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Abstract: With use of neural networks the influence of chemical com-
position of steel on the hardness i.e. hardenability was determined. 
The chemical composition has varied within for the specified steel 
prescribed tolerances.

 The modeling of influence of chemical composition on Jominy curve 
was made for three steel grades or steel groups respectively. 

Izvleček: Z nevronskimi mrežami smo modelirali vpliv spreminjanja ke-
mične sestave jekla na njegovo trdoto oz. prekaljivost. Kemična se-
stava se giblje v za določeno jeklo predpisanih tolerancah. 

 Vpliv spreminjanja kemične sestave na prekaljivost smo modelirali 
za tri vrste oz. skupine jekel. 
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Jominy

Introduction 

Steel is by production among metals by 
far in the first place in the world. This is 
due to its mechanical, physical, chemi-

cal and other properties that meet the 
user’s demands in a wide area. One of 
the parameters affecting the properties 
of steel is also its chemical composi-
tion. For chosen steel grade it is deter-
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First results of our Jominy curves mod-
eling on the basis of chemical composi-
tion of steel were good[9]. 

In this study we focused on modeling 
of hardenability of various steels. Vari-
ances in chemical composition within 
data base were bigger then we found in 
literature[10]. 

Materials and methods

Three steel grades were used in the 
process of hardenability modeling: 
VCNMO 150, CT207 and 42CrMoS4. 

VCNMO150 is a heat treatable, low al-
loy steel containing nickel, chromium 
and molybdenum[10]. Steel CT207 is 
used for highly stressed hardened dies 
for artificial resin[10]. Steel 42CrMoS4 
is used for high and moderately stressed 
components for automobile industry 
and mechanical engineering[10]. Typical 
chemical compositions are presented in 
Table 1.

mined with tolerance limits. 

Idea to use neural networks for model-
ing the influence of chemical composi-
tion on Jominy curves (hardenability) 
is not new. VERMEULEN et al.[1] demon-
strated that Jominy curve can be mod-
eled if chemical composition of steel is 
known. They also presented how the 
neural network parameters influenced 
the quality of predictions. DOBRZAN-
SKy et al. have published their results 
from neural network modeling of 
hardenability[2, 3]. They investigations 
were focused on constructional steels. 
Results of their work gave eloquent 
proof that modeling of Jominy curves 
on the basis of chemical composition 
give good results. For mentioned mod-
els, i.e. data base, typically relatively 
small variances in chemical composi-
tion occur.

Our department has rich experiences 
with applying neural networks[4, 5] also 
with various predictions on basis of 
chemical composition[6–8].

C Si Mn Cr Mo Ni V W others

VCNMO150 0.34 max. 
0.40 0.65 1.50 0.23 1.50 - - -

CT207 0.21 0.28 0.75 0.85 0.20 1.35 - - Cu < 0.25 
Al < 0.035

42CrMoS4 0.41 max. 
0.40 0.75 1.05 0.28 - - - -

Table 1. Typical chemical composition of  VCNMO 150, CT207 and 42CrMoS4 in 
mass fractions, w/% [10]
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Experimental part
The Jominy test samples have length of 
102 mm and a diameter of 25.4 mm. To 
exclude differences in microstructures 
due to the preliminary forging, before 
testing samples were normalized and 
later austenitised. Austenitising tem-
perature is usually between 800 ºC 
and 900 ºC. The samples were quickly 
transferred to the device Jominy where 
frontend was cooled with controlled 
jets of water. Cooling the sample from 
one end simulates the effect of forg-
ing of bigger components in the water. 
After forging and cooling the samples 
were cleaned. The hardness measure-
ments were made at prescribed inter-
vals along the test samples from the 
quenched end. The Jominy curves were 
presented as a function of measured 
hardness (HRc) vs. distance from the 
quenched end.

Collecting of data base
A database was constructed from 
measurements of hardness at differ-
ent distances from cooled surface. The 
database has contained nearly 20,000 
measurements (exactly 19469), but 
they were not evenly distributed re-
gard to the distance from the surface, 
as is shown in Figure 1. It can be seen 
that the maximum number of measure-
ments were carried out up to a distance 
of 20 mm (about 60 %), as well as can 
be seen that the number of measure-

ments at a distance greater than 50 mm 
is negligible (less than 2 %).

Various steel groups (special steel, al-
loyed carbon steel and unalloyed car-
bon steel) were included in data base. 
It consists of about 50 different steel 
grades. Less than 10 of them contain 
more than 10 charges (chemical com-
positions), about half of them have 
fewer than 5 entries. 

For each of the hardness measure-
ments the chemical composition (25 
elements) and distance from the forged 
surface was attached. These 27 figures 
formed the so called data vector. The 
whole database was presented in a ma-
trix consisting of 19,469 lines and 27 
columns. From complete data base 11 
elements were used for modeling. The 
selection procedure is presented later. 
The variations in amount of elements 
are shown in Figure 2.

Figure 1. Distribution of measurements 
regard to the distance from cooled surface
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Data was randomly divided into train-
ing, verification and test data base 
in the ordinary 2 : 1 : 1 proportion 
(9735 + 4867 + 4867 model vectors). 
The distribution in the three groups was 
automatic and random. The authentic-
ity of the databases is guaranteed, what 
can be seen from a comparison of cor-
relation coefficients (Table 2).

Table 2. Correlation coefficients for deve-
loped neural network model

training test verification
Correlation 
coefficient 0.9526 0.9424 0.9421

Applied type of neural network
Program Statistica was used for mod-
eling. On the base of our good experi-

ences from previous work[9] multilayer 
perceptrons type neural network (MLP 
NN) was used. To obtain good quality 
of predictions 12 input and 12 neurons 
in hidden layer were used. Because 
only one output parameter was calcu-
lated also the neural network with one 
output neuron was applied.

The correlation coefficients for train-
ing, test and validation data base are 
presented in Table 2.  From comparison 
of those results it can be deducted that 
applied model is capable to accurate 
predict the output values and also that 
overtraining did not occur.    

In the process of model development 
the sensitivity analysis was performed 
with special module within the pro-
gram. Based on this analysis we decid-
ed that, in addition to distance, only 11 
chemical elements will be used. These 
elements have been found as param-
eters with maximum correlation with 
the hardness. Correlation factors of the 
input parameters are given in Table 3. 
The p factor indicates the amount of 
influence and rang is classification ac-
cording to the importance of influence 
parameters.

Figure 2. The amount of variation of par-
ticular element
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Table 3. Factors of influence of the input parameters

dis. C Si Mn P S Cr Mo Ni V Al Cu

p 5.19 6.55 0.08 1.94 1.01 1.05 2.84 1.96 4.60 1.28 1.11 1.06
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Results and discussion

Before modeling of the hardness pro-
file basic statistic evaluations of pre-
dictions for whole data base were made 
and results are collected in Table 4 and 
Table 5.

In those two tables it can be seen that 
we can expect hardness prediction er-
ror smaller than HRc = 2. It is also clear 
that a tiny part of data base cannot fit 
into developed model.

Table 4. Basic statistic parameters for the 
absolute error of predictions

No. of predictions 19469

Mean 1.867

Median 1.169

Min. 0.00004

Max. 38.990

25th % 0.529

75th % 2.207

Table 5. Frequency table of absolute error 
distribution

Range Cumulative %

0–1 43.96

0–2 71.23

0–5 94.33

0–10 98.20

The results for hardness predictions 
for three most important chemical el-
ements (Table 3) – carbon, nickel and 
chromium are presented on Figure 3, 
Figure 4 and Figure 5. From higher and 
lower density of markers on these dia-
grams is evident that input data was not 
homogeneously distributed. Also less 
accurate predictions in boundary areas 
with no or little records in data base can 
be observed on these pictures. 

Data base contains steel grades with 
the same amount of carbon but differ-
ent amount of alloying elements and 
thus big variances in hardness value. 
This confirms our hypothesis that more 
than two input parameters must be tak-
ing into consideration if good enough 
predictions want to be achieved.

Nevertheless, from the pictures it can 
be seen the general law: carbon increase 
the hardness of steel and with growing 
distance from the quenched surface the 
hardness decreases. This is in agree-
ment with results from literature[2, 3]. 
On Figure 4 the nickel content influ-
ence is presented with surface in the 
3D graph. It can be seen that for lower 
nickel contents the influence of distance 
from quench surface is noticeable, but 
at higher nickel values stays almost the 
same.
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On Figure 5 the influence of chromium 
is presented. It can be seen that the hard-
ness at lower chromium contents near 
the quenched end decrease with the 
distance. But at bigger distances from 
cooled surface even slight increase in 
hardness can be observed. These unex-
pected results are due to lack of data but 
in the agreement with measurements 

Figure 6. At higher chromium contents 
the expected drop in hardness at larger 
distances can be observed.  

Effects of charge in chemical composi-
tion – variances within one steel grade 
were studied on case of most influential 
parameter – carbon.  

Figure 3. Dependence of hardness (mea-
sured – markers and predicted – area) upon 
amount of carbon and distance

Figure 5. Dependence of hardness (mea-
sured – markers and predicted – area) upon 
amount of chromium and distance

Figure 4. Dependence of hardness (mea-
sured – markers and predicted – area) upon 
amount of nickel and distance

Figure 6. Results from hardness measure-
ments dependent on amount of chromium 
and distance



114Hardenability prediction based on chemical composition of steel

RMZ-M&G 2009, 56

Low alloy steel VCNMO150
For these steel grade 323 different 
chemical compositions (charges) out of 
1508 were used for calculation, what is 
more than of 1/5 of whole data base. 
Note; for each chemical composition 
data up to 15 hardness measurements 
on different distances from surface is 
included in data base.

Two chemical compositions used in the 
process of hardenability prediction are 
shown in Table 6. 

On Figure 7 variations in hardness pro-
file are shown. Both full lines present 
hardness predictions, one for the sam-
ple with high carbon content (white cir-

cles)  and other predictions for the sam-
ple with low carbon (black circles).

Good criteria for variations in measured 
hardness are points with error bars 
placed along thin dashed line. They 
present average value of all measure-
ments at particular distance. The varia-
tions of measured hardness at chosen 
distance were more or less constant on 
the whole measured area.

From Figure 7 is obvious that effect 
of chemical composition variations on 
hardenability for this steel grade can 
be predicted. Evidently the predicted 
hardness and trend of hardenability 
are in good correlation with the results 
from Jominy test measurements. Dif-
ferentiation between sample with low 
and high carbon content and accurate 
prediction is in this case possible due to 
broad and accurate data base. 

Special structural steel CT207
Data base for CT207 is not compre-
hensive – it contains only 61 different 
chemical compositions (charges) out of 
1508. 

Figure 7. Measured and predicted hardness 
profile for steel grade VCNMO150
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Table 6. Chemical composition of two VCNMO150 steel samples in mass fractions, 
w/%

C Si Mn P Cr Al Ni Mo Cu

Clow 0.320 0.235 0.595 0.013 0.960 0.012 1.485 0.165 0.110

Chigh 0.430 0.290 0.690 0.021 1.530 0.015 1.720 0.230 0.210
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Two chemical compositions for steel 
grade CT207 with carbon content on 
upper and bottom border were used for 
prediction (Table 7). From error bars 
presented on Figure 8 big differences 
in measured data can be noticed. On 
the other hand increase in hardness at 
distances over 30 mm can be noticed  – 
the line which represents average value 
of all measurements. 

Special structural steel 42CrMoS4
Data base for 42CrMoS4 is also 
small – it contains only 66 differ-
ent charges, what is a little more than 
4 % of whole data base. Predictions of 
hardness profile after Jominy test were 
made for two test samples with differ-
ent chemical compositions; one with 
low and other with high carbon content 
(Table 8).

From Figure 8 it is obvious that effect 
of chemical composition differences 
on hardenability for steel grade CT207 
can be only roughly predicted. Differ-
ences in measured hardness are too big 
and thus generalization occurs. In spite 
of all that trend of hardenability is in 
good correlation; also increase in hard-
ness can be predicted.

Table 7. Chemical composition of two CT207 steel samples in mass fractions, w/%

Table 8. Chemical composition of two 42CrMoS4 steel samples in mass fractions, w/%

C Si Mn P Cr Al Ni Mo Cu

Clow 0.160 0.240 0.580 0.011 0.570 0.017 1.650 0.210 0.150

Chigh 0.210 0.260 0.610 0.015 0.660 0.027 1.680 0.220 0.220

C Si Mn P Cr Al Ni Mo Cu

Clow 0.390 0.230 0.670 0.018 1.080 0.015 0.090 0.180 0.200

Chigh 0.440 0.280 0.720 0.029 1.140 0.030 0.130 0.230 0.230

Figure 8. Measured and predicted har-
dness profile for steel grade CT207
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Variations in measured hardness near 
surface are small compared with those 
measured farther toward specimen cen-
ter (Figure 9). Near sample surface the 
measured differences can be practically 
neglect (HRc < 5). At distances 20 mm 
or more those variations can be almost 
HRc = 20. 

It is obvious that such big change in 
variations cannot be modeled very ac-
curate with the model which was devel-
oped for whole data base. In our opinion 
the predictions which were made for 
steel grade 42CrMoS4 can be described 
as successful. The differences in hard-
ness profile for different steel chemical 
composition can be observed.

Conclusions

It was successfully proved that neural 
networks are capable to make good and 

on narrow region focused predictions. 
In our case even if large and heteroge-
neous data base was implemented. 

If “necessary conditions” are fulfilled 
very accurate modeling of influences in 
chemical composition within one steel 
grade on hardness and hardenability can 
be made. The “necessary conditions” 
are: data base must have sufficient data 
vectors and they have to be representa-
tive data for treated steel grade. In the 
case of VCNMO150 this conditions 
were completely fulfilled and influence 
of carbon content on hardenability was 
successfully demonstrated. 

Also for steel grades which have a less-
er amount of data modeling of chemical 
composition influence on hardness can 
be made. The results are not as accurate 
but basic law can be deduced. For those 
steel grades the carbon content influ-
ence on the hardness was qualitative 
successfully predicted; quantitative 
predictions were less accurate. Basic 
hardness profile or average value was 
of course successfully modeled for all 
the predictions which were made dur-
ing this research.
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