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ON THE SUBMULTIPLICATIVITY AND SUBADDITIVITY OF
THE CONE SPECTRAL RADIUS

MARKO KANDIĆ AND ALJOŠA PEPERKO

Abstract. Let S be a cone equipped with an associative product ∗ and let
p : S → [0,∞) be a monote ∗-submultiplicative seminorm. We introduce the
notion of the cone spectral radius rp associated to p and ∗. We prove that
under certain conditions the inequalities

rp(a ∗ b) ≤ rp(a)rp(b) and rp(a + b) ≤ rp(a) + rp(b)

hold. Our results apply to several radii appearing in the literature including
the spectral radius of positive operators, the spectral radius in max algebra,
the Bonsall‘s cone spectral radius and the essential cone spectral radius. We
also obtain new results in the setting of general Banach algebras.

1. Introduction

It is well known, that the inequalities

(1.1) r(AB) ≤ r(A)r(B) and r(A + B) ≤ r(A) + r(B)

(for the spectral radius r) do not hold for arbitrary bounded operators A and B
on the Banach space X. It is also well known that the inequalities in (1.1) hold if
the operators A and B commute. One of the goals of this paper is to find other
conditions under which these inequalities hold. These conditions depend on the
existence of a certain partial order and on the monotonicity and submultiplicativity
of the operator norm. The main tool in our proofs is the well known Gelfand-
Beurling’s formula

r(A) = lim
n→∞

‖An‖1/n.

Moreover, our techniques extend also to several other radii appearing in the liter-
ature. A simultaneous proof of this fact is enabled by an introduction of the cone
spectral radius, which generalizes the above mentioned radii.

One of these radii is the spectral radius in max algebra. The algebraic system
max algebra (and its isomorphic versions) is an attractive way of describing a class
of non-linear problems appearing for instance in machine-scheduling, information
technology, discrete event-dynamic systems, computational biology, combinatorial
optimisation,... (see e.g. [8], [9], [3], [30], [17], [4], [7], [5]). Max algebra’s usefulness
arises from a fact that these non-linear problems become linear when decribed in
the max algebra language. In this theory the role of the spectral radius (see e.g.
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2 MARKO KANDIĆ AND ALJOŠA PEPERKO

[4], [8]) is played by the maximum cycle geometric mean of a non-negative square
matrix (see e.g. [18, p. 366], [5, p. 130],[8], [15], [16], [14], [12]).

The max algebra is the set of non-negative numbers with sum a⊕ b = max{a, b}
and the standard product ab, where a, b ≥ 0. The n× n matrix A = [aij ] is called
non-negative, if aij ≥ 0 for all i, j = 1, . . . , n. The operations between non-negative
matrices and vectors are defined by analogy with the usual linear algebra. For
instance, the product of non-negative n× n matrices A and B in the max algebra,
denoted by A⊗B, is defined by

[A⊗B]ij = max
k=1,...,n

aikbkj .

By Ak
⊗ we denote the k-th max power of A. The usual associative and distributive

laws hold in this algebra.
The weighted directed graphD(A) associated with A has a vertex set {1, 2, . . . , n}

and edges (i, j) from a vertex i to a vertex j with weight aij if and only if aij > 0.
A path of length k is a sequence of edges (i1, i2), (i2, i3), . . . , (ik, ik+1). A circuit
of length k is a path with ik+1 = i1, where i1, i2, . . . , ik are distinct. Associated
with this circuit is the circuit geometric mean known as (ai1i2ai2i3 . . . aiki1)

1/k. The
maximum circuit geometric mean in D(A) is denoted by µ(A). Note that circuits
(i1, i1) of length 1 (loops) are included here and that we also consider empty cir-
cuits, i.e., circuits that consist of only one vertex and have length 0. For empty
circuits, the associated circuit geometric mean is zero.

The maximum circuit geometric mean µ(A) was utilized in [15] and has been
studied extensively since. There are many different characterizations of µ(A) (see
e.g. [14], [18, p. 366], [5, p. 130], [12], [27], [28]). It is known that µ(A) is the
largest max eigenvalue of A. Moreover, if A is irreducible, then µ(A) is the unique
max eigenvalue and every max eigenvector is positive (see e.g. [4, Theorem 2] and
[19, Theorem 1]). So µ(A) can be viewed as the max version of the spectral radius
of a non-negative matrix A.

In [12, Lemma 4.1] the max version of Gelfand’s formula was proved, i.e., for a
non-negative n× n matrix A the equality

(1.2) µ(A) = lim
k→∞

‖Ak
⊗‖1/k

holds for an arbitrary vector norm ‖ · ‖ on Rn×n. For alternative proofs see [19],
[26].

One of the goals of this paper is to provide unification and generalization of
the notions of the spectral radius and the spectral radius in max algebra. This
generalization includes the notions of the Bonsall’s cone spectral radius and the
essential cone spectral radius (see e.g. [20], [23], [24]) of non-linear maps.

The paper is organized as follows. In the second section we introduce the notion
of the cone spectral radius rp and prove several general results on its submulti-
plicativity and subadditivity. In section 3 we apply these results to the spectral
radius and the spectral radius in max algebra and in section 4 to the Bonsall’s cone
spectral radius and the essential cone spectral radius. In the final section we state
some related new results in the case of general Banach algebras.

2. Cone spectral radius

Let S be a semigroup with respect to (an associative) product ∗. By S1 we
denote the semigroup obtained by adjoining the neutral element e to the semigroup
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ON THE SUBMULTIPLICATIVITY AND SUBADDITIVITY OF THE CONE SPECTRAL RADIUS3

S. For a ∈ S and n ∈ N the power an
∗ is defined by

a1
∗ = a and an

∗ = an−1
∗ ∗ a.

Given a functional p : S → [0,∞) and a ∈ S we define

(2.1) rp(a) = lim sup
n→∞

p(an
∗ )

1/n.

If the functional q : S → [0,∞) is equivalent to p (i.e., there exists positive real
numbers m,M such that mp(a) ≤ q(a) ≤ Mp(a) for every a ∈ S), then rp(a) =
rq(a) for all a ∈ S. We say that p : S → [0,∞) is ∗-submultiplicative if

(2.2) p(a ∗ b) ≤ p(a)p(b)

for all a, b ∈ S. In this case it is not hard to see that we have rp(a) ≤ p(a) and

(2.3) rp(a) = lim
n→∞

p(an
∗ )

1/n = inf
n∈N

p(an
∗ )

1/n

for all a ∈ S. Also the equality (b ∗ a)n
∗ = b ∗ (a ∗ b)n−1

∗ ∗ a implies

(2.4) rp(a ∗ b) = rp(b ∗ a)

for all a, b ∈ S.
In our applications the semigroup S will also be a cone included in a certain

vector space V and p : S → [0,∞) a seminorm, i.e.,

p(a + b) ≤ p(a) + p(b) and p(λa) = λp(a)

for all a, b ∈ S and every non-negative scalar λ.
For a, b ∈ V we denote a ≤ b if b − a ∈ S. Thus (V,≤) is a partially ordered

vector space and a ≥ 0 if and only if a ∈ S (we sometimes denote S by V + and call
it the positive cone of V ). In this setting we call the functional rp a cone spectral
radius associated to ∗ and p. A functional p : S → [0,∞) is called monotone if
0 ≤ a ≤ b implies p(a) ≤ p(b). We say that the product ∗ is monotone on V if
0 ≤ a ≤ b and 0 ≤ c ≤ d imply 0 ≤ a ∗ c ≤ b ∗ d. Observe that in the case when the
functional p is monotone and the product ∗ is monotone, the inequality 0 ≤ a ≤ b
implies rp(a) ≤ rp(b).

An element a ∈ S is called p-power bounded if there exists M > 0 such that
for each n ∈ N we have p(an

∗ ) ≤ M. Obviously, rp(a) ≤ 1 whenever a is p-power
bounded.

Theorem 2.1. Let V be a partially ordered vector space with a positive cone S,
such that S is also a semigroup with respect to the monotone product ∗. Let p :
S → [0,∞) be a monotone ∗-submultiplicative functional. Let a, b, c be elements of
S such that a ∗ b ≤ c ∗ b ∗ a, a ∗ c ≤ c ∗ a and b ∗ c ≤ c ∗ b. If c is p-power bounded,
then

(2.5) rp(a ∗ b) ≤ rp(c ∗ b ∗ a) ≤ rp(a)rp(b)

and

(2.6) rp(c ∗ b ∗ a− a ∗ b) ≤ rp(a)rp(b).

If p(c) < 1, then rp(a ∗ b) = rp(c ∗ b ∗ a) = rp(c ∗ b ∗ a− a ∗ b) = 0.
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4 MARKO KANDIĆ AND ALJOŠA PEPERKO

Proof. At first we will prove by induction that for each integer n ≥ 2 the following
inequality holds

(2.7) (b ∗ a)n
∗ ≤ c

n(n−1)
2∗ ∗ bn

∗ ∗ an
∗ .

For n = 2, the claim is true by the assumption. Suppose the formula (2.7) holds
for some positive integer n ≥ 2. Then we have

(b∗a)n+1
∗ ≤ c

n(n−1)
2∗ ∗ bn

∗ ∗an
∗ ∗ b∗a ≤ c

n(n−1)
2 +n

∗ ∗ bn+1
∗ ∗an+1

∗ = c
n(n+1)

2∗ ∗ bn+1
∗ ∗an+1

∗ ,

which completes the induction step.
Inequality (2.7) implies

(2.8) (c ∗ b ∗ a)n
∗ ≤ cn

∗ ∗ (b ∗ a)n
∗ ≤ c

n(n+1)
2∗ ∗ bn

∗ ∗ an
∗

for every positive integer n. Since the functional p is ∗-submultiplicative and
monotone, inequality 2.8 implies

p((c ∗ b ∗ a)n
∗ ) ≤ p

(
c

n(n+1)
2∗

)
p(bn

∗ )p(an
∗ )

for all integers n ≥ 1. Since the element c is p-power bounded, there exists a positive
number M such that for all n ∈ N we have p(cn

∗ ) ≤ M . Therefore, for each n ∈ N
we have

p((c ∗ b ∗ a)n
∗ ) ≤ M p(an

∗ )p(bn
∗ ).

Applying n-th roots and passing to limits we obtain

(2.9) rp(c ∗ b ∗ a) ≤ rp(a)rp(b).

The left hand side inequality in 2.5 follows from the monotonicity of the functional
p.

The inequalities

(2.10) 0 ≤ c ∗ b ∗ a− a ∗ b ≤ c ∗ b ∗ a,

the monotonicity of rp and (2.5) imply

rp(c ∗ b ∗ a− a ∗ b) ≤ rp(c ∗ b ∗ a) ≤ rp(a)rp(b),

which proves (2.6).
Now suppose that p(c) < 1. From the inequality (2.8) we obtain

(2.11) p((c ∗ b ∗ a)n
∗ )

1
n ≤ p(c)

n+1
2 p(bn

∗ )
1
n p(an

∗ )
1
n .

for every positive integer n. Since p(c) < 1, the right hand side of (2.11) tends to
zero and thus rp(c ∗ b ∗ a) = 0, which completes the proof.

¤

The commutator of elements a, b ∈ S is defined by [a, b]∗ = a ∗ b − b ∗ a. The
following proposition can be shown similarly as Theorem 2.1.

Proposition 2.2. Let V be a partially ordered vector space with a positive cone
S, such that S is also a semigroup with respect to the monotone product ∗. Let
p : S → [0,∞) be a monotone ∗-submultiplicative functional. If a, b ∈ S are such
that [a, b]∗ ∈ S, then

(2.12) rp([a, b]∗) ≤ rp(a ∗ b) ≤ rp(a)rp(b)
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ON THE SUBMULTIPLICATIVITY AND SUBADDITIVITY OF THE CONE SPECTRAL RADIUS5

Remark 2.3. It often occurs that the associative product ∗ and the functional p
are defined on the whole space V (for instance if V is Banach algebra of bounded
operators on a certain ordered Banach space and S is a cone of positive operators).
In this case (2.1) defines the radius rp(a) for arbitrary a ∈ V . The above proof
shows that under these modifications the inequalities (2.5) and (2.6) remains valid
if a, b, c ∈ V and 0 ≤ a ∗ b ≤ c ∗ b ∗ a, a ∗ c ≤ c ∗ a, b ∗ c ≤ c ∗ b. Note also that we
need here (2.2) to hold for arbitrary a, b ∈ V .

Definition 2.4. Let V be a partially ordered vector space with a positive cone S,
such that S is also a semigroup with respect to monotone product ∗. The product
∗ is said to be subdistributive, if for every a, b, c ∈ S the following inequalities hold:

(a + b) ∗ c ≤ (a ∗ c) + (b ∗ c) and c ∗ (a + b) ≤ (c ∗ a) + (c ∗ b).

Remark 2.5. Obviously every distributive product ∗ on a partially ordered vector
space is subdistributive.

Theorem 2.6. Let V be a partially ordered vector space with a positive cone S,
such that S is also a semigroup with respect to a monotone subdistributive product
∗. Let p : S → [0,∞) be a monotone ∗-submultiplicative seminorm. Let a, b, c ∈ S
be elements of S such that a ∗ b ≤ c ∗ b ∗ a, a ∗ c ≤ c ∗ a and b ∗ c ≤ c ∗ b. If c is
p-power bounded, then

(2.13) rp(a + b) ≤ rp(a) + rp(b).

Proof. At first, we will prove by induction that for each n ∈ N we have

(2.14) (a + b)n
∗ ≤

n∑

k=0

qn
k (c) ∗ bn−k

∗ ∗ ak
∗,

where qn
k (c) denotes the sum of

(
n
k

)
(possibly distinct) powers of the element c. For

n = 1, the claim is trivially true as q1
0(c) = q1

1(c) = e. Suppose now that the formula
is true for some n ∈ N. Then we have

(a + b)n+1
∗ ≤

(
n∑

k=0

qn
k (c) ∗ bn−k

∗ ∗ ak
∗

)
∗ (a + b) ≤

≤
n∑

k=0

qn
k (c) ∗ bn−k

∗ ∗ ak+1
∗ +

n∑

k=0

qn
k (c) ∗ ck

∗ ∗ bn−k+1
∗ ∗ ak

∗.

From here it follows that

qn+1
k (c) = qn

k−1(c) + qn
k (c) ∗ ck

∗.

We complete the induction step noticing that the number of the summands where
the power of the element c occurs in qn+1

k (c) is equal
(
n
k

)
+

(
n

k−1

)
=

(
n+1

k

)
.

Since c is p-power bounded, there exists M > 0 such that p(cn
∗ ) ≤ M for each

n ∈ N. Let N = max{M, 1}. From here it easily follows

p((a + b)n
∗ ) ≤ N

n∑

k=0

(
n

k

)
p(ak

∗)p(bn−k
∗ ).

For any ε > 0 there exists a positive scalar L > 0 such that for any n ∈ N we have

p(an
∗ ) ≤ L(rp(a) + ε)n and p(bn

∗ ) ≤ L(rp(b) + ε)n.
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6 MARKO KANDIĆ AND ALJOŠA PEPERKO

This implies

p((a + b)n
∗ ) ≤ N

n∑

k=0

(
n

k

)
p(ak

∗)p(bn−k
∗ ) ≤

≤ NL2
n∑

k=0

(
n

k

)
(rp(a) + ε)k(rp(b) + ε)n−k = NL2(rp(a) + rp(b) + 2ε)n.

This implies

(p(a + b)n
∗ )

1
n ≤ N

1
n L

2
n (rp(a) + rp(b) + 2ε).

Passing to limits we obtain rp(a+b) ≤ rp(a)+rp(b)+2ε. Since ε > 0 was arbitrary,
we obtain the inequality (2.13).

¤

Remark 2.7. In the proofs of Theorems 2.1 and 2.6 we actually do not need the
cone S to be a positive cone of some partially ordered vector space V . We only need
the operation ”minus” to act on the elements of the cone S. It therefore suffices V
to be an additive group. In this case we can again define the partial order on V by
a ≤ b for a, b ∈ V if b− a ∈ S.

3. The spectral radius and the spectral radius in max algebra

In this section we apply our results to the spectral radius of non-negative matrices
and its max-version. For the sake of simplicity we restrict our attention at the
moment to the finite dimensional case, i.e., S = Rn×n

+ .
Let ‖·‖ denote an operator norm with respect to a monotone vector norm on Rn.

The usual commutator of the matrices A and B is denoted by [A, B] = AB −BA.
Applying Theorem 2.1, Theorem 2.6 and Proposition 2.2 we obtain the following
results for the usual spectral radius.

Theorem 3.1. Let A,B and C be non-negative n×n matrices satisfying AC ≤ CA,
BC ≤ CB and AB ≤ CBA. If C is power bounded, then we have

(3.1) r(AB) ≤ r(A)r(B), r(A + B) ≤ r(A) + r(B)

and

(3.2) r(CBA−AB) ≤ r(CBA) ≤ r(A)r(B).

If ‖C‖ < 1, then AB, CBA and CBA−AB are nilpotent.

Corollary 3.2. If A and B are non-negative n× n matrices such that [A,B] ≥ 0,
then we have

(3.3) r([A,B]) ≤ r(AB) ≤ r(A)r(B) and r(A + B) ≤ r(A) + r(B).

Note that the inequalities r([A,B]) ≤ r(A)r(B), r(AB) ≤ r(A)r(B) and r(A +
B) ≤ r(A) + r(B) from (3.3) are known (see e.g. [27], [10]). On the other hand,
Theorem 3.1 seems to be new even in this finite dimensional setting.

The following example shows that in Corollary 3.2 the positivity of the commu-
tator cannot be omitted.
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ON THE SUBMULTIPLICATIVITY AND SUBADDITIVITY OF THE CONE SPECTRAL RADIUS7

Example 3.3. Let

A =
[

0 1
0 0

]
and B =

[
0 0
1 0

]
.

Then

AB =
[

1 0
0 0

]
, [A, B] =

[
1 0
0 −1

]
and A + B =

[
0 1
1 0

]

and so r(AB) = r([A,B]) = r(A + B) = 1 while r(A) = r(B) = 0.

The following example shows that the assumptions in Theorem 3.1 can be satis-
fied also when C 6= I.

Example 3.4. Let

A =
[

1 1
0 1

]
, B =

[
1 1
0 0

]
and C =

[
1 0
0 0

]
.

Then C is a power bounded matrix that satisfies AB ≤ CBA, AC ≤ CA and
BC ≤ CB.

Next we apply our results from section 2 in the max algebra setting. Since the
property of ‖·‖-power boundedness in this case is independent of a choice of a norm
‖ · ‖ on V = Rn×n, we use the term ⊗-power boundedness instead, i.e, a matrix
A ∈ Rn×n

+ is called ⊗-power bounded if there exists M > 0 such that for each n ∈ N
we have ‖An

⊗‖ ≤ M.
Let us consider the vector norm ‖A‖∞ = maxi,j=1,...n |aij | on Rn×n. It is obvious

that ‖ · ‖∞ is monotone and ⊗-submultiplicative on Rn×n
+ . It is also easy to verify

that the product ⊗ is monotone and subdistributive with respect to the usual sum
+. Therefore the following result is a direct consequence of Theorems 2.1 and 2.6.
It seems to be new even in this finite dimensional case.

Theorem 3.5. Let A,B, C ∈ Rn×n
+ such that A⊗B ≤ C⊗B⊗A, A⊗C ≤ C⊗A

and B ⊗ C ≤ C ⊗B. If C is ⊗-power bounded, then we have

(3.4) µ(A⊗B) ≤ µ(A)µ(B), µ(A + B) ≤ µ(A)µ(B) and

(3.5) µ(C ⊗B ⊗A−A⊗B) ≤ µ(C ⊗B ⊗A) ≤ µ(A)µ(B).

If ‖C‖∞ < 1, then µ(A⊗B) = µ(C ⊗B ⊗A) = µ(C ⊗B ⊗A−A⊗B) = 0.

Corollary 3.6. If A,B ∈ Rn×n
+ such that [A,B]⊗ ∈ Rn×n

+ , then

µ([A,B]⊗) ≤ µ(A⊗B) ≤ µ(A)µ(B) and µ(A + B) ≤ µ(A)µ(B).

Remark 3.7. The matrices A,B from Example 3.3 show that in Corollary 3.6 the
positivity of the commutator in max algebra cannot be omitted. Indeed, in this
case we have µ(A⊗B) = µ(A + B) = 1 while µ(A) = µ(B) = 0.

The following example shows that Theorem 3.5 is in fact stronger then Corollary
3.6.
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8 MARKO KANDIĆ AND ALJOŠA PEPERKO

Example 3.8. Let

A =
[

1 1
0 0

]
, B =

[
0 1
1 1

]
and C =

[
1 1
1 1

]
.

Then C is a⊗-power bounded matrix that satisfies A⊗B ≤ C⊗B⊗A, A⊗C ≤ C⊗A
and B ⊗ C ≤ C ⊗ B. Also µ(A) = µ(B) = µ(A ⊗ B) = 1 and µ(A + B) =

√
2,

which is consistent with Theorem 3.5. However,

[A,B]⊗ =
[

1 1
−1 −1

]
.

4. Bonsall‘s cone spectral radius and the essential cone spectral
radius

In this section we apply our results to a large class of linear or non-linear order
preserving maps. The Bonsall’s cone spectral radius of such maps was introduced
in [6] and it has received a lot of attention since (see e.g. [20],[2], [23] and the
references cited there). It enables us to consider the spectral theory of a larger class
of nonlinear infinite dimensional maps. In particular, this includes the eigenvalue
problem of certain max-type operators F : C[0, a] → C[0, a] of the form

(F (x))(s) = max
t∈[α(s),β(s)]

k(s, t)x(t),

where x ∈ C[0, a] and α, β : [0, a] → [0, a] are given continuous functions satisfying
α ≤ β. The kernel k : S → [0,∞) is a given non-negative continuous function,
where S denotes the compact set

S = {(s, t) ∈ [0, a]× [0, a] : t ∈ [α(s), β(s)]}.
This problem arises in the study of periodic solutions of a class of differential-delay
equations

εy′(t) = g(y(t), y(t− τ)), τ = τ(y(t)),

with state-dependent delay (see e.g. [20], [21]).
Let E be an ordered Banach space and let its positive cone K be closed. A cone

K is called normal if there exists a constant N such that ‖x‖ ≤ N‖y‖ whenever
0 ≤ x ≤ y. It is known (see e.g. [29]) that in this case there exists an equivalent
norm |||· ||| on E such that |||x|||≤ |||y|||whenever 0 ≤ x ≤ y.

Let S be a cone of all maps f : K → K, which are continuous, positively homo-
geneous and monotone. A cone S is a semigroup with respect to the composition
(f1 ◦ f2)(x) = f1(f2(x)), which is monotone on S. The composition of f with it-
self n times is denoted by fn. Note that S is a generating cone of a vector space
S−S = {x−y : x, y ∈ S} and that the product ◦ is subdistributive on the subcone
SA ⊂ S of all subadditive maps f ∈ S.

A monotone submultiplicative seminorm p : S → [0,∞) is defined by

(4.1) p(f) = sup{|||f(x)||| : x ∈ K, |||x|||≤ 1}.
The Bonsall’s cone spectral radius rB(f) of f ∈ S is defined by

rB(f) = lim
n→∞

p(fn)1/n.

If E is a Banach lattice and f : E → E a positive (linear) operator (see e.g. [1]
for definitions), then p(f) equals the operator norm of f and thus rB(f) equals the
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ON THE SUBMULTIPLICATIVITY AND SUBADDITIVITY OF THE CONE SPECTRAL RADIUS9

spectral radius of f . However, if E is not a Banach lattice, then this needs not be
the case (see e.g. [6]).

By Theorems 2.1 and 2.6 we obtain the following result.

Theorem 4.1. Let E be an ordered Banach space and let its positive cone K be
closed and normal. Let S be a cone of all maps f : K → K, which are continuous,
positively homogeneous and monotone and let p : S → [0,∞) be as in (4.1). Let
f, g, h be elements of S such that f ◦ g ≤ h ◦ g ◦ f , f ◦ h ≤ h ◦ f and g ◦ h ≤ h ◦ g.
If h is p-power bounded, then

(4.2) rB(f ◦ g) ≤ rB(h ◦ g ◦ f) ≤ rB(f)rB(g)

and

(4.3) rB(h ◦ g ◦ f − f ◦ g) ≤ rB(f)rB(g).

If f, g, h are subadditive, then we have

rB(f + g) ≤ rB(f) + rB(g).

If p(h) < 1, then rB(f ◦ g) = 0 and rB(h ◦ g ◦ f − f ◦ g) = 0.

The solution of the eigenproblem in [20] is obtained under certain compactness
conditions. In particular, the condition ρ(f) < rB(f) plays a crucial role. Here
ρ(f) denotes the essential cone spectral radius with respect to some homogeneous
generalized measure of noncompactness ν (see definitions bellow).

If ν is a map which assigns to each bounded subset A of E a non-negative, finite
number ν(A), then ν is called a homogeneous generalized measure of noncompact-
ness if it satisfies the following conditions:

(i) ν(A) = 0 if and only if A is compact;

(ii) ν(A + B) ≤ ν(A) + ν(B);

(iii) ν(co(A)) = ν(A);

(iv) µ(A ∪B) = max{ν(A), ν(B)};
(v) ν(λA) = λν(A) for λ ≥ 0.

Here we denote A + B = {a + b : a ∈ A, b ∈ B} and co(A) denotes the smallest
closed convex set containing A. We refer to [20] for interesting examples.

Let the cone K be closed and normal and let f : K → K be a continuous,
positively homogeneous and monotone map. We may define the quantity

ν(f) = inf{λ > 0 : ν(f(A)) ≤ λν(A) for every bounded set A ⊂ K},
where we set inf ∅ = ∞. It is not hard to verify that ν : S → [0,∞] defines a
◦-submultiplicative seminorm on the subcone {f ∈ S : ν(f) < ∞}. This seminorm
may not be monotone in general. However, there exist conditions on the space E
under which the seminorm ν may be monotone on certain subcones of S. We refer
the interested reader to the books [1] and [22] for details.

The cone essential spectral radius of f with respect to ν(f) is defined by

ρ(f) = lim sup
n→∞

ν(fn)1/n.

If ρ(f) < ∞, then

ρ(f) = lim
n→∞

ν(fn)1/n = inf
n∈N

ν(fn)1/n.
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10 MARKO KANDIĆ AND ALJOŠA PEPERKO

Applying Theorems 2.1 and 2.6 we obtain the following result for the cone es-
sential spectral radius.

Theorem 4.2. Let E be an ordered Banach space such that its positive cone K is
closed and normal and let ν be a homogeneous generalized measure of noncompact-
ness on E. Let S be a cone of all maps f : K → K, which are continuous, positively
homogeneous and monotone and let SM denote a subcone and a semigroup ideal of
S such that ν is monotone on SM . Suppose that there exists f, g ∈ SM , h ∈ S such
that f ◦ g ≤ h ◦ g ◦ f , f ◦ h ≤ h ◦ f and g ◦ h ≤ h ◦ g.

If ρ(f) < ∞, ρ(g) < ∞ and h is ν-power bounded, then

(4.4) ρ(f ◦ g) ≤ ρ(h ◦ g ◦ f) ≤ ρ(f)ρ(g)

and

(4.5) ρ(h ◦ g ◦ f − f ◦ g) ≤ ρ(f)ρ(g).

If, in addition, f, g, h are subadditive, then we have

ρ(f + g) ≤ ρ(f) + ρ(g).

If, in addition, ν(h) < 1, then ρ(f ◦ g) = 0 and ρ(h ◦ g ◦ f − f ◦ g) = 0.

5. Related results in general Banach algebras

In this final section we make some related remarks in the setting of Banach
algebras. Let X be a Banach space, L(X) the Banach algebra of all bounded linear
operators on X with respect to the operator norm and by K(X) we denote the closed
subalgebra of all compact operators of the algebra L(X). Operators A,B ∈ L(X)
on a Banach space are said to be proportional or quasi-commuting if there exists a
scalar t such that AB = tBA. R. L. Moore proved in [25] that either |t| = 1 or AB
and BA are quasinilpotent operators. Proportional operators are also important in
the theory of invariant subspaces. For example, it was proved in [25] that if for a
given operator A the algebra A generated by

{B ∈ L(X) : AB = tBA for some |t| ≤ 1}
contains a nonzero compact operator, then there exists a nontrivial closed subspace
invariant under A. R. Drnovšek and T. Košir in [11] considered an existence of
invariant subspaces under a semigroup of pairwise proportional compact operators.
Among other results, they proved that if there exists an irreducible semigroup of
pairwise proportional compact operators on a complex Banach space, then the
underlying space has to be finite dimensional.

Let A be a unital Banach algebra and let a, b ∈ A be commuting elements. Then
it is well known that

(5.1) r(ab) ≤ r(a)r(b) and r(a + b) ≤ r(a) + r(b).

The following theorem extends inequalities (5.1) for commuting elements and it
also extends [25, Theorem 1.6 (i)]. Since its proof is very similar to the proofs of
Theorem 2.1 and Theorem 2.6, we omit it.

Theorem 5.1. Let A be a unital Banach algebra and let the elements a, b, c satisfy
ab = cba, ac = ca and bc = cb. If c is power bounded, then

r(ab) ≤ r(a)r(b) and r(a + b) ≤ r(a) + r(b).

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
13

5,
 D

ec
em

be
r 

24
, 2

01
0



ON THE SUBMULTIPLICATIVITY AND SUBADDITIVITY OF THE CONE SPECTRAL RADIUS11

If ‖c‖ < 1, then r(ab) = 0.

Applying the previous result to the Calkin algebra L(X)/K(X), we obtain the
following result for the essential spectral radius ress.

Corollary 5.2. Let X be a Banach space and let bounded operators A,B, C satisfy
AB = CBA, AC = CA and BC = CB. If C is power bounded, then the following
inequalities hold

ress(AB) ≤ ress(A)ress(B) and ress(A + B) ≤ ress(A) + ress(B).

Acknowledgement. The authors are sincerely thankful to Professor Roman
Drnovšek for helpful advice.
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