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Abstract. We present a method to calculate the pion electro-production amplitude in a

framework of a coupled channel formalism incorporating quasi-bound quark-model states.

1 Introduction

In our previous work ([1] and [2]) we have developed a general method to in-

corporate excited baryons represented as quasi-bound quark-model states into a
coupled channel calculation using the K matrix. The method has been applied to

calculate pion scattering amplitudes in the energy region of low-lying P11 and

P33 resonances. In addition to the elastic channel we have included the π∆ and
σN (σ∆) channels where the σ-meson models the correlated two-pion decay. We

have been able to explain a rather intriguing behaviour of the scattering am-
plitudes in these two partial waves in the range of invariant energies from the

threshold up toW ∼ 1700MeV. In this work we show how the formalism can be

extended to the calculation of electro-production amplitudes.

2 Incorporating quark-model states into multi-channel
formalism

We consider a class of chiral quark models in which mesons (the pion and the
sigma meson in our case) couple linearly to the quark core:

Hmeson =

∫
dk

∑

lmt

{
ωk a

†
lmt(k)almt(k) +

[
Vlmt(k)almt(k) + V

†
lmt(k)a

†
lmt(k)

]}
,

where a†lmt(k) is the creation operator for amesonwith angularmomentum l and

the third components of spinm and isospin t. In the case of the pion, we include

only l = 1 pions, and Vmt(k) = −v(k)
∑3
i=1 σ

i
mτ

i
t is the general form of the pion

source, with the quark operator, v(k), depending on the model. It includes also
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the possibility that the quarks change their radial function which is specified by

the reducedmatrix elements VBB ′(k) = 〈B||V(k)||B ′〉, where B are the bare baryon

states (e.g. the bare nucleon, ∆, Roper, . . .)

We have shown that in such models it is possible to find an exact expression
for the K matrix without explicitly specifying the form of the asymptotic states.

In the basis with good total angular momentum J and isospin T , the elements of
the Kmatrix take the form:

KJTH ′H = −πNH〈ΨHJT ||V(k)||Ψ̃B ′〉 , NH =

√
ωEB ′

kW
, (1)

where ω and k are the energy and momentum of the meson. Here ΨHJT is the

principal value state corresponding to channel H specified by the meson (π, σ,

. . .) and the baryon B (N, ∆, . . .):

|ΨHJT 〉 = NH
{

∑

R
cHR|ΦR〉 + [a†(k)|Ψ̃B〉]JT +

∑

H ′

∫
dk χH

′H
JT (k)

ωk + E(k) −W
[a†(k)|Ψ̃B ′〉]JT

}

.

(2)
The first term is the sum over bare tree-quark states ΦR involving different ex-

citations of the quark core, the next term corresponds to the free meson and the
baryon (N or ∆) and defines the channel, the third term introduces meson clouds

around different isobars. The sum in the latter term includes also inelastic chan-

nels in which case the integration over the mass of unstable intermediate hadrons

(σ-meson, ∆-isobar, . . .) is implied. The state Ψ̃B ′ in Eqs (1) and (2) represents ei-

ther the nucleon or the intermediate ∆with invariant massM; in the latter case it
is equal to (2) withH = (π,N) and normalized as 〈Ψ̃∆(M ′)|Ψ̃∆(M)〉 = δ(M−M ′) ,

E(k) is the energy of the recoiled baryon (nucleon or ∆). The on-shell meson am-
plitudes χH

′H
JT are proportional to the corresponding matrix elements of the on-

shell K matrix

KH ′H = πNH ′NH χH
′H

JT (kH ′) . (3)

From the variational principle for the K matrix it is possible to derive the inte-

gral equation for the amplitudes which is equivalent to the Lippmann-Schwinger
equation for the K matrix. The resulting expression for χH

′H
JT can be written in the

form

χH
′H

JT (k) = −
∑

R
cHRVH ′R(k) + DH ′H

JT (k) (4)

where VHR are the dressed matrix elements of the interaction Vlmt between the
resonant state and the baryon state in channel H, and DH ′H

JT is the background

contribution.

3 T and K matrices for πN electro-production

We start with the definition of the T matrix for the pion electro-production on the
nucleon:

TπNγN = −π〈Ψ(+)(ms,mt; k0, t)|Hγ|ΨN(m ′
s,m

′
t; kγ, µ)〉 , (5)
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where ms and mt are the third components of baryon spin and isospin, k0 and

t are the outgoing pion momentum and the third component of isospin, and kγ
and µ the momentum (along the coordinate z-axis) and the polarization of the
incident photon. The interaction Hamiltonian is taken in the form

Hγ =

∫
dkγ

∑

µ

[Vγ(µ,kγ)aµ(kγ) + h.c.] ,

Vγ(µ,kγ) =
1

√
2π
3
Ṽγ(µ,kγ) , Ṽγ(µ,kγ) =

e0√
2ωγ

∫
dr εµ · j(r)eikγ·r . (6)

The state representing the photon-nucleon system reads

|ΨN(m ′
s,m

′
t; kγ, µ)〉 = Nγa†γ(kγ)|ΨN(m ′

sm
′
t)〉 , Nγ =

√
kγωγ

√
E
γ
N

W
. (7)

Here ωγ = (W2 − M2
N − Q2)/2W , k2γ = ω2γ + Q2 , E

γ
N = W − ωγ , with Q2

measuring the photon virtuality. We perform the spin-isospin decomposition of

the outgoing state

|Ψ(+)(ms,mt; k0, t)〉 =
∑

lmJT

ilY∗lm(k̂0)|Ψ
(+)

JT (MJ,MT ; k0, l,m, t)〉CJMJ
1
2
mslm

CTMT
1
2
mt1t

.

(8)
Commuting a†γ in (5) to the left and using the expansion (8), we can write the T

matrix in the JT basis as

T JTπNγN = −πNγ 〈Ψ(+)

JT (MJMT ; k0, l)|Vγ(µ,kγ)|ΨN(m ′
sm

′
t)〉 . (9)

The electro-production amplitude is proportional to (9) through
T =

√
k0kγ/8πM, hence

MJT
πN = −

Nγ√
k0kγ

〈Ψ(+)

JT (MJMT ; k0, l)|Ṽγ(µ,kγ)|ΨN(m ′
sm

′
t)〉 . (10)

The amplitudes proportional to the elements of the K matrix are obtained by re-

placing the state Ψ
(+)

JT by the corresponding principal value state:

MKJT
H = −

Nγ√
k0kγ

〈ΨHJT (MJMT ; k0, l)|Ṽγ(µ,kγ)|ΨN(m ′
sm

′
t)〉 . (11)

The procedure to calculate the electro-production amplitudes in our formal-
ism is the following: we first evaluate (11) using (2) as obtained in pion scattering,

and then compute (10) using M = MK + iTMK. (This equation trivially follows

from the Heitler’s equation T = K + iTK since the proportionality factor between
T and M is the same as between K and MK.) In principle, this equation involves

also the matrix elements corresponding to Compton scattering. They can be ne-
glected since they are orders of magnitude smaller than those containing strong

interaction. In the P11 case we have

MπN(W) = MK
πN(W) + i

[
TπNπN(W)MK

πN(W) + TπNπ∆(W)MK

π∆(W)

+TπNσN(W)MK

σN(W)

]
. (12)
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We have further simplified the equation by using averaged values for amplitudes

involving the π∆ and the σN channels and thus avoiding integration over the

corresponding invariantmasses. In the P33 case we have also added the πN(1440)

channel, while the σN channel has been replaced by the σ∆ channel.

4 The behaviour of the amplitudes close to a resonance

From (3) and (4) it follows that close to a resonance, denoted by R, the K matrix
element between the elastic channel and the πB channel can be cast in the form

KπBπN = −π

√
ω0ωBENEB

k0kBW2
cBRVNR(k0) + K

background
πBπN .

After some rearrangements, the principal value states (2) take the form

|ΨH〉 = −KπBπN

√
k0W

π2ω0EN

√
ZR

VNR
|Ψ̂res〉 + |ΨH non−res〉

with

|Ψ̂res
R 〉 =

1√ZR

{

|ΦR〉−
∫
dk

VNR(k)[a†(k)|ΨN〉]JT
ωk + EN(k) −M

−
∑

B

∫
dk

VBR(k)[a†(k)|Ψ̂B〉]JT
ωk + EB(k) −M

}

.

(the inclusion of the σN channel in the P11 case is straightforward). We can now

split the K-matrix type amplitudes (11) into the resonant part containing the pole
and the “non-resonant” part:

MK
H =

√
ωγE

γ
N

k0W

√
k0W

π2ω0EN

√
ZR

VNR
KNH〈Ψ̂(res)

R (W)|Ṽγ|ΨN〉 + MK (non)

H . (13)

We see that the resonant matrix elements depend on a particular channel (H)

only through the K matrix element referring to that channel. Next we plug (13)
into (12) and take into account the relation between the T and the K matrix (T =

K+ iTK). The resonant part of the electro-production amplitudes then reads

M(res)
N =

√
ωγE

γ
N

k0W

√
k0W

π2ω0EN

√ZR
VNR

〈Ψ̂(res)
R (W)|Ṽγ|ΨN〉 TπNπN , (14)

while the non-resonant part satisfies

M(non)

N = MK (non)

N + i

[
TπNπNMK (non)

N + TπNπ∆M
K (non)

∆ + TπNσNM
K (non)

σ

]
.

Let us note that 〈Ψ̂(res)
R (W)|Ṽγ|ΨN〉 is the electro-excitation amplitude for the res-

onance R. For a sufficiently weak meson field the state Ψ̂ is dominated by the

bare-three quark core surrounded by a cloud of pions, which is a familiar form

of a baryon state in chiral-quark models. The relation (14) can be rewritten in a
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more familiar form by noting that the elastic part of the K matrix can be written

as

KπNπN = π
ω0EN

k0W

V2NR
ZR(MR)

=
1
2
Γel

MR −W
, (15)

where Γel is the elastic width of the resonance. Expressing VNR from (15) we get

M(res)
N = i

√
ωγE

γ
NΓel

2πk0W Γ2tot
〈Ψ̂(res)

R (W)|Ṽγ|ΨN〉 , (16)

where we have taken into account that at the resonance TπNπN = iΓel/Γtot.

5 Multipole decomposition for the P11 and P33 wave

Expanding (6) into multipoles, we have in the P33 case:

M
(3/2)

1+ =

√
ωγE

γ
N

6k0W
〈Ψ(+)

JT ||ṼM1γ ||ΨN〉 , E
(3/2)

1+ = −

√
ωγE

γ
N

30k0W
〈Ψ(+)

JT ||ṼE2γ ||ΨN〉 ,
(17)

and in the P11 (J = T = 1
2
) case

M
(1/2)

1− =

√
ωγE

γ
N

6k0W
〈Ψ(+)

JT ||ṼM1γ (IV)||ΨN〉 , M
(0)

1− =

√
ωγE

γ
N

18k0W
〈Ψ(+)

JT ||ṼM1γ (IS)||ΨN〉 ,

related to π0 production amplitude on the proton asMp
1− = M

(0)

1− + 1
3
M

(1/2)

1− , and

on the neutron asMn
1− = M

(0)

1− − 1
3
M

(1/2)

1− . Here IV and IS denote the isovector

and the isoscalar part of the interaction, respectively. The same formulas apply to

the MK amplitudes. (Similar relations can be derived for the scalar amplitudes.)

The transverse electro-excitation amplitudes are defined in terms of the he-
licity amplitudesAMJ

. In the P33 case we separate them into the magnetic dipole

and the electric quadrupole part:

M1 = −1
2

[√
3A 3

2
+A 1

2

]
= −

√
8

3
〈Ψ̂(res)

R ||Ṽγ(M1)||ΨN〉 , (18)

E2 =
1

2
√
3

[
A 3

2
−
√
3A 1

2

]
=

√
8

45
〈Ψ̂(res)

R ||Ṽγ(E2)||ΨN〉 . (19)

Taking into account (17) and (16) we reproduce the familiar relation

M
(3/2)

1+ = if M1 , E
(3/2)

1+ = if E2 , f =

√
3ωγE

γ
NΓel

8π k0W Γ2tot
.

In the P11 case only one transverse helicity amplitude appears and we find

A
p,n
1
2

=

√
2

3

[
〈Ψ̂(res)

R ||ṼM1(IS)||ΨN〉 ±
1√
3
〈Ψ̂(res)

R ||ṼM1(IV)||ΨN〉
]

(the reduced matrix elements appear only in the angular momentum, the third

component of the isospin areMT = m ′
t = 1

2
).
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6 Preliminary results in the N(1440) sector

The P33 wave amplitudes in the region of the ∆(1232) have been extensively in-

vestigated in our previousworks (see e.g. [3] and [4]). Since the electro-production
amplitudes are dominated by the resonant contribution, they follow the shape of

the elastic T matrix accordingly to (14).

This is not the case in the P11 wave. In Fig. 1 we show some preliminary re-
sults (without including the π∆ and the σN channels) for the electro-production

amplitude in the region of the N(1440) resonance showing the important role of
the background processes. These are dominated by the nucleon pole contribution,

the contribution from the second term in (2) (t-channel), and by a u-channel-type

process with the ∆ in the intermediate state. Below the resonance, the contribu-
tion of the resonant term is almost negligible. The resonant contribution itself is

dominated by the pion cloud and the admixture of the nucleon component which

considerably reduces the contribution. This point is still under investigation; we
expect that inclusion of higher resonances may cure this deficiency.
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Fig.1. The real (left panel) and the imaginary (right panel) parts of the electro-production

amplitudes Mp
1− for the P11 partial waves. The MAID result is taken from [5]; the ex-

perimental points from [6]. The thin dashed curve in the right panel shows the effect of

omitting the nucleon component in the resonant state.
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