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Abstract. In order to describe baryon resonances realistically it has turned out that three-
quark configurations are not sufficient. Rather explicit couplings to decay channels are
needed. This means that additional degrees of freedom must be foreseen. We report results
from a study of the nucleon ground state and the Delta resonance by including explicit
pionic effects.

All current approaches to quantum chromodynamics (QCD) struggle with a pro-
per description of hadron resonances. For baryons one has found that in case of
ground states at low energies three-quark configurations can still provide a rea-
sonable picture. For instance, in a relativistic constituent-quark model relying on
{QQQ} configurations only, the masses of all ground-state baryons as well as their
electromagnetic and axial structures can be well reproduced [1]. In this frame-
work, however, the resonant states are afflicted with severe shortcomings. While
the characteristics of the mass spectra can still be yielded to some extent, the re-
action properties of baryon resonances fall short, especially with respect to their
strong decays. Obviously the reason is that with three-quark configurations only
the resonances are described as excited bound states with real eigenvalues rather
than genuine resonant states with complex eigenvalues. Consequently, the corre-
sponding wave functions or amplitudes show a completely distinct behaviour.

We have started to include beyond {QQQ} configurations explicit mesonic
degrees of freedom. In the first instance, we have studied pionic effects in the N
and the ∆masses. We have done so by considering π-loop effects on the hadronic
as well as the microscopic quark levels. Our program aims at developing a coup-
led-channels relativistic constituent-quark model that can generate consistently
the strong vertex form factors, the baryon ground-state and resonant masses as
well as their electroweak structures. It will contain mesonic degrees of freedom
such as {QQQπ}, {QQQρ}, and eventually {QQQππ} etc.

Here we discuss results obtained from π-dressing of the N and the ∆ on the
hadronic level. We have investigated the most important one-π-loop effects and
several higher-order diagrams. A first account of this study was given already in
Ref. [2], where also the formalism and details of the calculation are explained. In
this context one has in the first instance to solve an eigenvalue equation, which
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results from coupling of a bare Ñ and a bare ∆̃ to a single π according to the
diagrams in Fig. 1. It yields the bare and dressed masses, where the latter is real
for theN ground state and becomes complex for the ∆ resonance. The only input
into the calculation are the prescriptions for the πÑÑ and πÑ∆̃ form factors at
the strong-interaction vertices. For that we have employed models existing in
the literature [3–5]. Beyond the results already produced in Ref. [2] we give here
in addition values for the dressing effects by using the more recent form-factor
parametrization by Kamano et al. [6] derived from a coupled-channels meson-
nucleon model. The different form factors are parametrized through the formulae
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where B̃ stands either for Ñ or ∆̃. The values of the various cut-off parameters are
given in Tab. 1 together with the corresponding coupling constants.

Table 1. Parameters of the bare πÑÑ and πÑ∆̃ vertex form factors. The first three columns
correspond to the multipole type as in the first formula of Eq. (1), the fourth column to
the Gaussian type as in the second formula of Eq. (1), and the last column to the dipole
type as in the third formula of Eq. (1). The corresponding parametrizations are taken from
Refs. [3], [5] and [6], respectively. All (bare) coupling constants belong to k2π = 0. RCQM
refers to the predictions of the relativistic constituent-quark model [7] in Ref. [3], SL to
the πN meson-exchange model by Sato and Lee [4], PR to the Nijmegen soft-core model
of Polinder and Rijken [5], and KNLS to the coupled-channels meson-nucleon model of
Kamano, Nakamura, Lee, and Sato. All cut-off parameters are in GeV.

.
RCQM SL PR multipole PR Gaussian KNLS

f2
πÑÑ

/4π 0.0691 0.08 0.013 0.013 0.08

λ1 0.451 0.453 0.940
πÑÑ λ2 0.931 0.641 1.102

λ 0.665 0.656

f2
πÑ∆̃

/4π 0.188 0.334 0.167 0.167 0.126

λ1 0.594 0.458 0.853
πÑ∆̃ λ2 0.998 0.648 1.014

λ 0.603 0.709

For the πÑÑ vertex the momentum dependences of the form factors from the
five different models are shown in Fig. 2. With these ingredients the π-dressing
effects in the N mass are yielded as in Tab. 2. The mass shifts are basically of
the same order of magnitude for all form-factor models employed, even though
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Fig. 1. π-loop diagrams considered for the dressing of a bare Ñ and a bare ∆̃.
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Fig. 2. Dependences on the π three-momentum squared k2π of the different (bare) form-
factor models for the πÑÑ system.

the momentum dependences are quite different as seen from Fig. 2. However,
the net effect is gained from an interplay of the momentum dependence of each
form factor and the corresponding πÑÑ coupling constant (cf. Tab. 1). The largest
dressing effect is obtained in case of the RCQM.

Table 2. π-loop effects in the N mass mN = 0.939 GeV according to the l.h.s. diagram of
Fig. 1.

RCQM SL PR multipole PR Gaussian KNLS

mÑ [GeV] 1.067 1.031 1.051 1.025 1.037
mÑ −mN [GeV] 0.128 0.092 0.112 0.086 0.098

For the πÑ∆̃ vertex the momentum dependences of the form factors from the
five different models are shown in Fig. 3. With these ingredients the π-dressing
effects in the ∆ mass are yielded as in Tab. 3. It is immediately evident that the
∆ mass gets complex. The real part corresponds to resonance position in the πN
channel and the complex part to (half) the hadronic ∆ decay width. While the
π-dressing effects in the real part are of about the same magnitudes as in theN, in
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all cases the decay widths are much too small as compared to the empirical value
of about 0.117 GeV.
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Fig. 3. Dependences on the π three-momentum squared k2π of the different (bare) form-
factor models for the πÑ∆̃ system.

Table 3. π-loop effects in the ∆ mass Re (m∆)= 1.232 GeV and in the π-decay width Γ ac-
cording to the r.h.s. diagram of Fig. 1, where the bare Ñ masses mÑ in the intermediate
states are the same as in Table 2.

RCQM SL PR multipole PR Gaussian KNLS

m∆̃ [GeV] 1.300 1.290 1.335 1.321 1.259
m∆̃ − Re (m∆) [GeV] 0.068 0.058 0.103 0.089 0.027
Γ = 2 Im (m∆) [GeV] 0.004 0.023 0.008 0.016 0.007

An improvement in the ∆ → πN decay width Γ is achieved by replacing
the bare Ñ in the intermediate state by the dressed N like in Fig. 4. Thereby the
phase space for the strong decay is enlarged, and the situation may be closer
to the realistic one. The π-dressing effect in the real part is slightly raised in all
cases, as compared to the values in Tab. 3, however, the changes achieved for the
decay width Γ are respectable. Now, they reach about 50% of the phenomenolog-
ical value, except for the KNLS form-factor model. Still, the results appear to be
unsatisfactory.

Therefore we have investigated higher-order effects, i.e. two-π loops, where
the ones with π-π interactions in the intermediate state can be effectively de-
scribed by σ and ρmesons. The corresponding dressing effects turned to be mar-
ginal. Their inclusions do not help much to improve the ∆ decay width.
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Fig. 4. π-loop diagram considered for the dressing of a bare ∆̃, where in the intermediate
state a physical Nwith massmN=0.939 GeV is employed.

Table 4. π-loop effects in the ∆ mass Re (m∆)= 1.232 GeV and in the π-decay width Γ ac-
cording to the diagram in Fig. 4, where in the intermediate state alwaysmN = 0.939 GeV.

RCQM SL PR multipole PR Gaussian KNLS

m∆̃ [GeV] 1.309 1.288 1.347 1.328 1261
m∆̃ − Re (m∆) [GeV] 0.077 0.056 0.114 0.096 0.029
Γ = 2 Im (m∆) [GeV] 0.047 0.064 0.052 0.051 0.027

We are now in the course of investigating explicit pionic effects on the micro-
scopic level, i.e. along a relativistic coupled-channels constituent-quark model.
This will also help us to get rid of inputs of vertex form factors foreign to the
quark model, because in such an approach one can determine within the same
framework both the mass dressings as well as the vertex form factors consistently.
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