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Muzejski trg 2, 6000 Koper, Slovenia

and
Mathematical Institute of the Serbian Academy of Science and Arts,

Knez Mihajlova 36, 11000 Belgrade, Serbia

Received 5 May 2014, accepted 15 May 2014, published online 24 January 2015

Abstract

Let p be a permutation of the set Nn = {1, 2, . . . , n}. We introduce techniques for
counting N(n; k, r, I;π), the number of even or odd restricted permutations of Nn satisfy-
ing the conditions−k ≤ p(i)−i ≤ r (for arbitrary natural numbers k and r) and p(i)−i 6∈ I
(for some set I) and π = 0 for even permutations and π = 1 for odd permutations.
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1 Introduction
Let p be a permutation of the set Nn = {1, 2, . . . , n}. So, p(i) refers to the value taken by
the function p when evaluated at a point i. A class of permutations in which the positions
of the marks after the permutation are restricted can be specified by an n× n (0, 1)-matrix
A = (aij) in which:

aij =

{
1, if the mark j is permitted to occupy the i-th place;
0, otherwise.

The following result is a well known fact on the number of restricted permutations.
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Theorem 1.1 ([1]). The number of restricted permutations is given by the permanent of a
square matrix A:

perA =
∑
p∈Sn

a1p(1)a2p(2) · · · anp(n),

where p runs through the set Sn of all permutations of Nn.

Next, we will define strongly and weakly restricted permutations (for more informa-
tions see [13]).

Definition 1.2. In strongly restricted permutations of Nn, the number ri =
∑n
j=1 aij is

uniformly small, i.e., ri ≤ K (i = 1, 2, . . . , n), where K is an integer independent of n. In
weakly restricted permutations, n− ri is uniformly small.

Let us briefly overview historical development of the topic of restricted permutations.
Probably the most well known example is the derangement problem or “le Problème des
Rencontres” (see [1] or [6]). Most of the restricted permutations considered in current
literature deal with pattern avoidance. For surveys of such studies, see [3] or [9]. For a
related topic of pattern avoidance in compositions and words see [5].

Detailed introduction to weakly restricted permutations can be found in [1]. A general
method of enumeration of permutations with restricted positions was developed by Ka-
plansky and Riordan in a series of papers (they developed the theory of rook polynomials
for these purposes—see [6], [7], [8], [18]). Lagrange, Lehmer, Mendelsohn, Tomescu and
Stanley ([12, 13, 15, 16, 20, 19]) studied particular types of strongly restricted permutations
satisfying the condition |p(i) − i| ≤ d, where d is 1, 2, or 3 (more information on their
work can be found in [1]).

Lehmer [13] classified some sets of strongly restricted permutations. The first author
showed in [1] how to handle all five types of Lehmer’s permutations. For the number of
restricted permutations in a circular case the following is known: Stanley [19, Example
4.7.7] explored type k = 2 with the transfer-matrix method, Baltić [2] used finite state
automata for type k = 2, and Li et al. [14] explored the k = 3 by expanding permanents.

An explicit technique for creating a system of the recurrence equations was given in [1],
based on a simple mapping ϕ from combinations of Nk+r+1 and some crucial differences
between the transfer-matrix Method and the newly proposed technique were given.

Krafft and Schaefer in [11] find the closed formula for the strongly restricted permuta-
tions of the set Nn satisfying the condition |p(i) − i| ≤ k, where k + 2 ≤ n ≤ 2k + 2.
Panholzer [17] and Kløve [10] made progress in symmetric cases (Panholzer used finite
state automata, while Kløve used modified transfer-matrix method based on expanding
permanent) and they found the asymptotic expansion and gave bounds for the denominator
of corresponding generating functions.

Here we pursue the more general, asymmetric cases and the cases where more num-
bers are forbidden than in the ordinary derangements for even and odd strongly restricted
permutations. Our method determines the number of restricted permutations that are even,
and the number of restricted permutations that are odd.

In Section 2 we introduce a general technique for counting N(n; k, r, I;π), the number
of even or odd restricted permutations (N(n; k, r, I;π) is defined in abstract). In Section 3
we illustrate it with several examples. Using a program that implements our technique, we
have contributed about a hundred sequences to the Sloane’s online encyclopedia of integer
sequences [21].
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2 CountingN(n; k, r, I;π)

We established the connection between the number of restricted permutations and the per-
manent function of a matrix A, perA, in Theorem 1 from the introduction. The Laplace
expansion of the permanent function (this is the same as for the determinant function) is
computationally inefficient for high dimension because for n × n matrices, the computa-
tional effort scales with n!. Therefore, the Laplace expansion is not suitable for large n.
However, the matrices obtained in the Laplace expansions for restricted permutations have
the regular structure, so called band matrices (a band matrix is a sparse matrix whose non-
zero entries are confined to a diagonal band, comprising the main diagonal and zero or
more diagonals on either side), and their expansions can be reduced to a system of linear
recurrence equations.

We present a general technique for counting N(n; k, r, I;π), the number of even or
odd (π = 0 for even permutations and π = 1 for odd permutations) restricted permutations
satisfying the conditions −k ≤ p(i) − i ≤ r and p(i) − i 6∈ I for all i ∈ Nn, where
k ≤ r < n, and I is a fixed subset of the set {−k + 1,−k + 2, . . . , r − 1}. Assume that I
contains x elements, |I| = x. Our technique proceeds in six steps:

1. Create C, a set of all (k + 1)-element combinations of the set Nk+r+1 containing
element k + r + 1.

2. Create D, a set of all ordered pairs D = (C, π), where C ∈ C and π ∈ {0, 1}.
3. Introduce an integer sequence aD(n) for each ordered pair D ∈ D.

4. Apply the mapping ϕ (defined below) to each ordered pair.

5. Create a system of linear recurrence equations (later we will see that these equations
correspond to the Laplace expansion of a permanent of the matrix A):

aD(n) =
∑

D′∈ϕ(D)

aD′(n− 1).

6. Solve the system to obtain equations N(n; k, r, I; 0) = a((r+1,r+2,...,r+k+1),0)(n)
and N(n; k, r, I; 1) = a((r+1,r+2,...,r+k+1),1)(n).

We next describe these steps in detail and then prove that N(n; k, r, I;π) is indeed equal
to a((r+1,r+2,...,r+k+1),π)(n).

Definition 2.1. Let C denote a set of all combinations with k + 1 elements of the set
Nk+r+1, which contain k + r + 1. We represent these combinations as strictly increasing
ordered (k + 1)-tuples.

For example, all such combinations with 3 elements of the set N5 = {1, 2, 3, 4, 5} are
represented (in reverse lexicographic order) by:

(3, 4, 5), (2, 4, 5), (2, 3, 5), (1, 4, 5), (1, 3, 5), (1, 2, 5).

In examples we will use easier notation:

345, 245, 235, 145, 135, 125.
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Definition 2.2. Let α± I denote the set α± I = {α± i | i ∈ I}.
We split the set C in two disjoint sets

C1 = {C ∈ C | 1 ∈ C} and C2 = {C ∈ C | 1 6∈ C},

but we will also separate the set C2 into x+ 1 disjoint sets

Cm2 = {C ∈ C2 | m elements of C are in r + 1− I}, (m = 0, 1, . . . , x).

Let Ck+1−m denote a Cartesian product Ck+1−m = C × C × · · · × C, where C appears
(k + 1−m) times. Let B denote the set B = {0, 1}.

We define the set of ordered pairs D = {(C, π) | C ∈ C, π ∈ B} and same as in the
case of C we will divide it into disjoint sets:

D1 = {(C, π) | C ∈ C1, π ∈ B}, D2 = {(C, π) | C ∈ C2, π ∈ B},

Dm2 = {(C, π) | C ∈ Cm2 , π ∈ B}, (m = 0, 1, . . . , x).

For each D ∈ D2 we define ordered (k + 1)-tuple

SD = (D1, D2, . . . , Dk, Dk+1)

in the following manner. We get each of the combinations Ci ∈ C from the initial combi-
nation C = (c1, c2, . . . , ck, ck+1) (pay attention that D ∈ D is D = (C, π)) by deleting
ci, decreasing all other coordinates by 1, shifting all coordinates with bigger index to one
place left and putting k + r + 1 at the end:

Ci = (c1 − 1, . . . , ci−1 − 1, ci+1 − 1, . . . , ck+1 − 1, k + r + 1).

For the parity coordinate, we have an easier condition:

πi =

{
π, i is odd,
1− π, i is even,

i.e. if i is odd the parity coordinate stays the same and if i is even the parity coordinate
changes.

In the same way as before, we also introduce D1 for each D ∈ D1:

D1 =
(
(c2 − 1, c3 − 1, . . . , ck − 1, ck+1 − 1, k + r + 1), π

)
(in this case the parity coordinate π stays the same).

Now, we get ordered (k + 1−m)-tuple SD′ =
(
D′1, D

′
2, . . . , D

′
k+1−m

)
from ordered

(k + 1)-tuple SD = (D1, D2, . . . , Dk, Dk+1) when we delete all ordered pairs
Dy = (Cy, πy) corresponding to elements cy which satisfy the condition cy ∈ r + 1− I .

Finally, we introduce the mapping

ϕ(D) =

{
ϕ1(D), D ∈ D1

ϕm2 (D), D ∈ Dm2 ,

defined by ϕ1 : D1 → D and ϕm2 : Dm2 → Dk+1−m, for m = 0, 1, . . . , x, defined by

ϕ1(D) = D1, ϕm2 (D) = SD′.
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We use these mappings to find a system of 2 ·
(
k+r
k

)
linear recurrence equations (one

equation per ordered pair, i.e. two equations per combination – one corresponding to even
permutations and another corresponding to odd permutations): if we have ϕ1(D) = D′

then we have the linear recurrence equation:

aD(n+ 1) = aD′(n)

and if we have ϕm2 (D) = (D′1, D
′
2, . . . , D

′
k+1−m) then we have the linear recurrence

equation:
aD(n+ 1) = aD′1(n) + aD′2(n) + · · ·+ aD′k+1−m

(n).

The initial conditions are: a((r+1,r+2,...,r+k+1),0)(0) = 1 and aD(0) = 0 for all
D 6= ((r + 1, r + 2, . . . , r + k + 1), 0).

This system can be easily solved, for example by using the standard method based
on generating functions. From this system of linear recurrence equations we are able
to get a linear recurrence equation and a generating function for N(n; k, r, I;π). We
will prove that N(n; k, r, I; 0) = a((r+1,r+2,...,r+k+1),0)(n) and N(n; k, r, I; 1) =
a((r+1,r+2,...,r+k+1),1)(n). Thus, from the matrix of this system, S, we can find
N(n; k, r, I;π) as the element in the first row and the first column of the matrix Sn, i.e.,
the number of the closed paths in the digraph G whose adjacency matrix is S (this obser-
vation is important because we can apply the Transfer matrix method to the matrix S). We
apply this observation to determine the computational complexity of our technique: Sn

can be computed with repeated squaring [4] in O(log2 n) operations. Hence, our technique
evaluates the number of restricted permutations more efficiently than the straightforward
techniques of filtering permutations or expanding the permanent perA.

All the generating functions that we derive using our technique are rational. We have a
system of 2 ·

(
k+r
k

)
linear recurrence equations which leads us to the upper bound for the

degree d of the denominator polynomial: d ≤ 2 ·
(
k+r
k

)
. It is sufficient to compute a finite

number of values, in particular 2 ·
(
k+r
k

)
of them, to find the generating function.

Theorem 2.3. For even permutationsN(n; k, r, I; 0) = a((r+1,r+2,...,r+k+1),0)(n) and for
odd permutations N(n; k, r, I; 1) = a((r+1,r+2,...,r+k+1),1)(n).

Proof. We establish the correspondence between combination C = (c1, c2, . . . , ck) ∈ C
and the specific matrix MC = f(C). We introduce a setMt (for a fixed t) of matrices MC

that correspond to the sequences aD0
(n) and aD1

(n), whereD0 = (C, 0) andD1 = (C, 1).
Let matrix MC = (mij) satisfies the following conditions:

1) the first k + 1 rows is definied by:

for i = 1, 2, . . . , k + 1, mij =

{
1, j + r − ci 6∈ I
0, j + r − ci ∈ I

for j = 1, 2, . . . , ci and

mij = 0 for j > ci;

2) elements in the last t− (k+1) rows satisfy: mij = 1 for −k ≤ j − i ≤ r, j − i 6∈ I
and mij = 0 otherwise.

Denote byMt the set of all t× t (t > r) matrices MC for C ∈ C.
From the matrix MC ∈ Mt, we can determine the corresponding combination

C = (c1, c2, . . . , ck) ∈ C: let ci denotes the column of the last one in the i-th row of
the matrix M , i = 1, 2, . . . , k + 1.
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So, the function f : C →Mt, defined by f(C) =MC is a bijection.

We associate an n× n matrix A = (aij) defined by:

aij =

{
1, if − k ≤ j − i ≤ r, j − i 6∈ I,
0, otherwise

with the strongly restricted permutations satisfying −k ≤ p(i) − i ≤ r and p(i) − i 6∈ I .
As stated in the introduction, the number of all permutations (even and odd) satisfying
−k ≤ p(i) − i ≤ r and p(i) − i 6∈ I is equal to perA. Notice that A ∈ Mn with
ci = r + i, where 1 ≤ i ≤ k + 1, and thus the combination corresponding to A is
(r + 1, r + 2, . . . , r + k + 1).

We next observe that the recurrence equations from step 5. (see page 11) correspond to
the expansion of the permanent of matrices fromMt by the first row (ϕ1) or by the first
column (in cases of all of ϕm2 ; note that when we skip an element cy , it corresponds to a
zero element in the first column). During this expansion we need to take care about the
parity of the permutation under construction.

First, note that at each step of construction determines the position of the smallest
of the remaining elements of the permutation. Let q denote the number of already used
elements in the construction of the restricted permutation. Define a monotonically increas-
ing sequence w of positions in the permutation which have not yet been assigned values:
w = (w1, w2, . . . , wn−q), where w1 < w2 < · · · < wn−q .

If we make an expansion by the first row (we have one in the first column), it corre-
sponds to p(w1) = q + 1 and the parity of the permutation under construction doesn’t
change because we haven’t got any new inversions.

If we make an expansion by the first column and if we have 1 in the i-th row (i.e. at
the position (i, 1) in the matrix A is 1), it corresponds to p(wi) = q + 1. There are i − 1
numbers: p(w1), p(w2), . . . , p(wi−1) which made new inversions with p(wi) = q + 1,
because all of them have not been assigned yet, so they are all greater than q + 1. So, the
parity of the permutation under construction depends on the parity of i:

• if i is even then there are odd number (i − 1) inversions, so we need to change the
parity of the permutation under construction, π′ = 1− π;

• if i is odd then there are even number (i− 1) inversions, so we don’t need to change
the parity of the permutation under construction, π′ = π.

These observations lead to the main conclusions:

N(n; k, r, I; 0) = a((r+1,...,r+k+1),0)(n)

N(n; k, r, I; 1) = a((r+1,r+2,...,r+k+1),1)(n).

3 Examples
We illustrate the technique from the previous section on two examples.

Example 3.1. We find the number of even (odd) permutations of the set Nn, satisfying the
condition −1 ≤ p(i) − i ≤ 1 for all i ∈ Nn. It is usually referred to as a permutation of
length n within distance 1.
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In this case we have k = r = 1, i.e. k + r + 1 = 3 and C = {23, 13}.
ϕ2(23, 0) = {(23, 0), (13, 1)}, ϕ1(13, 0) = {(23, 0)}, ϕ2(23, 1) = {(23, 1), (13, 0)},
ϕ1(13, 1) = {(23, 1)}, from which we get the system of linear recurrence equations:

a(23,0)(n+ 1) = a(23,0)(n) + a(13,1)(n),
a(13,0)(n+ 1) = a(23,0)(n),
a(23,1)(n+ 1) = a(23,1)(n) + a(13,0)(n),
a(13,1)(n+ 1) = a(23,1)(n),

with the initial conditions a(23,0)(0) = 1, a(13,0)(0) = 0, a(23,1)(0) = 0, a(13,1)(0) = 0. If
we substitute a(23,0)(n) = an, a(13,0)(n) = bn, a(23,1)(n) = cn and a(13,1)(n) = dn we
have a simpler form:

an+1 = an + dn, bn+1 = an, cn+1 = cn + bn, dn+1 = cn.

The initial conditions are a0 = 1, b0 = c0 = d0 = 0.

For a sequence which is denoted by a lower case letter we will denote the corresponding
generating function by the same upper case letter (an ↔ A(z), bn ↔ B(z), and so on).
We find the following system of linear equations

(
variables are A(z), B(z), C(z), D(z)

)
:

A(z)− 1

z
= A(z) +D(z),

B(z)

z
= A(z),

C(z)

z
= C(z) +B(z),

D(z)

z
= C(z)

and part of its solution that we are interested in is:

A(z) =
1− z

1− 2z + z2 − z4
, C(z) =

z2

1− 2z + z2 − z4
.

From the denominator of these generating functions 1−2z+z2−z4, we can find the linear
recurrence equations an = 2an−1 − an−2 + an−4 and cn = 2cn−1 − cn−2 + cn−4.

When we solve these equations we find the general terms of these sequences:

an =
1

2
(Fn+1 + xn) , cn =

1

2
(Fn+1 − xn) ,

where Fn denotes n-th Fibonacci number (F1 = F2 = 1, Fn+1 = Fn + Fn−1; A000045
at [21]), and xn = cos nπ3 + 1√

3
sin nπ

3 (A010892 at [21]).
The number of even permutations, an, and odd permutations, cn, both satisfying the

condition |p(i) − i| ≤ 1, for all i ∈ Nn is determined by previous formulae or by their
generating functions A(z) and C(z):

n 0 1 2 3 4 5 6 7 8 9 10 . . .
an 1 1 1 1 2 4 7 11 17 27 44 . . .
cn 0 0 1 2 3 4 6 10 17 28 45 . . .

These sequences are A005252 and A024490 at [21].

Example 3.2. We find the number of even (odd) permutations of the set Nn, satisfying the
condition p(i)− i ∈ {−2, 0, 2}.
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In this case we have k = r = 2, i.e. k + r + 1 = 5, set I = {−1, 1}, which implies
(r+ 1− I) = {2, 4} and C = {345, 245, 235, 145, 135, 125}, which is separated into sets:

C1 = {145, 135, 125}, C02 = ∅, C12 = {345, 235}, C22 = {245}.

ϕ1
2(345, 0) = {(345, 0), (235, 0)}, ϕ1

2(345, 1) = {(345, 1), (235, 1)},
ϕ2
2(245, 0) = {(135, 0)}, ϕ2

2(245, 1) = {(135, 1)},
ϕ1
2(235, 0) = {(145, 1), (125, 0)}, ϕ1

2(235, 1) = {(145, 0), (125, 1)}
ϕ1(145, 0) = {(345, 0)}, ϕ1(145, 1) = {(345, 1)},
ϕ1(135, 0) = {(245, 0)}, ϕ1(135, 1) = {(245, 1)},
ϕ1(125, 0) = {(145, 0)}, ϕ1(125, 1) = {(145, 1)}.

If we substitute a(345,0)(n) = an, a(245,0)(n) = bn, a(235,0)(n) = cn, a(145,0)(n) = dn,
a(135,0)(n) = en, a(125,0)(n) = fn, a(345,1)(n) = gn, a(245,1)(n) = hn, a(235,1)(n) = in,
a(145,1)(n) = jn, a(135,1)(n) = kn and a(125,1)(n) = `n we get the system of linear
recurrence equations:

an+1 = an + cn, gn+1 = gn + in,
bn+1 = en, hn+1 = kn,
cn+1 = jn + fn, in+1 = dn + `n
dn+1 = an, jn+1 = gn,
en+1 = bn, kn+1 = hn,
fn+1 = dn, `n+1 = jn,

with the initial conditions a0 = 1 and b0 = c0 = · · · = `0 = 0.
From this system we find the generating functions:

A(z) = 1−z−z4
1−2z+z2−2z4+2z5−z6+z8 and G(z) = z3

1−2z+z2−2z4+2z5−z6+z8 .

From the denominator of these generating functions

1− 2z + z2 − 2z4 + 2z5 − z6 + z8 = (1− z)(1 + z)(1 + z2)(1− z + z2)(1− z − z2),

we find the linear recurrence equation an = 2an−1−an−2+2an−4−2an−5+an−6−an−8
and same for gn.

When we solve this equation we find the general terms of these sequences:

an =
1

10
(Ln+2 + yn + zn) , gn =

1

10
(Ln+2 + yn − zn) ,

where Ln denotes n-th Lucas number (L1 = 1, L2 = 3, Ln+1 = Ln + Ln−1; A000032
and A000204 at [21]), yn = 2 cos nπ2 + sin nπ

2 and zn = 5, if n is congruent to 0, 1 or 2
modulo 6, and zn = 0, if n is congruent to 3, 4 or 5 modulo 6.

The number of even permutations, an, and odd permutations, gn, both satisfying the
conditions |p(i) − i| ≤ 2 and p(i) − i 6= −1, 1 is determined by previous formulae or by
their generating functions A(z) and G(z):

n 0 1 2 3 4 5 6 7 8 9 10 . . .
an 1 1 1 1 2 3 5 8 13 20 32 . . .
gn 0 0 0 1 2 3 4 7 12 20 32 . . .
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4 Concluding remarks
We have developed a technique for generating a system of linear recurrence equations that
enumerate the even and the odd strongly restricted permutations. In some cases, using the
digraph corresponding to the matrix of the system we can establish a connection between
restricted permutations and restricted compositions. Using a program that implements this
technique, we have contributed 96 sequences, A241975–A242070, to the Online encyclo-
pedia of integer sequences [21].

We thank anonymous referees for carefully reading the manuscript and helpful sugges-
tions which led to considerable improvements in presentation of results.
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