora. Ewald (2003) observed that calcareous sites in Central Europe have higher species density and larger species pool than acidic sites, and argues that this is due to a Pleistocene bottleneck for acidophiles. Peet et a/. (2003) contradict the assertion of Partel (2002) and Ewald (2003). They conclude that richness on higher pH sites is a result of generally more favorable conditions for plant growth and/or establishment. It is known that more baserich sites are generally more invasible (e.g., Davis et a/., 2000; Brown & Peet, 2003), presumably owing to greater resource availability on high-base sites. Under extreme acidity, the nutrient cations are so mobile that they are easily leached into groundwater (Gurevitch et a/, 2002). CSR classification of all species recorded (Tab. 1) expresses the response on stress and disturbance in the studied grasslands. The three primary C-, S-, and R-strategists represent extremes in the range of conditions available to plants (Grime, 2001) and are therefore very rare in grasslands we have researched. Namely, these are habitats experiencing intermediate intensities of stress and disturbance and in such circumstances the vegetation usually includes many species with strategies intermediate between those of the competitor, the stress-tolerator, and the ruderal (Grime, 2001). For the investigated unfertilised dry grasslands, effect of disturbance is mainly due to the mowing once a year (or even every second year) and occasional grazing (Kaligarič & Skor-nik, 2002; Skornik et a/., 2006). Although these disturbances are severe, they occur infrequently and prevent dominance by competitors. The competitive nature of Sonja ŠKORNIK et a/.: RELATION BETWEEN CSR FUNCTIONAL SIGNATURES OF DRY GRASSLANDS ..., 101-112 species in the present study is restricted also by moderate stress conditions, due to nutrient-deficient and shallow soils which experience desiccation during summer. Many species within competitive-ruderals and stress-tolerant competitors (e.g. $grosf/s cap/7/ar/es, Ca-rex I/acca, DescKamps/a caesp/fosa, 0o//n/a caeru/ea) are perennials showing capacity for rapid lateral vegetative spread and for efficient colonisation of temporary gaps (Lovett-Doust, 1981). According to Hunt ef a/. (2004), the integrative power of the functional signatures within the context of the CSR system of plant functional types is especially useful in comparative studies of widely differing samples. We hypothesized that despite very different floristic composition there will be no significant differences in functional signatures between relevés of silicicolous and calcareous dry grasslands. Our results do not support our hypotheses, however, they agree with the observations that more base-rich sites are less stressful for plants. We can observe some relevés, which showed similar values of functional signatures (Fig. 2). These were samples of calcareous grasslands characterised by severe level of stress due to extremely shallow dry soil and less-managed or even unmanaged samples of silicicolous dry grasslands. Species which were abundant in these habitats were stress-tolerant competitors (SC, S/SC). Examples are Carex Kum///s, .oe/er/a pyram/Gafa, LeonfoGon /n-canus, H/ppocrep/s comosa and D/anfKus carfKus/ano-rum, all species which were abundant in calcareous grasslands. The predominant stress-tolerant competitors in the case of overlapping acidic dry grasslands were members of the Ericaceae: Ca//una vu/gar/s, Vacc/n/um myrf///us and V. v/f/s-/Gaea. In Europe and North America these sclerophyllous shrubs species are very common and associated with nutrient-deficient acidic soils if management regimes allow the development of woody vegetation (Grime, 2001). Beside the soil chemistry, the altitudinal distribution of sample grasslands should not be neglected as well; the silicicolous grasslands were sampled in higher altitudes, where growing period is shorter and climatic conditions are sharper. These require plant strategies closer to S strategy, which was actually confirmed within the present study. In conclusion, although some authors have expressed doubts concerning the predictive power of CSR theory (Wilson & Lee, 2000), we have demonstrated its usefulness in comparative analysis of plant communities of widely differing species composition. PRIMERJAVA CSR FUNKCIONALNIH OZNAK SUHIH TRAVIŠČ Z DVEH RAZLIČNIH GEOLOŠKIH PODLAG Sonja Š.ORN/. Oddelek za biologijo, Fakulteta za naravoslovje in matematiko, Univerza v Mariboru, SI-2000 Maribor, Koroška 160 E-mail: sonja.skornik@uni-mb.si ./avG//a +4RTM4N Činžat 17, SI-2343 Fala 0/f/a .$L/G$R/Č Oddelek za biologijo, Fakulteta za naravoslovje in matematiko, Univerza v Mariboru, SI-2000 Maribor, Koroška 160 POVZETE. Z našo šfuG//o smo že/e// oGgovor/f/ na vprašan/e, a// raz//čna poG/aga - Narbonafna /n ne-Narbonafna s///Nafna vp//va na raz//Ne v CSR /unNc/ona/n/ oznaN/ GveK po sfruNfur/ poGobn/K rasf//nsN/K zGružb. Za lunNc/ona/no pr/mer-/avo smo uporab/'//' Gr/'me-ov moGe/ CSR eNo/ošN/K sfrafeg// rasf//n. Proučevan/ suK/ fravn/N/ preGsfav//a/o anfropoge-n/ Kab/faf, N/ /e nasfa/ Nof pos/eG/ca Go/gofra/ne fraG/c/ona/ne eNsfenz/vne paše oz. Nošn/e. To so frav/šča z zmerno proGuNcZ/o, N/ so N//ub Nonfrasfn/ geo/ošN/ poG/ag/ poGvržena pr/mer///v/ Nomb/nac/// zmerne mofn/e fer sfresa. S/eG-n// /e preGvsem pos/eG/ca poman/Nan/a Kran// v f/eK fer voGnega sfresa zaraG/ p//fN/K Namn/f/K fa/, N/ se v po/efn/K mesec/K pogosfo /zsuš//o. TaNo smo posfav/// K/pofezo, Ga N//ub ze/o raz//čn/ I/or/sf/čn/ sesfav/ ne bomo naš// sfaf/sf/-čno znač/7n/K raz//N v lunNc/ona/n/K oznaNaK za oba f/pa vegefac//e. $na//z/ra// smo 30 I/foceno/ošN/K pop/sov suK/K fravn/Nov na Narbonaf/K (asoc. Scabioso hladnikianae-Caricetum humilis, zveza Bromion erecti) fer 32 I/foceno/ošN/K pop/sov s/7/Nafn/K suK/K fravn/Nov (asoc. Homogyno alpinae-Nardetum, zveza Nardo-Agrostion tenuis). Na osnov/ pr/mer/ave I/or/sf/čne sesfave smo pofrG///, Ga se suK/ fravn/N/ na Narbonafn/ /n s/V/Nafn/ geo/ošN/ poG/ag/ meG sabo Sonja ŠKORNIK et al.: RELATION BETWEEN CSR FUNCTIONAL SIGNATURES OF DRY GRASSLANDS ..., 101-112 zelo razlikujejo, saj se od zabeleženih skupno 142 vrst, samo 7 rastlinskih vrst pojavlja tako na silikatnih kot tudi na karbonatnih travnikih. Primerjavo tipov CSR ekoloških strategij smo izvedli na osnovi frekvenc (v %) pojavljanja vrst v skupinah popisov. Pokazala je, da je sestava CSR tipov ekoloških strategij na obeh tipih suhih travnikov zelo podobna. Na obeh traviščih prevladujejo vrste s t.i. sekundarnimi CSR ekološkimi strategijami C-R, C-S in CSR, značilne za vrste podvržene zmernemu stresu in motnji. Pri izračunavanju funkcionalih oznak popisov upoštevamo ne samo prisotnost/odsotnost temveč tudi pokrovnost vrst v popisih. Primerjava razporeditve funkcionalnih oznak popisov v CSR trikotniku je tako pokazala, da imata na proučevana suha travišča najpomembnejši vpliv stres in kompeticija v različnih razmerjih. Razlike v funkcionalnih oznakah med popisi znotraj posameznega tipa suhih travnikov se pojavljajo zaradi nihanja v pogostnosti dominantnih vrst, ki so posledica razlik v talnih razmerah ter stopnjah motnje. Kljub temu, da so si funkcionalne oznake nekaterih popisov iz različnih geoloških podlag zelo podobne, pa so statistične analize pokazale statistično značilne večje relativne deleže komponente S in manjše relativne deleže komponente C v popisih silikatnih travnikov. Naši rezultati tako ne podpirajo naše hipoteze, v kateri smo predvideli, da ne bomo našli statistično značilnih razlik v funkcionalnih oznakah za oba tipa vegetacije. Zato pa lahko naše izsledke uporabimo za potrditev domneve o bolj stresnih razmerah na rastiščih z nižjimi pH vrednostmi tal. Ta domneva namreč predstavlja enega izmed najpogostejših odgovorov, ki ga različni raziskovalci ponujajo na zelo znano vprašanje v ekologiji rastlin, zakaj obstaja toliko večja vrstna pestrost na tleh z višjimi vrednostmi pH v primerjavi s tlemi z nižjimi pH vrednostmi. Ključne besede: karbonatni suhi travniki, silikatni suhi travniki, vrstna sestava, funkcionalni tipi rastlin, morfološke poteze rastlin, Slovenija REFERENCES Braun-Blanquet, J. (1964): Pflanzensoziologie. Grundzuge der Vegetationskunde. Springer Verlag, Wien, 865 P- Brown, R. L. & R. K. Peet (2003): Diversity and invasi-bility of southern Appalachian plant communities. Ecology, 84, 32-39. Caccianiga, M., A. Luzzaro, S. Pierce, R. M. Ceriani & B. Cerabolini (2006): The functional basis of a primary succession resolved by CSR classification. Oikos, 112, 10-20. Chapin, F. S. I., M. S. Bret-Harte, S. E. Hobbie & H. Zhong (1996): Plant functional types as predictors of transient responses of arctic vegetation to global change. J. Veg. Sci., 7, 347-358. Cornelissen, J. H. C., S. Lavorel, E. Gernier, S. Diaz, N. Buchmann, D. E. Gurvich, P. B. Reich, H. ter Steege, H. D. Morgan, M. G. A. van der Heijden, J. G. Pausas & H. Poorter (2003): A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot., 51, 335-380. Davis, M. A., J. P. Grime & K. Thompson (2000): Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol., 88, 528-534. Diaz, S. & M. Cabido (1997): Plant functional types and ecosystem function in relation to global change. J. Veg. Sci., 8, 63-474. Diaz, S., A. Acosta & M. Cabido (1992): Morphological analysis of herbaceous communities under different grazing regimes. J. Veg. Sci., 3, 689-696. Diaz, S., S. Mclntyre, S. Lavorel & J. G. Pausas (2002): Does hairiness matter in Harare? Resolving controversy in global comparisons of plant trait responses to ecosystem disturbance. New Phytol., 154, 7-9. Diaz, S., J. G. Hodgson, K. Thomspon et al. (2004): The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci., 15, 295-304. Dierschke, H. (1994): Pflanzensoziologie: Grundlage und Methode. Ulmer, Stuttgart, 864 p. Furlan, D. (1980): Klimatski prikaz Severovzhodne Slovenije. HMZS, Ljubljana. Duckworth, J., M. Kent & P. M. Ramsay (2000): Plant functional types: an alternative to taxonomic plant community description in biogeography? Prog. Phys. Geog., 24, 515-542. Ewald, J. (2003): The calcareous riddle: why are there so many calciphilous species in the central Europaean flora? Folia Geobot., 38, 357-366. Gigon, A. (1987): A hierarchic approach in causal ecosystem analysis: the calcifuge-calcicole problem in Alpine grasslands. Ecol. Stud., 61, 228-244. Gitay, H. & l. R. Noble (1997): What are plant functional types and how should we seek them? In: Smith, T. M, H. H. Shugart & F. I. Woodwart (eds.): Plant functional types. Cambridge University Press, Cambridge, pp. 3-19. Grabherr, G. & L. Mucina (eds.) (1993): Die Planzenge-sellschaften Österreichs. Teil II. Natürliche waldfreie Vegetation. Gustav Fischer Verlag Jena, Stuttgart, New York, 523 p. Sonja ŠKORNIK et al.: RELATION BETWEEN CSR FUNCTIONAL SIGNATURES OF DRY GRASSLANDS ..., 101-112 Grime, J. P. (1974): Vegetation classification by reference to strategies. Nature, 250, 26-31. Grime, J. P. (1977): Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat., 111, 1169-1194. Grime, J. P. (1979): Plant strategies and vegetation processes. Wiley. Grime, J. P. (2001): Plant strategies, vegetation processes, and ecosystem properties. John Wiley & Sons, Chichester, 222 p. Grime, J. P., J. G. Hodgson & R. Hunt (1988): Comparative plant ecology: a functional approach to common British species. Unwin Hyman Ltd., London, 742 p. Gurevitch, J., S. M. Scheiner & G. A. Fox (2002): The ecology of plants. 2nd Ed. Sinauer Associates, Sunderland, MA, 523 p. Hermy, M. & H. Stieperaere (1985): Capitalists and proletarians (MacLeod, 1894): an early theory of plant strategies. Oikos, 44, 43-49. Hills, J. M., K. J. Murphy, I. D. Pulford & T. H. Flowers (1994): A method for classifying Europaean riverrine wetland ecosystems using functional vegetation groups. Funct. Ecol. 8, 242-252. Hinterlechner-Ravnik, A. (1995): O geologiji Pohorja. Proteus, 57, 334-339. Hodgson, J. G., P. J. Wilson, R. Hunt, J. P. Grime & K. Thompson (1999): Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos, 85, 282-294. Hunt, R., J. G. Hodgson, K. Thompson, P. Bungener, N. P. Dunnett & A. P. Askew (2004): A new practical tool for deriving a functional signature for herbaceous vegetation. Appl. Veg. Sci., 7, 163-170. Kaligaric, M. & S. Skornik (2002): Contribution to the knowledge of the dry grassland vegetation on the highland areas of the Pohorje Mountain (Slovenia). Annales, Ser. Hist. Nat., 12(1), 53-60. Kaligaric, M., M. Culiberg & B. Kramberger (2006): Recent vegetation history of the North Adriatic grasslands: expansion and decay of an anthropogenic habitat. Folia Geobot., 41, 241-258. Keddy, P. A. (1992): A pragmatic approach to functional ecology. Funct. Ecol., 6, 621-626. Kinzel, H. (1983): Influence of limestone, silicates and soil pH on vegetation. In: Lange, O. L., P. S. Nobel, C. B. Osmond & H. Ziegler (eds.): Physiological Plant Ecology. III. Responses to the Chemical and Biological Environment. Encyclopedia of Plant Physiology, New Series, Vol. 12C. Springer Verlag, Berlin, Heidelberg, pp. 201244. Korner, C. (1993): Scaling from species to vegetation: the usefulness of functional groups. In: Schulze, E. D. & H. A. Mooney (eds.): Biodiversity and Ecosystem Function. Ecological Studies. Springer Verlag, Berlin, pp. 116-140. Lavorel, S., S. Mclntyre, J. Landsberg & T. D. A. Forbes (1997): Plant functional classification: from general groups to specific groups based on response to disturbance. Trends Ecol. Evol., 12, 474-478. Leishman, M. R. & M. Westoby (1992): Classifying plants into groups on the basis of associations of individual traits - evidence from Australian semi-arid woodlands. J. Ecol., 80, 417-424. Lovett-Doust, L. (1981): Population dynamics and local specialisation in a clonal perennial (Ranunculus repens). I. The dinamics of ramets in contrasting habitats. J. Ecol., 69, 743-755. Martincic, A., T. Wraber, N. Jogan, A. Podobnik, B. Turk & B. Vreš (2007): Mala flora Slovenije. Kjuč za določanje praprotnic in semenk. Tehniška založba Slovenije, Ljubljana, 967 str. Mucina, L., G. Grabherr & T. Ellmauer (eds.) (1993): Die Pflanzengesellschaften Österreichs. Teil I. Anthro-pogene Vegetation. Gustav Fischer Verlag, Jena, 578 p. Noble, l. R. & H. Gitay (1996): A functional classification for predicting the dynamics of landscapes. J. Veg. Sci., 7, 329-336. Partei, M. (2002): Local plant diversity patterns and evolutionary history at the regional scale. Ecology, 83, 2361-2366. Peet, R. K., J. D. Fridley & J. M. Gramling (2003): Variation in species richness and species pool size across a pH gradient in forests of the Southern Blue Ridge Mountains. Folia Geobot., 38, 391-401. Pipenbaher, N., M. Kaligaric, S. Skornik (2008): Functional comparison of the sub-Mediterranean illyrian meadows from two distinctive geological substrates. Annales, Ser. Hist. Nat., 18(2), 247-258. Ramenskiy, L. G. (1938): Introduction to the geobotani-cal study of complex vegetations. Selkozgiz, Moscow, RU. Silvertown, J., M. Franco & K. McConway (1992): A demographic interpretation of Grime's triangle. Funct. Ecol., 6, 130-136. SPSS inc. (2006): SPSS Base 15.0 User's Guide. SPSS Inc., Chicago, IL. Skornik, S. (2001): A contribution to the knowledge of dry grassland vegetation of the Brometalia erect! Koch 1926 order in Slovenia. Acta Biol. Slov., 44, 29-43. Skornik, S. (2003): Suha travišča reda Brometalia erecti Koch 1926 na Goričkem (SV Slovenija). Hacquetia, 2, 71-90. Skornik, S., M. Loncar & M. Kaligaric (2006): Vegetation of silicicolous grasslands of the highlands of NorthEastern Slovenia. Hacquetia, 5, 193-211. Tilman, D. (1988): Plant strategies and the dynamics and structure of plant communities. Princeton University Press, 360 p. Walker, B. H. (1992): Biodiversity and ecological redundancy. Conserv. Biol., 6, 18-23. Sonja SKORNIK et al.: RELATION BETWEEN CSR FUNCTIONAL SIGNATURES OF DRY GRASSLANDS ..., 101-112 Westhoff, V. & E. van der Maarel (1973): The Braun-Blanquet approach. Handb.Veg. Sci., 5, 156-172. Willems, J. H., R. K. Peet & L. Bik (1993): Changes in chalk-grassland structure and species richness resulting from selective nutrient addition. J. Veg. Sci., 4, 203-212. Willson, J. B. & W. G. Lee (2000): C-S-R triangle theory: community-level predictions, tests, evaluation of criticisms, and relation to other theories. Oikos, 91, 77-96. Woodward, F. I. & W. Cramer (1996): Plant functional types and climatic changes: Introduction. J. Veg. Sci., 7, 306-308. Zelnik, I. & A. Carni (2008): Distribution of plant communities, ecological strategy types and diversity along a moisture gradient. Community Ecol., 9, 1-9. Zobel, M., M. Van der Maarel & C. Dupre (1998): Species pool: the concept, its determination and significance for community restoration. Appl. Veg. Sci., 1, 5566. Species CSR plant strategy Calcareous Silicicolous Acinos alpinus CSR* 70 Agrostis capillaris CR 9 Anacamptis pyramidalis R/CR 20 Anemone nemorosa C/SC 19 Antennaria dioica CSR* 17 2S Anthericum ramosum C/CR S7 Anthoxanthum odoratum SR/CSR 20 16 Anthyllis vulneraria CR 80 Arnica montana CR 97 Arrhenatherum elatius C/CSR 13 Asperula cynanchica SR/CSR 63 Avenella flexuosa SC/CSR 63 Avenochloa pubescens CR 13 Betonica officinalis C/CR 13 Brachypodium rupestre C 100 Briza media SC/CSR 80 Bromopsis erecta agg. C/CSR 83 Buphthalmum salicifolium CR 93 Calluna vulgaris SC 78 Campanula barbata CR 7S Carex caryophyllea S 87 Carex flacca SC 60 Carex humilis S/SC S0 Carex montana S/SC 70 Carex ornithopoda CSR* 27 Carex pilulifera SC/CSR 34 Carlina acaulis CR 67 Carlina vulgaris CR 13 Centaurea pannonica CR 10 Centaurea jacea subsp. jacea SC/CSR 30 Centaurea scabiosa subsp. fritschii C/CR 90 Centaurea triumfettii CR 20 Appendix 1: A list of 143 plant species recorded in 62 relevés of dry grasslands from calcareous (30 relevés) and silicicolous (32 relevés) geological substrates. Species values are percentage frequencies. (*) Data from look-up table with CSR types for 1000 European species (source f. G. Hodgson, UCPE Sheffield). Priloga 1: Seznam 143 rastlinskih vrst zabeleženih v 62 popisih suhih travišč na apnenčasti (30 popisov) in silikatni (32 popisov) geološki podlagi. Vrednosti ustrezajo frekvencam pojavljanja vrst v skupinah popisov (*) Podatki, ki smo jih povzeli iz tabele s CSR tipi za 1000 vrst Evropske flore (vir f. G. Hodgson, UCPE Sheffield). Species CSR plant strategy Calcareous Silicicolous Chamaecytisus supinus SC/CSR 33 Chamaespartium sagittale S/CSR 10 Cirsium pannonicum CR 70 Cruciata glabra S/SC 23 13 Dactylis glomerata C/CSR 50 Deschampsia caespitosa SC 16 Dianthus carthusianorum SC 63 Dorycnium germanicum CR/CSR 17 Euphorbia cyparissias CSR 60 Euphorbia verrucosa S/SC 63 Euphrasia stricta CR/CSR 6 Festuca rubra agg. CSR 50 Festuca rupicola S/CSR 87 Galium mollugo C/CSR 13 Galium verum SC/CSR 40 Genista januensis CS* 77 Gentiana cruciata CR 19 Gentiana pannonica CR 22 Gentiana utriculosa SR/CSR 20 Gentiana verna subsp. tergestina SC 20 Gentianella germanica CSR* 20 Geranium sanguineum C/SC 33 Globularia cordifolia SC 10 Globularia punctata C/SC 80 Gymnadenia conopsea S/SR* 40 44 Helianthemum ovatum SR/CSR 93 Hieracium aurantiacum CR 28 Hieracium bauhinii C/CR 30 Hieracium laeviculae CR 41 Hieracium pilosella SC 17 Hippocrepis comosa SC 73 Homogyne alpina CR 47 Hypericum montanum SC/CSR 6 Hypericum perforatum SC 13 Hypochoeris maculata C/CR 53 Hypochoeris uniflora CR 25 Inula salicina CS* 17 Knautia drymeia CR 50 Koeleria pyramidata S/SC 100 Laserpitium siler C/SC 23 Leontodon helveticus R/CR 47 Leontodon hispidus subsp. danubialis CR 37 Leontodon incanus SC 73 Leucanthemum vulgare C* 40 Leucanthemum ircutianum CR 9 Lilium martagon CSR* 10 Linum catharticum CR 67 Linum viscosum CS* 10 Lotus corniculatus SC/CSR 77 Luzula campestris S/CSR 17 41 Species CSR plant strategy Calcareous Silicicolous /uzu/a /uzu/o/'Ges SC 41 /uzu/a p/'/osa SC/CSR 44 /uzu/a s\/vaf/'ca SC/CSR 38 L\cKn/'s I/os-cucu// CR 38 0eG/'cago /upu//'na R/SR 17 0e/amp\rum prafense CR/CSR 75 0o//n/'a caeru/ea SC 6 NarGus sfr/'cfa S/CSR 100 OrcK/'s mor/'o S/SR 13 OrcK/'s fr/'Genfafa CSR* 33 OrcK/'s usfu/afa CSR* 23 PeuceGanum cervar/'a C 10 PeuceGanum oreose//'num C/SC 83 PK\feuma orb/'cu/are SC 30 PK\feuma sp/'cafum C/CR 6 P/'mp/ne//a sax/'fraga CR 47 P/anfago /anceo/afa CSR 83 P/anfago meG/'a CR 90 P/afanfKera b/Yo//a R/CR 10 Po/\ga/a cKamaebuxus CS* 23 Po/\ga/a comosa S/SC 90 Po/\ga/a vu/gar/'s SC/CSR 13 6 Po/\gonafum oGorafum CR 13 Pofenf/'//a erecfa S/CSR 27 100 Pr/'mu/a vu/gar/'s CSR* 33 Prune//a granG/I/ora CR/CSR 43 Prune//a /ac/'n/'afa CR 27 Prune//a vu/gar/'s R/CR 17 PseuGorcK/'s a/b/'Ga R/CR 13 Pu/saf/'//a granG/'s CSR* 10 Ranuncu/us acr/'s CSR 9 Ranuncu/us bu/bosus SR 43 Ranuncu/us nemorosus CR 33 RK/'nanfKus g/ac/'a//'s CR 57 RK/'nanfKus m/'nor SR/CSR 10 RK/'nanfKus pu/cKer CR 6 Sa/v/'a prafens/'s CR 50 Sangu/'sorba m/'nor SC 97 Scab/'osa co/umbar/'a CSR* 17 Scab/'osa K/aGn/'N/'ana CR 53 Scab/'osa fr/'anGra CR 63 S/'/ene nufans S/CSR 40 S/'/ene vu/gar/'s CSR* 20 So//'Gago v/'rgaurea CR 59 SfacK\s recfa SC 37 Sfe//ar/'a gram/'nea CR 6 7eucr/'um cKamaeGrys SC/CSR 6 7Ka//'cfrum m/'nus S/CSR 13 7Kes/'um bavarum CSR* 60 Species CSR plant strategy Calcareous Silicicolous Thlaspi praecox SC 33 Thymus pulegioides SC/CSR 60 Tofieldia calyculata CS* 13 Trifolium montanum SC 83 Trifolium pratense CSR 17 Vaccinium myrtillus S/SC 66 Vaccinium vitis-idaea S/SC 69 Veratrum album subsp. album CR 50 Veronica chamaedrys CSR 10 6 Veronica jacquinii SC 63 Viola canina CSR* 13