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Danielu, Gregorju, Mateju in Mihu hvala za zelo prijetno delovno vzdušje in pomoč
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Disertacijo posvečam vsem svojim bližnjim, ki so mi vsa ta leta stali ob strani.





Abstract

The thesis deals with various aspects of the Casimir effect in smectic liquid crystals.

The Casimir interaction in planar smectic-A systems is studied, considering both

types of smectic ordering – positional and orientational – including the coupling

between them. This provides a complete picture of the phenomenon in smectic-A

systems with homogeneous equilibrium order. The behavior of the Casimir interac-

tion in vicinity of the smectic-A to smectic-C phase transition is considered. The

presence of this transition results in some special features of the interaction. A spe-

cial attention is devoted to confined systems with non-trivial equilibrium order. The

Casimir interaction in a homeotropic smectic cell with surface enhanced positional

order is studied; an exponential decay of the Casimir force is predicted, contrary

to the long-range interaction in homogeneous smectic systems. In a homeotropic

nematic cell with surface induced presmectic order a faster decay of the Casimir

force than in normal nematics is discovered. In addition, a few systems where

inhomogeneity of equilibrium ordering does not affect the Casimir interaction are

presented.

Keywords: Casimir effect, smectic liquid crystals, fluctuations, confinement, phase

transition

PACS: 61.30.Dk, 61.30.Hn, 64.70.Md, 68.60.Dv





Povzetek

Delo je posvečeno različnim vidikom Casimirjevega pojava v smektičnih tekočih

kristalih. Obravnavamo Casimirjevo interakcijo v planarnih smektičnih A sistemih.

Pri tem zajamemo oba vidika smektične ureditve - pozicijskega in orientacijskega -

ter sklopitev med njima. S tem podamo popoln opis Casimirjevega pojava v sme-

ktičnih A sistemih s homogeno ravnovesno ureditvijo. Nadalje razǐsčemo obnaša-

nje Casimirjeve sile v bližini prehoda iz smektične A v smektično C fazo. Bližina

tega faznega prehoda se odraža v nekaterih posebnih lastnostih sile. Posebno po-

zornost v disertaciji posvetimo ograjenim sistemom z netrivialno ravnovesno uredi-

tvijo. Obravnavamo homeotropno smektično celico s povečanim površinskim pozici-

jskim redom. Ugotovimo, da je Casimirjeva sila v takem sistemu kratkega dosega, v

nasprotju s homogenimi smektičnimi sistemi, kjer je sila dolgega dosega. Izračunali

smo Casimirjevo silo v nematski homeotropni celici s površinsko vsiljenim pred-

smektičnim redom. V tem primeru sila upada precej hitreje kot v običajnem ne-

matiku. Predstavili smo tudi nekaj sistemov, kjer nehomogena ravnovesna struktura

ne vpliva na Casimirjevo interakcijo.

Ključne besede: Casimirjev pojav, smektični tekoči kristali, fluktuacije, ograditev,

fazni prehod

PACS: 61.30.Dk, 61.30.Hn, 64.70.Md, 68.60.Dv





Contents

1 Introduction 7

1.1 Casimir force in liquid crystals . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 Nematic liquid crystals . . . . . . . . . . . . . . . . . . . . . . 11

1.1.2 Smectic liquid crystals . . . . . . . . . . . . . . . . . . . . . . 15

1.1.3 Search for experimental evidence . . . . . . . . . . . . . . . . 18

1.1.4 Aim and outline of thesis . . . . . . . . . . . . . . . . . . . . . 20

2 Theoretical model 21

2.1 Free energy of smectic-A phase . . . . . . . . . . . . . . . . . . . . . 21

2.2 Chiral smectics close to smectic-A∗ to smectic-C∗ phase transition . . 22

2.3 Confined systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Calculation of Casimir force . . . . . . . . . . . . . . . . . . . . . . . 27

3 Casimir force in smectic-A phase 33

3.1 Homeotropic smectic-A cell . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Fluctuations of degree of smectic order ψ . . . . . . . . . . . . 35

3.1.2 Fluctuations of director and smectic layers . . . . . . . . . . . 36

3.2 Free-standing smectic-A film . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Casimir force in slightly dilated or compressed cell . . . . . . . . . . 47

3.4 Importance of Casimir force in smectic-A systems . . . . . . . . . . . 50

4 Casimir force in vicinity of smectic-A to smectic-C phase transition 53

4.1 Homeotropic cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 Casimir force above Tc . . . . . . . . . . . . . . . . . . . . . . 57

4.1.2 Casimir force in frustrated system (Tmax<T <Tc) . . . . . . . 59

4.2 Free-standing films . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Casimir force in free-standing Sm-A films with enhanced sur-

face order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Inhomogeneous systems 71

5.1 Casimir force close to smectic-nematic phase transition . . . . . . . . 71

5.1.1 Force induced by fluctuations of degree of smectic order ψ . . 76

5.2 Casimir force in presmectic nematic film . . . . . . . . . . . . . . . . 77

5



6 CONTENTS

6 Conclusion 83

A Calculation of quantum propagators 87

A.1 Quantum propagator for harmonic oscillator . . . . . . . . . . . . . . 87

A.2 Quantum propagator for two coupled harmonic oscillators . . . . . . 91



1

Introduction

The history of the Casimir effect dates back into 1948 when the Dutch physicist

H. B. G. Casimir predicted that even two uncharged parallel conducting plates

should experience mutual attraction [1]. This attraction, seemingly stemming “from

nowhere”, originates from a modified spectrum of zero-point fluctuations (and hence

a modified energy density) of electromagnetic field in confined volume as compared to

free space. The pioneering work of Casimir has inspired a large number of theoretical

and also experimental studies of the Casimir force [2]. The interest in the subject is

on the one hand purely fundamental as the Casimir interaction represents one of a

few macroscopic manifestations of quantum phenomena and zero-point fluctuations.

On the other hand, with recent prosperity of nanotechnology a lengthscale has been

reached where the Casimir force can by no means be considered a marginal effect.

The rationale behind the Casimir interaction can be most easily demonstrated

with the following calculation [3]. Let us consider two perfectly conducting plates

parallel to x-y plane and separated by a distance h (Fig. 1.1). Even if the plates are

uncharged and at zero temperature (T = 0 K) the electromagnetic (EM) field exists

in terms of zero-point fluctuations with energy E = 1/2
∑

n �ωn, where � is the

reduced Planck constant and ωn are frequencies of fluctuation modes. In confined

space the modes of EM field adjust to the boundary conditions dictated by the

conducting plates and can be written as:

E(q, n) = E0 exp(iqρ) sin
(nπz
h

)
, (1.1)

where q = (qx, qy) is a wave-vector in x-y plane and n the number of standing

wave modes in z direction (there are actually two different types of EM modes

present in such a wave-guide, but for the sake of simplicity we omit this detail).

The corresponding frequency is

ω(q, n) = c

√
q2
x + q2

y +
n2π2

h2
, (1.2)

where c is the speed of light. Now in the confined space the wave-number n is limited

to integer values (n = 0, 1, 2, . . .) whereas in an open space the wave-spectrum is

7



8 Introduction

Figure 1.1 Casimir force between uncharged parallel conducting plates. The
difference between the discrete spectrum of electromagnetic modes in the con-
fined volume and continuous spectrum in the open space leads to an attractive
interaction between the plates.

continuous and n can be any real number. The interaction energy can thus be

defined as the difference between the energy of fluctuations in confined space and

the energy of fluctuations in free space

E(h) =
�

2

∑
q,n

[
ω(q, n) − lim

h→∞
ω(q, n)

]
=

�

2

∑
q

[∑
n

ω(q, n) −
∫ ∞

0

ω(q, n) dn

]
. (1.3)

Both terms in Eq. (1.3) are divergent but their difference is finite and can be calcu-

lated by various mathematical methods. We shall here just quote the result

E(h) = −�cπ2S

720h3
, (1.4)

where S is the area of the plates. This leads to an attractive force between the

plates given by

F(T = 0) = −∂E(h)

∂h
= −�cπ2S

240h4
. (1.5)

At a finite temperature (T > 0) the force should be calculated using the free energy

F instead of the energy E as a proper thermodynamic potential. For high tempera-

tures or large thicknesses (kBTh � �c), where the thermal fluctuations of the field
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overwhelm the quantum fluctuations, the Casimir force reads

F = −∂F (h)

∂h
= −kBTS

4πh3
ζR(3) , (1.6)

where kB is Boltzmann constant and ζR is the Riemann zeta function with the value

ζR(3) = 1.202 . . .. It is worth mentioning that the electromagnetic Casimir force is

a special case of the van der Waals force between two dielectric slabs interacting

across another dielectric medium, first calculated by Lifshitz in 1955 [4].

As it can be inferred from the above derivation, the Casimir interaction is not

specific only to the EM field. It is present in every confined system where the fluc-

tuation spectrum of any physical field is modified due to some boundary conditions.

In other words, it is omnipresent but not easily observed due to its usually small

magnitude. We shall here give a brief overview of the various fields of physics where

the Casimir force has been studied [2].

First of all, the original Casimir calculation, Eq. (1.5), has been refined and

extended in various ways. As already mentioned, the contribution due to thermal

fluctuations of electromagnetic field should be considered at finite temperatures,

leading to the expression (1.6) in the limit of high temperatures [5–12]. Further-

more the corrections concerning finite conductivity and roughness of the plates have

been evaluated [13–22]. The generalization to magnetically permeable plates has

been performed, which can even change the sign of the force [23–27]. The Casimir

interaction has been calculated for rectangular cavities and for spherical, cylindrical,

toroidal and wedge geometries [28–34]. There seems to be no a-priori way to predict

what the stress on specific geometrical object will be. For example, the Casimir

force on the conducting spherical shell tends to expand it, contrary to the attrac-

tion obtained between two plates. Moreover, the interaction between the walls of a

rectangular cavity can be either attractive or repulsive depending on the relation-

ship between the lengths of the sides. The dynamical Casimir effect, describing the

force and radiation from moving plates, has also received much attention [35–39].

In quantum field theory the Casimir effect has found application in the bag model

of hadrons in quantum chromodynamics (QCD) [40–42] and in Kaluza-Klein field

theories [40, 42–46]. Casimir-type effects naturally arise in cavity quantum electro-

dynamics (QED) [25] and even in electrical engineering of microchips [47–49]. In

gravitational theory, cosmology and astrophysics the Casimir effect arises in space-

times with nontrivial topology and is related to problems of particle creation by

black holes, gravitational collapse and inflation process [42, 50–55]. As a mechani-

cal analog, the acoustic Casimir force has to be mentioned. Larraza et al. managed

to measure the force between two closely spaced plates due to the modification of

the spectrum of acoustic noise [56–58]. The Casimir idea found application even in

maritime physics, where an attractive force between two ships in a rough sea has

been attributed to the modification of the wave spectrum in the region between the
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ships [59]. A fluctuation-induced interaction is also present between inclusions in

biological membranes. Here the thermal fluctuations of a membrane are hindered by

the presence of the inclusions which leads to the interaction [60–62]. Many studies

have been devoted to the thermal Casimir interaction in correlated fluids [63] – such

as critical liquids and binary mixtures of liquids [64–69], super-fluids [70–73], liquid

crystals and electrolytes [74–76]. The various studies of the Casimir effect in liquid

crystals, the main topic of this thesis, are presented in detail later.

Here we should mention a universal property of the Casimir force in planar ge-

ometry which does not depend on details of the studied system: fluctuations with

long-range correlations induce long-range interaction while short-correlated fluctua-

tions result in a short-range force decaying with some characteristic length. Typical

examples of long-range correlations include critical systems close to the phase tran-

sition and systems with a massless Goldstone fluctuation modes due to the broken

continuous symmetry of ordering. On the other hand, the sign of the Casimir force

depends on the geometry and topology of the system as well as on the specific

boundary conditions.

The experimental studies of the Casimir force are vastly outnumbered by the

theoretical work. The main reason lies in difficulty of experiments as the Casimir

force is usually weak and often screened by other effects. The first documented suc-

cessful attempts of measuring the electromagnetic Casimir force belong to Sparnaay

in 1958 [77]. However, due to the poor accuracy of the measurements only quali-

tative agreement with theoretical predictions was confirmed. A firm experimental

measurement of the Casimir force was reported in 1997 by Lamoreaux [78, 79],

almost half a century after the theoretical prediction. Lamoreaux used an elec-

tromechanical system based on a torsion pendulum and measured the force between

a gold-coated plate and sphere. The agreement with the theory was claimed to be

within 5%. Subsequent experiments which relied on the atomic force microscopy

(AFM) techniques [80–84] also produced results that were in excellent quantitative

agreement with the theory. In recent years a number of new experiments ensued.

The force between two crossed cylinders [85], plan-parallel plates [86] and in stan-

dard sphere-plane AFM setup was measured [87–91]. In dynamical experiments the

influence of the Casimir force on the behavior of micromechanical oscillators was

observed [92–95]. The precision of experiments has been greatly improved over the

last years and now allows for delicate tests of the theoretical predictions. Further-

more, the Casimir force measurements provide one of the most sensitive tests of the

hypothetical new forces predicted by modern theories of fundamental interactions

including corrections to Newtonian gravitational law at small distances [95–101].

Although the Casimir force is weak at macroscopic distances, it is important for

modern technologies which involve ever smaller length scales where the Casimir force

becomes dominant. It is presently unclear whether the Casimir force will present

an obstacle or a useful feature in micro- and nano-engineering. For example, the
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first microelectromechanical device which shows actuation by the Casimir force was

designed by researchers at Bell Labs in 2001 [92]. On the other hand, the Casimir

force restricts the yield and performance of nanoscale devices as the movable parts

often stick together due to the strong attraction [102–104].

Apart from measurements of the electromagnetic Casimir force, the experiments

on other systems have also been performed. The influence of the Casimir force has

been observed in the wetting behavior of liquid helium on a metallic surface [70, 71].

The thickness of the helium film formed on the metal depends on the strength of the

interaction between the surfaces of the film. When the system is cooled down to the

fluid/super-fluid phase transition the fluctuations become critical and the magnitude

of the Casimir force strongly increases which is reflected in thinning of the wetting

film. Similar experiments were performed with binary liquid mixtures [67, 105–107]

where a sharp increase of the wetting film thickness was observed near the critical

(demixing) point due to the enhanced Casimir interaction. Casimir interaction is

also expected to have an important role in physics of colloids where a long-range

attraction would eventually lead to the flocculation of dispersed particles [69]. Such a

flocculation of colloidal particles has actually been observed in binary liquid mixtures

but the precise interpretation of experimental results is still unclear [108–110].

1.1 Casimir force in liquid crystals

Having briefly described the Casimir interaction in various fields of physics, ranging

from biophysics to cosmology, we proceed with a thorough overview of the studies

of the Casimir force in liquid-crystal systems. Liquid-crystalline phases are interme-

diate states of matter between a liquid and a crystal phase [111]. They are formed

by anisotropic molecules, usually elongated or disc-shaped. There exist a variety

of distinct liquid-crystalline phases which are characterized by orientational and in

some cases also by partial orientational order of constituent molecules. It has been

established long ago in light-scattering experiments [112] that thermal fluctuations

of ordering have an important role in liquid-crystal systems. These fluctuations

are the source of the Casimir interaction when the system is confined by external

boundaries. The richness of different phases, phase transitions, order parameters

and couplings between them makes the liquid-crystalline systems especially attrac-

tive for studying the phenomenology of the Casimir interaction.

1.1.1 Nematic liquid crystals

Nematic phase is the simplest liquid-crystalline phase (Fig. 1.2). Molecules in a

nematic phase are liquid-like in a sense that there is no long-range positional order

and the translational motion of the molecules is random. However, there exists a

long-range orientational order. Molecules tend to orient with their long axes parallel
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Figure 1.2 Nematic liquid crystal phase. The average orientation of molecules
is described by a headless unit vector n called the director. The directions n
and −n are physically equivalent. The angle θ gives the tilt of a molecule with
respect to the director. The polar angle φ is used to describe biaxial ordering.

to each other. This orientational order is described by director n, which is a unit

vector giving the average local direction of orientation of molecules. The degree

of orientational order is measured by the order parameter S = 〈3/2 cos2 θ − 1/2〉,
where θ is the angle between the director n and long axes of the molecule, while the

brackets denote the thermodynamic average. Nematic ordering is usually uniaxial,

except in some special systems. The biaxial ordering is described by the biaxial

director nb, perpendicular to n, and the degree of biaxiality P = 〈sin2(θ) cos(2φ)〉,
where φ is the polar angle of molecular orientation. In equilibrium, with no external

forces acting on the system, the director tends to be uniform over the whole sample.

The energy cost of a director-field deformation is given by the Frank elastic free-

energy [113]

F =
1

2

∫ [
K1(∇ · n)2 +K2(n · ∇ × n)2 +K3(n ×∇× n)2

]
dV . (1.7)

Here K1, K2 and K3 are splay, twist and bend elastic constants. A more complete

description of nematic systems is given by the tensor order parameter Q which

incorporates all aspects of nematic ordering – director (n), degree of ordering (S),

and biaxiality (nb, P ). The Q tensor is a traceless symmetric tensor based on some

macroscopic quantity which is zero in the isotropic phase and non-zero in the nematic

phase. The magnetic susceptibility tensor χ is usually used for this purpose and the

order parameter tensor is defined as Q = C(χ− 1
3
I Trχ), where C is a normalization

constant and I a unit tensor. The free energy density of a nematic system close to
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the nematic-isotropic phase transition is then described by a Landau-type expansion

f =
1

2
A(T − T �) TrQ2 − 1

3
B TrQ3 +

1

4
C(TrQ2)2 +

1

2
L∇Q

...∇Q , (1.8)

where A, B, C and L are material constants and T � is supercooling limit of isotropic

phase.

The first study of the Casimir force in a nematic system was performed by Ajdari

et al. in 1991 [114, 115]. They calculated the force in a nematic homeotropic cell

(Fig. 1.3), consisting of two infinite parallel plates separated by the distance h which

enforce homeotropic orientation of the director [n(z = 0) = n(z = h) = (0, 0, 1)].

These imposed boundary conditions hinder the thermal fluctuations of the nematic

Figure 1.3 Homeotropic nematic cell with the director structure n = nz. The
arrows indicate the enforced orientation of the director at the plates.

director in the cell, thus modifying the spectrum of fluctuations which leads to the

Casimir interaction. The Casimir force in this configuration is equal to

FCas = −kBTS
8πh3

ζR(3)

(
K3

K1
+
K3

K2

)
. (1.9)

We note here that this force is equal to the thermal EM Casimir force between two

metallic plates [Eq. (1.6)], apart from factor including the ratio of elastic constants.

This demonstrates the universality of the Casimir interaction which does not depend

on specific details of the studied system but on the type of fluctuation modes and

on imposed boundary conditions. We also note that director fluctuations in nematic

liquid crystals are an example of massless Goldstone fluctuation modes, which try to

recover broken continuous symmetry of a high temperature – in this case isotropic

– phase. The work of Ajdari was extended by Ziherl et al. [116] who evaluated the

contributions of fluctuations of biaxiality and degree of nematic order to the Casimir

force. These contributions are equal to

FCas = −kTS
4π

1

h3

∞∑
k=1

exp (−2hk/ηi)

k3

(
1

2
+
h

ηi
k +

h2

η2
i

k2

)
, (1.10)

where ηi are the corresponding correlation lengths of fluctuations. In the limit

of large thicknesses (h/ηi � 1) this force decays as exp(−2h/ηi)/h. This is a
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demonstration of another universal feature of the Casimir force – massive short-range

correlated fluctuations result in a short-range Casimir force, decaying exponentially

with some characteristic length equal to the correlation length of fluctuation modes

in question. It was established that these short-range contributions are important

only close to the nematic-isotropic phase transition where the correlation lengths of

the massive modes are strongly increased. Otherwise the long-range contribution of

the director fluctuations [Eq. (1.9)] dominates the Casimir force in nematics. These

basic results [Eqs. (1.9,1.10)] were also generalized for finite anchoring strengths,

where the ordering at the plates is not fixed but can deviate from a preferred value

[116, 117]. It was established that finite surface coupling reduces the magnitude

of the Casimir force and can even modify its thickness dependence and sign. It

is interesting to note that in the case of no surface coupling between the plates

and liquid crystal the Casimir force is exactly the same as in the case of infinitely

strong anchoring. These two limiting cases correspond to the so-called Neumann and

Dirichlet boundary conditions, respectively. The structure of the eigen-modes in the

two cases is different, but the energy spectra are identical which leads to identical

Casimir forces. Even more interesting is the case of mixed (Dirichlet-Neumann)

boundary conditions where the force changes the sign and becomes repulsive [114,

117].

Further studies addressed different aspects of the Casimir force in nematic liquid

crystals. Li and Kardar evaluated corrections to the Casimir force due to the rough-

ness of the plates [118, 119]. Ziherl et al. studied the force in a pre-nematic wetting

system with inhomogeneous equilibrium order [120]. They found that the Casimir

force in such a system is repulsive and short-range. Much attention has been paid

to the so-called frustrated systems such as the hybrid and Fréedericksz cell [121].

The hybrid cell is similar to the homeotropic cell (Fig. 1.3) except that now one

Figure 1.4 Frustrated systems: a) hybrid cell; b) Fréedericksz cell – the
magnetic field tends to rotate the director parallel to the plates. The arrows
indicate the preferred orientation of director at the plates. In thin enough cells
the equilibrium director structure is uniform. When increasing the thickness,
the structural transition to a deformed director structure takes place at h = hc.
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of the plates imposes a planar orientation of the director (Fig. 1.4a). In thick cells

this mismatch between the plate-induced order results in a deformed equilibrium

director field. However, in thin cells it is energetically more favorable to maintain

homogeneous director configuration thus violating one (the weaker) of the boundary

conditions. Such a system is said to be frustrated as it can not adjust to all imposed

external conditions. Due to this frustration the order is destabilized and the fluc-

tuations of the director are enhanced which leads to additional contributions to the

Casimir force. When the anchoring strengths at the plates of a hybrid cell are very

different, the Casimir force exhibits typical crossovers from attraction to repulsion

when varying the thickness of the cell. When the critical thickness of the structural

transition to the inhomogeneous director profile is approached, the Casimir force

diverges logarithmically. The geometry of a hybrid cell is often characteristic for

thin nematic films on a solid substrate [122]. In a Fréedericksz cell the frustration is

caused by an external magnetic field which tends to orient the director parallel to the

plates while the plates induce a homeotropic director orientation (Fig. 1.4b). In thin

cells or in weak magnetic fields the director structure is homogeneous and dictated

by the boundary conditions. The destabilizing effect of magnetic field enhances the

director fluctuations which again results in additional terms to the ordinary director

Casimir force. At large enough fields or cell thicknesses the classical Fréedericksz

transition to the deformed director structure takes place. The Casimir force again

exhibits logarithmic divergence at this transition. Similar studies of frustrated sys-

tems were performed for chiral nematics where the frustration arises from inability

of a system to synchronize the intrinsic chiral helix with the confining boundaries

[123]. Bartolo et al. considered the Casimir force between small spherical impurities

in nematic solvent and obtained 1/h7 dependence of the force [124]. The Casimir

force in confined nematic polymers was discussed in Ref. [125]. It was predicted

that at large distances the Casimir force should exhibit a faster algebraical decay

(1/h5) than in ordinary nematics (1/h3). In a recent work Karimi et al. studied the

Casimir force in a nematic cell with patterned plates, covered by stripes of different

anchoring conditions [126]. Finally, the existence of a long-range Casimir torque

between plates with anisotropic anchoring energies was predicted [127].

1.1.2 Smectic liquid crystals

Smectic liquid crystals possess, in addition to orientational order, a one-dimensional

positional order. Molecules are arranged in parallel layers. The diffusion of molecules

within the layers is liquid-like, but the diffusion between the layers is hindered. This

leads to modulation of density in direction perpendicular to the layers (denoted as

z-direction here)

ρ(z) = ρ0

[
1 + Re

(
Ψ exp

(
i
2πz

d0

))]
, (1.11)



16 Introduction

where d0 is the thickness of smectic layers and Ψ = ψ exp(iφ) is the complex order

parameter whose modulus ψ describes the amplitude of density wave and the phase

φ is related to the position of the layers. However, it should be stressed that po-

sitional order in smectics is not very pronounced, as the variations of the density

are small, and there are no sharp boundaries between the layers. This positional

order is said to be quasi-long-range, because according to the Landau-Peierls theo-

rem no true long-range order can exist in one dimension as the thermal fluctuations

destabilize it. However, the break-down of positional order in smectics would occur

at macroscopic scales which is irrelevant for all current experimental setups. There

exist various smectic phases. In this thesis, we focus on the smectic-A phase, where

the molecules are oriented perpendicular to the layers, and the smectic-C phase,

where the molecules are tilted with respect to the layer normal (Fig. 1.5).

Figure 1.5 Smectic liquid crystals. Molecules are arranged in layers (the
figure is schematic): a) smectic-A phase; b) smectic-C phase. In the smectic-A
phase the molecules are on average oriented along the layer normal, while in
the smectic-C phase the molecules are tilted with respect to the layer normal.

In the simplest model the deformations of smectic structure are described by layer

displacement u(r) whereas the degree of smectic order is assumed to be constant

and the director is assumed to rigidly follow the layers. The elastic free-energy is

then given by

F =
1

2

∫ [
B(∇‖u)2 +K(∇2

⊥u)
2
]
dV , (1.12)

where the first term describes the compression or dilation of layers and the second

term gives the energy of layer bending (Fig. 1.6). The indices ‖,⊥ denote the direc-

tion parallel and perpendicular to the layer normal, respectively. A more complete

model which incorporates all aspects of smectic ordering will be presented in the

following section.
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Figure 1.6 a) Compression of smectic layers; b) Bending of smectic layers.

The first study of the Casimir force in smectic systems was published by Mikheev

in 1989 [128]. He considered the force in a homeotropic smectic cell induced by

fluctuations of smectic layers, taking as a starting point the Eq. (1.12). In this

geometry the layers are oriented parallel to the plates and the boundary condition

require that the layers at the plates are fixed and do not fluctuate. This hindering

of the fluctuations leads to the Casimir force between the plates given by

FCas = −kBTS
16πh2

ζR(2)

√
B

K
. (1.13)

We see that the Casimir force in smectics decays with even smaller power (h−2)

compared to the nematic decay (h−3). This is a result of a different energy dispersion

of fluctuations in smectics. Additional length dimension in smectic Casimir force is

provided by the characteristic length λ =
√
K/B which is usually about of a size of

a layer thickness. Mikheev actually considered even a more general case of smectic

films. The geometry of these systems is the same as that of a homeotropic cell,

however, the fluctuations of the surfaces are rather than forbidden only suppressed

by the surface tension. In this case, the Casimir force still retains h−2 dependence

and is given by

FCas = −kBTS
16πh2

√
B

K
Li2

[
(γ1 −

√
KB)(γ2 −

√
KB)

(γ1 +
√
KB)(γ2 +

√
KB)

]
, (1.14)

where Li2 is a dilogarithm function defined by Li2(x) =
∑∞

n=1 x
nn−2, while γ1 and γ2

are surface tensions at the upper and lower surface of the film, respectively. In free-

standing smectic films γ1 = γ2, but generally the surface tensions can be different.

Finite surface tensions reduce the magnitude of the Casimir force compared to the

case of hard boundaries. In case of dissimilar boundary conditions (weak/strong

anchoring) the force changes sign and is repulsive. The results of Mikheev were later

reproduced and extended by Ajdari et al. for bookshelf geometry, where smectic

layers are oriented perpendicular to the confining plates, and for columnar liquid

crystals [114, 115]. A somewhat different system was addressed in Ref. [129] where



18 Introduction

the Casimir force due to the fluctuations of Ψ in a presmectic liquid was studied.

Contrary to the long-range smectic Casimir force, the presmectic interaction is short-

range, exhibiting typical behavior characteristic for “massive” fluctuation modes

[Eq. (1.10)].

Oliveira and Lyra studied the Casimir force in smectic films within discrete

model of smectic elasticity [130]. The obtained results were very similar to that

of continuous model used in Refs. [114, 115, 128]. They found that in the case of

a very special value of surface tension γ = γc =
√
KB the force decays as h−4,

which is much faster as the usual h−2 behavior. This work was extended by the

inclusion of external magnetic field [131, 132]. The ordering effect of magnetic field

results in a faster (h−3) decay of the Casimir force at large thicknesses. In the case

of asymmetric boundary conditions the impact of the magnetic field changes the

sign of the force from the usual repulsion at small thicknesses to the attraction at

large thicknesses of the film. The crossover thickness (from repulsion to attraction)

decreases with inverse square of the magnetic field (hc ∝ 1/H2). Furthermore the

Casimir force in a free-standing film near the Sm-A – nematic phase transition was

studied [133]. Strong increase of the force close to the transition was predicted as a

result of a strong nonuniformity of equilibrium smectic and nematic order profiles.

This increase would make the Casimir force the dominant long-range interaction in

such a system. The discrete formalism was also applied to hexatic smectics, where

the Casimir force due to the fluctuations of the bond ordering was examined [134].

1.1.3 Search for experimental evidence

There has been no unambiguous confirmation of the Casimir force in liquid-crystalline

systems so far. The reason probably lies in the fact that there are many other forces

present in confined liquid crystals, such as mean-field force originating from non-

uniform equilibrium ordering and dielectric van der Waals force, which often domi-

nate and thus mask the Casimir force. The potential experiments for detecting the

Casimir force can be generally divided into two types. Firstly, the forces in liquid

crystal systems can be measured directly using the surface force apparatus (SFA)

or atomic force microscope (AFM) [135, 136]. Secondly, the impact of the Casimir

force could be observed indirectly in different phenomena concerning liquid crystal

films.

The possibilities of detecting the Casimir force in nematic liquid crystals were

thoroughly discussed in Ref. [137]. It was found that the sensitivity of the AFM and

SFA suffices for detection of the Casimir force only in very thin samples, up to about

40 nm thickness. Furthermore, the behavior of the Casimir force in nematics strongly

depends on specific boundary conditions, which should be therefore well-controlled

in order to allow for the identification of the Casimir interaction. Moreover, in

plane-sphere or cylinder-cylinder geometry employed in AFM and SFA experimental
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setups the deformation of the equilibrium director field is difficult to avoid. This

leads to the mean-field elastic force which is usually much stronger than the Casimir

force. Although the magnitude of the Casimir force could be somewhat enhanced

by using a suitable material with large ratio of elastic constants (K3/K1 or K3/K2),

it seems that the direct measurement of the force in nematic systems is a formidable

task. As for indirect observations, it was argued that the Casimir force should drive

the spinodal-dewetting of thin nematic films on a silicon substrate [122, 138, 139].

However, the explanation of this phenomena is not completely clear yet [140]. The

Casimir force also naturally arises in colloidal systems but with particles of micron-

size the leading interaction in this systems comes from elastic deformation of director

field. If the size of the particles were reduced to a few tens of nanometers then the

elastic deformation would vanish and the Casimir force would dominate [117].

Due to the longer range of the Casimir force in smectics, the AFM and SFA

setups are precise enough to detect the Casimir force in samples of up to about

1 µm thickness, which is much more than in nematics. Furthermore, the smectic

layers are much “stiffer” than the nematic director. Therefore, a smectic system

adjusts to the curved surfaces of AFM and SFA setups by formation of an array of

edge dislocation loops, whereas the smectic layers do not bend considerably [141].

This facilitates the interpretation of the results as there is no additional mean-field

force due to the elastic deformations of layers present. The force measurements in

smectics have indeed been performed [136, 141–146] and the force profile was found

to be comprised of quasiperiodic parabolas due to the compression (or dilation) of

layers. These parabolas are often superposed on an attractive background whose

origin is not fully understood yet. However, it seems that the Casimir force is about

an order of magnitude too small to be responsible for this [141].

There have been many speculations whether the Casimir force in smectics could

be observed indirectly. It was proposed that the Casimir force should drive the

wetting of isotropic and nematic films by the smectic phase at the free surface of

the film close to the corresponding phase transitions [128]. In the case of wetting

smectic film formed at the free surface of the isotropic film the Casimir force on the

wetting smectic layers is expected to be attractive and the wetting should therefore

be incomplete (only a finite number of smectic layers is developed before the whole

film undergoes the transition to smectic phase). When the wetting smectic film is

formed at the free surface of the nematic film the Casimir force on smectic layers is

expected to be repulsive due to the very dissimilar boundaries. The wetting should

therefore be complete, with thickness of smectic film continuously increasing and

eventually diverging at the phase transition. This kind of behavior was indeed ob-

served experimentally in some systems [147–149], however no analysis confirming

the dominant role of the Casimir force has been performed. Similar interactions

are expected to be present in free-standing smectic films above the bulk smectic

– nematic phase transition temperature, where the layer-thinning transitions take
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place [150]. The influence of the Casimir force could also be detected by measuring

the contact angle between a free-standing smectic-A film and its meniscus, as this

angle provides direct information about the interaction between the free surfaces of

the film [151]. The interactions in free-standing films can further be probed in ex-

periments that measure the intensity of light scattered by the capillary waves on the

free surfaces of the film [152]. But as stressed above, no unambiguous confirmation

of the Casimir force in liquid crystal systems, neither nematic nor smectic, has been

obtained yet.

1.1.4 Aim and outline of thesis

The preceding studies of the Casimir force in smectic liquid crystals were concerned

with interaction induced by fluctuations of smectic layers [114, 115, 128, 130–133].

It is the aim of this thesis to study the Casimir force considering all aspects of

smectic ordering – positional and orientational. This gives, to our knowledge the

first, complete picture of the Casimir phenomenon in smectic systems. Our main

focus is on the force in smectic-A phase. We further address the behavior of the

Casimir force close to the smectic-A to smectic-C phase transition in plain and also

in chiral smectics. The presence of the phase transition is expected to result in some

special features of the Casimir force, which might facilitate its experimental iden-

tification. In the end we consider the problem of the Casimir force in two systems

with inhomogeneous equilibrium order. We first address a smectic system with in-

homogeneous positional order which results in spatial dependence of smectic elastic

constants. Second, we study the effect of a presmectic order on the director fluc-

tuations in a nematic phase. In confined systems, some boundary-induced smectic

order is always present. Therefore it is a relevant question how this order influences

the long-range Casimir interaction in nematics. The systems with inhomogeneous

equilibrium structure represent a special challenge in the theory of the Casimir in-

teraction and the thesis gives a contribution to the yet limited knowledge in this

field. Our studies are limited to the plan-parallel geometry. This is a geometry

realized in smectic films. Furthermore, the results obtained in planar systems can

be generalized (with some restrictions) to the most commonly encountered curved

geometries by using Derjaugin approximation [153]. Some of the results presented

in the thesis have been published in two papers in Physical Review E [154, 155].

The outline of the thesis is as follows. In Chapter 2 we present the theoretical

models used in this thesis and describe the procedure for calculating the Casimir

force. In Chapter 3 we consider the Casimir force in confined smectic-A systems.

In Chapter 4 we address the force in the vicinity of smectic-A to smectic-C phase

transition. In Chapter 5 we study the force in two systems with inhomogeneous

equilibrium order. At the end we summarize the obtained results and outline some

of the open questions in the field.
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Theoretical model

2.1 Free energy of smectic-A phase

Positional order in smectics is described by a complex order parameter Ψ = ψ exp(iφ).

The modulus ψ gives the magnitude of positional ordering and is related to the mag-

nitude of the density wave as described by Eq. (1.11). The argument φ is related

to deformations of smectic layers, φ = q0u = (2π/d0)u, where u is the layer dis-

placement and d0 the period of smectic layers. The orientational order of molecules

is described by the director n. The free energy of a smectic system is then given

by a phenomenological Landau – de Gennes type expansion [111, 156, 157]. This

expansion includes three parts. The first part fL describes the free energy density

of positional ordering:

fL =
1

2
a|Ψ|2+1

4
b|Ψ|4+1

2
C‖|∇‖Ψ|2+1

2
d1|∇2

⊥Ψ|2+1

2
d2|∇2

‖Ψ|2+1

4
d3|∇⊥∇‖Ψ|2 . (2.1)

The first two terms in fL describe the smectic-A – nematic phase transition, and

a = α(T − TNA) with TNA being the temperature of the phase transition and b > 0.

The rest gives the various contributions to elastic free energy weighted by the elastic

constants C‖, d1, d2 and d3. The subscripts ‖ and ⊥ denote directions parallel and

perpendicular to the layer normal, respectively. We shall seldom employ the elastic

contributions in full generality as the lowest order elastic terms are usually sufficient

to describe smectic systems. The second part fN to the total smectic free energy

comes from the energy cost of deformations of orientational order and is given by

the usual nematic Frank elastic energy:

fN =
1

2
K1(∇ · n)2 +

1

2
K2[n · (∇× n)]2 +

1

2
K3[n× (∇× n)]2 . (2.2)

Here K1, K2 and K3 are splay, twist and bend elastic constants, respectively. The

third contribution fLN describes the coupling between the orientational and the

positional order. In the case of the smectic-A phase it is given by

fLN =
1

2
C⊥
∣∣∣(∇⊥ + iq0δn⊥)Ψ

∣∣∣2 . (2.3)
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In the case of the smectic-C phase a fourth order term should be included so that

fLN =
1

2
C

(1)
⊥
∣∣∣(∇⊥ + iq0δn⊥)Ψ

∣∣∣2 +
1

4
C

(2)
⊥
∣∣∣(∇⊥ + iq0δn⊥)Ψ

∣∣∣4 , (2.4)

with C
(1)
⊥ < 0 and C

(2)
⊥ > 0, but we refer to this case in a more specific system later

on. The complete free energy can now be written as

F =

∫
(fL + fN + fLN) dV . (2.5)

It is useful to expand the free energy density in terms of ψ and φ. We obtain

fL =
1

2
aψ2 +

1

4
bψ4 +

1

2
C‖
[
(∇‖ψ)2 + ψ2(∇‖φ)2

]
+

1

2
d1

{ [∇2
⊥ψ − ψ(∇⊥φ)2

]2
+
[
2∇⊥φ · ∇⊥ψ + ψ(∇2

⊥φ)
]2 }

+
1

2
d2

{ [∇2
‖ψ − ψ(∇‖φ)2

]2
+
[
2∇‖φ∇‖ψ + ψ∇2

‖φ
]2}

+
1

2
d3

{ [∇⊥∇‖ψ − ψ∇‖φ∇⊥φ
]2

+
[∇‖ψ∇⊥φ+ ∇⊥ψ∇‖φ+ ψ(∇⊥∇‖φ)

]2}
,

(2.6)

fLN =
1

2
C⊥
[
(∇⊥ψ)2 + ψ2

(∇⊥φ+ q0δn⊥
)2]

. (2.7)

If no elastic deformations are present in the system, then the equilibrium value of

bulk smectic order is given by ψ0 =
√−a/b, the phase φ is constant [φ 	= φ(r)] and

the director is perpendicular to the layers (δn = 0). Above the phase transition

temperature TNA in nematic phase there is no bulk smectic order and ψ0 = 0.

2.2 Chiral smectics close to smectic-A∗ to

smectic-C∗ phase transition

In this thesis, we also address the behavior of the Casimir force close to the smectic-A

to smectic-C phase transition. We actually also consider the more complex chi-

ral smectic phases, smectic-A∗ (Sm-A∗) and smectic-C∗ (Sm-C∗), as this brings no

conceptual difficulties to our calculations and the results can be straightforwardly

applied to the non-chiral phases.

Chiral molecules, which lack the mirror symmetry and therefore distinguish left-

and right-handed types, form chiral liquid crystal phases [158–160]. The chiral

Sm-A∗ phase exhibits the same structure as its non-chiral counterpart, but its phys-

ical properties are different. On the other hand, the chirality modifies the structure

of Sm-C∗ phase. The molecules in Sm-C∗ are still tilted with respect to the layer

normal as in a non-chiral Sm-C phase. However the direction of the tilt changes grad-

ually from layer to layer such that the director forms a helical structure (Fig. 2.1).
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Figure 2.1 Helical structure of chiral Sm-C∗ phase (the period of the he-
lix on the figure is exaggeratedly short). The direction of the molecular tilt
changes gradually from layer to layer. The arrows indicate the orientation of
spontaneous polarization.

The period of the helix (∼ 1 µm) is incommensurate with the layer thickness and

much larger compared to it. Furthermore, the Sm-C∗ phase can posses spontaneous

polarization and is hence ferroelectric. This was discovered experimentally by Meyer

et al. in 1975 [161] and later explained by Meyer on pure symmetry grounds [162].

The spontaneous polarization is oriented perpendicular both to the layer normal

and to the director.

The ordering in Sm-A∗ and Sm-C∗ phases can be described by two two-component

order parameters. The primary order parameter, ξ = (ξx, ξy), represents the pro-

jection of the director onto the x-y plane. The secondary order parameter is the

spontaneous polarization P = (Px, Py). However, the interaction between the dipole

moments of molecules is too weak to drive the Sm-A∗ – Sm-C∗ phase transition. In

Sm-C∗ phase, the polarization P appears only due to the coupling with the tilt ξ

and for this reason smectics belong to the class of so-called improper ferroelectrics.

The Sm-A∗ – Sm-C∗ phase transition can be conveniently described by a phe-

nomenological Landau-type model. In this model, the free energy density reads

f = fA +
1

2
a
(
ξ2
x + ξ2

y

)
+

1

4
b
(
ξ2
x + ξ2

y

)2 − Λ

(
ξx
∂ξy
∂z

− ξy
∂ξx
∂z

)
+

1

2
K1

(
∂ξx
∂x

+
∂ξy
dy

)2

+
1

2
K2

(
∂ξx
∂y

− ∂ξy
∂x

)2

+
1

2
K3

[(
∂ξx
∂z

)2

+

(
∂ξy
∂z

)2
]

+
1

2ε

(
P 2
x + P 2

y

)− µ

(
Px
∂ξx
∂z

+ Py
∂ξy
∂z

)
+ C (Px ξy − Py ξx) .

(2.8)

Here fA stands for the equilibrium free energy density of Sm-A∗ phase. The temper-
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Figure 2.2 Order parameters of the Sm-A∗ – Sm-C∗ phase transition: a) tilt
of molecules ξ ; b) spontaneous polarization P. Molecular orientation can be
also described by the azimuthal angle θ and the polar angle φ. Spontaneous
polarization P is oriented perpendicular to the tilt ξ and the layer normal z.

ature dependence is hidden in coefficient a = α(T−T0), where T0 is the temperature

of phase transition in an achiral system. The coefficient b must be positive to stabi-

lize the total free-energy. The Lifshitz term Λ
(
ξx

∂ξy
∂z

− ξy
∂ξx
∂z

)
is responsible for the

helical twist of the director. The three elastic terms give the energy of deformation

of director field and are analogous to the Frank elastic energy in nematics. The

coefficient 1/2ε in front of P2 term is independent of temperature, as the polariza-

tion does not drive the phase transition. The piezoelectric term C (Px ξy − Py ξx)

describes the coupling between the tilt and polarization. The flexoelectric term

µ
(
Px

∂ξx
∂z

+ Py
∂ξy
∂z

)
on the other hand describes the appearance of the polarization

due to the inhomogeneity of the director structure. It should be mentioned that the

Lifshitz and piezoelectric term have a chiral origin while the flexoelectric effect can

also be present in achiral smectics.

In Sm-A∗ phase, the equilibrium value of |ξ| and |P| is 0. Below the phase

transition temperature Tc, in Sm-C∗ phase, the amplitude of the director tilt varies

as |ξ| =
√
α (Tc − T ) /b. The amplitude of the polarization is proportional to the

magnitude of tilt |P| = ε (µqc + C) |ξ|. The temperature of Sm-A∗ – Sm-C∗ phase

transition Tc is equal to Tc = T0+[εC2 + (K3 − εµ2) q2
c ] /α and is always higher than

the phase transition temperature T0 in achiral systems. This is due to the coupling

between the tilt and polarization and due to the helical structure of Sm-C∗ phase

which has to be unwinded at the transition. The equilibrium pitch of helix is given

by qc = (Λ + εµC)/(K3 − εµ2). The classical Landau model presented here does

not completely cover the experimentally observed material properties of ferroelectric

smectics and has therefore been subject to various improvements and corrections.

However all these corrections contribute higher order terms in free energy expansion

and are hence not crucial for our analysis of fluctuations which will be limited to
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harmonic terms only.

In liquid crystals, the thermal fluctuations of ordering around the equilibrium

structure are overdamped. The relaxation times of fast (i.e. high energy) polariza-

tion fluctuations (τ−1 ∼ 100 MHz) are much shorter than typical relaxation times

of director fluctuations (τ−1 ∼ 10 Hz − 1 MHz). This fact justifies the use of

adiabatic approximation which is based on assumption that polarization always in-

stantaneously equilibrates with the director movement. This enables us to eliminate

the polarization P from the free energy. Considering the equilibrium conditions

∂f/∂Px = 0 and ∂f/∂Py = 0 we obtain for polarization values

Px = εµ
dξx
dz

− εCξy ,

Py = εµ
dξy
dz

+ εCξx . (2.9)

The free energy in the adiabatic approximation then reads

f = fA +
1

2
ã
(
ξ2
x + ξ2

y

)
+

1

4
b
(
ξ2
x + ξ2

y

)2 − Λ̃

(
ξx
∂ξy
∂z

− ξy
∂ξx
∂z

)
+

1

2
K1

(
∂ξx
∂x

+
∂ξy
∂y

)2

+
1

2
K2

(
∂ξx
∂y

− ∂ξy
∂x

)2

+
1

2
K̃3

[(
∂ξx
∂z

)2

+

(
∂ξy
∂z

)2
]
,

(2.10)

with renormalized coefficients ã(T ) = a(T )−εC2, Λ̃ = Λ+εµC and K̃3 = K3−εµ2.

The free energy expansion can be further simplified by transforming the order pa-

rameter into rotating system which follows the helical structure of the Sm-C∗ phase.

The order parameter ξ in the rotating frame is given by ξ = (ξ�, ξ⊥) where ξ� is the

component parallel to the equilibrium director tilt and ξ⊥ component perpendicular

to the equilibrium tilt. The transformation equations read: ξx = ξ� cos qcz−ξ⊥ sin qcz

and ξy = ξ� sin qcz+ ξ⊥ cos qcz. The equilibrium values of transformed order param-

eters in Sm-C∗ phase are ξ� = |ξ| =
√
α (Tc − T ) /b and ξ⊥ = 0, while in Sm-A∗

phase both order parameters are equal to 0. The free energy in rotating frame is

now given by

f = fA +

(
1

2
ã(T ) − 1

2
K̃3 q

2
c

)(
ξ2

�
+ ξ2

⊥
)

+
1

4
b
(
ξ2

�
+ ξ2

⊥
)2

+

+
1

2
K

[(
∂ξ�

∂x
+
∂ξ⊥
∂y

)2

+

(
∂ξ�

∂y
− ∂ξ⊥

∂x

)2
]

+
1

2
K̃3

[(
∂ξ�

∂z

)2

+

(
∂ξ⊥
∂z

)2
]
,

(2.11)

with assumption K1 = K2 = K. The coefficient (ã−K̃3 q
2
c )/2 is of form α(T −Tc)/2

and is positive in Sm-A∗ phase and negative in Sm-C∗ phase.
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2.3 Confined systems

The presence of confining boundaries, and thereby boundary conditions imposed

onto fluctuating fields, is the basis of the Casimir interaction. In this thesis we study

the Casimir force in two confined systems with plan-parallel geometry: homeotropic

cell and free-standing film (Fig. 2.3). The influence of boundaries on both types of

smectic ordering – positional and orientational – has to be taken into account.

Figure 2.3 Confined systems: a) Homeotropic cell. Smectic material is con-
fined by parallel plates. Smectic layers are aligned parallel to the plates, while
the director structure is homeotropic. The arrows indicate the preferential
orientation of the director at the plates; b) Free-standing smectic-A film; c)
Free-standing smectic-C film. In free-standing films the smectic material is
spread over a hole in a metal or a glass plate. The layers align parallel with
the free boundaries in contact with air; The setting of coordinate system which
is used in the calculations is presented.

The homeotropic cell consists of Sm-A material trapped between two parallel

flat plates separated by the distance h. Smectic layers are aligned parallel to the

plates. We assume that smectic layers rigidly adjust to the plates. In terms of layer

displacement u this gives the boundary condition u(z=0)=u(z=h)=0. Furthermore

the boundaries affect (usually increase) the degree of positional order ψ. We model

this by assuming that the plates induce a fixed magnitude of positional order ψS,

which gives the boundary conditions ψ(z = 0) = ψ(z = h) = ψS. Finally, the plates

favor homeotropic (i.e. perpendicular to the plates) ordering of the director. This

director anchoring is described by phenomenological Rapini-Papoular model [163]

with the anchoring free energy given by

FS [n] =
1

2
W

∫
sin2
( |n− nS|

)
dS , (2.12)
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where W is the anchoring energy per surface unit and nS the preferred director

orientation at the boundary. The anchoring energy W depends on chemical and

mechanical preparation of the plates and can be in general different for each plate

in homeotropic cell. In the case of infinitely strong director anchoring, W → ∞,

the director orientation at the boundary is fixed. It is common to express anchoring

strengts in terms of extrapolation length L = K/W with K being some appropriate

elastic constant of the liquid crystal material.

A free-standing film is formed by spreading the smectic material over a hole

in a metal or a glass plate. The layers align parallel with free boundaries. Films

consisting of only a few (at least two) up to thousands layers can be produced and

stabilized, while monolayers are unstable. Free-standing films are very convenient

for studying properties of liquid crystals as a defect-free structure can be obtained

relatively easy, which is not the case in liquid-crystal cells. As the film is confined by

air and not by hard plates the fluctuations of the boundary layers are not completely

suppressed. However, these surface fluctuations increase the area of the free surface

and thus the surface tension free energy given by

FS [u] =
1

2
γ

∫
(∇⊥u)

2 dS , (2.13)

where γ is the surface tension between the smectic and air. The boundary con-

ditions for ψ and n can be modeled in same manner as in the homeotropic cell.

The preferential orientation of director at a free-surface nS depends on the specific

smectic phase (Sm-A or Sm-C). In the simplest model we take nS to be equal to

the equilibrium bulk orientation of the director. This assumes the existence of some

“internal anchoring” where the bulk interior dictates the behavior of the boundary

layer. In this case the equilibrium director structure of the film is homogeneous be-

cause the boundary conditions match the bulk order. However, as the fluctuations

of surface layers are suppressed by the surface tension and thus less pronounced than

in interior of the film, the boundary layers are often more ordered than the interior

ones [164]. Close to the Sm-A – Sm-C phase transition (above TC) the boundary

layers can exhibit Sm-C ordering while the bulk interior is still in Sm-A phase. This

kind of system can be modeled by taking appropriate value of nS which corresponds

to this surface-induced ordering.

2.4 Calculation of Casimir force

The procedure used for calculating the Casimir force is similar for all systems studied

in this thesis. We here outline the main steps of the calculation while specific details

are presented along with each system.

Let us begin with a definition of the thermodynamic force. In plan-parallel

geometry the force is given as a derivative of the free energy F with respect to the
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distance between the planar boundaries h

F = −
(
∂F

∂h

)
V,S,T

. (2.14)

Here the total volume and surface area as well as the temperature of the system

should be constant. This means that we should always consider a system where

confined liquid crystal material is connected to some reservoir of bulk material in

order to retain constant volume as the liquid crystal is squeezed in or out of the

confined area. The bulk reservoir is realized naturally in the case of free-standing

smectic films where a large amount of smectic material gathers at the lateral edges

and can flow into or out of the film. For a homeotropic cell the reservoir is provided

by immersing the plates into the liquid crystal material. This is indeed the case

in the atomic force microscope, with distinction that it is a sphere and not a plate

which is immersed into liquid crystal. For the purpose of calculation the presence

of a reservoir means that the free energy of a confined system should be measured

from the reference free energy of a bulk system.

As it can be inferred from the definition of the force, the main task in the

calculation is evaluation of the free energy of a system. Ideally one would start

with a Hamiltonian of the system, evaluate the partition function and obtain the

total free energy at once. This is however rarely possible and the procedure is then

divided into two steps. First the equilibrium structure of a system is determined by

minimizing the mean-field free energy described by phenomenological Landau-type

models. Then fluctuations around the equilibrium are considered. The total free

energy now consists of the mean-field and fluctuations free energy: F = Fmf +Ffluc.

If the mean-field free energy Fmf depends on the separation between boundaries

(this usually happens in systems with inhomogeneous equilibrium order) it gives

rise to the mean-field force Fmf . The fluctuations on the other hand induce the

Casimir force FCas which is of main concern to us.

The calculation of the fluctuations free energy in this thesis is performed in

the following way. Once the mean-field configuration has been determined the

order parameter(s) can be written as a sum of equilibrium and fluctuating part:

ν = νmf + δν. Here ν stands for any of the smectic order parameters. The Hamil-

tonian of fluctuations H [δν] is obtained by expanding the free energy given by

Landau-type models around the equilibrium. We retain only harmonic fluctuation

terms in the Hamiltonian and neglect higher order terms. The harmonic approxi-

mation is justified as long as the fluctuations are small. However, in the vicinity of

phase transitions the fluctuations of ordering can be strongly enhanced and higher

order terms could become important. In this case the harmonic model may only

give qualitative description of the force and one should be aware of this limitation.

Once the Hamiltonian is known the partition function of fluctuations is obtained
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by evaluating a path integral

Zfluc = exp (−βFfluc) =

∫
b.c.

exp (−βH [δν(r)]) Dδν(r) ≡
∑

all conf.

exp (−βH [δν(r)]) ,

(2.15)

where β = 1/kBT . The path integral is a functional integral which is evaluated by

going over all possible configurations of δν(r) that satisfy the boundary conditions,

assigning each configuration a statistical weight exp(−βH). This is analogous to

Feynman formulation of quantum mechanics [165], where the propagator of a quan-

tum system is obtained by path integration exploring all possible paths from a state

x1 at time t1 to a state x2 at time t2 (Fig. 2.4), assigning each path a phase factor

exp(iS/�), with S being the action of a system

(x2t2|x1t1) =
∑

all paths

exp(iS/�) . (2.16)

The analogy between statistical physics of one-dimensional systems and quantum

Figure 2.4 Analogy between path integral formulation of quantum mechanics
and statistical physics of one-dimensional systems. The time t corresponds to
the one-dimensional spatial coordinate �r and the quantum state x corresponds
to the fluctuating field ν. Instead of the quantum phase factor exp(iS/�) the
Boltzmann factor exp(−βH) is used in statistical physics. The system explores
all possible paths between the initial and the final state.

mechanics will be readily employed as many results of path integration in quantum

systems can be easily transformed and used for evaluation of partition functions

[166–168]. The partition function Zfluc can be transformed into a partition function

of a one-dimensional system considering the fact that both studied systems, the

homeotropic cell and the free-standing film, are extensive in horizontal directions

(x-y). We can therefore assume that lateral edges do not influence the liquid crystal
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structure. This allows for application of periodic boundary conditions and Fourier

transformation of fluctuating fields

δν(r) =
∑
q

νq(z) exp (iq · ρ) , (2.17)

where ρ = (x, y) and q = (qx, qy) satisfy periodic boundary conditions. The fluc-

tuating field νq(z) now depends only on the coordinate z, which makes the analogy

with one-dimensional systems possible. If fluctuation modes with different wave

vectors q are not coupled, the partition function can be factorized as

Zfluc =
∏
q

Zq =
∏
q

∫
exp (−βHq[νq(z)]) Dνq(z) . (2.18)

The generalization to several, possibly coupled fluctuating fields is straightforward

Zfluc =
∏
q

Zq =
∏
q

∫
exp
(−βHq[ν

(1)
q (z), ν(2)

q (z), . . . ]
) Dν(1)

q (z)Dν(2)
q (z) . . . .

(2.19)

The free-energy of fluctuations is given as a sum (or integral) of contributions of

individual Fourier modes

Ffluc = −kBT
∑
q

lnZq = −kBT S

(2π)2

∫
lnZq dq . (2.20)

Within the continuum model, where the sum or integral over q is unbounded,

the free energy of fluctuations Ffluc diverges. This is one of the main problems in

calculation of the Casimir force. Many methods have been developed in the theory

of Casimir effect to regularize the diverging total free energy and extract the finite

interaction part. These methods include dimensional regularization, introduction of

a suitable cut-off of wave vectors, Zeta regularization, methods based on Green’s

function and others [40, 42, 63]. At first it seems that introducing the lower limit

of allowed wavelengths of fluctuations, i.e., a cut-off of large q’s, would solve the

problem naturally. However, it turned out that the final result can depend on the

type of the cut-off procedure which complicates the situation considerably. In this

thesis we use a method which is perhaps the most intuitive from physical point of

view. As already discussed while defining the thermodynamic force [Eq. (2.14)] the

free energy should actually be measured with respect to reference bulk configura-

tion. If the free energy of fluctuations of a reference bulk system can be directly

(i.e. analytically) subtracted from the total free energy of fluctuations in confined

system the divergence is removed in most cases. One should simultaneously also

dispose of constant terms in fluctuations free energy which do not depend on sep-

aration between the boundaries of confined system. These terms do not contribute

to the force and usually represent the surface tension between the liquid crystal
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material and boundaries. Once the finite interaction part has been extracted from

the total free energy of fluctuations the Casimir force is obtained straightforwardly

by differentiation.
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3

Casimir force in smectic-A phase

3.1 Homeotropic smectic-A cell

Our work starts with the study of the Casimir force in the homeotropic smectic-A

cell, which was introduced in the previous chapter (Fig. 2.3). The homeotropic

smectic cell consists of two plan-parallel plates which align smectic layers and fa-

vor homeotropic director orientation. Our calculation starts from the free energy

expansion (2.5). Before considering fluctuations, the equilibrium configuration has

to be determined. We first assume that the equilibrium degree of smectic order

ψ is uniform over the whole cell and equal to bulk value ψ0 =
√−a/b as follows

from Eq. (2.6). This assumption holds reasonably well when the system is deep in

smectic-A phase far from the nematic – smectic-A phase transition. Close to this

transition where the bulk value ψ0 is small, one should expect inhomogeneous equi-

librium profile of ψ due to the surface enhanced order and also due to the coupling

with layer compression which can result in melting of smectic order. These effects are

neglected in present model but will be discussed later on. We further assume that

the homeotropic cell incorporates an integer number of unstressed smectic layers

[umf (r) = 0]. As the plates favor homeotropic orientation of molecules the equilib-

rium director configuration is given by nmf = nz = (0, 0, 1). Due to normalization

condition |n| = 1 there can be only two director fluctuation modes present, which

describe transversal components of director nx and ny. The fluctuating director is

then given by n = (nx, ny,
√

1 − n2
x − n2

y) ≈ [δn, 1− 1
2
(n2

x+n2
y)], with δn = (nx, ny).

The Hamiltonian of fluctuations is obtained by expanding free energy [Eq. (2.5)]

around equilibrium configuration (note that φ = q0u)

H [δψ, u, δn] = H [δψ] +H [u, δn] ,

H [δψ] =

∫
dV

[
−aδψ2 +

1

2
C‖(∇‖δψ)2 +

1

2
C⊥(∇⊥δψ)2

]
,

33
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H [u, δn] =
1

2

∫
dV

{
B
(∇‖u

)2
+KL

(∇2
⊥u
)2

+D (∇⊥u+ δn)2 +

+K1

(
∂nx
∂x

+
∂ny
∂y

)2

+K2

(
∂nx
∂y

− ∂ny
∂x

)2

+K3

[(
∂nx
∂z

)2

+

(
∂ny
∂z

)2
]}

,

(3.1)

where δψ(r) = ψ−ψ0 are the fluctuations of degree of smectic order, u(r) fluctuations

of position of smectic layers and δn(r) = (nx, ny) the director fluctuations (Fig. 3.1).

In this expansion we neglected terms of higher than quadratic order in fluctuating

Figure 3.1 Fluctuations in smectic-A homeotropic cell. The fluctuations of
degree of smectic order δψ, position of smectic layers u and director fluctua-
tions δn are presented schematically.

fields and also discarded some higher order elastic terms, which are not essential

to describe the physical properties of smectics. We have introduced the elastic

constants

B = C‖q2
0ψ

2
0 , D = C⊥q2

0ψ
2
0 and KL = d1q

2
0ψ

2
0 (3.2)

to cast the Hamiltonian in a compact form. Within the harmonic approximation,

the fluctuations of degree of smectic order are decoupled from layer and director fluc-

tuations which considerably simplifies the calculations. Let us now provide physical

meaning of individual terms in Hamiltonian (3.1). The first term in H [δψ] gives the

energy of deviation of smectic order magnitude from the preferred value (note that

a < 0). The remaining terms describe the elastic energy of the inhomogeneity of

smectic order. The first and the second term inH [u, δn] are related to the layer com-

pression and to the layer bending, respectively. The third term D (∇⊥u+ δn)2 /2

describes the coupling between the director and layers. It simply states that if the

coupling constant D is positive the director tends to orient perpendicular to the

layers (δn = −∇⊥u). The last three terms in H [u, δn] originate from the Frank

director elastic energy.

In addition to bulk Hamiltonian, also the boundary conditions must be modeled.

As mentioned in the previous chapter, we assume that the position of the smectic

layers is fixed at the plates which gives u(z = 0) = u(z = h) = 0. Furthermore we

assume that the degree of smectic order at the plates is fixed to the equilibrium bulk

value ψ(z = 0) = ψ(z = h) = ψ0 which gives boundary conditions for fluctuating
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field δψ(z = 0) = δψ(z = h) = 0. This somewhat artificial condition should be

considered in the spirit of homogeneous equilibrium order profile which we employ

here and should suffice to give at least a qualitative picture of phenomenon. Finally,

the homeotropic director anchoring is modeled by Rapini-Papoular model. In the

harmonic approximation,

HS [n] =
1

2
W

∫
|δn|2 dS , (3.3)

where the integration is performed over confining surfaces.

3.1.1 Fluctuations of degree of smectic order ψ

As the fluctuations of ψ are decoupled from director and layer fluctuations their

contribution to the Casimir force can be calculated separately. We first perform the

two-dimensional Fourier transformation δψ(r) =
∑

q ψq(z) exp (iq · ρ) and obtain

H [δψ] =
∑
q

Hq[δψ] =
1

2
C‖S
∑
q

∫ h

0

dz

[
(ξ−2 +

C⊥
C‖

q2) |ψq|2 +

∣∣∣∣∂ψq

∂z

∣∣∣∣2
]
, (3.4)

where ξ is the correlation length of fluctuations defined by ξ =
√−C‖/2a. As

fluctuation modes with different wave-vectors q are decoupled the partition function

for each mode is

Zq[δψ] =

∫ ψq(z=h)=0

ψq(z=0)=0

exp (−βHq[δψ]) Dψq(z) . (3.5)

This partition function is analogous to the quantum propagator of a repelling har-

monic oscillator [168] and can thus be readily evaluated (see Appendix A.1)

Zq[δψ] ∝
[
sinh

(√
ξ−2 +

C⊥
C‖

q2 h

)]−1/2

. (3.6)

We have disposed of the constant factors that do not depend on separation h and

therefore do not contribute to the interaction. The free energy of fluctuations is

given by

Ffluc[δψ] = −kBT
∑
q

lnZq[δψ] =
kBTS

4π

∫
ln

[
sinh

(√
ξ−2 +

C⊥
C‖

q2 h

)]
q dq .

(3.7)

From the total fluctuation free energy a finite interaction part has to be extracted.

In this case the procedure is fairly straightforward. The free energy can be factorized

using the relation sinh(x) = exp(x) × 1/2 × [1 − exp(−2x)]

Ffluc[δψ] =
kBTS

4π

C‖
C⊥

∫ ∞

ξ−1

ln

(
exp (ph) × 1

2
× [1 − exp (−2ph)]

)
p dp . (3.8)



36 Casimir force in smectic-A phase

where p2 = ξ−2 + C⊥
C‖
q2. The first term in the factorization, ln(exp(ph)) = ph, is

proportional to sample volume Sh and represents the bulk free energy. The second

term ln(1/2) is independent of h and does not contribute to the interaction between

plates. The last term, which vanishes in the limit h→ ∞, represents the interaction

part of free energy

F int
fluc[δψ] =

kBTS

4π

C‖
C⊥

∫ ∞

ξ−1

ln (1 − exp (−2ph)) p dp . (3.9)

The Casimir force, which is obtained by differentiating F int
fluc with respect to h and

evaluating the integral, reads

FCas[δψ] = −kBTS
4π

C‖
C⊥

1

h3

∞∑
k=1

exp(−2hk/ξ)

k3

(
1

2
+
h

ξ
k +

h2

ξ2
k2

)
. (3.10)

In the limiting case of large thicknesses (h � ξ) the Casimir force decays as

exp(−2h/ξ)/h and is hence short-range. In the opposite limit of small thicknesses

(h� ξ) the force varies as 1/h3. Deep in the smectic-A phase the correlation length

ξ is of the order of smectic layer thickness. Close to the smectic-A – nematic phase

transition the correlation length increases as ξ =
√
C‖/2α(TNA − T ).

The result obtained here is equivalent to the force induced by biaxiality and

degree-of-order fluctuations in nematics [Eq. (1.10)] and is actually universal for all

massive fluctuation modes independent of specific details of the system (assuming

the same type of boundary conditions and homogeneity of the system).

3.1.2 Fluctuations of director and smectic layers

Fluctuations of director and smectic layers are coupled and must be considered

simultaneously. After Fourier transforming the fluctuating fields the Hamiltonian

reads

H [u, δn] =
1

2
S
∑
q

∫ h

0

dz

[
B

∣∣∣∣∂uq

∂z

∣∣∣∣2 +Dq2 |uq|2 +KLq
4 |uq|2

+D
(|n1q|2 + |n2q|2

)
+ iqD

(
uqn

∗
1q − u∗qn1q

)
+K1q

2 |n1q|2

+K2q
2 |n2q|2 +K3

(∣∣∣∣∂n1q

∂z

∣∣∣∣2 +

∣∣∣∣∂n2q

∂z

∣∣∣∣2
)]

.

(3.11)

We applied the transformation of δnq = (nxq, nyq) into (n1q, n2q) where component

n1q represents director fluctuations parallel to q = (qx, qy) and component n2q fluc-

tuations perpendicular to q. Only n1q modes are coupled to the layer fluctuations,

while n2q modes represent “pure” director fluctuations. The Fourier transformed

surface contribution to the Hamiltonian reads:

HS [n] =
1

2
K3SL

−1
∑
q

(∣∣n−
1q

∣∣2 +
∣∣n+

1q

∣∣2 +
∣∣n−

2q

∣∣2 +
∣∣n+

2q

∣∣2) . (3.12)
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Here L = K3/W is the extrapolation length, n−
1,2q = n1,2q(z = 0) and n+

1,2q =

n1,2q(z = h).

The fluctuation modes with different wave vectors q are decoupled and the

Hamiltonian can be written as

H =
∑
q

Hq[n1q, uq] +HSq[n
±
1q] +Hq[n2q] +HSq[n

±
2q]. (3.13)

In order to obtain the free energy of fluctuations, the following partial partition

functions have to be evaluated

Zq[n1q, uq] =

∫
dn−

1q

∫
dn+

1q exp(−βHSq[n
±
1q])

×
∫ n1q(z=h)=n+

1q

n1q(z=0)=n−
1q

∫ uq(z=h)=0

uq(z=0)=0

exp(−βHq[uq, n1q])Duq(z)Dn1q(z) ,

(3.14)

Zq[n2q] =

∫
dn−

2q

∫
dn+

2q exp(−βHSq[n
±
2q])

∫ n2q(z=h)=n+
2q

n2q(z=0)=n−
2q

exp(−βHq[n2q])Dn2q(z) .

(3.15)

Because of the finite anchoring strength, the director fluctuations at the boundaries

are not suppressed completely. This fact is reflected in partition function where

integration over all possible values of the director fluctuations at the surfaces is per-

formed, assigning each surface configuration a statistical weight factor corresponding

to energy penalty of deviation from easy axis orientation.

The partition function Zq[n1q, uq] is analogous to the quantum propagator of two

coupled harmonic oscillators [168, 169] and can be evaluated (see Appendix A.2) to

give

Zq[n1q, uq] ∝ [sinh(Ω1h) sinh(Ω2h)]
−1/2

× [Ω1S
2A+

1 + Ω2C
2A+

2 + L−1
]−1/2 [

Ω1S
2A−

1 + Ω2C
2A−

2 + L−1
]−1/2

.

(3.16)

The partition function Zq[n2q] can be evaluated using the analogy with the propa-

gator of a single repelling quantum harmonic oscillator [168]:

Zq[n2q] ∝
[
L−2 + Ω2

3

2Ω3L−1
sinh(Ω3h) + cosh(Ω3h)

]−1/2

. (3.17)

This result is analogous to the partition function obtained in the previous section

[Eq. (3.6)] with a modification due to different boundary conditions. We introduced
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the following notation:

Ω1,2 =
1√
2

1

Λ

{
1 + (ρ2 + λ2)q2 +

KL

K3
λ2Λ2q4

∓
√[

1 − (λ2 − ρ2)q2 − KL

K3
Λ2λ2q4

]2
+ 4λ2q2

}1/2

,

(3.18)

Ω3 =

√
Λ−2 +

K2

K3
q2 , (3.19)

C2 =
1

2
+

1

2

√√√√√√
[
1 + (ρ2 − λ2)q2 − KL

K3
λ2Λ2q4

]2
[
1 + (ρ2 − λ2)q2 − KL

K3
Λ2λ2q4

]2
+ 4q2λ2

, (3.20)

S2 = 1 − C2 , (3.21)

A±
1,2 =

cosh(Ω1,2h) ± 1

sinh(Ω1,2h)
(3.22)

and the correlation lengths Λ = (K3/D)1/2, λ = (K3/B)1/2 and ρ = (K1/D)1/2. The

free energy of fluctuations can now be written as

Ffluc[u, δn] = −kBT
∑
q

(
lnZq[n1q, uq] + lnZq[n2q]

)
= Ffluc[n1, u] + Ffluc[n2] .

(3.23)

Having calculated the total free-energy of fluctuations, we now identify the inter-

action part. In Zq[n1q, uq] the bulk contributions are contained in sinh(Ωih) terms

and can be identified by the same factorization as in the previous section. The

remaining two factors in Zq[n1q, uq] do not contain bulk terms while thickness in-

dependent surface contributions automatically vanishes after differentiation of the

free energy and need not be extracted. The factorization of Zq[n2q] leads to

L−2 + Ω2
3

2Ω3L−1
sinh(Ω3h) + cosh(Ω3h) =

exp(Ω3h) ×
(

Ω2
3 + L−2

4Ω3L−1
+

1

2

)
×
(

1 − (Ω3 − L−1)2

(Ω3 + L−1)2
exp(−2Ω3h)

)
.

(3.24)

Now the bulk contribution (the first term), the surface contribution (the second

term) and the last interaction term can be easily identified.

The Casimir force consists of four terms

FCas[u, δn] = F [n2;L] + F1[n1, u] + F2[n1, u] + F3[n1, u;L] , (3.25)

where

F [n2;L] = −kBTS
2π

∫ ∞

0

Ω3q dq
(Ω3+L−1)2

(Ω3−L−1)2 exp(2Ω3h) − 1
, (3.26)
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F1[n1, u] = −kBTS
2π

∫ ∞

0

Ω1q dq

exp(2Ω1h) − 1
, (3.27)

F2[n1, u] = −kBTS
2π

∫ ∞

0

Ω2q dq

exp(2Ω2h) − 1
, (3.28)

F3[n1, u;L] = −kBTS
4π

∫ ∞

0

q dq

⎡⎣ Ω2
1S

2

1+cosh(Ω1h)
+

Ω2
2C

2

1+cosh(Ω2h)

Ω1S2A−
1 + Ω2C2A−

2 + L−1

⎤⎦
−kBTS

4π

∫ ∞

0

q dq

⎡⎣ Ω2
1S

2

1−cosh(Ω1h)
+

Ω2
2C

2

1−cosh(Ω2h)

Ω1S2A+
1 + Ω2C2A+

2 + L−1

⎤⎦ . (3.29)

The first term F [n2;L] represents the contribution of “pure” director fluctuation

modes. It is a generalization of Eqs. (1.10 and 3.10) for finite strength of surface

interaction. It is also the universal result for all massive fluctuation modes for given

boundary conditions and has been already analyzed in Refs. [116, 170] in the context

of nematics. Here we summarize these results. The effect of finite anchoring strength

can be most easily represented by reduction factor

R =
F [n2;L]

F [n2;L = 0]
(3.30)

where F [n2;L = 0] is the familiar result for infinite anchoring strength

FCas[n2;L = 0] = −kBTS
4π

K3

K2

1

h3

∞∑
k=1

exp(−2hk/Λ)

k3

(
1

2
+
h

Λ
k +

h2

Λ2
k2

)
. (3.31)

The term F [n2;L] can not be evaluated analytically and therefore numerical integra-

tion is necessary. Let us first note that for an infinitely weak anchoring (L→ ∞) the

force is identical as in the strong anchoring limit (L = 0) and the reduction factor is

equal to 1. The dependence of R on the scaled cell thickness h/Λ for several values

of the anchoring strengths is shown in Fig. 3.2. Finite anchoring strength reduces

the amplitude of the force. If L/Λ < 1, which corresponds to effectively strong

anchoring, the reduction factor first decreases from 1 to a minimum and then satu-

rates at a constant value at large thicknesses h/Λ. This saturation means that the

functional dependence of the force at large h/Λ is the same as in the case of strong

anchoring, i.e. exp(−2h/Λ)/h. If L/Λ > 1, which corresponds to effectively weak

anchoring, the reduction factor decreases monotonically to the saturation value. The

saturation value of reduction factor can be evaluated analytically and is equal to

R = 1− 4L/Λ for strong anchoring (L/Λ � 1) and R = 1− 4Λ/L for weak anchor-

ing case (L/Λ � 1). In the special case of L/Λ = 1, where the anchoring regime is

neither strong nor weak, the force decays much faster, as exp(−2h/Λ)/h3, at large

h/Λ [116].
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Figure 3.2 Reduction factor R versus the cell thickness h/Λ for different
anchoring parameters: a) L/Λ = 0.1; b) L/Λ = 0.5; c) L/Λ = 1; d) L/Λ = 2;
e)L/Λ = 10; adopted from Refs. [116, 170].

In analogy with eigen-modes of two coupled harmonic oscillators the terms

F1[n1, u] and F2[n1, u] represent the contributions of in-phase fluctuations (Fig. 3.3a),

where the director follows deformations of layers, and out-of-phase fluctuation modes

of the director and layers (Fig. 3.3b). The in-phase fluctuations are massless

Figure 3.3 Schematic representation of fluctuation modes: a)in-phase fluctu-
ations of director and layers; b)out-of-phase fluctuations of director and layers.
The dotted lines indicate the local normal to the layers.

[Ω1(q = 0) = 0] therefore the resulting force F1[n1, u] is long-range. In the limit of

large thicknesses F1[n1, u] gives the familiar 1/h2 smectic Casimir force [Eq. (1.13)].

The out-of-phase fluctuations are massive. Therefore their contribution F2[n1, u] is

short range and is qualitatively similar to the pure director fluctuations contribution

[Eq. (3.31)]. The last term F3[n1, u;L] is a correction to the F1[n1, u] and F2[n1, u]

terms due to the finite director anchoring strengths W at the plates. This correc-

tion is short-range and is equal to 0 in the limit of very strong anchoring (W → ∞,

L = 0).
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To summarize, the Casimir force induced by coupled fluctuations of smectic

layers and director consists of two director-like short range contributions and of a

long range layer-like contribution. The correction due to the finite director anchoring

is also short-range which is expected, as this anchoring does not modify the boundary

conditions for smectic layers.

To analyze the behavior of FCas[u, δn] we compare it to the Casimir force ob-

tained by pure layer fluctuations u, assuming that director is fixed perpendicularly

with respect to layers (D → ∞, ∇⊥u = −δn). In this limiting case the Hamiltonian

reads: Hlay = 1/2
∫

dV [B(∂u/∂z)2 +K ′
L(∇2

⊥u)
2], where K ′

L = KL +K1. With the

boundary conditions u(z = 0) = u(z = h) = 0 the familiar Casimir force is obtained:

F lay
Cas = −kBTSζ(2)/16πh2

√
K ′
L/B [115, 128]. This force can be conveniently used

as a reference because of its simple h−2 functional dependence. The comparison be-

tween the reference Casimir force F lay
Cas and our result FCas[u, δn], where the director

degrees of freedom are included, is shown in Fig. 3.4. We used the following material
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Figure 3.4 Casimir force FCas[u, δn] in homeotropic smectic-A cell compared
to reference force F lay

Cas for different director anchoring strengths: a) W → ∞,
b) W = 10−3 J/m2, c) W = 10−4 J/m2, d) W = 10−5 J/m2.

constants: B = 2×106 N/m2, D = 105 N/m2, K1 = K2 = K3 = KL = 10−11 N. The

full Casimir force FCas[u, δn] is significantly larger than the approximate force F lay
Cas

only up to the thickness of a few correlation lengths Λ (Λ = 10 nm) where the short

range contributions F [n2;L] and F2[n1, u] are important. At larger thicknesses only

the long-range contribution of the ”in-phase” director-layer fluctuations F1[n1, u]

needs to be considered. In the limit of h/Λ � 1 this contribution (F1[n1, u]) ex-

actly matches F lay
Cas as can be seen from Fig. 3.4 and can also be shown analytically.

A finite strength of the director anchoring generally reduces the magnitude of the

Casimir force as was demonstrated in Fig. 3.2. The force is strongest when the

anchoring is either very weak or very strong. When the anchoring is somewhere
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inbetween these limits, in the sense that the extrapolation length L is comparable

to typical lengths of the system, then the magnitude is strongly reduced. This is

seen in the case of W = 10−3 J/m2 (L = 10 nm) in Fig. 3.4, while in other cases the

anchoring does not have an important effect.

The effect of different coupling strengths between the director and smectic layers

on the Casimir force is shown explicitly in Fig. 3.5. A reduction of the coupling
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Figure 3.5 Effect of director-layer coupling constant D on the Casimir force:
a) D = 105 N/m2, b) D = 104 N/m2, c) D = 106 N/m2. Strong anchoring of
the director (W → ∞) is assumed.

constant D results in an increase of the magnitude of the force. This is firstly due to

the increased correlation length Λ and hence an increased range of the director-type

contributions and secondly also due to the coupling influence on the F1[n1, u] term.

This kind of behavior could be observed upon cooling the system from smectic-A

to smectic-C phase. In the vicinity of the phase transition the coupling constant

changes as D ∝ (T − Tc) within the Landau model. Therefore the magnitude of

the Casimir force is expected to increase while approaching the phase transition.

We address the behavior of the Casimir force close to this phase transition in the

next chapter as some other interesting phenomena occur there, which require more

detailed treatment.

Another illustrative comparison can be made by comparing the coupled director-

layer force FCas[u, δn] with its uncoupled counterpart Func
Cas which is obtained when

director and layer fluctuations are treated independently (to avoid confusion it

should be noted that the term uncoupled in this context does not imply that the

constant D equals 0). The uncoupled force is equal to Func
Cas = F lay

Cas + Fdir
Cas, where

the director contribution is just twice the contribution of pure director fluctuation

modes, Fdir
Cas = 2F [n2;L]. This approximation neglects the fact that deformation

of smectic layers also changes the equilibrium director orientation around which the
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director fluctuates. Nevertheless, the uncoupled force Func
Cas represents a first-order

approximation of the exact result FCas[u, δn]. The comparison of the two forces

thus reveals the net effect of director-layer coupling and is shown in Fig. 3.6 for

different values of coupling constant D. It turns out that the coupling increases the
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Figure 3.6 Comparison between the “coupled” (FCas[u, δn]) and “uncou-
pled” (Func

Cas) Casimir force in homeotropic cell for infinitely strong director
anchoring (W → ∞) and various coupling constants D: a) D = 105 N/m2, b)
D = 104 N/m2, c) D = 106 N/m2.

magnitude of the force but for no more than a few ten percents. The increase is

larger for weak coupling constants D (larger correlation length Λ) and vanishes in

the limit of D → ∞ according to our definition of Func
Cas. The profiles in Fig. 3.6 can

be explained as follows. In the limit of very large thicknesses (h � Λ) the terms

F1[n1, u] and F lay
Cas, which are the only long-range contributions, are equal and the

ratio between the “coupled” and “uncoupled” force is 1. With decreasing distance

the F1[n1, u] term gets larger than F lay
Cas and the ratio increases. At thicknesses

comparable to correlation length Λ the short-range contributions from the direc-

tor and “out-of-phase” fluctuations set in. These director-type contributions are in

both – coupled and uncoupled – systems very similar, which results in reducing the

difference and consequently the ratio between the two forces at small thicknesses.

3.2 Free-standing smectic-A film

The structure of a free-standing smectic-A film is identical to homeotropic cell. The

difference between them lies in fluctuations of surface layers which are allowed in

free-standing films but forbidden in a homeotropic cell. This results in modified
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surface Hamiltonian which now reads

HS [n, u] =
1

2
W

∫
|δn|2 dS +

1

2
γ

∫
(∇⊥u)

2 dS . (3.32)

The bulk Hamiltonian H [u, δn] remains unchanged. The same goes for H [δψ], there-

fore the fluctuations of degree of smectic order ψ are not considered here. Fourier

transforming Eq. (3.32) we obtain

HS [n, u] =
1

2
K3SL

−1
∑
q

(∣∣n−
1q

∣∣2 +
∣∣n+

1q

∣∣2 +
∣∣n−

2q

∣∣2 +
∣∣n+

2q

∣∣2)
+

1

2
K3Sχ

−1
∑
q

q2
(∣∣u−q ∣∣2 +

∣∣u+
q

∣∣2) . (3.33)

Here χ = K3/γ is the extrapolation length, u−q = uq(z = 0) and u+
q = uq(z = h).

As only n1q and uq modes are coupled it suffices to recalculate Zq[n1q, uq] while

Zq[n2q] remains the same as in a homeotropic cell. The modified partition function

now reads

Zq[n1q, uq] =

∫
dn−

1q

∫
dn+

1q

∫
du−q

∫
du+

q exp(−βHSq[n
±
1q, u

±
q ])

×
∫ n1q(z=h)=n+

1q

n1q(z=0)=n−
1q

∫ uq(z=h)=u+
q

uq(z=0)=u−q
exp(−βHq[uq, n1q])Duq(z)Dn1q(z) .

(3.34)

The difference between this partition function and the partition function of the

homeotropic cell [Eq. (3.14)] is that here integration over all possible surface values

of uq has to be performed while in the former case the surface value of uq was

fixed to 0. This does not pose any conceptual difficulties and the partition function

can again be evaluated using the analogy with propagator of two coupled harmonic

oscillators

Zq[n1q, uq] ∝ [sinh(Ω1h) sinh(Ω2h)]
−1/2 ×

[
Ω1Ω2λ

−2A−
1 A

−
2 + χ−1q2

(
Ω1S

2A−
1

+ Ω2C
2A−

2

)
+ L−1

(
Ω1C

2λ−2A−
1 + Ω2S

2λ−2A−
2

)
+ χ−1L−1q2

]−1/2

×
[
Ω1Ω2λ

−2A+
1 A

+
2 + L−1

(
Ω1C

2λ−2A+
1 + Ω2S

2λ−2A+
2

)
+ χ−1q2

× (Ω1S
2A+

1 + Ω2C
2A+

2

)
+ χ−1L−1q2

]−1/2

.

(3.35)

Applying the usual decomposition into surface, bulk and interaction terms we extract

the interaction part of the fluctuations free energy and thereby the Casimir force.

This can be written as

FCas[u, δn] = F [n2;L] + F1[n1, u] + F2[n1, u] + F3[n1, u;L, χ] . (3.36)
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The first three terms are identical as in homeotropic cell. The last term F3[n1, u;L, χ]

which describes the effect of finite director and layer anchoring strengths becomes

more complicated

F3[n1, u;L, χ]=−kBTS
4π

∑
i=1,2

∫ ∞

0

q dq

[
Ω1Ω2λ

−2
( Ω1A

∓
2

1 ± cosh(Ω1h)
+

Ω2A
∓
1

1 ± cosh(Ω2h)

)
+ χ−1q2

( Ω2
1S

2

1 ± cosh(Ω1h)
+

Ω2
2C

2

1 ± cosh(Ω2h)

)
+ L−1λ−2

( Ω2
1C

2

1 ± cosh(Ω1h)

+
Ω2

2S
2

1 ± cosh(Ω2h)

)]
×
[
Ω1Ω2λ

−2A∓
1 A

∓
2 + χ−1q2

(
Ω1S

2A∓
1 + Ω2C

2A∓
2

+ L−1
)

+ L−1λ−2
(
Ω1C

2A∓
1 + Ω2S

2A∓
2

)]−1

.

(3.37)

F3 is a sum of two contributions (i = 1, 2) which differ only by sign alternation (±)

in some terms. As the boundary conditions now also affect the layer fluctuations,

the correction due to the finite surface anchoring F3[n1, u;L, χ] is long-range.

The effect of the finite surface tension γ on the Casimir force in free-standing

smectic films is shown in Fig. 3.7. We compare the force in a free-standing film to the

corresponding force in a homeotropic cell for a specific director anchoring strength

W = 10−5 J/m2 (the director anchoring is not essential in this case, and choosing

some other value of W leads to very similar results). As it is seen from Fig. 3.7, the
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Figure 3.7 Casimir force FCas[u, δn] in free-standing film compared to the
force in homeotropic cell [FCas(γ → ∞)] for the director anchoring strength
W = 10−5 J/m2, coupling constant D = 105 N/m2, and different surface
tensions: a) γ = 10−2 J/m2, b) γ = 5 × 10−2 J/m2, c) γ = 10−1 J/m2. The
dashed lines represent F lay

Cas(γ).

finite surface tension γ reduces the magnitude of the Casimir force. This effect was
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already predicted by Mikheev [128] in a model considering only positional fluctua-

tions of smectic layers u. He obtained the following result for the force (dashed lines

in Fig. 3.7): F lay
Cas(γ) = −kBTS/16πh2

√
K ′
L/B Li2

[
(γ −√K ′

LB)/(γ +
√
K ′
LB)
]2

,

where Li2 is the dilogarithm function. Our result is in agreement with F lay
Cas(γ) in the

limit of large thicknesses h where the director-type contributions are not important.

At smaller thicknesses h the short-range contributions of director degrees of freedom

become important. These contributions are similar in a free-standing film and in a

homeotropic cell, therefore the difference between the compared forces is reduced.

It is again instructive to compare the “coupled” Casimir force [Eq. (3.36)] to

the “uncoupled” force where the director and layer fluctuations are treated indepen-

dently: Func
Cas = F lay

Cas(γ) + 2F [n2;L]. As shown in Fig. 3.8 the net effect of coupling

is to increase the magnitude of the force, similar as in the homeotropic cell. The in-
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Figure 3.8 Comparison between the “coupled” (FCas[u, δn]) and “uncoupled”
(Func

Cas) Casimir force in a free-standing film for the director anchoring strength
W = 10−5 J/m2, coupling constant D = 105 N/m2, and different surface
tensions: a) γ = 10−2 J/m2, b) γ = 5 × 10−2 J/m2, c) γ = 10−1 J/m2.

crease is substantial in the case of a small surface tension γ (Fig. 3.8a), while it does

not exceed a few ten percents otherwise. This can be explained considering that in

a coupled system the fluctuations of surface layers are hindered primarily by surface

tension and also indirectly by director anchoring. So even if the surface tension is

small the strong director anchoring effectively contributes to the binding of surface

layers. This is not the case in a “decoupled” system, where layer fluctuations are

independent of director, and therefore the reduction of the magnitude of the force

due to weak surface tension γ is stronger. In the case of a strong surface tension the

additional effect of director anchoring on surface layers is not significant.
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3.3 Casimir force in slightly dilated or compressed

cell

In Sec. 3.1 we considered the Casimir force in homeotropic cell whose thickness h

corresponded to an integer value of smectic layers with equilibrium period d0. In this

section we study what happens if one of the plates is displaced so that the smectic

film is slightly dilated or compressed (Fig. 3.9). If the upper plate is displaced by

Figure 3.9 Homeotropic cell whose thickness corresponds to an integer num-
ber of smectic layers with equilibrium thickness d0 on the right and slightly
stretched homeotropic cell on the left. In the latter case the smectic layers are
still equidistant but with increased period d′.

∆h than the equilibrium profile of layer displacement is given by umf(z) = z∆h/h.

The smectic layers are still equidistant but with increased period d′. For the sake

of simplicity, we continue the calculation by considering only fluctuations of smectic

layers. This can be justified by the fact that according to Eq. (3.1) the director

fluctuations are coupled to transverse gradient of layer displacement ∇⊥u which

is not affected by the mean-field structure. Therefore we assume that director-

layer coupling effects would be similar as in the undeformed homeotropic cell. The

possibility of a stress-induced director tilt is here neglected. We furthermore assume

that dilation or compression of the cell does not affect the degree of smectic order

ψ which is justified when the system is deep in smectic phase where smectic order

is well developed.

Starting with elastic free energy of layer deformations

Flay =
1

2

∫ [
B

(
∂u

∂z

)2

+KL

(∇2
⊥u
)2]

dV (3.38)

and writing the layer displacement profile as u(r) = umf(z) + δu(r) we obtain the

mean-field free energy

Fmf
lay =

1

2
BS

∆h2

h
(3.39)

and the Hamiltonian of fluctuations

H [δu] =
1

2

∫ [
2B

∆h

h

∂(δu)

∂z
+B

[
∂(δu)

∂z

]2
+KL

(∇2
⊥δu
)2]

dV . (3.40)
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The mean-field elastic deformation results in a mean-field force given by

Fmf = − ∂Fmf
lay

∂(∆h)
= −BS∆h

h
. (3.41)

The mean field force is proportional to relative strain ∆h/h of the smectic film. In

the case of dilation (∆h > 0) the mean field force is attractive while in the case of

compression (∆h < 0) it is repulsive.

The calculation of the Casimir force proceeds in a standard manner. Performing

the Fourier transformation δu(r) =
∑

q δuq(z) exp(iqρ) we obtain

H [δu] =
∑
q

Hq =
1

2
S

∫ h

0

dz
∑
q

(
B

∣∣∣∣∂(δuq)

∂z

∣∣∣∣2 +KLq
4 |δuq|2 +

+ 2B
∆h

h

∂(δuq)

∂z
δq,0

)
.

(3.42)

The boundary conditions at hard plates require δuq(z = 0) = δuq(z = h) = 0. We

now note that the last term in H [δu] can be integrated over z and thus transformed

into surface term. As we require the fluctations to vanish at the plates, this surface

term does not contribute to the Hamiltonian. The partition function is now obtained

in usual manner

Z[δu] =
∏
q

Zq =
∏
q

∫ δuq(z=h)=0

δuq(z=0)=0

exp (−βHq) D(δuq) , (3.43)

and can be evaluated using the familiar analogy with the propagator of harmonic

oscillator giving

Zq ∝
[
sinh

(√
KL

B
q2h

)]− 1
2

. (3.44)

Identifying surface, bulk and interaction parts of partition function we arrive at the

interaction free-energy

F int
fluc[δu] =

kBTS

4π

∫ ∞

0

ln

(
1 − exp

(
−2
√
KL/B q2h

))
q dq . (3.45)

This integral can be evaluated analytically leading to the standard layer-induced

smectic Casimir force

F lay
Cas = −kBTS

16πh2
ζR(2)

√
B

KL
. (3.46)

Therefore the conclusion is that the Casimir force in slightly dilated or compressed

cell is the same as in nondeformed system.

This was an example of a system with non-trivial equilibrium configuration which

did not result in modification of the Casimir force. Here we wish to investigate
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this further and draw a more general conclusion about the connection between the

equilibrium order parameter profile and the Casimir force. We start formally with

a general quadratic free energy expansion

F =

∫ z′′

z′

[
a(z)η̇2 + 2b(z)η̇η + c(z)η2 + 2d(z)η̇ + 2e(z)η

]
dz . (3.47)

For simplicity we consider a one-dimensional system and the dot denotes the deriva-

tive with respect to this dimension z. The mean-field profile of an arbitrary order

parameter η is obtained by Euler-Lagrange extremality equation

aη̈mf + ȧη̇mf + (ḃ− c)ηmf + ḋ− e = 0 , (3.48)

while obeying some boundary conditions ηmf(z
′) = η′ and ηmf (z

′′) = η′′. We now

introduce fluctuations around the mean-field configuration and write the order pa-

rameter as η(z) = ηmf (z) + δη(z). This leads to Hamiltonian of fluctuations

H =

∫ z′′

z′

[
aδη̇2 + 2bδη̇δη + cδη2 + 2dδη̇ + 2eδη + 2aη̇mfδη̇+

+ 2b(η̇mfδη + ηmfδη̇) + 2cηmfδη
]
dz .

(3.49)

Performing some per partes integrations, considering the Euler-Lagrange equation

for ηmf and assuming fixed boundary conditions [δη(z′) = δη(z′′) = 0], the Hamil-

tonian is considerably simplified

H =

∫ z′′

z′

[
a(z)δη̇2 + 2b(z)δη̇δη + c(z)δη2

]
dz . (3.50)

Here we stress the following important facts. There are no linear terms in the

Hamiltonian due to the extremality of mean-field configuration. The coefficients

of quadratic terms in Hamiltonian are the same as in the free energy expansion

[Eq. (3.47)]. Most importantly, the Hamiltonian of fluctuations does not depend on

the mean-field configuration. Because of this a non-trivial mean-field configuration

does not influence the Casimir force. We again need to stress that this considerations

are valid for quadratic free-energy and fixed boundary conditions which do not allow

for fluctuations at boundaries. The studied case of a dilated/compressed smectic

cell was just a special example to which the above general conclusion can be applied.

It is important to note that in the case of strained smectic cell the coefficients

of quadratic terms a(z) and c(z) in Hamiltonian are independent of coordinate z,

whereas the coefficient b(z) is 0. This enabled a straightforward evaluation of the

Casimir force. In the last chapter of this thesis, we consider a different type of

systems where equilibrium structure dictates a spatial dependence of coefficients of

quadratic terms η2 and η̇2. This complicates the calculations considerably and has

a strong impact on the Casimir force.
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3.4 Importance of Casimir force in smectic-A

systems

Here we compare the magnitude of the Casimir force with other interactions present

in confined smectic systems. First of all, there is ubiquitous van der Waals interac-

tion between materials with different dielectric and optical properties. For planar

geometry the van der Waals force is given by [153]

FW = − AS

6πh3
, (3.51)

where A is a Hamaker constant which is a sum of entropic and dispersion terms,

A = Aν=0 + Aν>0. For very thin systems the Hamaker constant can be efficiently

approximated by

A = Aν=0 + Aν>0 =
3

4
kBT

(
ε1 − ε2
ε1 + ε2

)2

+
3�ωe

16
√

2

(n2
1 − n2

2)
2

(n2
1 + n2

2)
3/2

, (3.52)

where ε1 and n1 are the static dielectric constant and refractive index of confining

boundaries (plates or air), ε2 and n2 are the static dielectric constant and refractive

index of smectic material and ωe = 2π · 3 · 1015 s−1 is the plasma frequency taken to

be equal for all media. As smectics are anisotropic, the dielectric constant ε2 and

refractive index n2 should be replaced by effective values given by ε̄2 =
√
ε‖ε⊥ and

n̄2 =
√
n‖n⊥, where indices ‖ and ⊥ denote directions parallel and perpendicular

to the layer normal, respectively [171]. At small thicknesses h the dispersion term

in Eq. (3.52) dominates. However, at larger thicknesses, above h ≈ 10 nm, the

retardation effects come into play and the dispersion term decays faster, as 1/h4.

Finally, at very large separations the dispersion term becomes negligible compared

to the entropic term, which is unaffected by the retardation effects, and the van der

Waals force recovers the 1/h3 dependence.

For evaluation of the van der Waals force we use dielectric constants and refrac-

tive indices of 8CB smectic liquid crystal at 27◦ C: ε‖ = 13.6, ε⊥ = 5.1, n‖ = 1.67,

n⊥ = 1.52 [172]. The magnitude of the Casimir force is evaluated using the material

constants given in the previous sections. We first consider free-standing films where

smectic material is bounded by air and hence ε1 = 1, n1 = 1. In a very thin film of

h = 10 nm the Casimir force is equal to about 625 pN/µm2 while the van der Waals

force is almost ten times larger. At thickness h = 20 nm the Casimir force amounts

to about 100 pN/µm2 while the van der Waals force is still about six times larger.

We should mention that because we used the Eq. (3.52), which neglects retardation

effect, the magnitude of the van der Waals force is here a bit overestimated. In thick

films we can neglect the dispersion contribution in the van der Waals force and re-

tain only the entropic part. The ratio between the Casimir and van der Waals force

is then given by FCas/FW ≈ h/λ where smectic correlation length λ =
√
K ′
L/B is
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of order of layer thickness (d0 ≈ 3 nm). This shows that in thick films the Casimir

force dominates over the van der Waals force.

For the homeotropic cell we assume that the smectic material is bounded by

glass plates and we use the dielectric constant and refractive index of BK 7 glass:

ε1 = 6.2, n1 = 1.51. In this case the van der Waals force is much smaller than in

free-standing films, due to the similar dielectric properties of smectic and glass. At

cell thickness h = 10 nm the Casimir force is equal to about 800 pN/µm2 while the

van der Waals force is about ten times smaller. At thickness h = 20 nm the Casimir

force amounts to about 145 pN/µm2 and the van der Waals force is about fifteen

times smaller. In thick cells the ratio between the Casimir force and van der Waals

force is given by FCas/FW ≈ 40h/λ, so the Casimir force again dominates.

We can conclude that in thin smectic systems either of the two compared forces,

van der Waals or Casimir, can be dominant, depending on specific values of dielectric

constants and refractive indexes. In thick smectic systems however, the Casimir force

is always dominant due to the slower power law decay.

Further we compare the Casimir force with the force caused by dilation or com-

pression of smectic layers which is given by

F lay
mf = −BS∆h

h
. (3.53)

Here ∆h is the compression or dilation of the system from equilibrium thickness.

We take the deformation of about one tenth of layer thickness ∆h ≈ 0.3 nm and

the compression constant B = 2 × 106 N/m2. For the cell of thickness h = 10 nm

the mean field force is equal to F lay
mf/S ≈ 60000 pN/µm2 and for the thickness

h = 20 nm it amounts to F lay
mf/S ≈ 30000 pN/µm2. This is orders of magnitude

stronger than the Casimir force and the ratio between the forces becomes even larger

in thick systems. Therefore it is essential to avoid elastic deformations of smectic

layers or in some other way eliminate the elastic mean-field force from experimental

data when attempting to detect the Casimir interaction.
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4

Casimir force in vicinity of
smectic-A to smectic-C phase transition

The Casimir force in vicinity of Sm-A to Sm-C phase transition is discussed within

the Landau model for chiral smectics described in Sec. 2.2. This model takes into

account only director degrees of freedom described by the director tilt vector ξ.

The director fluctuations slow down critically at the Sm-A – Sm-C transition and

represent the so-called soft-mode of the phase transition. On the other hand, the

positional smectic order does not change considerably at this transition and therefore

the exclusive consideration of director degrees of freedom is somewhat justified.

But as we have argued in the previous chapter, the effect of coupling between the

smectic layers and the director can not be always neglected. Hence the results

presented here are not quantitatively exact but give a qualitative picture of the

phenomenon. The use of the simplified model enables us to obtain some results which

could not be derived within the full description of smectics and also enable to expose

some characteristics of the Casimir force more clearly as in the cumbersome case of

coupled director-layer system. Although we employ a model originally designed to

describe chiral smectics the application to less complex non-chiral systems is trivial.

Therefore the obtained results are valid for a general Sm-A – Sm-C system, either

chiral or non-chiral. Some specifics related only to chiral systems will be pointed

out explicitly.

We start our analysis with the free energy expansion Eq. (2.11). The Hamiltonian

of fluctuations is obtained by expanding the free energy around the equilibrium

configuration. We write the order parameter ξ = (ξ�, ξ⊥) as a sum of a mean-field

value and a fluctuating part, ξ = ξ0 + δξ = (ξ�0 + δξ�, ξ⊥0 + δξ⊥), and insert it into

the free energy expression [Eq. (2.11)]. We neglect higher order fluctuation terms,

keeping only the harmonic part of the Hamiltonian. From here on, the Sm-A and

Sm-C phases have to be treated separately. In the Sm-A phase the mean-field value

of the order parameter ξ is equal to 0 as the molecules are oriented perpendicular

to the layers. In the Sm-C phase where the molecules are tilted with respect to

53
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the layer normal, the mean-field value of ξ� is equal to ξ�0 =
√
α (Tc − T ) /b, while

ξ⊥0 = 0. The Hamiltonian densities of fluctuations then read

h =
1

2
K3

{
η−2
(
δξ2

�
+ δξ2

⊥
)

ρ−2δξ2
�

}
+

1

2
K3

[(
∂ (δξ�)

∂z

)2

+

(
∂ (δξ⊥)

∂z

)2
]

+
1

2
K

[(
∂ (δξ�)

∂x
+
∂ (δξ⊥)

∂y

)2

+

(
∂ (δξ�)

∂y
− ∂ (δξ⊥)

∂x

)2
]
,

(4.1)

where in the first term the upper line corresponds to the Sm-A phase and the lower

to the Sm-C phase. We have introduced the correlation lengths of fluctuations:

η = (ã/K3 − q2
c )

−1/2
and ρ = [2 (−ã/K3 + q2

c )]
−1/2

.

In the Sm-A phase two degenerate types of fluctuation modes are present, δξ�

and δξ⊥. Both these modes represent the tilt of molecules away from the layer

normal and are massive. Upon approaching the phase transition, their mass, which

is proportional to η−2 = α(T − Tc), goes to 0. This means that a uniform tilt of the

director over the whole sample does not cost any energy and the phase transition

to the smectic-C phase occurs. The tilt fluctuations therefore represent the soft

mode of this continuous phase transition. The relaxation time of tilt fluctuations,

which is related to their energy, becomes very large and eventually diverges at the

phase transition (critical slow down) as shown in Fig. 4.1. In the Sm-C phase the

degeneration of fluctuation modes is broken. The fluctuation mode δξ� is massive

and represents fluctuations of the tilt angle amplitude of molecules. These so-called

amplitude fluctuations are analogous to the tilt fluctuations in Sm-A, but their

correlation length ρ is different. The so-called phase fluctuations δξ⊥ do not change

the amplitude of the tilt but represent the rotation of director around the z axis.

As a uniform rotation of director in whole sample does not modify the energy of the

system, the phase fluctuations are massless with infinite correlation length. This is

an example of a zero-energy Goldstone fluctuation mode which tries to restore the

continuous symmetry of a high-temperature phase.

In chiral smectics, the fluctuations of orientational order result in inhomogeneity

of spontaneous polarization. This leads to the appearance of space charge and

Coulomb interaction in the system [161, 173–177]. We are not able to establish the

importance of this effect in our systems at present. However, as this interaction is

especially prominent in systems with a large value of spontaneous polarization, it

is reasonable to assume that our results apply at least for chiral materials with a

small value of spontaneous polarization.

4.1 Homeotropic cell

In a homeotropic cell the confining boundaries favor perpendicular orientation of

director at the plates (ξS = 0). This director anchoring can be described by the
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Figure 4.1 Schematic spectrum of fluctuation modes close to Sm-A – Sm-C
phase transition [160]. In Sm-A phase (T > TC) there are two degenerate
massive fluctuation modes which slow down critically at the transition (soft
modes). In Sm-C phase (T < TC) the degeneracy is split into zero-energy
Goldstone phase fluctuations and massive amplitude fluctuations. The inverse
relaxation time of fluctuation modes τ−1 is proportional to their energy.

Rapini-Papoular free-energy model

FS[ξ] =
1

2
W1

∫
sin2(|ξ|) dS1 +

1

2
W2

∫
sin2(|ξ|) dS2 . (4.2)

Here we allow for different director anchoring strengths at each of the plates. As a

consequence of these boundary conditions, the Sm-A structure in the homeotropic

cell can be supercooled below the bulk Sm-A – Sm-C phase transition temperature

TC . In this case the system is in a frustrated state as it can not simultaneously

adjust to the imposed boundary conditions and satisfy the tendency of the smectic

to tilt. Due to the frustration, the director fluctuations are enhanced. Therefore

we have to consider the cases of a “normal” (T > TC) and “supercooled” (T < TC)

homeotropic cell separately, even though the equilibrium structure is the same in

both cases. When the temperature is lowered to the maximum supercooling value

Tmax the structural transition to a deformed Sm-C structure occurs.

The maximum supercooling temperature Tmax of course depends on the thickness

of the cell. The relation between the critical thickness hc and the corresponding

temperature Tmax, where the transition occurs, is obtained by minimizing the mean-

field free energy of the system. As we expect the transition to be continuous it suffices
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to consider only the lowest order terms in free energy expansion [see Eq. (2.11)]

F =
1

2
K3

∫ [
−(

√
2ρ)−2ξ2

�
+

(
dξ�

dz

)2

+ L−1
1 ξ2

�
δ(z) + L−1

2 ξ2
�
δ(z − h)

]
dV . (4.3)

Here we introduced the anchoring extrapolation lengths Li = K3/Wi and assumed

that the mean-field profile depends only on z direction. Applying the Euler–Lagrange

formalism we obtain the bulk differential equation

d2ξ�

dz2
+ (

√
2ρ)−2ξ� = 0 , (4.4)

and the boundary equations(
dξ�

dz

)
− L−1

1 ξ�

(z=0)
= 0 ,

(
dξ�

dz

)
+ L−1

2 ξ�

(z=h)
= 0 . (4.5)

The solution of the bulk equation is given by ξ�(z) = C1 sin(z/
√

2ρ)+C2 cos(z/
√

2ρ).

Considering the boundary conditions we obtain a system of two equations for coef-

ficients C1 and C2

L1√
2ρ
C1 − C2 = 0 , (4.6)[

L2√
2ρ

+ tan

(
h√
2ρ

)]
C1 +

[
1 − L2√

2ρ
tan

(
h√
2ρ

)]
C2 = 0 . (4.7)

This system has a nontrivial solution only if the determinant of coefficients is 0,

which finally leads us to the relation

hc =
√

2ρ arccot

(
L1L2 − (

√
2ρ)2

√
2ρ(L1 + L2)

)
. (4.8)

Here the temperature dependence hides in correlation length ρ = [2α(Tc−Tmax)]−1/2.

For the limiting case of the infinitely strong anchoring (L1 = 0, L2 = 0) the critical

thickness is equal to

hc =
√

2πρ . (4.9)

The transition from the Sm-A to the Sm-C structure in the homeotropic cell is

analogous to the Fréedericksz transition in a nematic homeotropic cell [178]. While

the Fréedericksz transition is driven by the quadratic coupling between an external

magnetic field and the director, in our case the transition is induced by an “internal”,

temperature dependent, smectic field. We consider only the case of h < hc (or

T > Tmax), where the equilibrium structure between plates is a homogeneous Sm-A.

The problem of the Casimir force in deformed Sm-C structure (h > hc or T < Tmax)

belongs to the class of inhomogeneous systems, some of which are addressed in the

next chapter.
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4.1.1 Casimir force above Tc

The Casimir force in the Sm-A homeotropic cell above the bulk phase transition

temperature Tc can be obtained by following a standard procedure. First the

fluctuating fields are Fourier transformed, δξ�,⊥ (r) =
∑

q ξ̃�,⊥ (q, z) exp(iqρ), and

the Hamiltonian is reduced to an ensemble of independent harmonic oscillators,

H =
∑

q

(
Hq [ξ̃�] +Hq [ξ̃⊥]

)
. In the Sm-A phase, the fluctuation modes ξ̃� and ξ̃⊥

are degenerate so the Hamiltonians Hq[ξ̃�] and Hq[ξ̃⊥] are identical and read

Hq[ξ̃�,⊥] =
1

2
K3S

∫ h

0

⎡⎣(η−2 +
K

K3
q2

)
ξ̃ 2

�,⊥ +

(
dξ̃�,⊥
dz

)2
⎤⎦ dz

+
1

2
K3S
(
L−1

1 ξ̃− 2
�,⊥ + L−1

2 ξ̃+ 2
�,⊥
)
,

(4.10)

where ξ̃−
�,⊥ = ξ̃�,⊥(z = 0), and ξ̃+

�,⊥ = ξ̃�,⊥(z = h). The partition function for harmonic

oscillators can be readily evaluated and we obtain

Zq[ξ̃�,⊥] ∝
[
L−1

1 L−1
2 + p2

p(L−1
1 + L−1

2 )
sinh(ph) + cosh(ph)

]− 1
2

, (4.11)

where we introduced notation p2 = η−2 + K
K3
q2. Having identified and eliminated

the bulk and surface contribution in partition function by the usual factorization we

acquire the interaction part of free energy

F int
fluc =

kBTS

2π

K3

K

∫ ∞

1/η

ln

(
1 − (p− L−1

1 )(p− L−1
2 )

(p+ L−1
1 )(p+ L−1

2 )
exp(−2ph)

)
p dp , (4.12)

and by differentiation the Casimir force

FCas = −kBTS
π

K3

K

∫ ∞

1/η

p2 dp
(p+L−1

1 )(p+L−1
2 )

(p−L−1
1 )(p−L−1

2 )
exp(2ph) − 1

. (4.13)

This result is analogous to the short-range Casimir force induced by pure director

fluctuation modes in the coupled director-layer system [Eqs. (3.26, 3.31)] which

was discussed in the previous chapter. A new feature here is the generalization to

asymmetric anchoring conditions with anchoring strength W1 at one plate and W2

at the other. Therefore we here focus on specifics of anchoring effect on the Casimir

force.

Some profiles of the Casimir force for different sets of anchoring strengths are

shown in Fig. 4.2. Presented is the reduced amplitude of the Casimir force as

compared to the force in the case of symmetric infinitely strong anchoring conditions

[see Eq. (3.31)]:

R =
FCas(L1, L2, h, η)

FCas(L1 = 0, L2 = 0, h, η)
. (4.14)
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Figure 4.2 Casimir force in the homeotropic cell for T > Tc. The dependence
of the reduced amplitude R on the parameter h/η is presented for different sets
of anchoring strengths: a) L1/η = 0.5, L2/η = 0.5; b) L1/η = 1, L2/η = 0.05;
c) L1/η = 0.1, L2/η = 0.01; d) L1/η = 10, L2/η = 0.05.

The profiles in Fig. 4.2 can be explained by the interplay of four characteristic

lengths: the distance between plates h, the correlation length of fluctuations η, and

the two extrapolation lengths L1 and L2. It is known from the previous studies of

the Casimir effect [121] that in the case of symmetric boundary conditions (strong-

strong or weak-weak anchoring at the plates) the force is attractive, whereas in the

case of antisymmetric boundary conditions (strong-weak anchoring at the plates) the

force is repulsive. In our system it is not very obvious which parameters determine

the effective anchoring strengths. It seems (Fig. 4.2) that there are actually two

different regimes. When h/η < 1 the effective anchoring strengths are determined

by ratios L1/h and L2/h. In the case of Li/h < 1 the anchoring is effectively

strong, and correspondingly if Li/h > 1 the anchoring is effectively weak. In the

second regime, where h/η > 1, the effective anchoring strengths are determined by

parameters L1/η and L2/η, using the same criteria as in the first regime. This can be

explained if we recall that the anchoring is effectively strong when the interaction

between the substrate and liquid crystal is stronger than the internal interaction

in liquid crystal [111]. The strength of the surface interaction is measured by the

extrapolation lengths Li. The internal interaction includes two contributions, as can

be seen from Eq. (4.1): the massive contribution whose strength is characterized by

η−1, and the elastic contribution which scales as h−1. At small h/η the elastic

contribution dominates, and the effective strength of the anchoring is obtained by

comparing parameters Li and h. At large h/η the massive contribution is dominant,

and consequently the effective strength of the anchoring depends on parameters Li
and η.
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All the lengths in Fig. 4.2 are scaled by the correlation length η. The values of

parameters Li/h change by varying the parameter h/η. Therefore the Casimir force

in the first regime (h/η < 1) exhibits cross-overs from attractive to repulsive and

vice versa [Figs. 4.2(b)-(d)]. The parameters Li/η are fixed, therefore the character

of the force in the second regime (h/η > 1) does not change. It should be kept

in mind that η is temperature dependent, and that the character of the force is

consequently also temperature dependent. At large separations (h/η � 1) the

reduced amplitude R saturates at a constant value. This shows that in this regime

the force has the same functional form as the leading term in the case of infinitely

strong anchoring, which decays as exp(−2h/η)/h. The saturation value is the largest

when the anchoring at the plates is either very strong or very weak. It can be shown

that in the case of very strong anchoring at both plates (L1/η, L2/η � 1) the

reduced amplitude saturates at R = 1−2(L1/η+L2/η) [Fig. 4.2(c)], whereas in the

case of very weak anchoring at both plates (L1/η, L2/η � 1) the saturation value

is R = 1 − 2(η/L1 + η/L2). In the antisymmetric case where the anchoring at one

plate is very weak (L1/η � 1) and at the other very strong (L2/η � 1) the reduced

amplitude saturates at R = −1 + 2(η/L1 + L2/η) [Fig. 4.2(d)]. The behavior of the

force at large separations is substantially modified in the case of Li/η = 1, where

the anchoring at one or both plates is neither strong nor weak. It can be shown that

in the first case the force decays as exp(−2h/η)/h2 and consequently the reduced

amplitude goes to zero at h/η � 1 [Fig. 4.2(b)]. In the case of L1/η = L2/η = 1

the force decays even faster – as exp(−2h/η)/h3.

4.1.2 Casimir force in frustrated system (Tmax<T <Tc)

The equilibrium structure in frustrated homeotropic cell is still homogeneous Sm-A.

Therefore the starting point of our calculation is again Hamiltonian (4.10). However,

if T < Tc the value of η−2 is negative. The parameter p2 = η−2 + K
K3
q2 can now be

either positive or negative depending on the value of q. The calculation of partition

function is therefore split into two parts. If p2 > 0 then Zq is the same as in the

non-frustrated case

Zq[ξ̃�,⊥] ∝
[
L−1

1 L−1
2 + p2

p(L−1
1 + L−1

2 )
sinh(ph) + cosh(ph)

]− 1
2

, (4.15)

whereas in the case of p2 < 0 it is equal to

Zq[ξ̃�,⊥] ∝
[
L−1

1 L−1
2 + p2

p(L−1
1 + L−1

2 )
sin(|p|h) + cos(|p|h)

]− 1
2

. (4.16)

The bulk and surface terms can be easily removed from Zq for p2 > 0, while in the

case of p2 < 0 the partition function contains only pure interaction contribution.
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The interaction free energy of fluctuations is now given by

F int
fluc =

kBTS

2π

K3

K

∫ ∞

0

ln

(
1 − (p− L−1

1 )(p− L−1
2 )

(p+ L−1
1 )(p+ L−1

2 )
exp(−2ph)

)
p dp

+
kBTS

2π

K3

K

∫ (
√

2ρ)−1

0

ln

(
L−1

1 L−1
2 − p2

p(L−1
1 + L−1

2 )
sin(ph) + cos(ph)

)
p dp ,

(4.17)

and after the differentiation the Casimir force, consisting of two terms FCas =

F1 + F2, reads

FCas = − kBTS

π

K3

K

[ ∫ ∞

0

p2 dp
(p+L−1

1 )(p+L−1
2 )

(p−L−1
1 )(p−L−1

2 )
exp(2ph) − 1

+
1

2

∫ (
√

2ρ)−1

0

(L−1
1 L−1

2 − p2) cot(ph) − p(L−1
1 + L−1

2 )

(L−1
1 L−1

2 − p2) + p(L−1
1 + L−1

2 ) cot(ph)
p2 dp

]
.

(4.18)

Note that (
√

2ρ)−2 = −(η−2). It is instructive to consider the Casimir force in the

limiting case of infinitely strong anchoring (L1 = 0, L2 = 0)

FCas(L1 = 0, L2 = 0) = −kBTS
4π

K3

K

[
ζ(3)

h3
+ 2

∫ (
√

2ρ)−1

0

cot(ph)p2 dp

]
. (4.19)

The first term in FCas has the typical form of the Casimir interaction induced

by massless fluctuation modes with infinite correlation lengths. This term is actu-

ally the same as the interaction induced by director fluctuations in the homeotropic

nematic cell. Its dependence on anchoring conditions was analyzed in detail in

Refs. [117, 137]. Here we reproduce these results in Fig. 4.3 where the ratio R be-

tween the term F1 in case of finite director anchoring and infinitely strong anchoring

(h−3 force) is given

R =
F1(L1, L2 	= 0; h̃)

F1(L1 = L2 = 0; h̃)
. (4.20)

Here h̃ = h/
√
L1L2 is the scaled thickness, and the ratio is plotted for L2/L1 =

1,10,102,103,104,105,106. Finite anchoring strengths in general reduce the magnitude

of the Casimir force. If the extrapolation lengths L1 and L2 are similar (symmetric

anchoring) the force is attractive at all thicknesses. In case of dissimilar boundary

conditions (asymmetric anchoring) the force exhibits crossovers from attraction to

repulsion and vice versa. This can be explained by noting that effective anchoring

strength is determined by parameters Li/h which give the ratio of surface and elastic

energies of liquid crystal. In case of Li/h < 1 the anchoring is effectively strong and

in case of Li/h > 1 the anchoring is effectively weak. The limits h̃→ ∞ and h̃→ 0

correspond to very strong and very weak effective anchoring, respectively. Therefore

the reduction factor in these limits is equal to R = 1. In the intermediate range one
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Figure 4.3 Reduction factor R = F1(L1, L2 	= 0; h̃)/F1(L1 = L2 = 0; h̃) for
various anchoring parameters L2/L1 = 1,10,102,103,104,105,106 [117, 137].

of the extrapolation lengths can be shorter and the other larger than h. This gives

mixed boundary conditions (strong–weak) which results in repulsive Casimir force.

The characteristics of the second term in FCas are shown in Fig. 4.4 by comparing

it to the same reference force as F1. The reduction factor is now defined as

Q =
F2(L1, L2, ρ, h)

F1(L1 = L2 = 0;h)
. (4.21)

The term F2 is for small values of h/ρ attractive and of about the same order

0 1 2 3 4
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Figure 4.4 Reduction factor Q = F2(L1, L2, ρ, h)/F1(L1 = L2 = 0;h) for var-
ious anchoring parameters: a) L1/ρ = 0, L2/ρ = 0; b) L1/ρ = 0.1, L2/ρ = 0.1;
c) L1/ρ = 0.05, L2/ρ = 1; d) L1/ρ = 0.05, L1/ρ = 10.

of magnitude as F1. Then with increasing h/ρ it becomes repulsive and finally
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diverges at the structural transition to the deformed Sm-C structure. The critical

thickness, and consequently also the maximum magnitude of attraction, increases

with stronger anchoring as described by Eq. (4.8).

It is also illustrative to present temperature dependence of the Casimir force in a

homeotropic smectic cell at some fixed thickness h. Above the bulk phase transition

temperature Tc the force is given by Eq. (4.13) and below Tc in a frustrated system

the force is described by Eqs. (4.18 and 4.19). The temperature profile is presented

in Fig. 4.5 for various anchoring parameters. The behavior of the force in the
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c d

t− tc
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F0

Figure 4.5 Temperature profile of the Casimir force in a homeotropic cell.
We introduced a unitless temperature t = αh2T/K3. The amplitude of the
force is given in the natural unit F0 = |F1(L1,2 = 0)| = kBTSK3ζR(3)/4πKh3

(we neglect a weak temperature dependence of F0). The force is plotted for
different sets of anchoring strengths: a) L1/h = 0, L2/h = 0; b) L1/h = 0.1,
L2/h = 0.01; c) L1/h = 1, L2/h = 0.05; d) L1/h = 10, L2/h = 0.05.

regime t > tc was commented along with Fig. 4.2. On supercooling the system

(t < tc) the force approaches a local minimum, and eventually it diverges at the

structural transition to the Sm-C structure. The stronger the anchoring at the

plates, the deeper the supercooling limit, and the more pronounced the minimum.

The repulsive divergence of the fluctuation-induced force is characteristic for second

order transitions and is logarithmic. Close to the transition the leading term diverges

as Fdiv
Cas ∝ ln

(
sin(h/

√
2ρ)
)

(in the case of strong anchoring). The behavior of

this system is analogous to the nematic Freedericksz cell [121], as we have already

mentioned.

To summarize, the frustration enhanced fluctuations affect the Casimir force in

two ways. Firstly, the force becomes long-range and behaves like as the modes were

massless. Secondly, there is an additional term present due to frustration which

results in repulsive logarithmic divergence of the force at the transition. This is
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however not all. As we have discussed in the Sec. 2 the free energy of a bulk reference

system has to be subtracted from the total free energy of a confined system in order

to obtain the interaction contribution. But in the case of a frustrated system, where

T < Tc, the bulk reference is no longer in Sm-A but in Sm-C phase. In the Sm-C

phase we have massive amplitude fluctuations with correlation length ρ and massless

phase fluctuations with infinite correlation length [Eq. (4.1)]. The reference bulk free

energy of fluctuations is then given by

F bulk
fluc [Sm-C] =

kBTS

4π

[∫ ∞

0

ln
(
exp
(√

Kq2/K3 + ρ−2h
))

q dq

+

∫ ∞

0

ln
(
exp
(√

K/K3qh
))

q dq

]
.

(4.22)

In frustrated Sm-A cell the bulk term in fluctuations free energy is equal to

F bulk
fluc [Sm-A] =

kBTS

2π

∫ ∞√
−K3

K
η−2

ln
(
exp
(√

η−2 +Kq2/K3h
))

q dq . (4.23)

Their difference, contributing to the interaction, is then equal to

∆F bulk
fluc =

kBTSh

4π

[
2

∫ ∞√
K3
2K

ρ−2

√
K

K3

q2 − 1

2
ρ−2 q dq −

∫ ∞

0

√
K

K3

q2dq−

−
∫ ∞

0

√
K

K3

q2 + ρ−2 q dq

]
,

(4.24)

using the relation −η−2 = ρ−2/2. These integrals are unfortunately divergent and

so is their difference. This is a consequence of the continuum model, where also

fluctuations with infinitely large wave-vectors q are allowed. We first try to avoid

the divergence by introducing large wave vector cut-off qmax = Q. This leads to the

force

F3 = −∆F bulk
fluc

∂h
= −kBTS

4π

[
2

3

√
K

K3
Q3

(
1 − K3

2KQ2ρ2

)3/2

−
√
K

K3

Q3

3

−
Q2
√

1 + KQ2ρ2

K3

3ρ
+

K3

3Kρ3

(
1 −
√

1 +
KQ2ρ2

K3

)]
.

(4.25)

Let us now evaluate the parameters appearing in this expression. Using the material

constants α = 4×104 N/m2K and K3 = 10−11 N the correlation length ρ = [2α(Tc−
T )/K3]

−1/2 can vary from approximately 100 nm very close to Tc to about 10 nm

when 1 K below the Tc [160]. The value of Q is estimated by 2π/l, where l ∼ 0.1 nm

is the transversal dimension of a liquid crystal molecule. This gives Q ∼ 1011 m−1.
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As Q� ρ−1 the force F3 can be simplified to

F3 =
kBTS

4π

(√
K3

K

Q

ρ2
− K3

3Kρ3

)
+ O
(

1

Qρ4

)
. (4.26)

It is thickness independent and consists of a dominant repulsion term, which de-

pends linearly on the cut-off value Q, a small attraction term independent of Q,

and lower order terms which go to zero in the limit of Q → ∞. The magnitude of

ratio between F3 and the reference force F1(L1,2 = 0) is estimated by Qh3/ρ2. For

thin cells of thickness h ∼ 10 nm, which are relevant for the frustrated system, this

ratio varies from 10 − 103, depending on value of ρ. Therefore one could conclude

that term F3 represents a dominant contribution to the Casimir force in a frustrated

homeotropic cell, except very close to the divergence. However we should stress that

our regularization procedure, by introducing a cut-off qmax = Q, is somewhat over-

simplified and can not give more than a qualitative picture. Indeed the final result

linearly depends on the cut-off value Q which is a signature of a poor regularization

procedure. Therefore we try to introduce a slightly more sophisticated regulariza-

tion. We use exponential cut-off which smoothly discards the contribution of large

wave-vectors. Now the following integrals have to be evaluated

∆F bulk
fluc =

kBTSh

4π
lim
λ→0

[
2

∫ ∞√
K3
2K

ρ−2

√
K

K3

q2 − 1

2
ρ−2 q exp(−λ2q2) dq−

−
∫ ∞

0

√
K

K3

q2 exp(−λ2q2) dq −
∫ ∞

0

√
K

K3

q2 + ρ−2 q exp(−λ2q2) dq

]
.

(4.27)

This gives

∆F bulk
fluc =

kBTSh

4π

√
K

K3

√
π

4λ3
lim
λ→0

[
2 exp

(
−λ2K3

2Kρ2

)
− 1 − 2

√
K3

K

λ√
πρ

− exp

(
λ2K3

Kρ2

)
erfc

(
λ

ρ

√
K3

K

)]
,

(4.28)

where erfc(x) is the complementary error function erfc(x) = 1 − erf(x). For small

arguments erfc(x) can be expanded in series

erfc(x� 1) = 1 − 2x√
π

+
2x3

3
√
π
− x5

5
√
π

+ . . . . (4.29)

Using this expansion we obtain the force

F3 =
kBTS

4π

K3

K
lim
λ→0

[√
K

K3

√
π

2λρ2
− 1

3ρ3

]
. (4.30)
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The F3 term now consists of a repulsive divergent term and a small attraction term.

This result is qualitatively the same as Eq. (4.26) with the inverse cut-off length λ−1

taking the role of the maximum wave vector number Q.

At present we still lack the physical interpretation of the F3 term characteristics.

But although we are unable to properly regularize the F3 contribution to the Casimir

force this does not pose any practical difficulties. The force scanning techniques,

such as atomic force microscopy and surface force apparatus measurements, actually

measure the difference of the force at different thicknesses h and not the absolute

magnitude. So the thickness independent contributions to the interaction, such as

is F3, are irrelevant.

Furthermore, as the bulk reference is in Sm-C phase, there is also the mean-

field force present in a frustrated Sm-A homeotropic cell. The mean-field force is

a consequence of a difference between mean-field free energies of structure between

plates (Sm-A) and Sm-C reference as given by Eq. (2.11) and is equal to

Fmf = (fC − fA)S = −1

4

α2

b
(Tc − T )2S , (4.31)

where fC and fA are free energy densities of the Sm-C and Sm-A phases. The

mean-field force is attractive and thickness independent. The comparison between

the mean-field force and the Casimir force [Eq. (4.19)] can be performed using the

following set of the material constants: α = 4 × 104 N/m2K, b = 106 N/m2, K3 =

K = 10−11 N, Tc = 368 K, [160] and taking the thickness of the cell to be h = 20 nm.

In the limit of strong anchoring the Sm-A structure could be supercooled to about

Tmax ≈ Tc − 5 K. Very close to Tc the Casimir force is dominant as the mean-

field force is very small there. By supercooling the system the mean-field force

becomes larger and prevails over the Casimir force. Even very close to the repulsive

divergence the Casimir force does not amount to more than a few ten percent of the

mean-field force. However as the mean-field force is thickness independent it can

not be measured by differential force scanning techniques, as was mentioned earlier,

and would not hinder the detection of the Casimir force.

4.2 Free-standing films

In free-standing films, the smectic material is bounded by free surfaces in contact

with air. In our simple model we assume that preferential orientation of director

at the free surfaces matches the orientation in the bulk interior of the film. This

corresponds to an effective internal anchoring. The mean-field structure of the film

is therefore in this model homogeneous. The anchoring is the same at both free

surfaces which gives symmetric boundary conditions. We consider two cases: a

free-standing Sm-A film (T > Tc) and a free-standing Sm-C film (T < Tc).
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In Sm-A free-standing film the equilibrium bulk value of order parameter ξ is

equal to 0 which is also the preferred value at the surface. The surface free energy

is then modeled by

FS[ξ] =
1

2
K3L

−1

[∫
sin2(|ξ|) dS1 +

1

2

∫
sin2(|ξ|) dS2

]
. (4.32)

The anchoring is at both surfaces characterized by extrapolation length L. The

Casimir force is calculated in the same way as in the homeotropic Sm-A cell above

Tc and is given by

FCas = −kBTS
π

K3

K

∫ ∞

1/η

p2 dp
(p+L−1)2

(p−L−1)2 exp(2ph) − 1
. (4.33)

This a typical short-range contribution of massive fluctuation modes with correlation

length η. Its dependence on anchoring parameters was analyzed in Fig. 3.2.

In Sm-C film the equilibrium bulk value of tilt is equal to ξ�0 =
√
α(Tc − T )/b

and equilibrium value of phase parameter ξ⊥ = 0. In our model of matching bulk

and surface order the director anchoring free energy is given by

FS[ξ] =
1

2
K3

∑
i=1,2

[
L−1

�

∫
sin2(ξ� − ξ�0) dSi + L−1

⊥

∫
sin2(ξ⊥) dSi

]
. (4.34)

Here we allow for different anchoring parameters for each type of fluctuations. Us-

ing the Hamiltonian of fluctuations in Sm-C phase [Eq. (4.1)] and performing the

Fourier transformation of fluctuating fields we obtain within harmonic approxima-

tion H =
∑

q

(
Hq [ξ̃�] +Hq [ξ̃⊥]

)
, where

Hq[ξ̃i] =
1

2
K3S

(∫ h

0

⎡⎣{ ρ−2 + K
K3
q2

K
K3
q2

}
ξ̃ 2
i +

(
dξ̃i
dz

)2
⎤⎦ dz +

+

{
L−1

�

L−1
⊥

}(
ξ̃− 2
i + ξ̃+ 2

i

))
.

(4.35)

The upper line corresponds to Fourier components ξ̃�(q, z) and the lower to ξ̃⊥(q, z).

The Casimir force is calculated following the procedure described in the case of the

homeotropic cell. It consists of two terms:

FCas = −kBTS
2π

K3

K

⎡⎢⎣∫ ∞

1/ρ

r2 dr
(r+L−1

�
)2

(r−L−1
�

)2 exp(2rh) − 1
+

∫ ∞

0

r2 dr
(r+L−1

⊥ )2

(r−L−1
⊥ )2 exp(2rh) − 1

⎤⎥⎦ .

(4.36)

The first term is a contribution of massive amplitude fluctuations with correlation

length ρ. The second term is a long-range contribution of massless phase fluctua-

tions. The characteristics of these terms have already been analyzed in the preceding

discussion [Figs. (3.2,4.3)].
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Here we investigate the temperature dependence of the Casimir force in a free-

standing smectic film which is presented in Fig. 4.6. We present the force only for

the limiting case of infinitely strong anchoring; that is L = 0 in the Sm-A film and

L� = 0, L⊥ = 0 in the Sm-C film. Due to the symmetric boundary conditions, the

-5 0 5

0

-0.2

-0.4

-0.6

-0.8

FCas

F0

t− tc

Figure 4.6 Temperature dependence of the Casimir force in a free-standing
smectic film. Again the unitless temperature t = αh2T/K3 is introduced. The
amplitude of the force is given in the natural unit F0 = kBTSK3ζR(3)/4πKh3

(a weak temperature dependence of F0 is neglected). Presented is the limiting
case of infinitely strong anchoring; L = 0 in the Sm-A film and L� = 0, L⊥ = 0
in the Sm-C film.

Casimir force in the free-standing smectic film is always attractive. It reaches the

maximum at the structural transition from the Sm-A to the Sm-C film (T = Tc).

Lowering or rising the temperature reduces the amplitude of the force. In the Sm-A

film there are two degenerate massive fluctuation modes whose contributions to the

Casimir force decay rapidly while rising the temperature. In the Sm-C film the

contribution of the massless mode is almost temperature independent, while the

contribution of the massive mode again decays rapidly away from T = Tc. The

profile of the force is therefore asymmetric. There is no divergence of the force at

the structural transition from the Sm-A to the Sm-C film as in the homeotropic cell.

In our simple model of the smectic film no frustration is induced by the boundary

conditions, and consequently the divergence does not occur. The increase of the

amplitude is a consequence of the fact that when approaching T → Tc all fluctuation

modes become massless. The implementation of finite anchoring strengths does

not significantly alter the temperature profile of the force but merely reduces its

amplitude.
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4.2.1 Casimir force in free-standing Sm-A films with

enhanced surface order

As the fluctuations of surface layers in free-standing films are suppressed by the

surface tension, the boundary layers often posses more order than interior ones.

Close to the Sm-A – Sm-C phase transition the molecules in boundary layers can

already be tilted while the bulk interior is still in the Sm-A phase [164]. We model

this surface ordering by demanding that the magnitude of tilt order parameter ξ at

the surfaces is equal to a non-zero ξS (Fig. 4.7). If we assume that ξS, and hence

Figure 4.7 Free-standing Sm-A film with enhanced surface order. The
molecules in surface layers are tilted while the interior of the film is still in the
Sm-A phase.

also interior |ξ|, is very small, we can perform the analysis retaining only lowest

order terms in the free-energy expansion (2.11)

f = fA +
1

2
K3η

−2
(
ξ2

�
+ ξ2

⊥
)

+
1

2
K3

[(
∂ξ�

∂z

)2

+

(
∂ξ⊥
∂z

)2
]

+
1

2
K

[(
∂ξ�

∂x
+
∂ξ⊥
∂y

)2

+

(
∂ξ�

∂y
− ∂ξ⊥

∂x

)2
]
.

(4.37)

Minimization of the free energy leads to the Euler-Lagrange equation

d2ξ�

dz2
− η−2ξ� = 0 . (4.38)

With boundary conditions ξ�(z = −h/2) = ξ�(z = h/2) = ξS this gives the mean-

field profile

ξmf� (z) = ξS
cosh(z/η)

cosh(h/2η)
. (4.39)

Note that for simplicity we here placed the boundaries at z = ±h/2. The component

ξ⊥ is not affected by the surface induced order and ξmf⊥ = 0. The mean-field free-

energy of this deformed structure is given by

Fmf =
K3Sξ

2
S

η
tanh

(
h

2η

)
, (4.40)
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which leads to the mean-field force

Fmf = −∂Fmf
∂h

= − K3Sξ
2
S

2η2 cosh2(h/2η)
. (4.41)

This is a well-known short-range attraction characteristic for symmetric systems

with enhanced surface order [179].

The Casimir force is calculated in the usual manner. We write the order pa-

rameters as ξ� = ξmf� + δξ� and ξ⊥ = δξ⊥ and obtain the Hamiltonian density of

fluctuations

h =
1

2
K3η

−2
(
2ξmf� δξ� + δξ2

�
+ δξ2

⊥
)

+
1

2
K3

[(
∂(δξ�)

∂z

)2

+ 2
∂ξmf�

∂z

∂(δξ�)

∂z

+

(
∂(δξ⊥)

∂z

)2
]

+
1

2
K

[(
∂(δξ�)

∂x
+
∂(δξ⊥)

∂y

)2

+

(
∂(δξ�)

∂y
− ∂(δξ⊥)

∂x

)2
]
.

(4.42)

Fourier transforming the fluctuating fields and integrating over volume we obtain

H =
∑

qHq[δξ�] +Hq[δξ⊥], where

Hq[δξ�] =
1

2
K3S

∫ h

0

[(
η−2 +

K

K3
q2

)
ξ̃ 2

�
+

(
∂ξ̃�

∂z

)2

+ 2

(
η−2ξmf� ξ̃� +

∂ξmf�

∂z

∂ξ̃�

∂z

)
δq,0

]
dz ,

(4.43)

Hq[δξ⊥] =
1

2
K3S

∫ h

0

⎡⎣(η−2 +
K

K3

q2

)
ξ̃ 2
⊥ +

(
∂ξ̃⊥
∂z

)2
⎤⎦ dz . (4.44)

The δξ⊥ fluctuations are not affected by the deformed mean-field structure and their

contribution to the Casimir force is the same as in homogeneous Sm-A film. The

Hamiltonian of δξ� fluctuations contains additional terms for wave vector q = 0.

However, performing a per partes integration over z and considering the Euler-

Lagrange equation for the mean-field profile ξmf� [Eq. (4.38)] these additional terms

are transformed into a surface term. If we assume fixed boundary conditions,

δξ�(z = −h/2) = δξ�(z = h/2) = 0, then this surface term is equal to zero and does

not contribute to the Hamiltonian and does consequently also not affect the parti-

tion function. Hence the contribution of the δξ� fluctuations to the Casimir force

is also the same as in a non-deformed film. This is in agreement with the general

conclusions of Sec. 3.3.

The free-standing Sm-A film with enhanced surface order represents another

example of a system where non-trivial equilibrium structure does not modify the

Casimir force, provided the surface induced order is small enough that quadratic

approximation of free-energy can be used. A similar study of the Casimir force
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was performed for the case of a presmectic system, where confining boundaries

enforce enhanced positional order, and the same conclusions were reached [129].

This is therefore a universal result for systems with fixed surface induced order and

quadratic free energy.



5

Inhomogeneous systems

Systems with non-trivial equilibrium order pose a special problem in the theory of

the Casimir force and were to our knowledge studied only rarely [120, 129, 180].

The main problem in these system lies in the regularization of divergent free energy

of fluctuations which can not always be performed analytically. In this thesis we

have already studied two systems with non-trivial equilibrium order – a stretched

homeotropic cell and a free standing Sm-A film with enhanced surface order. In

both cases a non-trivial equilibrium profile resulted in additional linear terms in the

Hamiltonian of fluctuations which could be transformed into surface terms and, as

argued in Section 3.3, did not affect the Casimir force provided the boundary con-

ditions were fixed. It is not always so simple, though. In this chapter we study two

systems with surface induced order where the inhomogeneity of the ordering results

in spatial variation of smectic material constants. In this case the Casimir force is

considerably modified. The third type of inhomogeneous systems was mentioned in

Section 4.1, where in a frustrated Sm-A cell at low enough temperature the transi-

tion to the deformed Sm-C structure occurs. In this case the enhanced order, i.e.

tilt, is induced by bulk interior whereas the boundaries suppress it. The Casimir

force in this kind of system was addressed in Ref. [180] and we do not consider it

here, though it has not been indisputably solved yet.

5.1 Casimir force close to smectic-nematic phase

transition

In calculation of the Casimir force in a Sm-A homeotropic cell, we assumed that

the magnitude of degree of smectic order ψ is constant over the whole sample and

equal to the bulk value ψ0 =
√−a/b, where a and b are the coefficients in free

energy expansion (2.6). Close to the smectic to nematic phase transition where ψ0

is small, this assumption may not be valid as the surface positional order induced

by the confining plates may be much larger than the intrinsic bulk value ψ0. In

71
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this case we obtain an inhomogeneous equilibrium profile of ψ. If we consider layer

fluctuations described by a simple Hamiltonian

H =
1

2

∫ [
B

(
∂u

∂z

)2

+KL

(∇2
⊥u
)2]

dV , (5.1)

and recall that elastic constants are proportional to the ψ2

B = C‖q2
0ψ

2 , KL = d1q
2
0ψ

2 , (5.2)

we obtain a system with a spatial dependence of elastic constants, B = B(z) and

KL = KL(z).

The first task is therefore to calculate the equilibrium profile ψ = ψ(z). We

consider a homeotropic smectic-A cell with plates located at z = ±h/2 and inducing

surface smectic order ψS (Fig. 5.1). If the layers in the cell are neither stretched nor

Figure 5.1 Homeotropic smectic-A cell with surface enhanced positional order
ψ. The profile of positional order is presented schematically. We consider the
Casimir force induced by the fluctuations of smectic layers u.

dilated, the equilibrium profile can be calculated by minimizing the free energy

F =

∫ [
1

2
aψ2 +

1

4
bψ4 +

1

2
C‖

(
∂ψ

∂z

)2
]

dV , (5.3)

where a is negative in the smectic phase and we neglect higher order elastic terms.

In general, the solution can not be obtained analytically. Therefore we first separate

the bulk value ψ0 =
√−a/b from the total order parameter and write ψ = ψ0 + ψ̃.

Assuming that ψ̃ is small we can expand the free energy to quadratic order

F̃ = F − F0 =

∫ ⎡⎣−aψ̃2 +
1

2
C‖

(
∂ψ̃

∂z

)2
⎤⎦ dV . (5.4)

Now the analytical solution is given by

ψ(z) = ψ0 + ψ̃(z) = ψ0 + ψ̃S
cosh(z/ξ)

cosh(h/2ξ)
, (5.5)
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where ψ̃S = ψS − ψ0 and ξ−2 = −2a/C‖.
The spatial dependence of elastic constants B and K is now described by

B = C‖q2
0

[
ψ0 + ψ̃S

cosh(z/ξ)

cosh(h/2ξ)

]2
, KL = d1q

2
0

[
ψ0 + ψ̃S

cosh(z/ξ)

cosh(h/2ξ)

]2
. (5.6)

Unfortunately it turns out that we are not able to calculate the Casimir force using

this full profile, as the partition function of fluctuations can not be evaluated analyti-

cally. We therefore neglect the constant ψ0 contribution, continuing our calculations

with the inhomogeneous part of the ψ only:

B → C‖q2
0

[
ψ̃S

cosh(z/ξ)

cosh(h/2ξ)

]2
= BS

cosh2(z/ξ)

cosh2(h/2ξ)
,

KL → d1q
2
0

[
ψ̃S

cosh(z/ξ)

cosh(h/2ξ)

]2
= KS

cosh2(z/ξ)

cosh2(h/2ξ)
.

(5.7)

This approximation can not be justified on physical grounds and one should be aware

of the inconsistency of our approach. However, we are here mainly interested in the

effect of inhomogeneous profile of elastic constants on the Casimir force. Therefore

we expect that despite this approximation we will still obtain a qualitative picture

of the phenomenon. Our approximation could also be interpreted in the sense that

we ad hoc invented a plausible profile of elastic constants and studied its effect

on the Casimir force. Furthermore we should mention that in our simple model

[Eq. (5.1)], where we consider only layer fluctuations assuming that director is fixed

perpendicular to the layers, the constant KL should also include the contribution

of splay director elastic constant K1 which is proportional to degree of nematic

order, K1 ∝ ψ2
N . This would pose no difficulties if the profile of ψN (z) could be

approximated by the same spatial dependence as ψ(z). Otherwise the Casimir force

could not be calculated and we therefore avoid this complication.

We start the calculation of the Casimir force by Fourier transforming the Hamil-

tonian Eq. (5.1). This transformation is not affected by the KL(z) and B(z) profiles

so we obtain

Hq[u] =
1

2
SKS

∫ h/2

−h/2

[
λ−2 cosh2(z/ξ)

cosh2(h/2ξ)

∣∣∣∣∂uq

∂z

∣∣∣∣2 +
cosh2(z/ξ)

cosh2(h/2ξ)
q4 |uq|2

]
dz , (5.8)

where we introduced the characteristic length λ =
√
KS/BS. Now the partition

function of fluctuations has to be evaluated, where we assume fixed boundary con-

ditions at the plates

Zq[u] =

∫ uq(z= h
2
)=0

uq(z=−h
2
)=0

exp (−βHq[u]) Duq(z) . (5.9)
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This partition function does not belong to a class of standard path integrals, such as

for example path integral of a harmonic oscillator with constant mass and elasticity,

but it can be evaluated. For a general quadratic Hamiltonian

H =

∫ z′′

z′

[
a(z)ẋ2 + 2b(z)ẋx+ c(z)x2 + 2d(z)ẋ+ 2e(z)x

]
dz (5.10)

the partition function Z =
∫ x(z′′)=x′′
x(z′)=x′ exp(−βH [x(z)])Dx(z) is given by [168]

Z ∝
√(

−∂
2Hcl(x′′, x′)
∂x′∂x′′

)
exp (−βHcl[x

′′, x′]) . (5.11)

Here Hcl is the analog of classical action in quantum mechanics and is obtained by

minimizing Hamiltonian H with respect to x(z).

The Euler-Lagrange equation for minimization of the Hamiltonian Hq[u] leads

to the differential equation for classical path uclq

∂2uclq
∂z2

+
2

ξ
tanh

(
z

ξ

)
∂uclq
∂z

− λ2q4uclq = 0 , (5.12)

with general boundary conditions uclq (z = ±h/2) = u±q . The solution of this equation

reads

uclq =

(
1

2
u−q

{
exp

[(
3h

2
− z

)√
λ2q4 + ξ−2

]
− exp

[(
h

2
+ z

)√
λ2q4 + ξ−2

]}

+
1

2
u+

q

{
exp

[(
3h

2
+ z

)√
λ2q4 + ξ−2

]
− exp

[(
h

2
− z

)√
λ2q4 + ξ−2

]})

×
[
coth
(
h
√
λ2q4 + ξ−2

)
− 1
] cosh(h/2ξ)

cosh(z/ξ)
.

(5.13)

It is obvious that for fixed boundary conditions, u±q = 0, the classical path uclq
and hence also Hcl are equal to 0. Thus it only remains to evaluate the deriva-

tive ∂2Hcl/∂u
+
q ∂u

−
q . This calculation is straightforward and leads to the partition

function

Zq[u] ∝
[
sinh
(√

λ2q4 + ξ−2 h
)]− 1

2
. (5.14)

After performing the usual extraction of the bulk and surface parts we obtain the

interaction part of the fluctuations free energy

Fint =
kBTS

4π

∫ ∞

0

ln

(
1 − exp

(
−2

h

ξ

√
1 + ξ2λ2q4

))
q dq , (5.15)

and the corresponding Casimir force

FCas = −kBTS
2πξ

∫ ∞

0

√
1 + ξ2λ2q4

exp
(
2h
ξ

√
1 + ξ2λ2q4

)
− 1

q dq . (5.16)



Inhomogeneous systems 75

This integral can not be evaluated analytically. We can however obtain the behavior

of the force in the limiting cases of small and large thicknesses. In the limit of small

thickness, h/ξ → 0, the force is equal to

FCas (h/ξ → 0) = −kBTSζR(2)

16πλh2
. (5.17)

This is just the usual layer-fluctuations induced Casimir force [Eq. (1.13)]. Such a

behavior can be easily explained by the fact that at very small thicknesses the profile

of ψ, and hence also of K and B, is practically constant and there is no effect of

inhomogeneity. In the opposite limit of very large thicknesses, h/ξ → ∞, the force

is given by

FCas (h/ξ → ∞) = − kBTS

8
√
πξ2λ

exp (−2h/ξ)√
h/ξ

. (5.18)

This is a very interesting result which shows that fluctuations of smectic layers

described by a purely elastic Hamiltonian [Eq. (5.1)], due to the space dependent

elastic constants induce a short-range Casimir force which decays exponentially as

exp(−2h/ξ)/
√
h/ξ. Such a short-range exponentially decaying force is characteristic

for massive fluctuation modes, so the inhomogeneity here obviously acts as some

effective mass of fluctuations. The numerically calculated profile of the Casimir

force in a broader range of thicknesses is shown in Fig. 5.2.
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F lay
Cas

Figure 5.2 The profile of the Casimir force induced by the layer fluc-
tuations in the homeotropic smectic-A cell with a surface enhanced posi-
tional order compared to the usual layer-fluctuations induced Casimir force
F lay
Cas = −kBTSζR(2)/16πλh2 . At small thicknesses FCas is equal to F lay

Cas. At
large thicknesses it decays much faster, as exp(−2h/ξ)/

√
h/ξ.

In the end we should again note that the system studied here was somewhat

special, as the spatial profiles of KL and B were taken to be equal and also consider-
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ably simplified. This enabled us to obtain an analytical solution which would not be

possible in a more general case. Nevertheless, we expect that our simple model still

contains some physical reality. In reference to our result we must mention a study

of de Oliveira et al. [133] where the Casimir force in a free standing smectic-A film

close to the Sm-A – nematic phase transition was studied within discrete model. It

was claimed that due to the inhomogeneous profile of elastic constants the magni-

tude of the force is strongly enhanced. This is obviously in contradiction with our

conclusions. As we are not able to reproduce their numerical results we can not

make the final judgement whether this contradiction stems from the inconsistency

of our model or some other source.

5.1.1 Force induced by fluctuations of degree of smectic or-
der ψ

We can also evaluate the contribution of fluctuations of positional order ψ to the

Casimir force. We make use of the fact that in the lowest order the fluctuations of

u and ψ are not coupled and start with the harmonic free energy

F̃ [ψ̃] =

∫ ⎡⎣−aψ̃2 +
1

2
C‖

(
∂ψ̃

∂z

)2

+
1

2
C⊥
(
∇⊥ψ̃
)2

⎤⎦ dV . (5.19)

We write ψ̃ = ψ̃mf + δψ̃, where the mean field part has already been calculated

ψ̃mf = ψ̃S
cosh(z/ξ)

cosh(h/2ξ)
. (5.20)

We now note that this system is equivalent to the case of a free standing smectic-A

film with enhanced surface order (Sec. 4.2.1). Therefore we can directly write the

mean field force

Fmf = − C‖Sψ̃2
S

2ξ2 cosh2(h/2ξ)
. (5.21)

and the Casimir force

FCas[δψ̃] = −kBTS
4π

C‖
C⊥

1

h3

∞∑
k=1

exp(−2hk/ξ)

k3

(
1

2
+
h

ξ
k +

h2

ξ2
k2

)
. (5.22)

The inhomogeneity of equilibrium profile does not affect the Casimir force in this

case and we obtain the usual short-range attraction as in a homogeneous system

[Eq. (3.10)]. This is just another example of a system described by a quadratic free

energy functional and with fixed boundary conditions where the nontrivial equilib-

rium order profile does not change the Casimir force, as it was discussed in Sec. 3.3.
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5.2 Casimir force in presmectic nematic film

Even if the system is in nematic phase there is always some positional order of

molecules present in confined geometries. The origin of this presmectic positional

order lies in the fact that molecules can not penetrate into the hard boundaries

so there is always at least one ordered layer present. How this surface induced

order penetrates into the bulk depends on the proximity of the nematic – smectic

phase transition. Very close to the transition the positional order extends over

large distances, whereas far above the transition it is basically only the boundary

layer being ordered. As the orientational fluctuations of director are coupled to

the smectic order, this presmectic ordering results in increased energy of director

fluctuation modes. The otherwise massless nematic director fluctuations become

massive due to the surface induced positional order. It is the aim of this section to

calculate the Casimir force due to the director fluctuations in such a nematic system

with a presmectic positional order.

We begin by calculating the equilibrium profile of degree of positional order ψ in

a homeotropic nematic cell with plates imposing surface smectic order ψS (Fig. 5.3).

We use the following free energy expression

Figure 5.3 Homeotropic nematic cell with surface induced presmectic order
ψ. The profile of positional order is shown schematically. We consider the
Casimir force induced by the director fluctuations δn.

F =

∫ [
1

2
aψ2 +

1

2
C‖

(
∂ψ

∂z

)2
]

dV . (5.23)

As the system is in a nematic phase the coefficient a is positive and the bulk order

ψ0 is equal to 0. We here consider only the basic elastic term and do not include

higher powers of ψ in the expansion as the magnitude of positional order is expected

to be small and the quadratic approximation should therefore suffice. Placing the

plates at z = ±h/2 we obtain, by minimization of F , the mean-field profile

ψmf (z) = ψS
cosh(z/ξ)

cosh(h/2ξ)
. (5.24)
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This is analogous to the profile obtained in the previous section [Eq. (5.20)] with

the correlation length now being ξ−2 = a/C‖. The correlation length ξ also rep-

resents the characteristic length of penetration of surface smectic order into the

bulk. Far from the nematic – smectic phase transition ξ is of order of a molecular

length whereas close to the transition its value increases and finally diverges at the

transition.

In the one-constant approximation, the nematic free energy density is given by

f =
1

2
D(δn)2 +

1

2
K
[
(∇ · n)2 + (∇× n)2

]
. (5.25)

Here δn is the deviation of director from z direction and D = C⊥q2
0ψ

2
mf . In usual

nematics with no smectic order (ψ = 0) D is 0. Here, due to the surface induced

smectic order, the director fluctuations become massive with spatially dependent

mass

D(z) = C⊥q2
0ψ

2
S

cosh2(z/ξ)

cosh2(h/2ξ)
. (5.26)

The nematic elastic constant K is assumed to be uniform as the nematic order is well

developed. In equilibrium, the director is oriented in z direction and the fluctuations

are given by δn = (nx, ny). This leads to the harmonic Hamiltonian of fluctuations

H =
1

2
K

∫ [
Λ−2(z)

(
n2
x + n2

y

)
+

(
∂nx
∂x

+
∂ny
∂y

)2

+

(
∂ny
∂x

− ∂nx
∂y

)2

+

+

(
∂nx
∂z

)2

+

(
∂ny
∂z

)2
]

dV

(5.27)

where we introduced a spatially dependent correlation length Λ−2(z) = D(z)/K.

After Fourier transformation we obtain H =
∑

qHq[nx] +Hq[ny] with

Hq[nxq] = Hq[nyq] = Hq[nq] =
1

2
KS

∫ h/2

−h/2

[(
Λ−2(z) + q2

) |nq|2 +

∣∣∣∣∂nq

∂z

∣∣∣∣2
]

dz .

(5.28)

The partition function

Zq[nq] =

∫ nq(z= h
2
)=0

nq(z=−h
2
)=0

exp (−βHq[nq]) Dnq[z] (5.29)

is analogous to the quantum propagator of harmonic oscillator with a time dependent

frequency (see Appendix A.1). We assume that the director orientation is fixed at

the plates. The partition function is given by

Zq[nq] ∝ [g (h/2)]−1/2 (5.30)
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where g(z) is a solution of differential equation

∂2g(z)

∂z2
− (Λ−2(z) + q2

)
g(z) = 0 (5.31)

with boundary conditions

g

(
z = −h

2

)
= 0 ,

∂g

∂z

(
z = −h

2

)
= 1 . (5.32)

Here we can not proceed with a general profile of D(z) [Eq. 5.26] but need to make

an approximation. We introduce a parabolic profile of D(z)

D(z) → C⊥q2
0ψ

2
S

(z/ξ)2

(h/2ξ)2
. (5.33)

There exists no physical argument to justify such an approximation, but we again

ad hoc introduce a plausible inhomogeneous profile which enables us to continue

the calculation, and hope that it still contains some physical reality. With this

approximation we can now obtain the partition function as

Zq[nq] ∝ 1√
2k

[
− 1

2
x0

(
A +

1

2

)
M [1

2
A + 5

4
, 3

2
, 1

8
x2

0]

M [1
2
A + 1

4
, 1

2
, 1

8
x2

0]
+

2

x0

+
1

2
x0

(
1

3
A +

1

2

)
M [1

2
A + 7

4
, 5

2
, 1

8
x2

0]

M [1
2
A + 3

4
, 3

2
, 1

8
x2

0]

]1/2

,

(5.34)

where M [a, b, z] is the Kummer confluent hypergeometric function [181]. We have

introduced the following parameters

α =
ξ2C⊥q2

0ψ
2
S

K
, A =

hξ

4
√
α
q2 , x0 =

√
4h

√
α

ξ
, k =

√
h

4ξ
√
α
. (5.35)

The degree of induced surface order ψS is now controlled by parameter α. The free

energy of fluctuations is given by

Ffluc =
kBTS

2π

∫ ∞

0

ln(Zq[nq])q dq , (5.36)

where we took into account that there are two degenerate director fluctuation modes

present.

The regularization of the fluctuations free energy Ffluc can unfortunately not be

performed by a simple factorization into bulk, surface and interaction parts, as was

the case in previous examples. Therefore we proceed in the following manner. We

first calculate the derivative ∂Ffluc/∂h. With this we dispose of thickness indepen-

dent terms. Assuming that interaction part goes to 0 at large thicknesses h, we
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numerically calculate ∂Ffluc/∂h at large h’s for various wave vectors q. This enables

us to evaluate the bulk contribution. In analogy with the previously studied systems

we expect the bulk contribution to be constant, ∂ ln(exp(rh))/∂h = r = const. How-

ever in our case it turns out that the derivative ∂Ffluc/∂h changes very slightly while

increasing the distance h. This indicates that the bulk term in partition function

can not be described by a simple exp(rh) dependence, but the correction seems to be

very small. Being unable to exactly determine the bulk contribution, our numerical

calculations of the force are limited to very small thicknesses h where the interaction

part is dominant and the correction due to the uncertainty of regularization is not

crucial. The results presented here are hence by no means the final solution of the

problem and should serve only as qualitative information of the force behavior. The

question of the Casimir force in such systems, with position dependent mass of the

fluctuations, remains open for further studies.

The Casimir force calculated using the above described procedure is shown in

Figs. 5.4 and 5.5. We first compare the Casimir force in a presmectic nematic with

the typical 1/h3 nematic force which is present in systems with no smectic order

and hence massless director fluctuations (Fig. 5.4):

R1 =
FCas(α)

Fnem
Cas

, (5.37)

where Fnem
Cas = kBTSζR(3)/4πh3. The thickness is measured in units of correla-

tion length ξ. Various parameters α describe different magnitudes of the surface

induced smectic order, where larger α means larger ψS . At very small thicknesses

the compared forces are equal. This is in agreement with the known results for

homogeneous massive systems where in the limit of small thicknesses the force ex-

hibits 1/h3 behavior. Such a behavior can be explained by the fact that in very thin

cells the elastic contributions (which scale as 1/h) in the Hamiltonian dominate over

the massive term (which scales linearly with h). At larger thicknesses the force in

a presmectic system decays faster than 1/h3. This is somewhat expected as the

fluctuations are massive. The larger the surface induced order, the larger the mass

and the faster the decay of the force.

Secondly, we compare the director-induced Casimir force in a presmectic sys-

tem to the director force in a homogeneous smectic with constant positional order

(Fig. 5.5):

R2 =
FCas(α)

F sm
Cas

, (5.38)

where

F sm
Cas = −kBTS

2π

1

h3

∞∑
k=1

exp (−2hk/ΛS)

k3

(
1

2
+

h

ΛS
k +

h2

Λ2
S

k2

)
. (5.39)

We defined ΛS = C⊥q2
0ψ

2
S/K, meaning that the mass of fluctuations in the homo-

geneous system is set equal to the boundary value of mass of fluctuations in the
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Figure 5.4 Casimir force in a presmectic nematic system compared to the
typical 1/h3 Casimir force in a nematic system with no smectic order. The
different values of α describe the different degrees of the surface induced po-
sitional order ψS . The error bars indicate the uncertainty stemming from the
approximate regularization procedure.

presmectic system. One should note that ΛS depends on α . The Casimir force in

a presmectic system decays slower than in a homogeneous smectic. This is again

somewhat expected as an average mass of fluctuations in the presmectic system is

smaller than in the homogeneous system, due to the decreased smectic order in the

middle of the cell. If we apply the rationale known from homogeneous systems, a

larger mass means a shorter correlation length of fluctuations and hence a shorter

range of the force. The larger the surface induced smectic order, the larger the

difference between the homogeneous and the inhomogeneous system.

Even though we failed to completely solve the problem of the Casimir force

induced by director fluctuations in a presmectic system, we can still make some

qualitative conclusions. The force in a presmectic nematic system obviously decays

faster than the 1/h3 force in a pure nematic system without smectic order. As

some surface induced positional order is present in every confined system, even deep

in the nematic phase, our result indicates that the typical 1/h3 nematic director-

fluctuations induced force is hardly to be observed in experiments. At present we

can not give a more definite answer concerning the behavior of the Casimir force in

such systems but we must mention that a complete study should also include the

effect of a realistic finite director anchoring at the boundaries which is also known to

modify the ideal 1/h3 thickness dependence of the Casimir force in nematic systems

[137].
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Figure 5.5 Casimir force in a presmectic nematic system compared to the
director-fluctuations induced force in a homogeneous smectic system with con-
stant positional order equal to ψS . Note that different parameters α corre-
spond to different values of ψS so that the reference force Fsm

Cas is different
for each case. The error bars indicate the uncertainty stemming from the
approximate regularization procedure.
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Conclusion

The majority of studies of the Casimir phenomenon in liquid crystalline systems

was concerned with the simplest, i.e. nematic, phase. In this thesis, we tried to

reveal the various aspects of the Casimir force in the smectic phase, which possesses

a more complex ordering and is thus even more interesting. Many new questions

concerning the Casimir effect were raised, but not all the final answers have been

given yet.

In Chapter 3 we studied the Casimir force in two smectic-A systems with plan-

parallel geometry:a homeotropic cell and a free-standing film. We assumed that the

equilibrium structure of the systems was homogeneous. We considered the force

induced by thermal fluctuations of positional order (degree of order and position

of smectic layers) and by fluctuations of orientational order (director). We also

took into account the coupling between the positional and the orientational order.

Within the harmonic approximation, the fluctuations of degree of positional smectic

order are decoupled from the layer and director fluctuations and were found to

contribute a short-range attractive contribution to the total Casimir force. The

coupled fluctuations of director and smectic layers result in a long-range Casimir

force. It turned out that the effect of director degrees of freedom is important

at small thicknesses of the systems whereas at large thicknesses the force can be

modeled by considering only layer fluctuations while assuming that the director

rigidly follows layer deformations. We evaluated the net effect of the director-layer

coupling by comparing the “coupled” force to its “uncoupled” counterpart where

director and layer fluctuations were treated independently. We found out that the

coupling increases the force by no more than a few ten percent except in some special

cases. With results presented in this Chapter we have provided a complete picture,

the first to our knowledge, of the Casimir effect in planar smectic-A systems with

homogeneous equilibrium structure.

In Chapter 4 we addressed some peculiarities related to the smectic-A to smectic-

C phase transition. The theoretical model that we used enabled the study of the

plain as well as the chiral smectics. Especially interesting was the case of a frustrated

83
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homeotropic cell, where smectic-A structure is stabilized by the boundaries and su-

percooled below the bulk phase transition temperature. In this case the fluctuations

and the force are enhanced. At the structural transition to a deformed smectic-C

structure, the Casimir force exhibits repulsive logarithmic divergence characteristic

for continous structural transitions. However, we did not fully solve the problem of

the Casimir force in frustrated systems as we were unable to regularize the diver-

gent bulk contribution with our calculation method. Fortunately, this contribution

is thickness independent and therefore of no practical importance but the theo-

retical challenge remains. On the other hand, in free-standing smectic films with

no surface-induced frustration the phase transition is characterized by an increased

magnitude of the Casimir force but there is no divergence present. We also analyzed

the effect of different boundary conditions on the Casimir force induced by massive

director fluctuations with finite correlation length in smectic-A phase. We found

that in thin cells the effective anchoring strength is determined by the ratio of the

anchoring extrapolation lengths and thickness of the system. On the other hand, in

thick cells the effective anchoring is determined by the ratio of extrapolation lengths

and the correlation length of fluctuations. In the case of symmetric boundary con-

ditions at the plates (effectively strong-strong or weak-weak anchoring) the Casimir

force is attractive whereas in the case of asymmetric boundary conditions (effec-

tively strong-weak anchoring) the force is repulsive, in agreement with the previous

studies of the Casimir force in other systems.

A special attention was devoted to the Casimir force in systems with non-trivial

equilibrium structure, which were only rarely studied in the past. We first considered

two systems, dilated or compressed smectic cell and smectic film with enhanced sur-

face order, where the inhomogeneity of equilibrium order did not affect the Casimir

force. We came to the conclusion that when the free energy functional of a system

is quadratic and the boundary conditions are fixed an inhomogeneous equilibrium

ordering does not affect the Hamiltonian of fluctuations and hence does also not

affect the Casimir force. In Chapter 5 we considered two systems where the non-

trivial equilibrium order resulted in spatial dependence of material constants. In a

smectic cell with surface enhanced elastic constants we discovered that the other-

wise long-range smectic force becomes short-range. This inhomogeneity thus acts as

some effective mass of fluctuating fields. Furthermore we analyzed how the surface-

induced presmectic order, which increases the energy of director fluctuations, affects

the Casimir force in a nematic system. We found that the magnitude of the force

in such a system is reduced as compared to the long-range nematic force. In both

systems we had to introduce several approximations in order to calculate the force,

therefore the obtained results do not give the final answer on the Casimir force in

systems with inhomogeneous equilibrium order. Nevertheless, we believe that an in-

structive qualitative picture of the phenomenon in such systems has been obtained.
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Future perspectives

Undoubtedly, the main challenge in the theory of the Casimir force in liquid crys-

tals is presented by systems with non-trivial equilibrium order and hence spatially

dependent Hamiltonian of fluctuations. In this thesis we were able to give a solution

for some special examples. The treatment of the more general cases will probably

require a more sophisticated calculation and regularization methods. As in real con-

fined systems some inhomogeneity of equilibrium order – either nematic or smectic

– is frequently encountered, these open problems are highly relevant.

Some interesting problems concerning the chiral smectics also remain open for

further studies. In the thesis we addressed the Casimir force induced by orientational

fluctuations, while the polarization fluctuations were eliminated by the adiabatic

approximation. However, at least two effects related to the presence of spontaneous

polarization should be considered. Firstly, the fluctuations of orientational order

result in inhomogeneity of spontaneous polarization, which leads to appearance of

space charge and Coulomb interaction in the system. And secondly, the spontaneous

polarization can be coupled to an external electric field. It would be interesting to

investigate how these two effects affect the behaviour of the Casimir force in chiral

smectics.

The main problem in the field remains the lack of experimental evidence of the

Casimir interaction. It appears that liquid crystal systems are simply too complex

to allow for the detection of the Casimir force, because there is always a variety of

other phenomena which mask the Casimir interaction. New possibilities for the ob-

servation of the phenomenon could open with the development of colloidal systems

with nano-sized dispersed particles, where the fluctuation-induced forces presum-

ably dominate the elastic liquid crystal interaction. We believe that an experimental

confirmation of the Casimir force in a liquid-crystalline system would provide a mo-

tivation for further studies in this field, as it happened in the case of electromagnetic

Casimir effect.
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Appendix

Calculation of quantum propagators

Throughout this thesis, we employed the analogy between partition functions of

thermal fluctuations in one-dimensional systems and propagators of quantum sys-

tems to obtain the free energy of fluctuations. Here we present technical details of

propagator evaluation.

The propagator for a quantum system evolving from state xa at time ta to a

state xb at time tb is defined as [167]

(xbtb|xata) =
∑

all paths
(xa,ta)→(xb,tb)

exp (iA[x]/�) ≡
∫

(xa,ta)→(xb,tb)

Dx exp (iA[x]/�) . (A.1)

This definition has a simple intuitive interpretation. The amplitude of the propaga-

tor is obtained by summing over all paths x(t) along which a system can possibly

evolve, assigning each path a phase factor exp (iA[x]/�). Here A[x] is the action of

the system defined by

A[x] =

∫ tb

ta

L(x, ẋ) dt , (A.2)

with L(x, ẋ) being the Lagrangian of the system.

A.1 Quantum propagator for harmonic oscillator

The action for harmonic oscillator reads

A[x] =

∫ tb

ta

L(x, ẋ) dt =

∫ tb

ta

1

2
M
[
ẋ2 − ω2(t)x2

]
dt , (A.3)

where we allow for time-dependent frequency ω(t). For calculation of the propagator

it is convenient to employ the splitting of paths into classical and fluctuation part

x(t) = xcl(t) + δx(t) . (A.4)

87
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The classical path xcl(t) is the path which minimizes the action A[x] and is obtained

from Euler-Lagrange equation which gives the equation of motion

ẍcl + ω2(t)xcl = 0 (A.5)

with boundary conditions xcl(ta) = xa and xcl(tb) = xb. The action is now decom-

posed into a classical and a fluctuating part

A[x] = Acl[xcl] + Afl[δx] (A.6)

A[x] =

∫ tb

ta

1

2
M
[
ẋ2
cl − ω2(t)x2

cl

]
dt+

∫ tb

ta

1

2
M
[
(δẋ)2 − ω2(t)(δx)2

]
dt , (A.7)

with boundary conditions for fluctuating part δx(ta) = δx(tb) = 0. Due to the

extremality of classical action, there is no mixed term between the classical path and

fluctuations. Therefore also the propagator is split into a classical and a fluctuation

factor

(xbtb|xata) =

∫
Dx exp (iA[x]/�) = exp (iAcl/�)Fω(tb, ta) . (A.8)

The fluctuation factor

Fω(tb, ta) =

∫
(0,ta)→(0,tb)

D(δx) exp (iAfl[δx]/�) , (A.9)

can be evaluated in various ways. We here follow the approach with a discretization

of time axis presented in Ref. [166]. First, the time interval [ta, tb] is sliced into N+1

short intervals of length ε. The action Afl[δx] in discretized form reads

AN
fl[δx] =

N∑
j=0

M

2ε
(δxj+1 − δxj)

2 − 1

2
εMω2

j (δxj)
2 , (A.10)

where δxj = δx(tj) and ωj = ω(tj). The boundary conditions require δx0 = δx(ta) =

0 and δxN+1 = δx(tb) = 0. The fluctuation factor is now given as

Fω(tb, ta) = lim
N→∞

∫ ∞

−∞
dδx1 . . .dδxN

(
M

2πi�ε

)(N+1)/2

× exp

{
i

�

N∑
j=0

[
M

2ε
(δxj+1 − δxj)

2 − 1

2
εMω2

j (δxj)
2

]}
.

(A.11)

Some caution is necessary with determination of normalization factor but we shall

not deal with this detail here. The calculation of fluctuation factor requires an

evaluation of a series of Gaussian integrals. For this purpose it is convenient to

introduce the matrix notation. We define a vector η as

η =

⎡⎢⎣ δx1
...

δxN

⎤⎥⎦ . (A.12)
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The argument of exponent in Eq. (A.11) can now be written as −ηTση where the

matrix σ is given by

σ =
M

2ε�i

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

−1 2
. . .
. . .

2 −1
−1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+
iMε

2�

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ω2
1

ω2
2

. . .
. . .

ω2
N−1

ω2
N

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(A.13)

The fluctuation factor can now be concisely written as

Fω(tb, ta) = lim
N→∞

(
M

2πi�ε

)(N+1)/2 ∫
dNη exp

(−ηTση) . (A.14)

The matrix σ is of the form iσ̃ where σ̃ is real and Hermitian. Thus σ can be

diagonalized by a unitary matrix

σ = U †σDU , (A.15)

where σD is the diagonal matrix of eigenvalues of σ. Now the above integral can be

transformed and directly evaluated

∫
dNη exp

(−ηTση) =

∫
dNζ exp

(−ζTσDζ) =
N∏
α=1

√
π

σα
=

πN/2√
det σ

, (A.16)

where we introduced the coordinate transformation ζ = Uη and because U is unitary

the Jacobian for going from dNη to dNζ is equal to 1. The fluctuation factor is now

given by

Fω(tb, ta) = lim
N→∞

[(
M

2πi�ε

)N+1
πN

det σ

]1/2

= lim
N→∞

[
M

2πi�
× 1

ε

1(
2i�ε
M

)N
det σ

]1/2

,

(A.17)

and the main task is now the evaluation of determinant det σ. We first define the

function f such that

f(tb, ta) = lim
N→∞

[
ε

(
2i�ε

M

)N
det σ

]
(A.18)
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and a renormalized determinant

(
2i�ε

M

)N
det σ = det

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

−1 2
. . .
. . .

2 −1
−1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

− ε2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ω2
1

ω2
2

. . .
. . .

ω2
N−1

ω2
N

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
≡ det σ

′
N ≡ pN .

(A.19)

Next we define truncated j × j matrices σ
′
j that consist of the first j rows and

columns of σ
′
N with determinant det σ

′
j = pj. By expanding σ

′
j+1 in minors, the

following recursion formula is obtained

pj+1 −
(
2 − ε2ω2

j+1

)
pj + pj−1 = 0 , (A.20)

with p1 = 2 − ε2ω2
1 and p0 is defined to be 1. Rewriting Eq. (A.20) into the form

pj+1 − 2pj + pj−1

ε2
+ ω2

j+1pj = 0 (A.21)

it is apparent that pN will be obtained by solving a differential equation. Introducing

φ(t) = εpj for t = ta + jε we obtain, in the limit of ε→ 0, the differential equation

d2φ

dt2
+ ω2(t)φ = 0 . (A.22)

The initial conditions for φ(t) follow from

φ(ta) = εp0 → 0 , (A.23)

dφ(ta)

dt
= ε

(
p1 − p0

ε

)
= 2 − ε2ω2

1 − 1 → 1 , (A.24)

in the limit N → ∞ (ε → 0). Finally the function f(tb, ta) = φ(tb) is obtained by

solving the differential equation

d2f(t, ta)

dt2
+ ω(t)2f(t, ta) = 0 (A.25)

with the initial conditions

f(ta, ta) = 0 ,
df(t, ta)

dt
|t=ta= 1 . (A.26)
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We can now write the propagator of harmonic oscillator in the final form

(xbtb|xata) = Fω(tb, ta) exp (iAcl/�) =

√
M

2πi�f(tb, ta)
exp (iAcl/�) . (A.27)

As an example we can now directly calculate the propagator for harmonic os-

cillator with constant frequency [ω 	= ω(t)]. From the Euler-Lagrange equation

[Eq. (A.5)] we obtain the classical path

xcl(t) =
xb sin[ω(t− ta)] + xa sin[ω(tb − t)]

sin[ω(tb − ta)]
, (A.28)

which starts at the point xa at time ta and ends at point xb at time tb. The classical

action can now be readily evaluated leading to

Acl =
Mω

2 sin[ω(tb − ta)]

{
(x2

a + x2
b) cos[ω(tb − ta)] − 2xaxb

}
. (A.29)

The function f(tb, ta) is obtained straightforwardly from Eqs. (A.25 and A.26)

f(tb, ta) =
sin[ω(tb − ta)]

ω
. (A.30)

The propagator now reads

(xbtb|xata) =

√
Mω

2πi� sin[ω(tb − ta)]

× exp

{
iMω

2� sin[ω(tb − ta)]

[
(x2

b + x2
a) cos[ω(tb − ta)] − 2xbxa

]}
.

(A.31)

A.2 Quantum propagator for two coupled har-

monic oscillators

The Lagrangian for two coupled harmonic oscillators can be written as

L =
∑
k=1,2

1

2
Mk

(
ẋ2
k − ω2

kx
2
k

)− λx1x2 . (A.32)

We wish to calculate the propagator

(xbtb|xata) =

∫
(xa,ta)→(xb,tb)

Dx1Dx2 exp

(
i

�

∫ tb

ta

L(x, ẋ) dt

)
, (A.33)

where x = (x1, x2). The calculation presented here follows the approach of Ref. [169].
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The first step in evaluation of the propagator is to diagonalize the Lagrangian.

This can be done conveniently by applying the following coordinate transformation[
x1

x2

]
=

⎡⎣ √ M
M1

cos(φ)
√

M
M1

sin(φ)

−
√

M
M2

sin(φ)
√

M
M2

cos(φ)

⎤⎦[ y1

y2

]
. (A.34)

Here φ is the angle of rotation and M an arbitrary parameter with dimension of

mass. This leads to Lagrangian

L′ =
1

2
M(ẏ2

1 + ẏ2
2) − αy2

1 − βy2
2 − γy1y2 , (A.35)

where

α =
1

2
Mω2

1 cos2(φ) +
1

2
Mω2

2 sin2(φ) − 1

2
λ

M√
M1M2

sin(2φ) ,

β =
1

2
Mω2

1 sin2(φ) +
1

2
Mω2

2 cos2(φ) +
1

2
λ

M√
M1M2

sin(2φ) ,

γ =
1

2
M(ω2

1 − ω2
2) sin(2φ) + λ

M√
M1M2

cos(2φ) .

(A.36)

The Jacobian of this coordinate transformation is equal to J =
√
M1M2/M so the

path integral measure changes as Dx1Dx2 → JDy1Dy2. As we wish to obtain a

diagonalized Lagrangian we set the parameter γ to 0 which gives the condition

tan(2φ) =
2λ√

M1M2(ω2
2 − ω2

1)
. (A.37)

Solving this equation we obtain two physically equivalent solutions for decoupling

angle φ, which differ only by interchange of coordinates yi. One of the solutions is

given by

cos(φ) =

√
1 +R

2
, (A.38)

where

R =

√
M1M2(ω

2
2 − ω2

1)
2√

M1M2(ω2
2 − ω2

1)
2 + 4λ2

. (A.39)

With this solution the Lagrangian is transformed into the diagonal form

L′ =
1

2
M
[
ẏ2

1 − Ω2
1y

2
1 + ẏ2

2 − Ω2
2y

2
2

]
, (A.40)

with

Ω2
1 =

1

2

[
ω2

1 + ω2
2 −
√

(ω2
1 − ω2

2)
2 +

4λ2

M1M2

]

Ω2
2 =

1

2

[
ω2

1 + ω2
2 +

√
(ω2

1 − ω2
2)

2 +
4λ2

M1M2

]
.

(A.41)
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The problem is now reduced to calculation of propagators for two independent har-

monic oscillators

(xbtb|xata) =

√
M1M2

M
(y1btb|y1ata) × (y2btb|y2ata) (A.42)

and the solution Eq. (A.31) can readily be applied. The final result is obtained by

returning to original coordinates

[
y1

y2

]
=

⎡⎣ √M1

M
cos(φ) −

√
M2

M
sin(φ)√

M1

M
sin(φ)

√
M2

M
cos(φ)

⎤⎦[ x1

x2

]
. (A.43)

After lengthy but straightforward calculation the propagator for two coupled har-

monic oscillators reads

(xbtb|xata) =
1

2πi�

[
M1M2Ω1Ω2

sin(Ω1τ) sin(Ω2τ)

]1/2
×exp

{
iΩ1

2� sin(Ω1τ)

[
cos(Ω1τ)

(
M1C

2x
′′2
1 +M2S

2x
′′2
2 − 2

√
M1M2SCx

′′
1x

′′
2

+M1C
2x

′2
1 +M2S

2x
′2
2 − 2

√
M1M2SCx

′
1x

′
2

)
− 2M1C

2x
′
1x

′′
1

+ 2
√
M1M2SCx

′
1x

′′
2 + 2

√
M1M2SCx

′
2x

′′
1 − 2M2S

2x
′
2x

′′
2

]}

×exp

{
iΩ2

2� sin(Ω2τ)

[
cos(Ω2τ)

(
M2C

2x
′′2
2 +M1S

2x
′′2
1 + 2

√
M1M2SCx

′′
2x

′′
1

+M2C
2x

′2
2 +M1S

2x
′2
1 + 2

√
M1M2SCx

′
2x

′
1

)
− 2M2C

2x
′
2x

′′
2

− 2
√
M1M2SCx

′
2x

′′
1 − 2

√
M1M2SCx

′
1x

′′
2 − 2M1S

2x
′
1x

′′
1

]}
,

(A.44)

where τ = tb − ta, S = sin(φ) and C = cos(φ).



94 Appendix: Calculation of quantum propagators



Bibliography

[1] H. B. G. Casimir, Proc. Kon. Ned. Akad. Wet. 51, 793 (1948).

[2] for extensive treatment and literature on the Casimir force, see the review

articles by Lamoreaux [Am. J. Phys. 67, 850 (1999)], Kardar et al. [Rev.

Mod. Phys. 71, 1233 (1999)], Bordag et al. [Phys. Rep. 353, 1-205, (2001)],

Milton [J. Phys. A 37, R209 (2004)] and Lamoreaux [Rep. Prog. Phys. 68,

201 (2005)] .

[3] J. Mahanty and B. W. Ninham, Dispersion Forces (Academic Press, London,

1976).

[4] E. M. Lifshitz, Zh. Eksp. Teor. Fiz. 29, 94 (1955), [Sov. Phys. JETP 2, 73,

(1956)].

[5] L. S. Brown and G. J. Maclay, Phys. Rev. 184, 1272 (1969).

[6] S. Tadaki and S. Takagi, Prog. Theor. Phys. 75, 262 (1986).

[7] G. Plunien, B. Muller, and W. Greiner, Physica 145A, 202 (1987).

[8] K. Kirsten, J. Phys. A 24, 3281 (1991).

[9] N. F. Svaiter, Nuo. Cim. 105A, 959 (1992).

[10] C. Genet, A. Lambrecht, and S. Reynaud, Phys. Rev. A 62, 012110 (2000).

[11] M. Bordag, B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys.

Rev. Lett. 85, 503 (2000).

[12] V. M. Mostepanenko et al., J. Phys. A 39, 6589 (2006).

[13] J. Schwinger, L. L. DeRaad, and K. A. Milton, Ann. Phys. 115, 1 (1978).

[14] M. Bordag, G. L. Klimchitskaya, and V. M. Mostepanenko, Mod. Phys. Lett.

A 9, 2515 (1994).

[15] M. Bordag, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys. Lett. A 200,

95 (1995).

95



96 BIBLIOGRAPHY

[16] M. Bordag, G. L. Klimchitskaya, and V. M. Mostepanenko, Int. J. Mod. Phys.

A 10, 2661 (1995).

[17] M. Bordag and K. Scharnhorst, Phys. Rev. Lett. 81, 3815 (1998).

[18] V. B. Bezerra, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys. Rev. A

62, 014102 (2000).

[19] A. Lambrecht and S. Reynaud, Eur. Phys. J. D 8, 309 (2000).

[20] G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Phys. Rev. A

61, 062107 (2000).

[21] G. L. Klimchitskaya and V. M. Mostepanenko, Phys. Rev. A 63, 062108

(2001).

[22] C. Genet, A. Lambrecht, P. M. Neto, and S. Reynaud, Europhys. Lett. 62,

484 (2003).

[23] F. J. Belinfante, Am. J. Phys. 55, 134 (1987).

[24] D. Kupiszevska, J. of Mod. Optics 40, 517 (1993).

[25] Cavity Quantum Electrodynamics, edited by P. R. Berman (Academic Press,

San Diego, 1994).

[26] M. Schaden and L. Spruch, Phys. Rev. A 58, 935 (1998).

[27] O. Kenneth, I. Klich, A. Mann, and M. Revzen, Phys. Rev. Lett. 89, 033001

(2002).

[28] T. H. Boyer, Phys. Rev. 174, 1764 (1968).

[29] K. A. Milton, L. L. De-Raad, and J. Schwinger, Ann. Phys. 115, 288 (1978).

[30] S. G. Mamayev and N. N. Trunov, Theor. Math. Phys. 38, 228 (1979).

[31] L. L. DeRaad and K. A. Milton, Ann. Phys. 136, 229 (1981).

[32] E. Elizalde, Phys. Lett. B 213, 477 (1988).

[33] I. Brevik and M. Lygren, Ann. Phys. 251, 157 (1996).

[34] G. J. Maclay, Phys. Rev. A 61, 052110 (2000).

[35] M. Bordag, G. Petrov, and D. Robashik, Yad. Fiz. 39, 1315 (1984).

[36] D. A. R. Dalvit and F. D. Mazzitelli, Phys. Rev. A 57, 2113 (1998).



BIBLIOGRAPHY 97

[37] R. Golestanian and M. Kardar, Phys. Rev. A 58, 1713 (1998).
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[152] A. Böttger, D. Frenkel, J. G. H. Joosten, and G. Krooshof, Phys. Rev. A 38,

6316 (1988).

[153] J. Israelachvili, Intermolecular & Surface Forces (Academic Press, London,

1985).

[154] B. Markun and S. Žumer, Phys. Rev. E 68, 021704 (2003).
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 �� ����� ��	�
���� 	�� 
� ���!��
�

FCas = −kBTS
8πh3

ζR(3)

(
K3

K1

+
K3

K2

)
. (/)

2
��	�� 	��� � �������� �����
������ ��	�
����� 	��� "����� (,)#� ��� � �����
&���������	�� ��	�
���� ���������� 7 �� �� ����	�� �� ��������	�� 	�	�
��
�
�� � �� ���� %&��&����	��* ������� �� �����* ������� ?�������� ��� 	� ��� 
������� ��*�� �� 	������� "��:#� �� 	� �����&���� ���	��� * ��	�
����� 	��� ������
��
����* %&��&���� 	����� �
��	��� ��� �� ����	��	�� &������ $� ���!���

FCas = −kTS
4π

1

h3

∞∑
k=1

exp (−2hk/ηi)

k3

(
1

2
+
h

ηi
k +

h2

η2
i

k2

)
, (:)



��

��� �
� 	� ηi ��������	� ���6�� &	������ %&��&����	��� ������� �� �������
�� �������	� ��	�
���� 	�� "����� (/)# 	� �� ���	���� ������� ��	�� �� ���
�����* ��������* &������ ��� exp(−2h/ηi)/h� =�	� ��	�
���� 	�� � � 	���!�

����	� �� �������� � 	�	�
&� $��� � � 	�	�
& 	 %&��&����	��
� ���������
�
������� ��	�� ��	�
����� 	��� ���� ���� ������� ��	��� >�&��&����	�� ������
	 ���������
� ������ ��	��� ��� 	� �������	� %&��&���� � �
�����*� �� ����
��	�
����� ���������� ������ ��	��� ������� �	����� ��&����� "����� (/ �� :)#
	�� ���� ��	���!�� �&�� �� ������ ����	� ����!��	��� 	������� "��:� ��1#� @���6
	� �� ������ ����	� 	������� � 	���!�
 �
���!� �����	� ��	�
���� 	�� �� ��*��
������ �&�� �� ��� �������� + ���
�& 	�
������* �����* ������� ��� � 	������
�� ��* ���!��* ��� 
���� ��� !����� � 	��� ���������� + ���
�& ����	�
������*
�����* ������� ��� � 	������ �� �� ����!��� 
����� �� ��&�� �� !����� ��	���
	��� ��������

2������� !�&��� 	� ���������� ���� ����� ��	�
���� 	�� � �
��	��* �����*
���	����*� 7� �� 5����� 	�� ������ ������� � 	��� ������ *������	�� ���!� "���� ���#�
��*�� � ���������� 	��� � ����
��	�
 	�	�
& � �*�
���� ������	�� &��� 
����� "�,9#� '��� �������	�� � ���� ��	��� ���� �
������
 .�&	�������
 	�	� 

�
� ��� 	�� *������� �� >�A�����	���� ����� "�,�#� + �* 	�	�
�* 	 ������	��
�
��	�� 	��&��&�� � 
�� ����������� �	
 �&�����
 ������
 0 �����
 �����

��� �&�����
 ����
� ������ � .�&	������ 	� %&��&���� &����� ! ��	�� ��������
��� 	 ����6� � 	������
 ����!���& ��	�
���� 	��� =� �������� ������ ����
�&�� � �������* �
��	��* 	�	�
�*� ��� .�&	������� ������ �� ��	���� �� 	 ������
������ �������� � &�
� � �������� 
� �����&����
� ����!���
�� B
��
� !
!�&��� ��	�
���� 	�� � �
��	��* ����
��* "�,/#� 
� 	.�����
� ���	����
� "�,�#
�� ������ ��	���� ��	�
������ ������ 
� ���!��
� � �����������
� ������
�
	������� "�,1#�

������	� ����	� �
������

<
����� ���� ���	��� �����&� ���� �
��	� ���������	� &����	�� �&�� �� 
���	6�� �������	�� ��� + ������� 	
�� 	 ��	���� 
���&� ��������� 	��
�����
$� �������	�� &����	� �� ��� ��������� 	�� 	� �������� ��	��� 
��*�� 7�*�� 	�
���	������
�� �� 	� 
���&� � 	
����& �������� � ��������* ���	�*� +	���
�� �* ���	�� ���	������ ������	6�� �������� ������� ���� 	 
���&� ���	��
�������� ������ 
� ���	�
� �� �� ���	
 ���	��� ���� ���� �� 
��&����� ��	 
��� � 	
�� ���������� �� ���	��� '������	�� 	
������ �� ���!
� 	 ��
���	��

����
���
 ��� Ψ = ψ exp(iφ)� ��� �
� ψ ������ 	������ �������	��� ����

��
 �� .��� φ ���	&� ��� 	
������* ���	��� '������	�� �� ������ ��	�� �
	
�����* � ������� 	�� ������ 7����& '���	�� �	�������	�� &����	� ������
��	�� � �� ���	6��	�� �� 
������

'��� !�&���� ��	�
������ ������ � 	
������* �����* ���	����* � ������� ;�* 



�

�� ��� ���� "�,�#� B��������� � 	���� �� �� ���������� %&��&���� 	
������* ���	��
� ������
 	�	�
&� '��	�� ������ �.��
���� ���	�� ��*�� ����!
� ���

F =
1

2

∫ [
B(∇‖u)2 +K(∇2

⊥u)
2
]
dV , (1)

��� u(r) ���	������ ��
�� ���	�� �� ������	� ��� '��� ��� � ���	�� ������
���	&� 	��	����� ��&�� �� &����� 	
������* ���	��� + *�
������� 	
������ �����
	� ���	�� � ������	�& &��� �������� � �����&����
� ���!��
�� >�&��&����
�����* ���	�� ������ ���	����	�� �����* 	�� ��	� 
����� ��� ���� �� ��	�
����
	�� 
� ���!��
�

FCas = −kBTS
16πh2

ζR(2)

√
B

K
. (�)

+ ���
�& 	
������* ��
�� � ������	�� 	��&��&�� ���� ��� � *�
������� ������
� �� 	� �& ������� �&�� %&��&���� ����!��	��* ���	��� ?
����&�� ����!��	��* %&� 
�&���� � ����	�� �� ����!��	� �����	�� 
� 	
�����
 �� �����&����
 
���
�
��	�
����� 	��� � � �
 ���
�& ����

FCas = −kBTS
16πh2

√
B

K
Li2

[
(γ1 −

√
KB)(γ2 −

√
KB)

(γ1 +
√
KB)(γ2 +

√
KB)

]
, (�)

��� � Li2 ���������
	�� .&������� �������� ��� Li2(x) =
∑∞

n=1 x
nn−2� '���!�� 

	�� �����	�� γ1 �� γ2 �� ������� �� 	������ ����!��� ��
� 	�� � 	���!�
 ��*��
��������� ��	�
����� 	��� � � ���
�& ����� ����!��	� �����	�� ���� !����!�
��� � ���
�& �������� 	 ����
� ���!��
�� C 	�� ����!��	�� �����	�� γ1 �� γ2 ���
��������� ���� �� �
�
� ������� � ����	�
������
� �����
� ������� ��	�
����� 	���
��
��� ������� �� ��	��� ��������

'�	�� 
���
� �
���� ! !�&��� ��	�
������ ������ ����� � �����& �� 
	������ ���	� 	
����� .�� "�490�44#� -�&������ ������� � ��	�����
 
����

	� ��� ������� ��&�����
 ������&&
	��� 
����� ���� �� ����� ��� 	������
�����	�� ����!��	��* �����	��� 2����� 	� � !�&��� ���������� ����� 
�������
����� �� ��	�
����� 	��� �� ����!��� 	�� � ���6��� .����� ��*��� �� 	
�����
� �
��	�� .���� 2������� 	� ����� ������� �
����&� 	�� � ���6��� .�����
��*���� ��� �� ��
����� �� � ��	�
����� 	��� ��
������� ���������� ������
��	�� � �
 �������&�

����� �����
�����

+���� ��	�����* !�&��� � 	
������* �����* ���	����* � ����������� ��	�
�����
	���� �� �� ���������� %&��&���� 	
������* ���	�� � �������* 	�	�
�* "���� ��/� �,��
�490�44#� + �� ��� ���������
� ��	�
����� 	��� � 	
������* 	�	�
�* &��!������
��� ������ &����� 0 �������	��� �� ���������	���� < �
 ������
� ��
�����
	���� ��	�
������ ������ � 	
�����*� ������ ��&���� ��	������ � �� !�&���&



��

��������� � 	
������ ? .���� 2����� ���������
� ����!��� ��	�
���� 	�� �
���6��� .����� ��*��� �� 	
����� ? .�� � 	
������ � .���� '�	��� �������	�
� ��	���� 	�	�
�
 � �*�
���� ������	�� &��������� 5�� ���� ��� ���
�
���������
� 	
������ ? ������ ��� 	 �*�
����	� �������	��� ��� ����6�
� ������� ����	��	�� ��	�����* ���	����� 5�� ��&�� ���
� ���������
� �����
����!��	�� ���&������� ���	
������� ��� �� �������	�� ��	�
����� 	��� �
�
��	�� .���� + ��	������� 	 �
��
� �� �����&� 	�� � �������� ��
������ $�
&	���� ��
����� ���	��	�����* ��
��� ������ ��&���� �� � 
�6�� ���!�����
�� ����� &������� ��
���� 	 ��
���� =�������� �����	�
����� 2�����
��&������ ���	������� � �� ��	�������� 	� ���� ��������� � ��* ������* � �����
�������� �	
�	� � "�/�� �//#�

������	
��� ���� � �������� � ����

�����
����� ����
��� � ��	���

��
������� ����� 		���� �� ��* ��������* ���!�� �� �������� 	
������ 
� 
����� (	���� �)� <
����� ���	�� 	 &����� �������� 	 ���!��
�� 
��
 �� �

����� � ����������� 	��
�����  ������� ���
����� 	� ��
������� 	������

	��
������� ���� δψ� ��
������� ���	�� u �� ����
���	
� ��
������� δn�

������� ��������� ���������� �� ���!��� -�����	�� 	��&��&�� ��*�� ���� �� 
��!�� ���3 nmf = nz = (0, 0, 1)� umf(r) = 0� ������ �����	����
�� �� � 	��� 
��� 	
������� ��� � ����� ���	������ �� ���� ������	�� �����	�� � ��
 
��
 �����&3 ψmf = ψ0� ��	�
����� 	��� ���������� ��
��� %&��&���� �����
������	��� ��
������� %&��&���� 	 � *��
�����
 ������6�& ���	�

H [δψ, u, δn] = H [δψ] +H [u, δn] ,

H [δψ] =

∫
dV

[
−aδψ2 +

1

2
C‖(∇‖δψ)2 +

1

2
C⊥(∇⊥δψ)2

]
,



���

H [u, δn] =
1

2

∫
�V

{
B
(∇‖u

)2
+KL

(∇2
⊥u
)2

+D (∇⊥u+ δn)2 +

+K1

(
∂nx
∂x

+
∂ny
∂y

)2

+K2

(
∂nx
∂y

− ∂ny
∂x

)2

+K3

[(
∂nx
∂z

)2

+

(
∂ny
∂z

)2
]}

,

(�9)

��� 	
� � δψ(r) = ψ − ψ0 �������� %&������ 	����� 	
������� ���� � u(r) %&� 
�&���� 	
������* ���	�� �� � δn(r) = (nx, ny) �������	� %&��&����� 5�� ����
��
	� %&��&���� 	
������� ��� ψ �����	� �� 
� 	��� 	��������* %&��&����
���	�� �� ���������� �� �����&� ��	�
���� 	�� 
���
� �������� ! ���� ������
'����	����
�� �� 	�� ���� ��� 	
������* ���	�� ��� 	������ 	
������� ��� ��
���!��* ��	��3 u(z = 0) = u(z = h) = 0� δψ(z = 0) = δψ(z = h) = 0� =������	��
	������ ���!
� � -����� '���&������
 
����


HS [n] =
1

2
W

∫
|δn|2 �S , (��)

��� ����
�� W ������ ����	� ����!��	��� 	��������

����������� ������ ������	��� 
��� ψ

'�����
� � �����&��
 	��� �� �� ���������� %&��&���� 	����� 	
������� ��� δψ�
5� � *�
������� ����� � �����* ��
�����* ��� ���	6��� 	� ��
���
� � ��� 
���	6�� >�&������ ����	.��
����� %&��&�������� ������ δψ(r) =

∑
q ψq(z) exp(iqρ)�

��
������� 	 	��� ���	�

H [δψ] =
∑
q

Hq[δψ] =
1

2
C‖S
∑
q

∫ h

0

dz

[
(ξ−2 +

C⊥
C‖

q2) |ψq|2 +

∣∣∣∣∂ψq

∂z

∣∣∣∣2
]
, (�,)

��� 	
� ������� ��������	�� ���6��� %&��&���� ξ−1 =
√−2a/C‖� 5� 	� %&��&��� 

�	�� ������ � ��������
� �������
� ������� q 
� 	��� �����	��� ��*�� �����&��
�
��������	�� .&������ �� �	�� ����� ��	��

Zq[δψ] =

∫ ψq(z=h)=0

ψq(z=0)=0

exp (−βHq[δψ]) Dψq(z) . (�4)

'�������	�� .&������ Zq[δψ] � �������� ������
& �����������& *��
������� �	 
��������� "�:�# �� �� ��*�� ������� �����&��
�

Zq[δψ] ∝
[
sinh

(√
ξ−2 +

C⊥
C‖

q2 h

)]−1/2

. (��)

'��	�� ������ %&��&���� � 	��� ����

Ffluc[δψ] = −kBT
∑
q

lnZq[δψ] =
kBTS

4π

∫
ln

[
sinh

(√
ξ−2 +

C⊥
C‖

q2 h

)]
q dq .

(�/)



����

@� ����� ���	� ����� � ������� ���&!���� ����� ���������	�� ���	���� �
&������ ������ sinh(x) = exp(x)×1/2×[1−exp(−2x)] .����������
� ���	�� ������

Ffluc[δψ] =
kBTS

4π

C‖
C⊥

∫ ∞

ξ−1

ln

(
exp(ph) × 1

2
× [1 − exp(−2ph)]

)
p dp , (�:)

��� �
� 	
� ������� p2 = ξ−2+ C⊥
C‖
q2� '��� ��� � ���	�� ������ � 	����
�� ��� 

	������� ������ Sh �� ���	������ �.����� ���	�� ������ ��
���� 	��	����
=�&�� ��� �� ����	� �� ������� 
� ���!��
� h �� ���� � ���	��� � �����������
������ ���� �� �� � ��
��� h→ ∞ ����� 0� � �	���� ���������	�� ���	���

F int
fluc[δψ] =

kBTS

4π

C‖
C⊥

∫ ∞

ξ−1

ln (1 − exp (−2ph)) p dp . (�1)

��	�
����� 	��� 	��� ����
� 	 �����	��
 ��������
 �� h �� ���������
 �� 
������

FCas[δψ] = −kBTS
4π

C‖
C⊥

1

h3

∞∑
k=1

exp(−2hk/ξ)

k3

(
1

2
+
h

ξ
k +

h2

ξ2
k2

)
. (��)

��	�
����� 	��� ������ %&��&���� 	����� 	
������� ��� � ������� ��	�� ��
� ��
��� �����* ����� (h � ξ) &���� ��� exp(−2h/ξ)/h� '�� 
��*��* ������*
(h� ξ) �� 	 	��� 	��
���� ��� 1/h3�

$&��� ������� �����&� 	�� ���	������ ����� �� ����
 ���&��
� ��	�
�����
	��� � ����� ���
��� � �� ��	�������� ���� ��
� ��������	�� �����&��� ��������
�� ��� �� �&��� ��������

����������� ��
����
�� � ������	�� ������

��
������� %&��&���� 	 �� >�&������ ����	.��
����� ���	�

H [u, δn] =
1

2
S
∑
q

∫ h

0

�z
[
B

∣∣∣∣∂uq

∂z

∣∣∣∣2 +Dq2 |uq|2 +KLq
4 |uq|2

+D
(|n1q|2 + |n2q|2

)
+ iqD

(
uqn

∗
1q − u∗qn1q

)
+K1q

2 |n1q|2

+K2q
2 |n2q|2 +K3

(∣∣∣∣∂n1q

∂z

∣∣∣∣2 +

∣∣∣∣∂n2q

∂z

∣∣∣∣2
)]

.

(��)

'�� �
 	
� ������ ����	.��
����� �������	��* %&��&���� δnq = (nxq, nyq) � (n1q, n2q)�
��� ��
������ n1q ���	������ �������	� %&��&���� ������� 	 q = (qx, qy)� ��
��
������ n2q %&��&���� ��������� �� q� '���!��	�� ������ �������	��* %&� 
�&���� � ����

HS [n] =
1

2
K3SL

−1
∑
q

(∣∣n−
1q

∣∣2 +
∣∣n+

1q

∣∣2 +
∣∣n−

2q

∣∣2 +
∣∣n+

2q

∣∣2) . (,9)
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+������ 	
� �	����������	�� ���6��� 	������� L = K3/W �� n−
1,2q = n1,2q(z = 0)

�� n+
1,2q = n1,2q(z = h)� 5�� ����
� �� *�
������� 	� � %&��&����	�� ������ n1q 	��� 

����� 	 %&��&�����
� ���	�� uq� 
��
 �� ������ n2q ���	�������� ��	� �������	�
%&��&����� '�������	�� .&������ 	��������* %&��&���� Zq[n1q, uq] � �������� ����� 
�
& �����������& ��* 	��������* *��
������* �	���������� ��������	�� .&������
��	��* �������	��* %&��&���� Zq[n2q] �� �����������& �������� *��
������� �	 
��������� "�:�� �:�#� B� ��������	�� .&������ ��*�� �����&��
� ���������� �� �� ���
���	��
 ��	����& ��&��������� ���	� ����� ����
� ��	�
����� 	���

FCas[u, δn] = F [n2;L] + F1[n1, u] + F2[n1, u] + F3[n1, u;L] , (,�)

��� 	�

F [n2;L] = −kBTS
2π

∫ ∞

0

Ω3q �q
(Ω3+L−1)2

(Ω3−L−1)2 exp(2Ω3h) − 1
, (,,)

F1[n1, u] = −kBTS
2π

∫ ∞

0

Ω1q �q
exp(2Ω1h) − 1

, (,4)

F2[n1, u] = −kBTS
2π

∫ ∞

0

Ω2q �q
exp(2Ω2h) − 1

, (,�)

F3[n1, u;L] = −kBTS
4π

∫ ∞

0

q �q

⎡⎣ Ω2
1S

2

1+cosh(Ω1h)
+

Ω2
2C

2

1+cosh(Ω2h)

Ω1S2A−
1 + Ω2C2A−

2 + L−1

⎤⎦
−kBTS

4π

∫ ∞

0

q �q

⎡⎣ Ω2
1S

2

1−cosh(Ω1h)
+

Ω2
2C

2

1−cosh(Ω2h)

Ω1S2A+
1 + Ω2C2A+

2 + L−1

⎤⎦ . (,/)

+������ 	
� 	��� �����

Ω1,2 =
1√
2

1

Λ

{
1 + (ρ2 + λ2)q2 +

KL

K3
λ2Λ2q4

∓
√[

1 − (λ2 − ρ2)q2 − KL

K3

Λ2λ2q4

]2
+ 4λ2q2

}1/2

,

(,:)

Ω3 =

√
Λ−2 +

K2

K3

q2 , (,1)

C2 =
1

2
+

1

2

√√√√√√
[
1 + (ρ2 − λ2)q2 − KL

K3
λ2Λ2q4

]2
[
1 + (ρ2 − λ2)q2 − KL

K3
Λ2λ2q4

]2
+ 4q2λ2

, (,�)

S2 = 1 − C2 , (,�)

A±
1,2 =

cosh(Ω1,2h) ± 1

sinh(Ω1,2h)
(49)
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�� ��������	� ���6�� Λ = (K3/D)1/2� λ = (K3/B)1/2 �� ρ = (K1/D)1/2�
��	�
����� 	��� �	�&� !���� ���	���� '��	��� �������	��* %&��&���� F [n2;L]

� ������� ��	�� �� ��� �����* ������* &���� ��� exp(−2h/Λ)/h� C�� F1[n1, u]

���	������ ���	��� %&��&����� ��� 	� ���	�� �� ������� � .���� $� ���	��� � ��� 
��� ��	�� �� � ��
��� �����* ������� ���� � ����� ��	�
����� 	��� 	����
��� � 1/h2

"����� (�)#� C�� F2[n1, u] ���	������ ���	��� %&��&����� ��� ������� � 	���
���	�
� $� ���	��� � ������� ��	�� �� �
� ������ ��	���	�� ��� ���	���
��	��* �������	��* %&��&���� F [n2;L]� ������ ���� F3[n1, u;L]� ���	������ �������
������ ����� ����	�� 	������� ��������� �� � ��� 0 � ��
��� �	������ 
�����
	������� W → ∞� B���!��� ��	�
���� 	�� � ��������� �� 	���� ,� '��
���
�

10 102 103
0.5
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1.5
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4 a

b

c

d

� ����

����

�
���
���

����� � ��	�������� 	��� FCas[u, δn] � ����������� 	��
�����  ������ �

���������� � ���������� 	��� F lay
Cas �� �������� ��
�	�� ����
���	
��� 	��������

�� W → ∞� �� W = 10−3  /�2� �� W = 10−4  /�2� �� W = 10−5  /�2�

�� � �.����� 	��� F lay
Cas = −kBTSζ(2)/16πh2

√
K ′
L/B� �� �� ����
�� � &��!� 

��
� � %&��&���� 	
������* ���	�� �� ���
���
� �������	� ���	��	�� 	�����
	 �����	������ �� � ������� 	����� ��������� ���������� �� ���	��� ��	�
�����
	��� FCas[u, δn] � ���&��� ���� �� �.���� 	�� F lay

Cas � � �����* �����* � 
���� ����� ���� ��������	��* ���6�� Λ (��� &���������* 	�����* ����
���* �
Λ = 10 nm)� + �
 ��
���& � 	��� ������ ���	����� �&�� ���� ������� ��	��
F [n2;L] �� F2[n1, u]� '�� ����* ������* � 	��� ������ ���	��� � ��� ������
��	�� F1[n1, u]� 7 �� � � ��
��� h/Λ � 1 ����� ��� �.����� 	��� F lay

Cas� 5�����
����	� 	������� � 	���!�
 �
���!� ����	� ��	�
���� 	�� � ���
����� � ��
����

���
��
 ��	��* �����* ������� $� � ������� ������ � ���
�& ����
��� 	�������
W = 10−3 D/
2 (L = 10 nm) �� 	���� ,� ��� � �	����������	�� ���6��� L ���
������
	 ��������	�����
� ���6���
� � 	�	�
& �� � 	������ ��� �
	 
� 
����
 ��
!����
� '�� �	����* ����
���*� ��� � 	������ ����	� 
���� ����	� !����� 	 ����	�
	�� ��	���� � �
���!��
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+���� ��������* ����
���� 	������� 
� 	
������
� ���	�
� �� ��������
 D

� �������� �� 	���� 4� C�
 !����!� � 	������� D �
 ���� � ��	�
����� 	����

10 102 103
0.5
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1.5
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3.5
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a

b

c

� ����

����

�
���
���

����� � !���� ��������� ��
�	�� 	
������� ��� ����
������ �� 	��
������� ���	"

��� D �� ��	�������� 	���� �� D = 105 #/�2� �� D = 104 #/�2� ��

D = 106 #/�2� ������	������ 	�� ��	
����� ����� 	������� ����
�����

$W → ∞��

$� � �� �� 	����� ��	����� ������ ��������	� ���6�� Λ �� 	 �
 �������

����
 ���	����
 �������	��* ����� ������� ��	��� '��� ��� 	 ��� !����!�
	�������� ����� �&�� �����	� ���� ������ ��	�� F1[n1, u]� $��� ������� ����	��
��	�
���� 	�� ��*�� ������&�
� � ���6��� .����� ��*��� �� 	
����� ? .��
� 	
������ � .���� ��� 	 	��������� ���	����� � �����& 7����&���� 
����
	��
���� ��� D ∝ (T − Tc)� ���� �������� 	� ����!��� 	�� � ������� ��� .�����
��*��� �����
� � ��	��
 �������&�

����
��
���� ����
��� � �	�

'��	��	����� ��
� 	� ��	�� ���
� �������� 	�	�
�� ��� 	
����� � �
�&���
����� ���!��� �
��� ���	�� ����!���� �� 	�� � 	���& � �����
 (	���� �)� '��������� ��*
����� �� 	
���� �������� ���� �&����� � 	����� ��� �����	�� ���!����� <
�����
���	�� 	 &����� �������� 	 ���	�� ����!���� =���� ��
�� ��*�� ���!��� ��
� ���� (���
��� ��*) �� �� ��	�� ���	��� '��	��	����� ��
� 	� ��� ���
���
�� !�&��� ��	���	�� �����* ���	������ 	�� � ���
��
� ��	����� ��	�� *�
����
	��&��&�� ��� �.�����

-�����	�� 	��&��&�� ���	��	������ ��
� � ���� 	��&��&�� � *�
�������
������ -������ 	 ������ ��� �����* ������*� 	�� 	� � ��
& ������� �&�� %&��&����



8��

����� � ���	��	������ 	��
�����  %��� ! ���	��	������� %��� �� 	��
�����

�������� ��������� ���
� ��
����� � 
����	
� ��� 	��
���� ���&��� '��
�����

���	�� 	� ������� ��������� 	 ���	�� ����&���� (���
��� �� � 	��
������ 

%��� ���������� �����
���� �� ���	���

�����* ���	��� '���!��	�� *�
������� 	 	��� ���	�

HS [n, u] =
1

2
W

∫
|δn|2 �S +

1

2
γ

∫
(∇⊥u)

2 �S . (4�)

=������	�� 	������ 	
� ����� ���	��� � -����� '���&������
 
����
� =�&�� ���
���	&� ������� ����!��	� ����� ������ ������ 	���� ����!�� 
� 	
�����

�� �����
� �� �� ������ ����!��	�� �����	� γ� < >�&������ ����	.��
����� ����
�

HS [n, u] =
1

2
K3SL

−1
∑
q

(∣∣n−
1q

∣∣2 +
∣∣n+

1q

∣∣2 +
∣∣n−

2q

∣∣2 +
∣∣n+

2q

∣∣2)+

+
1

2
K3Sχ

−1
∑
q

q2
(∣∣u−q ∣∣2 +

∣∣u+
q

∣∣2) . (4,)

+������ 	
� �	����������	�� ���6��� χ = K3/γ �� u−q = uq(z = 0) �� u+
q = uq(z = h)�

5� � 	����� *�
�������H [u, δn] ���� ��� � *�
������� ������ ��*�� �� ������
����� �����&��
� ��	�
����� 	��� �&�� � ���	��	����
 ��
&� $� 	 	��� ���	�

FCas[u, δn] = F [n2;L] + F1[n1, u] + F2[n1, u] + F3[n1, u;L, χ] . (44)

'��� ���� ���� 	� ���� ��� ��� *�
������� ������ <��
�� 	 � ������ ���
F3[n1, u;L, χ]� �� ���	&� ����� �������	��� 	������� �� 	������� ���	��

F3[n1, u;L, χ]=−kBTS
4π

∑
i=1,2

∫ ∞

0

q �q
[
Ω1Ω2λ

−2
( Ω1A

∓
2

1 ± cosh(Ω1h)
+

Ω2A
∓
1

1 ± cosh(Ω2h)

)
+ χ−1q2

( Ω2
1S

2

1 ± cosh(Ω1h)
+

Ω2
2C

2

1 ± cosh(Ω2h)

)
+ L−1λ−2

( Ω2
1C

2

1 ± cosh(Ω1h)

+
Ω2

2S
2

1 ± cosh(Ω2h)

)]
×
[
Ω1Ω2λ

−2A∓
1 A

∓
2 + χ−1q2

(
Ω1S

2A∓
1 + Ω2C

2A∓
2

+ L−1
)

+ L−1λ−2
(
Ω1C

2A∓
1 + Ω2S

2A∓
2

)]−1

.

(4�)
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$� ��� � �	��� ��* ���	����� (i = 1, 2)� �� 	 ������&��� � �� ��
����� ��� 
������ (±) � ������* .�������*� 5� 	��� ����� ������ �	�&��� �&�� 	������
���	��� � ������� ������ ����� ����	�� ����!��	� ��������� F3[n1, u;L, χ] ������
��	���

+���� ����� ����!��	� �����	�� �� ��	�
����� 	��� � ���	��	�����* ��
�* �
���	������ �� 	���� /� '�������� � ���
����� 
� 	��� � ���	��	����
 ��
&

10 102 103
0
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0.5

0.75

1

a
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c

� ����

����

������ ���

����� 	 ��	�������� 	��� FCas[u, δn] � ���	��	������� 	��
������ %��� �

���������� 	 	��� � ����������� ������ )FCas(γ → ∞)*� +�������� 	�� 	������

���������� ��
�	� ����
���	
��� 	������� W = 10−5  /�2� 	
��������� 
��"

	����� ��� ����
������ �� ���	��� D = 105 #/�2 ��� �������� ����&��	
�

������	�� )�� γ = 10−2  /�2� �� γ = 5 × 10−2  /�2� �� γ = 10−1  /�2*�

���
������ ���� ����	�������� F lay
Cas(γ)�

�� *�
������� ������ @������ 	
� 	� 	������ ����
�� �������	��� 	�������
W = 10−5 D/
2� ����� �� � ������ ��	���� �� ������ ��&����� �� �� ���� �������
�&�� ��� ������ ��� ��&� �����	�� W � 5�� � ����� 	 	��� / 	 � ���
�& �����
����!��	� �����	�� γ �����	� ��	�
���� 	�� �
���!�� $� � �������� 6 ;�*��
� �����& 
����� �� &��!��� � %&��&���� 	
������* ���	�� "�,�#� <��� ������ %&� 
�&���� ���	�� ���!� F lay

Cas(γ) = −kBTS
16πh2

√
B
K ′

L
Li2
[
(γ −√K ′

LB)/(γ +
√
K ′
LB)
]2

�� �
�� 	���� ���	������� 	 ��������
� ����
�� + ��
��� �����* ������ ��� �������	��
���	���� ������� ��	�� ��
��� ������� 	 ��! ��&���� &�
� � F lay

Cas(γ)� '�� 
��* 
��* ������* 	� ��

��� �&�� ���	���� ������� ��	��� 7 �� 	� � *�
�������
����� �� ���	��	����
 ��
& �������� ���� 	 ������� 
� ���
�����
� 	���
� ���

��*��* ������* �
���!��
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����������� ��	� � ���	� ���
������� �	� �
������� ��	���

+ ���!���* �������* 	
� ����������� ��	�
����� 	��� � 	�	�
�*� �����* ������
� ����� &	������ 
�����������& ����� 	
����� ���	�� d0� <��� ��	 ����
��
��� 	 ����� 	 ��	�
����� 	���� � 	
������ ����� ������� ������
� ��� 	�� 
	�
� (	���� :)� ������ �����	��	�� ���������
� � �.��
���� 	
������* ���	��

����� 
 ����������� ������� 
����� �������� �� ���
� �����
�����
�

�������	�� �������� 	��
������ ���	�� d0 $������ #� ��	�� �� ��
���
� �������"

���� ������� ! ��� ������� 	� 	��
����� ���	�� &� ����� �
����	������� ������

	 �������� ������� d′�

�� ���
���
� ��&� ����� 	
����� &������ '��	�� ������ �.��
���� ���	�� �
����

Flay =
1

2

∫ [
B

(
∂u

∂z

)2

+KL

(∇2
⊥u
)2]

dV . (4/)

� 
���
������� ���	� ����� ��	����� ����
� ������	�� ����� umf(z) = z∆h/h�
'���������� ���	�� ������ ������	� �����&�����

Fmf
lay =

1

2
BS

∆h2

h
, (4:)

� ����	�� �� ������� 
� ���!��
� �� ���� �� 	�� ��������� �����

Fmf = − ∂Fmf
lay

∂(∆h)
= −BS∆h

h
. (41)

��
������� %&��&���� ����
� � ������
 ���	� ����� ����� ������	� ��� 
��&����� u(r) = umf (z) + δu(r)�

H [δu] =
1

2

∫ [
2B

∆h

h

∂(δu)

∂z
+B

(
∂(δu)

∂z

)2

+KL

(∇2
⊥δu
)2]

dV . (4�)

< >�&������ ����	.��
����� δu(r) =
∑

q δuq(z) exp(iqρ) *�
������� ����!
� �

H [δu] =
∑
q

Hq =
1

2
S

∫ h

0

dz
∑
q

(
B

∣∣∣∣∂(δuq)

∂z

∣∣∣∣2 +KLq
4 |δuq|2 +

+ 2B
∆h

h

∂(δuq)

∂z
δq,0

)
.

(4�)
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'��	����	� ����* ���!� � ������&� %&��&���� ���	�� �� ���& ����� ���� � δuq(z =

0) = δuq(z = h) = 0� ������ ��� � *�
������� ��*�� � ���������� �������
� �
����!��	�� ���� �� � ������ ������ ���	���* �����* ������ ��� 0� <��� �� �6��
�����&���� ��������	� .&�����

Zq ∝
[
sinh

(√
KL

B
q2h

)]− 1
2

(�9)

�� ���������� ��	�
���� 	��

F lay
Cas = −kBTS

16πh2
ζR(2)

√
B

KL
. (��)

5�� ����
�� � 	��� � ��*�� 	��	���� �����
� ��������� 	
������ ����� ���	

���� ��� � ��.��
����
 	�	�
&� 2��������� ������	�� 	��&��&�� �& �� ��������
�� ��	�
����� 	����

B �����& ��������� ������	� 	��&��&� �� ��	�
����� 	��� ��*�� ���
�!��� 

� �&�� ���� �� 	���!��� -��
�� �� ��*�� ��� �����	6� 	�	�
 ���!
� 	
����
���
 ��� η �� �����������
 ������
 ���	� ����� �� �
 ����
��&3

F =

∫ z′′

z′

[
a(z)η̇2 + 2b(z)η̇η + c(z)η2 + 2d(z)η̇ + 2e(z)η

]
dz . (�,)

-�����	�� ����� ����
��� &����	�� ������ E&�� 7�������� �����

aη̈mf + ȧη̇mf + (ḃ− c)ηmf + ḋ− e = 0 (�4)

� �����
� �����
� ηmf(z′) = η′ �� ηmf (z
′′) = η′′� C 	��� ����
� %&��&����

����� ������	�� ������ η(z) = ηmf (z)+δη(z)� ����
� � ������
 ���	� �����
*�
������� %&��&����

H =

∫ z′′

z′

[
a(z)δη̇2 + 2b(z)δη̇δη + c(z)δη2

]
dz (��)

	 �����������
� �����
� �����
� δη(z′) = δη(z′′) = 0� 5�� ����
� �
� *�
�� 
����� ���� ������ ��� ���	�� ������� � �� � �	�&� �� �������* ������ '���
��� � *�
������� �� ����	��	�� �� ������	� �����&����� ηmf � ������ ��� �&��
��	�
����� 	��� �� ����	�� �� ������	� �����&������ '������ � ��&������� �� ��
�����&��� ������ � �� 	�	�
� ���� ��*�� ���!
� 	 �����������
 ������
 ���	�
����� �� 	 ��	��
� �����
� ������� �� � ������&��� %&��&����� -�*�� �.��
�����
	
������ ����� � � ��	�� ���
�� �� �
��	����� ������ ���6�����

������	
��� ���� � ������� �	����� �� �������� � ����

� �������� � ����

>���� ��*�� �� 	
����� ? .�� � 	
������ � .��� ��*�� ���!
� � ������	6��

����
���
 ��� ξ = (ξx, ξy)� �� ������ ����� 
���&� ��� �� ���
��� 	
������*
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���	��� B���!��� 	�	�
�� � ���6��� ��� ��*��� 
������
� 	 .��
����!��

7����&���
 ������
 ���	� �����

f = fA +
1

2
ã(T )

(
ξ2
x + ξ2

y

)
+

1

4
b
(
ξ2
x + ξ2

y

)2 − Λ̃

(
ξx
∂ξy
∂z

− ξy
∂ξx
∂z

)
+

1

2
K1

(
∂ξx
∂x

+
∂ξy
∂y

)2

+
1

2
K2

(
∂ξx
∂y

− ∂ξy
∂x

)2

+
1

2
K̃3

[(
∂ξx
∂z

)2

+

(
∂ξy
∂z

)2
]
.

(�/)

$� 
��� �	�&� �&�� ���	 �������* 	
������� ���� ��*��� �� ������ 	
�����
?∗ .�� � ������� 	
������ �∗ .���� $
����&��� ����	��	� � �	������ � ��� 
����& ã(T )� �� ���� .���� ��*��� 
��
 �� �	���� �������� � ������& ��	� ����	��
�� �
����&�� 7�.!��� ���� Λ

(
ξx

∂ξy
∂z

− ξy
∂ξx
∂z

)
� ���	&� ������� 	��&��&�� ������

	
����� �∗ .��� $��� ��	����� ���� ���	&��� �.��
����	�� ������ �������	���
����� �� 	� �������� >������� ��	����� ������ � �
�����*� + 	
������ ? .���� ���
	� 
���&� ��������� ���������� �� ���	��� � ������	�� �����	� ����
��� &� 
���	�� ξ0 ���� 0� + 	
������ � .���� ��� � ���	��� ����� 
���&� �� ���
���
�� 	 �����	� ����
��� ��� 	��
���� ��� |ξ0| ∝ (Tc − T )1/2�

� ������
 ����
��� ��� � ������	�� �� %&��&����	�� ��� ξ = ξ0+δξ� ����
�
*�
������� %&��&����

h =
1

2
K3

{
η−2
(
δξ2

�
+ δξ2

⊥
)

ρ−2δξ2
�

}
+

1

2
K3

[(
∂ (δξ�)

∂z

)2

+

(
∂ (δξ⊥)

∂z

)2
]

+
1

2
K

[(
∂ (δξ�)

∂x
+
∂ (δξ⊥)

∂y

)2

+

(
∂ (δξ�)

∂y
− ∂ (δξ⊥)

∂x

)2
]
.

(�:)

+ ���
 ���& ������� ��	���� &	���� 	
������ ? .���� 	������ �� 	
������ � .����
+������ 	
� ��������	�� ���6��� %&��&����3 η−2 = α(T − Tc) �� ρ−2 = 2α(Tc − T )�
<����
� 	
� ������ ����	.��
����� ����
��� ��� � ��������� 	�	�
� (ξx, ξy) →
(ξ�, ξ⊥)� �� 	��� ������� 	��&��&�� ������ � .��� + 	
������ ? .��� 	�� ���	����
��� ��������� 
�	���� %&��&����	�� ������� �� ���	�������� ����� 
���&� ��
���
��� + 	
������ � .��� �� 	�� ���	���� ��� ���� %&��&����� ;�	��� �
����&��
%&��&���� δξ� �������� �� �����	� ���� ������ 
���&�� 
��
 �� ���
�	� .���
%&��&���� δξ⊥ � 	��
���� 	
� ������ � ���	���&�

�����
����� ��	���

+ *�
������� ����� �����&���� ���!�� �	���&��� ���������� ��������� ����������
�� ��&�� ����!���� $� ���!
� � -����� '���&������
 
����


FS[ξ] =
1

2
W1

∫
sin2(|ξ|) dS1 +

1

2
W2

∫
sin2(|ξ|) dS2 . (�1)
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$&��� ���&	��
� 
�6��	� ��������* ����	�� �������	��� 	������� �� �� �� ��&��
����!���� ������ �	�����* *�
�������* �����* ������ � 
�6�� � ����� 	
� 
����� ? 	��&��&�� ���*������ ��� �
����&�� .����� ��*��� � 	
������ � .����
$�� 	�	�
 � .�&	������� 	�� 	
���� � 
�� *����� ����������� �����* ������ ��
����� �� �����& 
���&� � 	
������ � .���� ������ .�&	������ 	� %&��&���� �� 
������� ��������!� ���� 
���
� ����� ����������� ���
� ���
��� *�
������
���� (T > TC) �� ���*���� ���� (T < TC)� ����� � ������	�� 	��&��&�� �
��* ����� ;��	�
���� 
�6�� �
����&�� ���*������ Tmax� ��� ���� � �����
�� ��*��� � �.��
����� 	
������ � 	��&��&��� � ����	�� �� ����� ���� ��
����	�� 	�������� @����&��
� �� ��*�� � 
���
������� ����� ���	� ������ ���
���� �� ������

hc =
√

2ρ ������

(
L1L2 − (

√
2ρ)2

√
2ρ(L1 + L2)

)
. (��)

$
����&��� ����	��	� � �& 	����� � ��������	�� ���6��� ρ = [2α(Tc − Tmax)]
−1/2�


��
 �� hc �����&� �������� ������� ��� ����� ���� �� ��*���� E�	����� 
�����	�� ���6��� 	������� 	�� �������� ��� λi = K3/Wi� + ��
��� �	������ 
�����
	������� 	 ������� ����	���� � hc =

√
2πρ�

������
���� ���� �� TC

��	�
����� 	��� ������ �������	��* %&��&���� � *�
������� ����� � ����

FCas = −kBTS
π

K3

K

∫ ∞

1/η

p2 �p
(p+L−1

1 )(p+L−1
2 )

(p−L−1
1 )(p−L−1

2 )
exp(2ph) − 1

. (��)

'��	������ ���	��� ��* ���������* 
�	����* %&��&����	��* ������� 	 ������
��������	�� ���6��� η� $� 	��� � ���������� ���	���& ��	��* �������	��* %&��&����
� 	�������
 	�	�
& ���	�� �� ���������� �� 	
� �� 6 ������������ $& 	 ��
�
�	��������� � �� ����� ��������* �����* ������ �� ��	�
����� 	����

'���� ��	�
���� 	�� �� ������� �����	�� ����
���� ����!��	��� 	������� �
�������� �� 	���� 1� '��	������ � ��&����	�� ��������R� �� � ������� ��� ���
��

� 	��� ��� ������* ����	��* 	������� �� 	��� � ��
���
 ���
�& �	������ 
�����
	�������

R =
FCas(L1, L2, h, η)

FCas(L1 = L2 = 0;h, η)
. (/9)

<��� FCas(L1 = L2 = 0;h, η) � ��� �
 ����

FCas(L1 = L2 = 0;h, η) = −kBTS
2π

K3

K

1

h3

∞∑
k=1

exp(−2hk/η)

k3

(
1

2
+
h

η
k +

h2

η2
k2

)
.

(/�)
'���� �� 	���� 1 ��*�� �����6�
� ������ ��	�
����� 	��� � � ���
�& 	�
������*
�����* ������� ���� 
����� ��� !����� 	������� �� ��* ���!��*� ���������� +
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10�2 10�1 1 10 102
-1

-0.5

0

0.5

1
�

�

�

�

���

�

����� � ��	�������� 	��� � ����������� ������ ��� ����������� ��� Tc�

���
����� �� ����	��	� ����
���	
��� 
������
� R �� ���������� �������� ������

h/η� +���������� 	� 	������ ��������� 	�������� �� L1/η = 0.5� L2/η = 0.5,
�� L1/η = 1� L2/η = 0.05, �� L1/η = 0.1� L2/η = 0.01, �� L1/η = 10�
L2/η = 0.05�

���
�& ����	�
������* �����* ������� �� � 	������ �� �� ���!�� 
����� �� ��&��
�� !����� ��	�
����� 	��� 	��
�� ������� �� ��	��� �������� E.������ ����	�
	������� �������� ���
��� 
� �	����������	��
� ���6���
� L1 �� L2 �� ������� 
�	�����
� ���6���
� � 	�	�
&� � ��!
 ���
�& 	�� �� ������ ���� h �� ��������	��
���6��� η� + �����* �����* (h/η < 1) .������ ����	� 	������� �������� ���
���
L1/h �� L2/h� + ���
�&� �� � Li/h < 1� � 	������ �� ������� ���!�� .������

����� 
��
 �� � � ���
�& Li/h > 1 	������ .������ !����� + ����!�*
�����* (h/η > 1) .������ ����	� 	������� �������� ���
��� L1/η �� L2/η� &��!� 
��� ��� ������� ��� � ���
 �6�
&� 2���� ������� �� �������� .�����
����	�� 	������� �������6�
� � ��	���
� �� � 	������ .������ 
����� � � ���� 
������ 
� �����
 ���	����
 �� ����!��� 
����!� �� ��������* ��������� � ����

���	���&� D���	� ����!��	� ��������� ��
 �������� �	����������	�� ���6��� L1 ��
L2� 2������� ���������� �� ���!
� � ��
� ���	����
�� ��� � �������� �� *�
�� 
���� (�:)3 ����	� F
�	�����G ���	���� � �������������� 	 ��������	�� ���6���
η� 
��
 �� 	 ��	����� ���	��� 	������ ��� h−1� '�� 
��*��* ������* h/η

� ��
������ ��	����� ���	���� ���� .������ ����	� 	������� ������ ���
��
Li/h� '�� �����* h/η ������� F
�	����G ���	���� ���� .������ ����	� 	�������

��
� 	 ����
���
� L1/η �� L2/η�

H������
� 	��� ������� ���&
������� �� ������� 	��� 1� +	 ���6�� �� 	����
	� 	������� 	 ��������	�� ���6��� η� '���
��� L1/h �� L2/h 	�� ����	�� �� � 
�&����� ����� h/η� ���� 	 � �6�
& h/η < 1 	 	��
������
 ����� ��*��
��
��� ������� 	�� "	���� 1(�) (�)#� '���
��� L1/η �� L2/η 	�� ��	��� ���� �
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�6�
& h/η > 1 	��� � 	��
�� ��������� 2 	

� ��������� �� � ��������	��
���6��� η ����	�� �� �
����&� �� �� 	 ���� ������ 	�� ��*�� 	��
���� 	 �
�� 
��&��� + ��
��� �����* ����� (h/η � 1) 	 ��&����	�� �������� &	���� ��� ���	������
�����	��� ��� ��
��� �� � ������� ����	��	� 	�� ��
 ���� exp(−2h/η)/h� <� 
�&�����	�� �����	� R ��*�� �����&��
� ���������� �� ���
� ��� 
����� 	�������
�� ��* ���!��*� ��� ���!� R = 1 − 2(L1/η + L2/η) "	���� 1(�)#� + ���
�& ���
!����� 	������� �� ��* ���!��* �� � ���� R = 1 − 2(η/L1 + η/L2)� + ���� 
	�
�����
 ���
�& � ��� 
����
 	������
 �� �� ���!�� �� ��� !����
 �� ��&��
	 ��&����	�� �������� ��	��� ��� R = −1 + 2(η/L1 + L2/η) "	���� 1(�)#� '�	���
����!��� 	�� ��� �����* ��������* �����
� ��� ����
���* 	������� Li/η = 1� ���
	������ �� ���!��* �� ���� 
���� ���� !����� + �
 ���
�& 	��� &���� *����� ��
	��� ��� exp(−2h/η)/h3�

������
���� ���� � �
���
�
��� ������� �Tmax<T <Tc�

��	�
����� 	��� � .�&	������� *�
������� ����� � ����

FCas = − kBTS

π

K3

K

[ ∫ ∞

0

p2 �p
(p+L−1

1 )(p+L−1
2 )

(p−L−1
1 )(p−L−1

2 )
exp(2ph) − 1

+
1

2

∫ (
√

2ρ)−1

0

(L−1
1 L−1

2 − p2) cot(ph) − p(L−1
1 + L−1

2 )

(L−1
1 L−1

2 − p2) + p(L−1
1 + L−1

2 ) cot(ph)
p2 �p
]
.

(/,)

���� ��&	������� ����� ����
� � ��
��� �	������ 
����� 	������� (L1 = 0� L2 = 0)

FCas(L1 = 0, L2 = 0) = −kBTS
4π

K3

K

[
ζ(3)

h3
+ 2

∫ (
√

2ρ)−1

0

cot(ph)p2 �p

]
. (/4)

'��� ��� � 	��� � ������ ��	�
���� ���	��� ������ ��	��� ������� �� ���� 
���	� %&��&���� � �
����&� =�&�� ��� � ��� 
��*��* ������* h/ρ ��������
�� ������6�� ����� �����	���� ��� ��� ���� ���� � �����
 ����� ��&��
��� ��	��� ������ �� ������ �������
	�� �������� ��� ��*��& � �.��
�����
	
������ � 	��&��&���

$
����&��� ����	��	� ��	�
���� 	�� � *�
������� ����� � ��������� ��
	���� �� '�� �
����&��* ��� Tc � 	��� ������ � ����� (��)� ��� �� ����
��
	������� � 	��� � �
 ��
���& ��*�� ��������� ��� �������� < ���*��������� 	�	�
�
	��� ������ ��	6 ������� 
���
&
� ���� �� ���� �� ������ ������� 	�� ��� �� 
*��& � �.��
����� 	
������ � 	��&��&��� C�
 
����! � 	������ �� ���!��*�
�
 ��6�� � �
����&�� �� ���� ��*�� ���*����
� 	
������ ? 	��&��&��� ��
��������!� � ������� 
���
&
� 2�� �
��
�� �� � ����!��� .�&	�������� 	
� 
������ 	�	�
� �������� ����!���& ��	�
���� 	�� � .�&	������� �
��	�� >�A� 
����	���� ����� "�,�#�

+ .�&	������� *�
������� ����� ����
� ���� 6 ���	���* ���	����� * ��	�
�� 
��� 	��� ! ������ ���	���� �� � ��	����� ��	���� �� � ��� �
����&�� T < Tc
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FCas

F0

����� � -����������� ���%� ��	�������� 	��� � ����������� ������� !������� 	��

���������� ����������� t = αh2T/K3� �������� 	��� �� ������ � �������

����� F0 = kBTSK3ζR(3)/4πKh3� +���������� 	� 	������ ��������� 	��������

�� L1/h = 0� L2/h = 0, �� L1/h = 0.1� L2/h = 0.01, �� L1/h = 1� L2/h = 0.05,
�� L1/h = 10� L2/h = 0.05�

�.����� �����&������ ������ ���	���� ���� ���!� � 	
������ � .���� 
��
 ��
� 
� ���!��
� ! ���� 	��&��&�� 	
����� ?� $� ���	��� � �������� �� �� �
��!� 
���� ��	
� &	��� ��&����������� +���� �� �������� ��
� �� �� ���&����
	�� �� ���	��� �� ����	� �� ������� 
� ���!��
� �� �� � �	���
������
�
������&��
� (?>;� <>?)� �� 
���� ������� 	�� ��� ��������* ������*� � �� ��������
2����� � � .�&	������� *�
������� ����� ���	���� �&�� 	��� ��������� ������ �� �
��	����� ������ ���	��* ����� 
� 	
������ ? .��� �� �.����� 	��&��&�� ����
���!�� �� � � 	
������ � .���� <��� ��������� ����� � ����

Fmf = (fC − fA)S = −1

4

α2

b
(Tc − T )2S , (/�)

��� 	�� fC �� fA ��	���� ���	��* ����� 	
����� � �����
� 	
����� ? .��� <���
��������� ����� � ���� 
����!� �� ��	�
���� 	��� ����� � �����	�� ��
������� 
� ���!��
� h� ���� � �� ������� �	���
����� ������ ��	�
����
	���

����
��
���� �	��

+ ���	��	�����* ��
�* � 	
������ 
������ �
�� 	 ���	��
� ����!���
�� �� 	�� �
	���& � �����
� + ��!
 �����	�
 
���& �����	����
�� �� ��6��� ����������
��������� �� ���	��* ����!���* 	������ � ������	�� ���������� ��������� � �� 
������	�� ��
�� +���
� ���� �� ��	� .������ ������� 	������� -�����	��
	��&��&�� ��
� � � ���
 
���& ���� *�
����� ������ 	�
������* �����*
������ � ��	�
����� 	��� � ���	��	�����* ��
�* ���� ����������
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+ 	
�����
 ? ��
& � 	��� �������� ��� � *�
������� ������ � �� 	�� � 
	����������	�� ���6��� L1 �� L2 �� ��* ����!���* ����3

FCas = −kBTS
π

K3

K

∫ ∞

1/η

p2 �p
(p+L−1)2

(p−L−1)2 exp(2ph) − 1
. (//)

$� � ������� ��	�
����� 	��� ������� ��	�� �� 
�	��� %&��&����	� ����� 	
��������	�� ���6��� η�

+ 	
�����
 � ��
& 	� 
���&� ������ ��� �� ���
��� ���	��� + ��!


���& ����!��	�� 	������ ���!
� �

FS[ξ] =
1

2
K3

∑
i=1,2

[
L−1

�

∫
sin2(ξ� − ξ�0) dSi + L−1

⊥

∫
sin2(ξ⊥) dSi

]
, (/:)

��� � ξ�0 ������	�� �����	� ������ 
���&�� + 	���!�
 &��
� �������� ����	��
	������� �� �
����&�� %&��&���� δξ� �� .��� %&��&���� δξ⊥� ��	�
����� 	��� � �
���
 	�	�
& ����

FCas = −kBTS
2π

K3

K

⎡⎢⎣∫ ∞

1/ρ

r2 �r
(r+L−1

�
)2

(r−L−1
�

)2 exp(2rh) − 1
+

∫ ∞

0

r2 �r
(r+L−1

⊥ )2

(r−L−1
⊥ )2 exp(2rh) − 1

⎤⎥⎦ .

(/1)
'��� ��� ���	������ ���	��� 
�	����* �
����&���* %&��&���� 	 ��������	�� ���6���
ρ� �� � ������� ��	��� =�&�� ��� �� � ���	��� ���
�	��* .����* %&��&���� ��
� ������ ��	���

$
����&��� ����� ��	�
���� 	�� � ���	��	����
 ��
& � ���	������ ��
	���� �� '����	������ 	
�� �� � 	������ �	������ 
����3 L = 0 � 	
�����

? ��
& �� L� = 0 �� L⊥ = 0 � 	
�����
 � ��
&� ��	�
����� 	��� ��	6 
�� 
	�
���� �
����&�� ��� 	��&��&��
 ��*��& �� 	
������� ? ��
� � 	
������ �
��
 (T = Tc)� '�� ���!����& ��� ��6���& �
����&� 	 ����	� 	�� �
���!�� +
	
�����
 ? ��
& 	�� ���	���� ��� ��������� 
�	���� %&��&����	�� ������� �� 
���* �
����&�� � ����������
 �� ��*��� *���� &����� + 	
�����
 � ��
& ��
� ���	��� ���
�	��* .����* %&��&���� 	����� �����	� �� �
����&�� 
��

�� ���	��� 
�	����* �
����&���* %&��&���� ����� &���� � ��6���
 �
����&��
���� � ����� ��	�
���� 	�� �	�
������ B� 	��&��&��
 ��*��& ��	�
�����
	��� � ���	��	����
 ��
& � ��������� $� � ��	����� �����	��� 
���� 	��������
� ����
 	 ����!��	�� �� ���� &�
� � &�������� � ��������	�� ��
� �� � ����
�� .�&	������� '������ ����	� 	�� ��� ��*��& � ��	����� ������� ��������	��*
���6�� ��� �
����&�� T = Tc� H������ ���� ����	�����* �����* ������ 	 ������
����	��� 	������� � �� ��	���� 	��
���� �
����&���� ������� �
��� �� �����
�
���!��� �
����&�� 	���
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t− tc

�����  -����������� ���%� ��	�������� 	��� � ���	��	������� 	��
������

%���� !������� 	�� ���������� ����������� t = αh2T/K3� �������� 	��� ��

������ � ������� ����� F0 = kBTSK3ζR(3)/4πKh3� ������	������ 	��� �� ��

	������� ��	
����� ������ L = 0 � 	��
������  %��� ��� L� = 0 �� L⊥ = 0
� 	��
������ � %����

������
���� ���� � �
���������	�� ������	�� � ���� � ����	���
���
������ 
����

+ ���6��� .����� ��*��� �� 	
����� ? .�� � 	
������ � .��� 	 ����	�� ������
�� 	� 
���&� � �����* ���	�* ���	��	������ ��
� ������� 
��
 �� � �� 
������	� ��
� ! � 	
������ ? .��� "�:�#� $�� 	�	�
 
������
� ����� �� � ����

�����& �� �����	� ������ ξ �����!
� ��� ������� �����	� ξS (	���� �9)� B�

����� �� ���	��	������ 	��
�����  %�� 	 ��������� ����&��	
�� ������

.���
��� � ������ ���	��� 	� ��������� ������ 
� �� � ��������	�� %��� &�

����� � 	��
�����  	���
�����

�����	������ �� � ����!��	�� ����� 
���&� 
��*�� ��*�� � �����& ������������
������� ���	� ����� ������
� ������	�� ����� ������ 
���&� � ��
&

ξmf� (z) = ξS
cosh(z/η)

cosh(h/2η)
. (/�)
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'�	����� � �*�
��� ������	� &����� � ���	����	� 	�� ��������� �����

Fmf = −∂Fmf
∂h

= − K3Sξ
2
S

2η2 cosh2(h/2η)
. (/�)

<��� ��������� ����� � ��������� �� ������� ��	���
��
������� %&��&���� ����
� � ������
 ���	� ����� ����� ������	��

(ξ� = ξmf� + δξ�� ξ⊥ = δξ⊥)

h =
1

2
K3η

−2
(
2ξmf� δξ� + δξ2

�
+ δξ2

⊥
)

+
1

2
K3

[(
∂(δξ�)

∂z

)2

+ 2
∂ξmf�

∂z

∂(δξ�)

∂z

+

(
∂(δξ⊥)

∂z

)2
]

+
1

2
K

[(
∂(δξ�)

∂x
+
∂(δξ⊥)

∂y

)2

+

(
∂(δξ�)

∂y
− ∂(δξ⊥)

∂x

)2
]
.

(:9)

+ *�
������� ��	������ ��� ����� �� 	�� ����	�� �� ������	� �����&����� ξmf� �
����� �& � 
�6�� ���	�� � ����!��	�� ���	���� C �����	����
� ��	� ����
������ �� � ���&!���� %&��&���� �� ����!��� ��
�� 	�� �� ���� ���� 0 �� �
���	����� � *�
�������� + �
 ���
�& � *�
������� ���� *�
������� %&��&����
� *�
���
 	
�����
 ? ��
&� ���� � �&�� ��	�
����� 	��� � ��
& 	 �������

����!��	��
 ���
 ���� ��� � *�
���
 ��
&� $� � ���� ! � ���
� 	�	�
�
� ���������� ������	�� 	��&��&��� �� �� 	 � ����6� � ��	�
����� 	���� '������
��&����
�� �� �� ���� �� 	�	�
� �� ��* ��*�� ���!
� 	 �����������
 ������

���	� ����� �� 	 ��	��
� �����
� �������

���������� �������

<�	�
� � ���������� ������	�� &�������� ���	�������� ��	��� ������� � ������
��	�
���� ��������� �� 	� ���� ��	��� � ���� ����������� "�,9� �,�� ��9#� ������
�����
 � �* 	�	�
�* � ��&���������� �������� ���	� ����� %&��&����� ��
� �� ���� 
�6�� ���	�� ����������� + ���*����* �������* 	
� 6 	����� ���
���
�� 	�	�
�� � ���������� ������	�� 	��&��&�� 0 ��*�� �.��
����� 	
������
����� �� ���	��	����� ��
 	 �������
 ����!��	��
 ���
� + ��* �* ���
��*
	 � ������	�� 	��&��&�� ����6��� � �������* ����* � *�
������� %&��&����� �� ��
��* � ���� 
�6�� �� �����	����� ��	��* �����* ������ ��������� ���� ����������
&����� �� �������� �� ��	�
����� 	���� + �
 ������& ���������
� ��� ���
��
	�	�
��� ��� 	 �*�
����	� ������	� &����� ����6� � ������� ����	��	��
	�����* ���	����� + �
 ���
�& � ����� �*�
����	�� �� ��	�
����� 	��� ��	����

����������� ��	� � �	����� ������� �� ����
��� � ����
��� ����

+ ��	��� �����������* 	�	�
�* 	
� �����	��������� �� � ������	�� 	������
	
������� ��� ψ *�
���� �� �����
 �����&� +���� � ���6��� .����� �� 
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*��� �� 	
����� � �
��	�� .��� �� �����	����� ��	��� ����!������ 	�� �����& 
��� ����!�� ����	�� �	���&��� ���� 	������ �������	� &����� �� ��	��� ����!��
� � ��������	�� �������

B���������
� ���
� *�
������ 	
����� ? ����� ��� �����&���� ���!��
�	���&��� 	������ �������	��� ��� ψ̃S (	���� ��)� '���� �������	� &����� ������6��

����� �� ����������� 	��
�����  ������ 	 ��������� ����&��	
�� ����"

���	
�� ����� ψ� ���%� �������	
��� ���� �� ���
���� 	��������� �� ��	���

/���������� ��	�������� 	���� 
� �� ���������� ��
������� 	��
������ ���	��

u�

���!
� �

ψ(z) = ψ̃S
cosh(z/ξ)

cosh(h/2ξ)
, (:�)

��� � ξ 	
������ ��������	�� ���6���� ������ �����	��!�� ���	� 	
� �� ���� 
����� �����&����* ���!� ���� z = ±h/2� <��� 6��
� �����&���� ��	�
����� 	���
������ %&��&���� 	
������* ���	��� �� ��* ���!
� 	 *�
�������

H =
1

2

∫ [
B

(
∂u

∂z

)2

+KL

(∇2
⊥u
)2]

dV . (:,)

E��	����� ���	����� B �� KL 	�� 	����
��� 	 ��������
 �������	��� ��� ψ �� �&
��*�� ����!
� ���

B = BS
cosh2(z/ξ)

cosh2(h/2ξ)
, KL = KS

cosh2(z/ξ)

cosh2(h/2ξ)
. (:4)

@
�
� ���� ������� 	 *�
������� %&��&���� 	
������* ���	��� ��� 	� ��	����
���	���� ����	� �� ������ < >�&������ ����	.��
����� %&��&�������� ����� u 	
*�
������� ������� �

Hq[u] =
1

2
SKS

∫ h/2

−h/2

[
λ−2 cosh2(z/ξ)

cosh2(h/2ξ)

∣∣∣∣∂uq

∂z

∣∣∣∣2 +
cosh2(z/ξ)

cosh2(h/2ξ)
q4 |uq|2

]
dz , (:�)

��� 	
� ������� ��������	����� ���6��� λ =
√
KS/BS� B� �����	����� ��	��*

�����* ������� u(z = ±h/2) = 0� ��*�� ��������
� ��������	�� .&������ %&��&�����
�� 	 ���	�

Zq[u] ∝ [sinh(
√
λ2q4 + ξ−2 h)]−

1
2 . (:/)
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'� �������� ��&���������� ���	� ����� %&��&���� ����
� ��	�
����� 	���

FCas = −kBTS
2πξ

∫ ∞

0

√
1 + ξ2λ2q4

exp
(
2h
√

1 + ξ2λ2q4/ξ
)
− 1

q dq . (::)

$�� �������� �� 
�6�� �����&���� ����������� ��*�� �� �����
� ����!��� 	�� �
��
���* �����* �� 
��*��* ����� ����� + ��
��� 
��*��* ����� (h/ξ → 0) � 	���
����

FCas (h/ξ → 0) = −kBTSζR(2)

16πλh2
. (:1)

$� � ���� ����� �� ��	�
����� 	���� �� �� ���������� %&��&���� ���	��� � *�
����*
	
������* 	�	�
�*� + ��
��� 
��*��* ����� � ��
�� ����� �������	��� ��� ψ
��������� ���	������ ���� ������ �*�
����	�� �� 	��� ��� + ��
��� �����* �����
(h/ξ → ∞) � 	��� ����

FCas (h/ξ → ∞) = − kBTS

8
√
πξ2λ

exp (−2h/ξ)√
h/ξ

. (:�)

$� � ��� ����
�� ��&����� 	�� %&��&���� 	
������* ���	��� �� ��* ���!
� �
��	����� *�
�������� ������ ������� ����	��* ��	�����* ���	���� ���������� ��	� 

����� 	��� ������� ��	��� 7 �� &���� ��� exp(−2h/ξ)/

√
h/ξ� $�� �	�������

&��� ��	�
���� 	�� ��� �����* ������* � 	��� ������� �� 
�	��� %&��&����	�
������ ���� ��*�� 	����
�� �� �
� �*�
����	� � ���
 	�	�
& ����� .�����

�	 %&��&����� 2&
����� �����&��� ����� ��	�
���� 	�� �� !��!� ������ �����
� �������� �� 	���� �,�

10�1 1 101

1

10�1

10�2

10�3

10�4

10�5

10�6

10�7

h/ξ

FCas

F lay
Cas

����� �� ���%� ��	�������� 	��� � ����������� 	��
�����  ������ � ����"

������� �������	
� ������ '��� 	
������� 	 ��	�������� 	��� � �������� 	��
"

����� ������ F lay
Cas = −kBTSζR(2)/16πλh2� ��� ������� ��������� �� FCas ���
�

F lay
Cas� ��� ����
�� ��������� �� ����� �������� �� 	���� 
�� exp(−2h/ξ)/

√
h/ξ�
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����������� ��	� � ��������
��� ����
��� ��	���

$&�� � � ����� ���	��� � �
��	�� .���� � � �������* 	�	�
�* ���� ���	���� ����
����!��	�� �	����� �������	�� &����	�� @���� ��� ��� � � �����	�
 ��	��&� ��

���&� � 
���� ������� � ��� ������ ���� � ���� ���	���� �	�� �� ���	�
�������	�� &����* 
���&� �� ����!���� B��������	� �������	� %&��&���� 	�
	������� 	 	
������
 ���
� ���� 	 ���	����	� ���	
����� �������	� &�����
����6� � ������� ������ �������	��* %&��&����	��* ������� �����
� ���*��� F
�	�G�

B��������
� ��	�
����� 	��� � *�
������� �
��	�� ����� 	 ����!��	�� �	��� 
��
 	
������
 ���
 (	���� �4)� -�����	�� ����� 	����� �������	� &�����

����� �� ����������� �����	
� ������ 	 ����&��	
� �	������� ����	��
������

����� ψ� ���%� �������	
��� ���� �� 	�����	
� ���
���� �� ��	��� /����"

������ ��	�������� 	���� 
� �� ���������� ����
���	
� ��
������� δn�

���!
� �

ψmf (z) = ψS
cosh(z/ξ)

cosh(h/2ξ)
. (:�)

2
��	�� �������	�� ���	�� ������ 	 � �����	�����
 ������6�& ���	�

f =
1

2
D(δn)2 +

1

2
K
[
(∇ · n)2 + (∇× n)2

]
. (19)

<��������� ���	����� 
� (���)	
������
� ���	�
� �� ��������
D � 	����
���
	 ��������
 	����� �������	��� ��� ψ� + ��������* �
�����* ��� 	
�������
��� � ���	����� D ���� 0� ��
������� �������	��* %&��&����� δn = (nx, ny)� �
����

H =
1

2
K

∫ [
Λ−2(z)

(
n2
x + n2

y

)
+

(
∂nx
∂x

+
∂ny
∂y

)2

+

(
∂ny
∂x

− ∂nx
∂y

)2

+

(
∂nx
∂z

)2

+

(
∂ny
∂z

)2
]

dV .

(1�)

+������ 	
� ������� ����	�� ��������	�� ���6��� Λ−2(z) = D(z)/K� + 	���!�

� 
��
� �����&���� ��������	� .&����� %&��&����� ���� �����	�
���
� ����	��	�
D(z) 	 �����������
 ������


D(z) = DS
(z/ξ)2

(h/2ξ)2
. (1,)
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+ �
 ���
�& � ��������	�� .&������ �������	��* %&��&���� ����

Zq[nq] ∝ 1√
2k

[
− 1

2
x0

(
A+

1

2

)
M [1

2
A+ 5

4
, 3

2
, 1

8
x2

0]

M [1
2
A+ 1

4
, 1

2
, 1

8
x2

0]
+

2

x0
+

+
1

2
x0

(
1

3
A+

1

2

)
M [1

2
A+ 7

4
, 5

2
, 1

8
x2

0]

M [1
2
A+ 3

4
, 3

2
, 1

8
x2

0]

]1/2

,

(14)

��� � M [a, b, z] 5&

���� ���%&���� *�����
����	�� .&������ "���#� +������
	
� 	��� ����
��

α =
ξ2C⊥q2

0ψ
2
S

K
, A =

hξ

4
√
α
q2 , x0 =

√
4h

√
α

ξ
, k =

√
h

4ξ
√
α
. (1�)

'��	�� ������ %&��&���� � 	��� ������ �

Ffluc =
kBTS

2π

∫ ∞

0

ln(Zq[nq])q dq , (1/)

��� �
� 	
� &��!������ �� 	�� � 	�	�
& ���	���� ��� ��������� �������	��
%&��&����	�� ������� '��	� ����� %&��&���� 6�� �� 
�6�� ��&���������� ����� 
������ ���� &������
� 	���� �����&��� 2����� �����&��
� ����� ���	� � 
���� ∂Ffluc/∂h� 	 ��
� 	 ����
� ���	����� �����	��* �� ����� ���� h� ��
� ���	����� � ����������� 2����� &��!���
� ��	���� �� 
��� ��� � ��
��� � 
����* ����� h ���������	�� �� ���	� ����� ����� 0� ���� �� ������� �����	��
�������� ������� q �����&��
� ����� ∂Ffluc/∂h ��� �����* h� < �
 ����
�
�.����� �����	�� �� �� � ������� ��!��� �� ������� ������� �� ��
 �	 
��� � ���������	�� �� �����
� 	���� +����	� ������ ∂Ffluc/∂h �� ��� �����*
h �� ���	
 ���	������� ��� �� ������������ �
��� 	 � �����
 ����� ��*��
	��
����� ���� ��!� �&
����� �����&�� ��&��������� ���	� ����� �� ���	

��������� =������ ��&����� 	� ���� �
��� �� 
��*� ����� ����� ��� � �� 
�������	�� ���	��� ���� �� � �������	� ������ � ���	
 ���� ��&���������
���
��
� 
��*���

��	�
����� 	��� � *�
������� �
��	�� ����� 	 ���	
������
 ���
 � ����� 
���� �� 	���� ��� '��
���
� �� � �������� �
��	�� �������	�� 	���� �� � ���	����
� 	�	�
�* ��� 	
������� ���� -�&����	�� �������� R1 � ������� ���

R1 =
FCas(α)

Fnem
Cas

, (1:)

��� � Fnem
Cas = kBTSζR(3)/4πh3� -������ �����	�� ����
��� α ���	&��� �������

	����� ����!��	�� �	������ 	
������� ���� '�� ��� 
��*��* ������* � 	���
� ���	
������ �
��	�� ����� ���� ��� � �������
 �
����&� $� � � 	����& �
�����
� ��&����� �� *�
��� 	�	�
 � 
�	����
� %&��&����	��
� ������� '�� ����*
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����� �� ��	�������� 	��� � ����	��
������ �����	
�� 	�	���� � ����������

	 ������� ��	�������� 	��� � ��������� ������
�� 
� �� 	��������� � 1/h3� 0�"

������ ������	�� ��������� α ���	����� �������� 	������ ����&��	
� �	��������

�������	
��� ���� ψS � #� ���%� �� �������� ��������	� ������ ������1�� ��"

������� ���������������

������* 	��� � ���	
�����
 	�	�
& &���� *���� ��� 1/h3� $� � ������������
	�� 	� �������	� %&��&���� ������ ���	����	�� 	
������� ��� 
�	���� C�

���� � 	������ ����!��	�� �	������ ���� �
 ���� � 
�	� %&��&���� �� �

*���� &���� 	����

'����
 ��	�
���� 	�� � ���	
������ �
��	�� ����� ! �� �������� �!��
'���	
 �� ������� ���	���� ����!� 
���� �� ��&���������� ���	� ����� %&� 
�&����� 5��&� �
& �� ��*�� �����
�� �� ������ ���� ���	����� ����!��	���
�������	��� ��� � �����* 	�	�
�* � 
��
� ����������� 	�������� �
��	�
�������	� ��	�
���� 	��� 	����
�� � 1/h3�

���
���

+ �
 ��& 	
� 	 &�������� � ��������
� ������ ��	�
������ ������ � 	
������*
�������	�����* 	�	�
�*� 2����� 	
� ����������� ��	�
����� 	��� � ��* 	
� 
�����* ? 	�	�
�* 	 �������� ��
����� 0 � *�
������� ����� �� ���	��	����

	
�����
 ��
&� '����	������ 	
�� �� � ������	�� &����� 	
����� *�
�����
@����&���� 	
� 	���� �� �� ���������� ��
��� %&��&���� �������	��� �� �������� 
�	��� ��� � 	
�����*� '�� �
 	
� &��!����� 	������� 
� �������	�� �� ��� 
������	�� &��������� H�������� 	
�� �� %&��&���� 	����� 	
������� ��� ��&� 
������ � ��������� ��	�
����� 	��� ������� ��	��� 
��
 �� 	������� %&��&����
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��������� �� 	
������* ���	�� ���������� ���������� ������ ��	��� @������� 	
�� �� � ����� �������	��* ���	��	���* 	����� ��

�� ��� 
��*��* ������*
	�	�
��� '�� �����* ������* �� � 
�6�� ��	�
����� 	��� ����������� ���	��� 	
����	�������
 
����
� �� &��!��� � %&��&���� 	
������* ���	��� ��� �
�
�����	����
�� �� � ������� 	����� ��������� ���������� �� ���	��� < ���	����� 
��
� ��&����� 	
� ������ ������� 	���� ��	�
������ ������ � ��������* 	
������*
? 	�	�
�* 	 *�
���� ������	�� 	��&��&���

2����� 	
� ����������� ����!��� ��	�
���� 	�� � ���6��� .����� ��*���
�� 	
����� ? .�� � 	
������ � .���� � &���������
 
����
 	
� �������
���� ������ ��� �&�� ������� 	
����� .��� '�	�� ����
�� � ���
� .�&	��� 
��� *�
������ ����� � ����� � 	
������ ? 	��&��&�� 	������������ � �����
�
������ �� �� ���� ��*�� ���*����
� ��� �
����&�� .����� ��*��� � 	
������
� .���� + ���
 	�	�
& 	� �������	� %&��&���� ! ��	�� �������� ��� 	 ����6�
�&�� �� ����!���& ��	�
���� 	��� '�� 	��&��&��
 ��*��& � �.��
����� 	
� 
����� � 	��&��&�� ��	�
����� 	��� �������
	�� ��������� '������� 	
� �����������
����� �����* ������ �� ��	�
����� 	���� �� �� ���������� 
�	��� �������	� %&� 
�&���� 	 ������ ��������	�� ���6��� � 	
������ ? *�
������� ������ H��������
	
�� �� .������ ����	� 	������� � �����* �����* ������ ���
�� 
� �	����� 
�����	�� ���6��� 	������� �� ������ ����� 
��
 �� � ����!�* �����* .������
����	� 	������� ������ ���
�� 
� �	����������	�� ���6��� 	������� �� ��������	��
���6��� %&��&����� + ���
�& 	�
������* �����* ������� �� � 
����� ��� !�����
	������� �� ��* ����!���*� � ��	�
����� 	��� ���������� + ���
�& ����	�
������*
�����* ������� �� � 
����� 	������� �� �� �� !����� 	������� �� ��&�� ����!����
�� � ��	�
����� 	��� ��������

'�	��� �������	� 	
� � ��	������� ��	����� 	�	�
�
 � ���������� ������	��
	��&��&��� 2����� 	
� ����������� ��� 	�	�
�� ��*�� �.��
����� 	
������ �����
�� ���	��	����� ��
 	 �������
 ����!��	��
 ���
� ��� �*�
����	� ������	�
&����� �� �������� �� ��	�
����� 	���� '��!�� 	
� �� �����&���� �� � 	�	�
�*� �� ��*
��*�� ���!
� 	 �����������
 ������
 ���	� ����� �� ��	��
� �����
� �������
�*�
���� ������	�� &����� � ������ �� *�
������� %&��&���� �� ���� �&��
� �� ��	�
����� 	���� 2������ 	
� ����������� ��� 	�	�
�� ��� 	 � ���� 
������ ������	�� 	��&��&�� ����6��� � ������� ����	��	�� 	�����* ���	����� +
*�
������� 	
������ ����� 	 �������
 ����!��	��
 �������	��
 ���
 	
� &�� 
������� �� � ������ �*�
����	�� &����� ��	�
����� 	��� ������� ��	��� 2*� 

����	� 	 � ���� �������� ��� ��� .������ 
�	� %&��&�������� ������ 2�����
	
� ����	���� ����� ����!��	�� �	������ ���	
������� ��� �� ��	�
����� 	���
� *�
������� �
��	�� ������ @������� 	 �� �� ��	�
����� 	��� � ���
 	�	�
&
&���� ���&��� *���� ��� �������� �������	�� 	��� � �
�����*�

������ ����� �� �������& ����� ��	�
������ ������ � �����* ���	����* ����
� ���*����	�� ���� ������ ���	�������� 	�	�
� � ���������� ������	�� &���������
+ �� ��	������� 	
� ������ �!��� � �� ���� ��	���* ���
���� �� ���������
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���� 	���!��* 	�	�
�� �� �����6 ������� ������� �������! �� 	���!��! 
���
�� �����&� �� ��&���������� ���	� ����� %&��&����� 5� � � �����* �������*
	�	�
�* �*�
����	� ������	� �������	���� &����� 	����� ���� ���	����� 	�
�� ����!���� ��� ��������� ������ �����
 ��� ����	�������� �������� �� ��!


���& ���	������ ��	���� �� ��	��� ��	�
���� 	�� � �������	�����* 	�	�
�*
! �� ��� �	���
������ ������� +���

�� �� �� ���!�� �������� 	��
&������
�������� ������ ��� ��������� ��� 	 � �� ������� � ���
�& �����
�������
��	�
������ �������
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