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Abstract

We study point – line incidence structures and their properties in the projective plane.
Our motivation is the problem of the existence of (n4) configurations, still open for few
remaining values of n. Our approach is based on quasi-configurations: point – line inci-
dence structures where each point is incident to at least 3 lines and each line is incident
to at least 3 points. We investigate the existence problem for these quasi-configurations,
with a particular attention to 3|4-configurations where each element is 3- or 4-valent. We
use these quasi-configurations to construct the first (374) and (434) configurations. The
existence problem of finding (224), (234), and (264) configurations remains open.

Keywords: Projective arrangements, point – line incidence structure, (nk) configurations.
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1 Introduction
A geometric (nk) configuration is a collection of n points and n lines in the projective
plane such that each point lies on k lines and each line contains k points. We recommend
our reader to consult Grünbaum’s book [7] for a comprehensive presentation and an his-
torical perspective on these configurations. The central problem studied in this book is to
determine for a given k those numbers n for which there exist geometric (nk) configura-
tions. The answer is completely known for k = 3 (geometric (n3) configurations exist if
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Figure 1: Splitting Grünbaum’s geometric (204) configuration [6] into two (103) configu-
rations.

and only if n ≥ 9), partially solved for n = 4 (geometric (n4) configurations exist if and
only if n = 18 or n ≥ 20 with a finite list of possible exceptions), and wide open for k > 4.
Our contribution concerns k = 4, where we provide solutions for two former open cases:
there exist geometric (374) and (434) configurations. Moreover, we study building blocks
for constructing geometric (nk) configurations that might be of some help for clarifying the
final open cases (224), (234), and (264). Many aspects of our presentation appeared dur-
ing our investigation of the case (194) in which there is no geometric (194) configuration,
see [1, 2].

The approach of this paper is to construct geometric (n4) configurations from smaller
building blocks. For example, Grünbaum’s geometric (204) configuration [6] can be con-
structed by superposition of two geometric (103) configurations as illustrated in Figure 1.
To extend this kind of construction, we study an extended notion of point – line configura-
tions, where incidences are not regular but still prescribed.

1.1 Point – line incidence structures

We define a point – line incidence structure as a set P of points and a set L of lines together
with a point – line incidence relation, where two points of P can be incident with at most
one line of L and two lines of L can be incident with at most one point of P . Throughout the
paper, we only consider connected incidence structures, where any two elements of P t L
are connected via a path of incident elements.

For a point – line incident structure (P,L), we denote by pi the number of points of P
contained in i lines of L and similarly by `j the number of lines of L containing j points
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of P . We find it convenient to encode these incidence numbers into a pair of polynomi-
als (P(x),L(y)), called the signature of (P,L), and defined by

P(x) :=
∑

i
pix

i and L(y) :=
∑

j
`jy

j .

For example, the point – line incidence structure represented in Figure 2 has signature
(8x3 + 2x4, 8y3 + 2y4). With these notations, the number of points and lines are given
by |P | = P(1) and |L| = L(1), while the number of point – line incidences is given by
| {(p, `) ∈ P × L | p ∈ `} | = P′(1) = L′(1).

We distinguish three different levels of point – line incidence structures, in increasing
generality:

Geometric Points and lines are ordinary points and lines in the real projective plane P.

Topological Points are ordinary points in P, but lines are pseudolines, i.e., non-separating
simple closed curves of P which cross pairwise precisely once.

Combinatorial Just an abstract incidence structure (P,L) as described above, with no ad-
ditional geometric structure.

In this paper, we are mainly interested in the geometric level. We therefore omit the word
geometric in what follows unless we have to distinguish different levels.

1.2 (nk) configurations

One of the main problems in the theory of point – line incidence structures is to clarify the
existence of regular point – line incidence structures. A k-configuration is a point – line
incidence structure (P,L) where each point of P is contained in k lines of L and each
line of L contains k points of P . In such a configuration, the number of points equals the
number of lines, and thus it has signature (nxk, nyk). If we want to specify the number
of points and lines, we call it an (nk) configuration. We refer to the recent monographs
of Grünbaum [7] and Pisanski and Servatius [8] for comprehensive presentations of these
objects. Classical examples of regular configurations are Pappus’ and Desargues’ configu-
rations, which are respectively (93) and (103) configurations. In the study of the existence
of (n4) configurations there are still a few open cases. Namely, it is known that (geometric)
(n4) configurations exists if and only if n = 18 or n ≥ 20, with the possible exceptions
of n = 22, 23, 26, 37 and 43 [5, 4, 2]. Different methods have been used to obtain the
current results on the existence of 4-configurations:

(i) For n ≤ 16, Bokowski and Schewe [3] used a counting argument based on Euler’s
formula to prove that there exist no (n4) configuration, even topological.

(ii) For small values of n, one can search for all possible (n4) configurations. For n = 17
or 18, one can first enumerate all combinatorial (n4) configurations and search for ge-
ometric realizations among them. This approach was used by Bokowski and Schewe
in [4] to show that there is no (174) configuration and to produce a first (184) config-
uration. Another approach, proposed in [1], is to enumerate directly all topological
(n4) configurations, and to search for geometric realizations among this restricted
family. In this way, we showed that there are precisely two (184) configurations, that
of [4] and another one [1], see Figure 3. For n = 19, we obtained in [1] all 4 028 topo-
logical (194) configurations and the study of their realizability has led to the result
that there is no geometric (194) configuration [2].
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(iii) For larger values of n, one cannot expect a complete classification of (n4) configu-
rations. However, one can construct families of examples of 4-configurations. One
of the key ingredients for such constructions is the use of symmetries. See Figure 1
for the smallest example obtained in this way, and refer to the detailed presentation in
Grünbaum’s recent monograph [7].

(iv) Finally, Bokowski and Schewe introduced in [4] a method to produce (n4) config-
urations from deficient configurations. It consists in finding two point – line inci-
dence structures (P,L) and (P ′, L′) of respective signatures (ax3 + bx4, cy3 + dy4)
and (cx3 + ex4, ay3 + fy4), where a + b + c + e = a + c + d + f = n, and a
projective transformation which sends the 3-valent points of P to points contained in
a 3-valent line of L′, and at the same time the 3-valent lines of L to lines containing
a 3-valent point of P ′. This method was used to obtain the first examples of (294)
and (314) configurations.

In this paper, we are interested in this very last method described above. We are going to
study deficient configurations (see the notion of quasi-configuration and 3|4-configuration
in the next subsection) for the use of them as building blocks for configurations. Our study
has led in particular to first examples of (374) and (434) configurations. Thus the remaining
undecided cases for the existence of (n4) configurations are now only the cases n = 22, 23,
and 26.

1.3 Quasi-configurations

A quasi-configuration (P,L) is a point – line incidence structure in which each point is con-
tained in at least 3 lines and each line contains at least 3 points of P . In other words, the
signature (P,L) of (P,L) satisfies x3 |P(x) and y3 |L(y). The term “quasi-configuration”
for this concept was suggested by Grünbaum to the authors. As observed above, these
quasi-configurations can sometimes be used as building blocks for larger point – line inci-
dence structures.

In this paper, we investigate in particular 3|4-configurations, where each point of P is
contained in 3 or 4 lines of L and each line of L contains 3 or 4 points of P . In other
words, 3|4-configurations are point – line incidence structures whose signature is of the
form (ax3 + bx4, cx3 + dx4) for some a, b, c, d ∈ N satisfying 3a + 4b = 3c + 4d. Note
that their numbers of points and lines do not necessarily coincide. If it is the case, i.e., if
a + b = c + d = n, we speak of an (n3|4) configuration. In this case, a = c and b = d,
the number of points and lines is n = a + b = c + d and the number of incidences
is 3a+ 4b = 3c+ 4d.

We think of an (n3|4) configuration as a deficient (n4) configuration. A good measure
on (n3|4) configurations is the number of missing incidences a. We say that an (n3|4) con-
figuration is optimal if it contains the maximal number of point – line incidences among all
(n3|4) configurations. One objective is to study and classify optimal (n3|4) configurations
for small values of n.

Example 1.1. Figure 2 shows an incidence structure with signature (8x3+2x4, 8y3+2y4).
It is a 103|4-configuration: the 3-valent elements are colored red while the 4-valent elements
are colored blue. We will see in Figure 7 that this 3|4-configuration is not optimal.
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Figure 2: A quasi-configuration with signature (8x3 + 2x4, 8y3 + 2y4).

1.4 Overview

The paper is divided into two parts. In Section 2, we illustrate how quasi-configurations (in
particular 3|4-configurations) can be used as building blocks to construct (n4) configura-
tions, and we obtain in particular examples of (374) and (434) configurations. In Section 3,
we present a counting obstruction for the existence of topological quasi-configurations, and
we study optimal (n3|4) configurations with few points and lines.

2 Constructions
We discuss here different ways to obtain new point – line incidence structures from old
ones. We are in particular interested in the construction of new quasi-configurations from
old ones. We use these techniques to provide the first (374) and (434) configurations.

2.1 Operations on point – line incidence structures

To construct new point – line incidence structures from old ones, we will use the following
operations, illustrated in Section 2.2:

Deletion Deleting elements from a point – line incidence structure yields a smaller inci-
dence structure. Note that deletions do not necessarily preserve connectedness or
quasi-configurations. We can however use deletions in 4-configurations to construct
3|4-configurations if no remaining element is incident to two deleted elements.

Addition As illustrated by the example of Grünbaum’s (204) configuration [6] in Figure 1,
certain point – line incidence structures can be obtained as the disjoint union of two
smaller incidence structures (P,L) and (P ′, L′). In particular, we obtain an (n4)
configuration if (P,L) and (P ′, L′) are 3|4-configurations, if each 3-valent element
of (P,L) is incident to precisely one 3-valent element of (P ′, L′) and conversely,
and if no other incidences appear.

Splitting The reverse operation of addition is splitting: given a point – line incidence struc-
ture, we can split it into two smaller incidence structures. We can require additionally
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Figure 3: Splittings of the two geometric (184) configurations [4, 1] into two (93|4) config-
urations. The rightmost (184) configuration even splits into two (93) configurations. The
points which seem isolated are in fact at infinity in the direction pointed by the correspond-
ing arrow, and are incident to the 4 lines parallel to that direction.

the two resulting incidence structures to be quasi-configurations or even regular con-
figurations. For example, the two geometric (184) configurations [4, 1] as well as
Grünbaum’s (204) configuration [6] are splittable into 3|4-configurations, see Fig-
ures 1 and 3.

Superposition Slightly more general than addition is the superposition, where we allow
the two point – line incidence structures (P,L) and (P ′, L′) to share points or lines.
For example, we can superpose two 2-valent vertices to make one 4-valent vertex.
This idea is used in our construction of (374) and (434) configurations below.

2.2 Examples of constructions

We now illustrate the previous operations and produce 4-configurations from smaller point –
line incidence structures. We start with a simple example.

Example 2.1 (A (384) configuration). It was shown in [2] that no topological (194) con-
figuration can be geometrically realized with points and lines in the projective plane. How-
ever, Figure 4 (left) shows a geometric realization of a topological (194) configuration
where one line has been replaced by a circle. Forgetting this circle, we obtain a 3|4-
configuration with signature (15x4 + 4x3, 18x4). We take two opposite copies of this
3|4-configuration (colored purple and red in Figure 4 (right)) and add two lines (colored
green in Figure 4 (right)) each incident to two points in each copy. We obtain a (384)
configuration.

Using similar ideas, we observe that it is always possible to produce a 4-configuration
from any 3|4-configuration.

Example 2.2 (Any 3|4-configuration generates a 4-configuration). From a 3|4-configura-
tion with signature (ax3 + bx4, cy3 + dy4), we can construct an (n4) configuration where
n = 16a+ 16b+ 4c = 4a+ 16c+ 16d as follows:

(i) We take four translated copies of the 3|4-configuration and add suitable parallel lines
through all 3-valent points.
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Figure 4: (Left) A geometric realization of a topological (194) configuration where one
line has been replaced by a circle. (Right) A (384) configuration built from two copies of
this incidence structure. The construction is explained in full detail in Example 2.1.

(ii) We take the geometric dual of the resulting 3|4-configuration (remember that geo-
metric duality transforms a point p of the projective plane into the line formed by all
points orthogonal to p and conversely).

(iii) We take again four translated copies of this dual 3|4-configuration and add suitable
parallel lines through all 3-valent vertices.

Of course, we can try to obtain other 4-configurations from 3|4-configurations. This
approach was used by Bokowski and Schewe [4] to construct (294) and (314) configura-
tions from the (143|4), (153|4) and (163|4) configurations of Figure 9. We refer to their
paper [4] for an explanation. Here, we elaborate on the same idea to construct two new
relevant (n4) configurations.

Example 2.3 (First (434) configuration). To construct a ((n+m)4) configuration from an
(n4) configuration and an (m4) configuration, we proceed as follows (see Figure 5):

(i) We delete two points not connected by a line in the (n4) configuration and consider
the eight resulting 3-valent lines (colored blue in Figure 5 (top left) and orange in
Figure 5 (top right)).

(ii) We add four points (colored green in Figure 5), each incident with precisely two 3-
valent lines. All points and lines are now 4-valent again, except the four new 2-valent
points.

(iii) We do the same operations in the (m4) configuration.

(iv) Finally, we use a projective transformation that maps the set of four 2-valent points in
the first quasi-configuration onto the set of four 2-valent points in the second quasi-
configuration. This transformation superposes the 2-valent points to make them 4-
valent.
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If this transformation does not superpose other elements than the 2-valent ones and does
not create additional unwanted incidences, it yields the desired ((n +m)4) configuration.
This construction is illustrated on Figure 5, where we obtain a (434) configuration from a
(254) configuration [7] and a (184) configuration [1].

Unfortunately, the method from the previous example cannot provide a (374) configu-
ration since there is no (n4) configuration for n ≤ 17 [4] and for n = 19 [2]. We therefore
need another method, which we describe in the following example.

Example 2.4 (First (374) configuration). To construct a ((n+m−1)4) configuration from
an (n4) configuration and an (m4) configuration, we proceed as follows (see Figure 6):

(i) We delete two points on the same line (colored green in Figure 6) of the (n4) con-
figuration and consider the six resulting 3-valent lines (colored blue in Figure 6 (top
left) and orange in Figure 6 (top right)).

(ii) We add three points (colored green in Figure 6), each incident with precisely two
3-valent lines. All points and lines are now 4-valent again, except the initial 2-valent
line and the three new 2-valent points.

(iii) We do the same operations in the (m4) configuration.

(iv) Finally, we use a projective transformation that maps the set of four 2-valent elements
in the first quasi-configuration onto the set of four 2-valent elements in the second
quasi-configuration. This transformation superposes the 2-valent elements to make
them 4-valent.

If this transformation does not superpose other elements than the 2-valent ones and does not
create additional unwanted incidences, it yields the desired ((n+m− 1)4) configuration.
This construction is illustrated on Figure 6, where we obtain a (374) configuration from a
(204) configuration [7] and a (184) configuration [1].

We invite the reader to try his own constructions, similar to the constructions of Exam-
ples 2.3 and 2.4, using the operations on point – line incidence structures described above.
In this way, one can obtain many (n4) configurations for various values of n. Additional
features can even be imposed, such as non-trivial motions or symmetries. We have however
not been able to find answers to the following question.

Question 1. Can we create a (224) configuration by glueing two quasi-configurations with
11 points and lines each? More generally, can we construct (224), (234), or (264) configu-
rations by superposition of smaller quasi-configurations?

3 Obstructions and optimal 3|4-configurations
In this section, we further investigate point – line incidence structures and 3|4-configura-
tions. We start with a necessary condition for the existence of topological incidence struc-
tures with a given signature. For this, we extend to all topological incidence structures an
argument of Bokowski and Schewe [3] that was used to prove the non-existence of (154)
configurations. We obtain the following inequality.

Proposition 3.1. Let (P,L) be topological incidence structure with signature (P,L). Then

P′′(1) + 2P′(1)− L(1)2 + L(1)− 6P(1) + 6 ≤ 0.
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Figure 5: A (434) configuration built from deficient (254) and (184) configurations. The
construction is explained in full detail in Example 2.3.



108 Ars Math. Contemp. 10 (2016) 99–112

Figure 6: A (374) configuration built from deficient (204) and (184) configurations. The
construction is explained in full detail in Example 2.4.
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Proof. Let pi be the number of i-valent points and `j the number of j-valent lines in the
incidence structure (P,L). The signature (P,L) is P(x) :=

∑
i pix

i and L(y) :=
∑

j `jy
j .

Since the incidence structure is topological, we can draw it on the projective plane such
that no three pseudolines pass through a point which is not in P . We call additional 2-
crossings the intersection points of two lines of L which are not points of P . We consider
the lifting of this drawing on the 2-sphere. We obtain a graph embedded on the sphere,
whose vertices are all points of P together with all additional 2-crossings, whose edges are
the segments of lines of L located between two vertices, and whose faces are the connected
components of the complement of L. Let f0, f1 and f2 denote respectively the number
of vertices, edges and faces of this map. Denoting by deg(p) the number of lines of L
containing a point p ∈ P and similarly by deg(`) the numbers of points of P contained in
a line ` ∈ L, we have

f0 = 2

(
L(1)

2

)
− 2

∑
p∈P

((
deg(p)

2

)
− 1

)
= L(1)

(
L(1)− 1

)
+ 2P(1)−

∑
i

i(i− 1)pi,

f1 = 2
∑
`∈L

deg(`) + 2f0 − 2P(1) = 2
∑
j

j`j + 2f0 − 2P(1) = 2
∑
i

ipi + 2f0 − 2P(1),

f2 = f1 − f0 + 2.

Moreover, since no face is a digon, we have 3f2 ≤ 2f1. Replacing f2 and f1 by the above
expressions, we obtain

0 ≥ 3f2 − 2f1 = f1 − 3f0 + 6 = 2
∑
i

ipi − 4P(1)− f0 + 6

=
∑
i

i(i+ 1)pi − L(1)
(
L(1)− 1

)
− 6
(
P(1)− 1

)
,

and thus the desired inequality.

Corollary 3.2. If (ax3 + bx4, ay3 + by4) is the signature of a topological incidence struc-
ture, then

−(a+ b)2 + 7a+ 15b+ 6 ≤ 0.

The following table provides the minimum value of b for which there could exist a topolog-
ical incidence structure with signature (ax3 + bx4, ay3 + by4):

a 0 1 2 3 4 5 6 7
bmin 16 14 13 11 9 8 6 3

Proof. Direct from Proposition 3.1 with P(x) = ax3 + bx4 and L(y) = ay3 + by4.

For example, there is no topological (154) configuration [3] and no incidence structure
with signature (7x3 + 2x4, 7y3 + 2y4). Compare to Example 1.1 which shows that a
configuration with signature (8x3 + 2x4, 8y3 + 2y4) exists.

Corollary 3.3. A (n3|4) configuration has at most Imax := min

(
4n ,

⌊
n2 + 17n− 6

8

⌋)
incidences. The values of Imax appear in the following table:

n 7 8 9 10 11 12 13 14 15 16
Imax 20 24 28 33 37 42 48 53 59 64
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Proof. Consider an (n3|4) configuration with signature (ax3 + bx4, ay3 + by4) where
a+ b = n. The number of incidences is I :=3a+4b. It can clearly not exceed 4n. For the
second term in the minimum, we apply Corollary 3.2 to get

0 ≥ −(a+ b)2 + 7a+ 15b+ 6

= −(a+ b)2 + 8(3a+ 4b)− 17(a+ b) + 6

= −n2 + 8I − 17n+ 6.

Corollary 3.4. There is no topological (n3|4) configuration if n ≤ 8.

Proof. If n ≤ 7, there is no topological (n3|4) configuration since it should have at least
3n incidences, which is larger than the upper bound of Corollary 3.3. If n = 8, a (83|4)
configuration should be a (83) configuration by Corollary 3.3. But the only combinatorial
(83) configuration is not topological.

To close this section, we exhibit optimal (n3|4) configurations for small values of n,
i.e., (n3|4) configurations which maximize the number of point – line incidences.

Proposition 3.5. For 9 ≤ n ≤ 13, the bound of Corollary 3.3 is tight: there exists (n3|4)

configurations with
⌊
n2+17n−6

8

⌋
incidences.

Proof. For n = 13, we consider the (133|4)-configuration of Figure 7. The homogeneous
coordinates of its points and lines are given by

P :=L :=


ij
1

 ∣∣∣∣∣∣ i, j ∈ {−1, 0, 1}
 ∪


10
0

 ,

01
0

 ,

11
0

 ,

 1
−1
0

 .

For n = 10, 11 or 12, we obtain (n3|4) configurations by removing suitable points and
lines in our (133|4) configuration. The resulting configurations are illustrated in Figure 7.
(Note that for n = 10, we even have two dual ways to suitably remove three points and
three lines from our (133|4) configuration: either we remove three 3-valent points and the
three 4-valent lines containing two of these points, or we remove three 3-valent lines and
the three 4-valent points contained in two of these lines). Finally, for n = 9 we use the
bottom rightmost (93|4) configuration of Figure 7.

As a curiosity, we give another example of an optimal (123|4) configuration which
contains Pappus’ and Desargues’ configurations simultaneously. See Figure 8.

Observe that optimal (n3|4) configurations are given by (n4) configurations for large n,
and that the only remaining cases for optimal (n3|4) configurations are for n = 14, 15,
16, 17, 19, 22, 23, and 26. We have represented in Figure 9 some (153|4) and (163|4)
configurations which we expect to be optimal, although they do not reach the theoretical
upper bound of Corollary 3.3. Observe also that deleting the circle in Figure 4 (left) and
adding one line through two of the resulting 3-valent points provides a (193|4) configuration
with 74 incidences, which is almost optimal since there is no (194) configuration [1, 2]. To
conclude, we thus leave the following question open.

Question 2. What are the optimal (143|4) configurations? Are the (153|4) and (163|4)
configurations in Figure 9 optimal? Is there a (193|4) configuration with 75 incidences.
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Figure 7: Optimal (n3|4) configurations, for n = 13, 12, 11, 10, 9. They have respectively
48, 42, 37, 33, and 28 point – line incidences. The 3-valent elements are colored red while
the 4-valent elements are colored blue.

Figure 8: An optimal (123|4) configuration (left) which contains simultaneously Pappus’
configuration (middle) and Desargues’ configuration (right). In the (123|4) configuration,
the 3-valent elements are colored red while the 4-valent elements are colored blue. In the
Pappus’ and Desargues’ subconfigurations, all elements are 3-valent, but we keep the color
to see the correspondence better.
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Figure 9: Apparently optimal (153|4) and (163|4) configurations. They have 56 and 60
point – line incidences respectively. The 3-valent elements are colored red while the 4-
valent elements are colored blue.
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