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Abstract. The problem of extracting photoproduction amplitudes uniquely from so called
complete experiments is discussed. This problem can be considered either for the extrac-
tion of full production amplitudes, or for the determination of multipoles. Both cases are
treated briefly. Preliminary results for the fitting of multipoles, as well as the determina-
tion of their error, from recent polarization measurements in the ∆-region are described in
more detail.

1 Introduction to the formalism

For the photoproduction of a single pseudoscalar mesons, i.e. γN −→ PB, it can
be shown that the most general expression for the reaction amplitude, with spin
and momentum variables specified in the center of mass frame (CMS), reads (cf.
the work by CGLN [1])

FCGLN = iσ · ε̂ F1 + σ · q̂ σ · k̂× ε̂ F2 + iσ · k̂ q̂ · ε̂ F3 + iσ · q̂ q̂ · ε̂ F4 . (1)

Each spin-momentum structure in this expansion is multiplied by a complex
function depending on the total energy W and meson scattering angle θ in the
CMS. The 4 functions {Fi (W,θ) ; i = 1, . . . , 4} are called CGLN-amplitudes and
contain all information on the dynamics of the reaction.

Since all particles in the reaction except for the mesonP have spin, the prepa-
ration of the spin degrees of freedom in the initial state as well as the (generally
more difficult) measurement of the polarization of the recoil baryon B facilitate
the experimental determination of 16 polarization observables, summarized in
Table 1. All observables are definable as asymmetries among different polariza-
tion states (see [2]). They contain the unpolarized differential cross section σ0, the
three single spin observables {Σ, T, P} (corresponding to beam, traget and recoil
polarization), as well as twelve double polarization observables which are divisi-
ble into the distinct classes of beam-target (BT), beam-recoil (BR) and target-recoil
(TR) observables.

Once the equations connecting the measurable observables to the model in-
dependent production amplitudes are worked out (reference [2] contains instruc-
tions on how to do this), it becomes apparent that all of these relations can be
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Table 1. The 16 polarization observables accessible in pseudoscalar meson photoproduc-
tion (for a more elaborate version of this Table, cf. [2]).

Beam Target Recoil Target + Recoil
- - - - x ′ y ′ z ′ x ′ x ′ z ′ z ′

- x y z - - - x z x z

unpolarized σ0 T P Tx ′ Lx ′ Tz ′ Lz ′

linearly pol. Σ H P G Ox ′ T Oz ′

circularly pol. F E Cx ′ Cz ′

summarized by the relation

Ω̌α =
q

k
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ijFj =

q

k

1

2
〈F| Âα |F〉 , α = 1, . . . , 16. (2)

The 16 real profile functions Ω̌α, connected to the polarization observables via
Ω̌α = σ0Ω

α, are bilinear hermitean forms in the CGLN amplitudes and can be
represented by the generally complex hermitean matrices Âα (cf. [5] for a listing
of those).

A change of the basis of spin quantization for the photoproduction reaction
allows for the definition of different systems of spin amplitudes. Helicity ampli-
tudes Hi (W,θ) or transversity amplitudes bi (W,θ) are possible choices (cf. [4]).
The different kinds of amplitdues are all related among each other in a linear and
invertible way. Therefore, they can be seen as fully equivalent regarding their in-
formation content. The expressions for the polarization observables in the afore
mentioned different systems of spin amplitudes retain the mathematical structure
of equation (2), while the observables are now represented by different matrices

Ω̌α =
q

k

1

2
〈H| Γα |H〉 = q

k

1

2
〈b| Γ̃α |b〉 . (3)

The Γα (or Γ̃α in case of transversity amplitudes) are a set of 16 hermitean unitary
Dirac Γ -matrices (cf. [4,5]). They have useful properties, the exploitation of which
facilitates the identification of complete experiments.

2 Complete experiments for spin amplitudes

Since photoproduction allows access to 16 polarization observables but needs 4
complex amplitudes for a model independent description (constituting just 8 real
numbers), the fact can be anticipated that measuring all observables would mean
an overdetermination for the problem of extracting amplitudes.

This issue has triggered investigations on so called complete experiments
(cf. [3, 4]), which are subsets of a minimum number of observables that allow for
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a unique extraction of the amplitudes. Here one generally means unique only
only up to an overall phase, since equations (2, 3) are invariant by a simultane-
ous rotation of all amplitudes by the same phase. Also, the complete experiment
problem is first of all a precise mathematical problem disgregarding measure-
ment uncertainties.

Chiang and Tabakin have published a solution to this problem (cf. [4]) that
shall be depicted here. First of all it was noted that, using the fact that the Γ̃ -
matrices are an orthonormal basis of the complex 4× 4-matrices, equation (3) can
be inverted in order to yield expressions for the bilinear products

b∗ibj =
1

2

∑
α

(
Γ̃αij
)∗
Ω̌α. (4)

This relation allows for the determination of the moduli |bi| and relative phases
φbij of the bi and therefore fully constrains them up to an overall phase. Gener-
alizations of equation (4) for helicity and CGLN amplitudes are possible (see [5])
but shall not be quoted here.

Another important property of the Γ̃ is that they imply quadratic relations
among the observables known as the Fierz identities (see [4])

Ω̌αΩ̌β =
∑
δ,η

Cαβδη Ω̌
δΩ̌η, (5)

where Cαβδη = (1/16)Tr
[
Γ̃δΓ̃αΓ̃ηΓ̃β

]
.

Equations (4) and (5) are all that is needed to prove that 8 carefully cho-
sen observables suffice in order to obtain a complete experiment ( [4]). Among
those should be the unpolarized cross section and the three single polarization
observables. The remaining quantities have to be picked from at least two differ-
ent classes of double polarization observables, with no more than two of them
from the same class. The word ’prove’ means in this case that for all cases men-
tioned in reference [4], equation (5) was used to express the missing 8 observables
in terms of the measured ones.

In practical investigations of photoproduction data, the goal is not to deter-
mine the full reaction amplitudes, but rather the partial waves, in this case called
multipoles.

3 Complete experiments in a truncated partial wave analysis

The expansions of the full amplitudes Fi into multipoles are known (cf. eg. [2]).
In case these expansions are truncated at some finite angular momentum quan-
tum number `max, an approximation that is justified for reactions with supressed
background contributions (eg. π0 photoproduction), then the profile functions
defined in equation (2) can be arranged as a finite expansion into associated Leg-
endre polynomials

Ω̌α (W,θ) =
q

k

2`max+βα+γα∑
k=βα

(aL)
α
k (W)Pβαk (cos θ) , (6)

(aL)
α
k (W) = 〈M`max (W)| (CL)αk |M`max (W)〉 . (7)
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The parameters βα and γα defining this expansion are given in Table 2 (the whole
notation is according to [6]).

The real Legendre coefficients (aL)
α
k are given as bilinear hermitean forms in

terms of the 4`max multipoles, which are gathered in the vector |M`max〉. Therefore,
the problem of multipole-extraction from a set of fitted coefficients (aL)

α
k leads

to a similar mathematical structure compared to the equation (2) encountered
in the investigation of complete experiments in section 2. The question for such
complete sets can now be asked again, but in the context of a truncated partial
wave analysis (TPWA).

Table 2. The parameters defining the TPWA problem, equations (6) and (7).

Type Ω̌α α βα γα Type Ω̌α α βα γα

I (θ) 1 0 0 Ǒx ′ 14 1 0

S Σ̌ 4 2 −2 BR Ǒz ′ 7 2 −1

Ť 10 1 −1 Čx ′ 16 1 0

P̌ 12 1 −1 Čz ′ 2 0 +1

Ǧ 3 2 −2 Ťx ′ 6 2 −1

BT Ȟ 5 1 −1 TR Ťz ′ 13 1 0

Ě 9 0 0 Ľx ′ 8 1 0

F̌ 11 1 −1 Ľz ′ 15 0 +1

It is a very interesting fact that in this case, the number of observables that
is needed for completeness reduces as compared to the case with full production
amplitudes. This is true at least in the mathematically precise situation, without
measurement uncertainty. The algebra that is needed to prove this result was first
worked out by Omelaenko [7] (for a recent and more detailed account, cf. [8]).

It is sufficient to investigate the discrete ambiguities allowed by the group S
observables, i.e. {σ0, Σ, T, P}. It is then seen that the latter are invariant under one
mathematical ambiguity transformation, called the ’double ambiguity’, which is
present in principle for all energies. There may also be additional pairs of solu-
tions, called accidential ambiguities, depending on the numerical confguration of
the Legendre coefficients. It can however be shown that those play no role for the
mathematically exact case. The above mentioned double ambiguity on the other
hand can be resolved by either the F or G observable, as well as every observable
from the BR and TR classes. Therefore one is lead to mathematically complete
sets containing just 5 observables, for example

{σ0, Σ, T, P, F} . (8)

4 TPWA fits using the bootstrapping method

Here we will describe preliminary results of a TPWA fit to actual data comprising
the set of observables (8). The observables σ0 and Σ are taken from the works [9]
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and [10]. Recent measurements of T and F were performed at MAMI [11]. For P
we take the Kharkov data [12].

The fit procedure proceeds as follows, using a truncation at `max = 1 (S-
and P-waves). First, Legendre coefficients are determined by fitting the angu-
lar distributions (6) to the data. The index set for the fitted observables is αF ∈
{1, 4, 10, 12, 11} (cf. Table 2) in this particular case here. In the next step, we mini-
mize the functional (up to now omitting correlations)

ΦM (M`max) =
∑
αF,k

((
aFit
L

)αF
k

− 〈M`max | (CL)αFk |M`max〉
∆
(
aFit
L

)αF
k

)2
, (9)

using the results from the angular fit and varying the real and imaginary parts of
the multipoles (the FindMinimum routine of MATHEMATICA is employed). The
overall phase of the multipoles is constrained to Re [E0+] ≥ 0 and Im [E0+] = 0,
since this phase can never be obtained from a truncated fit to the data alone.

In order to exclude any kind of model dependencies, the start parameters
for the fit are not taken from a prediction, but are determined randomly by using
a Monte Carlo sampling of the relevant, (8`max − 1) = 7 dimensional multipole
space (the space spanned by the real and imaginary parts). This sampling is sim-
plified by the fact that the total cross section σ̂, being a sum of moduli-squared
of multipoles, already constrains the relevant part of the multipole space to a 6
dimensional ellipsoid.
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Fig. 1. Histograms resulting from the bootstrapping at ELAB
γ ≈ 338MeV.

The amount ofNMC = 1000Monte Carlo start configurations was chosen. It
has to be reported that using this procedure, it was possible to find a pronounced
best minimum for the dataset under investigation.

In addition one would wish to have an estimate for the errors of the resulting
multipoles, as well as a check whether the data allow any ambiguities caused by
their finite precision. To achieve both tasks, a method known as ’bootstrapping’
was chosen ( [13]). In this approach, the data are resampled using a gaussian
distribution function centered at µ = Ω̌α having a width σ = ∆Ω̌α for each dat-
apoint. In this way, an ensemble of 250 additional datasets was generated, each
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Fig. 2. Results of the bootstrapping procedure for S- and P-wave multipoles (red: Kharkov
P data; blue: SAID-predictions for P). The colored model curves are for comparison taken
from MAID [14] (green), SAID [15] (brown) and Bonn-Gatchina [16] (cyan).

time starting at the original datapoints. The above mentioned TPWA fit proce-
dure was then applied to each ensemble member. If a good minimum is found
in each case, one can histogram the results and extract mean and width for each
parameter (cf. Figure 1).

The bootstrap did not show any indications of ambiguities allowed by the
data. Therefore, the results for mean and width of the single solution found can
be plotted against energy, the result of which is shown in Figure 2.

Because the errors of the Kharkov dataset are very large, additional fits were
performed replacing these data by a SAID-prediction for P which has been en-
dowed with a 5%-error at each datapoint. The results indicate that the uncer-
tainty of the multipoles, especially forM1−, is quite sensitive to this replacement
(Figure 2).

5 Summary and outlook

Mathematically complete sets of observables contain a minimum number of 8 in
the case of spin amplitude extraction and 5 for a TPWA. First investigations of a
particularly simple fit in the ∆-region confirm the latter result.

Bootstrapping methods were proposed in order to get a good estimate for
the error of the fitted multipoles. This error is seen to shrink in case more precise
pseudodata for the recoil polarization observable P are introduced.
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Popolni eksperimenti pri fotoprodukciji psevdoskalarnih
mezonov

Yannick Wunderlich

Helmholtz-Institut fuer Strahlen- und Kernphysik, Universitaet Bonn, Nussallee 14-16,
53115 Bonn, Germany

Predstavim problem, kako enolično izvrednotiti amplitude za fotoprodukcijo iz
tako imenovanih popolnih eksperimentov. Pri tem smo lahko pozorni na dolo-
čanje amplitude za celotno tvorbo ali pa na določanje multipolov. Na kratko
obravnavam oba primera. Podrobneje opišem preliminarne rezultate prilagajanja
multipolov kakor tudi določanja njihovih napak pri nedavnih meritvah polar-
izacije v področju resonance ∆.

Novi spektroskopski rezultati iz laboratorija Belle

Marko Bračko

Univerza v Mariboru, Smetanova ulica 17, SI-2000 Maribor, in Institut J. Stefan, Jamova
cesta 39, SI-1000 Ljubljana

V prispevku predstavimo izbrane rezultate spektroskopskih meritev, opravljenih
na izmerjenih podatkih, pridobljenih z detektorjem Belle, ki je stal ob trkalniku
KEKB v laboratoriju KEK v Cukubi, na Japonskem. Trkalnik je obratoval med
letoma 1999 in 2010, v tem času pa je s stabilnim delovanjem pri trkih elek-
tronov in pozitronov različnih energij postal prava “tovarna” parov mezonov
B, mezonov D in še leptonov tau. Ogromne količine kakovostnih podatkov so
omogočile tudi številne spektroskopske meritve. Izbor tukaj predstavljenih rezul-
tatov ustreza zanimanju in razpravam na delavnici.

Produkcija mezonov eta in kaonov v kiralnem kvarkovem
modelu

Bojan Golli

Pedagoška fakulteta, Univerza v Ljubljani in Institut J. Stefan, Ljubljana, Slovenija

Formalizem sklopljenih kanalov, ki vključuje kvazi vezana večkvarkovska stanja,
uporabimo za izračun sipalnih in fotoprodukcijskih amplitud mezonov eta in
kaonov. Sklopitvene konstante in oblikovne faktorje določimo v modelu oblačne
vreče. Model napove znatne amplitude v parcialnih valovih P13, P33 in S11, v
skladu z najnovejšimi analizami parcialnih valov skupine iz Mainza in skupine
iz Bonna in Peterburga.


