ACTA CARSOLOGICA KRASOSLOVNI ZBORNIK XXIII (1994) RAZRED ZA NARAVOSLOVNE VEDE CLASSIS IV.: HISTORIA NATURALIS ZNANSTVENORAZISKOVALNI CENTER SAZU INŠTITUT ZA RAZISKOVANJE KRASA ~ INSTITUTUM CARSOLOGICUM ACTA CARSOLOGICA KRASOSLOVNl ZBORNIK XXIII 1994 PROCEEDINGS OF 1st international karstological school "classical karst" Lipica, September 20 - 23, 1993 AND la table ronde internationale "e. a. martel et le karst slovene (1893-1993)" Postojna, 12-13 Novembre, 1993 LJUBLJANA 1994 Sprejeto na seji razreda za naravoslovne vede Slovenske akademije znanosti in umetnosti dne 24. novembra 1994 in na seji predsedstva dne 31. januarja 1995 Uredniški odbor - Editorial Board Jože Bole, Jože Čar, Ivan Gams, Andrej Kranjc, Mario Pleničar, Trevor R. Shaw, Tadej Slabe Urednik - Editor Andrej Kranjc Prevode v tuje jezike so oskrbeli avtorji in Maja Kranjc. Translated by the authors and Maja Kranjc. Zamenjava - Exchange Biblioteka SAZU Novi trg 5/1, 61000 Ljubljana, p.p. 323, Slovenija Naslov uredništva - Editor's address Inštitut za raziskovanje krasa ZRC SAZU SI - 66230 Postojna, Titov trg 2, Slovenia Tiskano s finančno pomočjo Ministrstva za znanost in tehnologijo RS, Ministrstva za šolstvo in šport RS, UNESCO programa participacije in Slovenske nacionalne komisije za UNESCO ter Znanstvenoraziskovalnega centra SAZU. Published by the financial assistance of Ministry of Science and Technolog}' RS, Ministry of Education and Sport RS, UNESCO Participation Programme and Slovenian National Commission for UNESCO and by Scientific Research Centre SAZU. Po mnenju Ministrstva za kulturo Republike Slovenije št. 415-144/93 mb, z dne 12.1.1993 je publikacija uvrščena med proizvode, za katere se plačuje 5-odstotni davek od prometa proizvodov. VSEBINA - CONTENTS Andrej Kranjc Uvodnik......... PAPERS PRESENTED AT INTERNATIONAL KARSTOLOGICAL SCHOOL "CLASSICAL KARST", LIPICA, SEPTEMBER 20™ - 23"° 1993 PRISPEVKI PREDSTAVLJENI NA 1. MEDNARODNI KRASOSLOVNI ŠOLI "KLASIČNI KRAS", LIPICA, 20. - 23. SEPTEMBRA 1993 Branka Berce-Bratko UNESCO Biosphere Reserve: Notranjski kras as a strategy for conservation and development....................................................................................................................13 UNESCO Biosferno območje: Notranjski kras kot strategija za sočasno varstvo in razvoj.........................................................................................................................32 Dora P. Crouch Geological basis of ancient Greek colonization.............................................................35 Geološke osnove starogrške kolonizacije.......................................................................53 Franco Ciicchi - Fabio Forti - Furio Ulcigrai Valori di abbassamento per dissoluzione di superfici carsiche.......................................55 Zniževanje kraškega površja zaradi korozije..................................................................61 Martin Knez Phreatic channels in Velika dolina, Škocjanske jame (Škocjanske jame caves, Slovenia).................................................................................63 Freatični kanali v Veliki dolini (Škocjanske jame, Slovenija)........................................71 Janja Kogovšek Impact of human activity on Škocjanske jame...............................................................73 Odraz človekove dejavnosti v Škocjanskih jamah.........................................................80 Andrej Kranjc About the Name and the History of the Region Kras.....................................................81 O imenu in zgodovini pokrajine Kras.............................................................................90 E. P. Loehnert Hydrogeological Aspects of Cretaceous Limestone Karst in Westphalia, FRG.............91 Hidrogeoloske značilnosti krasa na krednih apnencih v Vestfaliji (ZRN)......................96 Andrej Mihevc Brkini Contact Karst.......................................................................................................99 Brkinski kontaktni kras.................................................................................................108 Danijel Rojšek Inventarisation of natural heritage................................................................................Ill Inventariziranje naravne dediščine...............................................................................121 France Šušteršič Classic dolines of classical site.....................................................................................123 Klasične vrtače klasičnega krasa..................................................................................152 Marko Vrabec Some thoughts on the pull-apart origin of karst poljes along the Idrija strike-slip fauh zone in Slovenia...................................................................................................155 Nekaj misli o razporaem (pull-apart) nastanku kraških polj ob idrijskem zmičnem prelomu........................................................................................................168 PAPERS PRESENTED AT INTERNATIONAL ROUND TABLE "E. A. MARTEL ET LE KARST SLOVENE", POSTOJNA, 12™ - 13™ NOVEMBER 1993 PRISPEVKI PREDSTAVLJENI NA MEDNARODNI OKROGLI MIZI "E. A. MARTEL IN SLOVENSKI KRAS", POSTOJNA, 12. - 13. NOVEMBER 1993 Andrej Kmnjc Edouard Alfred Martel and Slovene Karst...................................................................171 Edouard Alfred Martel in slovenski kras......................................................................176 Brigitta Mader E. A. Martel in Briefen an Carlo Marchesetti und Erzherzog Ludwig Salvator...........177 Pisma E. A. Martela Carlu Marchesettiju in nadvojvodi Ludwigu Salvatorju.............190 Karl Mais Kraus und Martel - eine verbindende Achse in Sache Karst........................................191 Kraus in Martel - avstrijsko-francoska povezava pri raziskovanju krasa.....................204 Andrej Mihevc Martelova dvorana v Škocjanskih jamah......................................................................205 The Martel's Chamber in Škocjanske jame..................................................................214 Danijel Rojšek Škocjanski jamski splet and E. A. Martel's Les Abimes..............................................215 Škocjanski jamski splet in Martelova knjiga Les Abimes............................................220 Trevor R. Shaw The wider purpose of Martel's visits abroad................................................................221 Razlogi Martelovih obiskov tujega krasa.....................................................................231 Stanka Šebela The caves Jama na poti and Zguba jama......................................................................233 Jama na poti in Zguba jama..........................................................................................242 ČLANKI PAPERS Boris Bulog Dve desetletji funkcionalno-morfoloških raziskav pri močerilu (Proteus anguinus, Amphibia, Caudata)......................................................................................................247 Two decades of functional-morphological studies of Proteus anguinus (Amphibia, Caudata).....................................................................................................258 Alenka Gaberščik - Gorazd Kosi - Ciril Krušnik - Olga Urbanc-Berčič - Mihael Bricelj Kvaliteta vode v Cerkniškem jezeru in njegovih pritokih............................................265 Water quality in Lake Cerknica and its tributaries........................................................283 Ivan Gams Types of the poljes in Slovenia, their inundations and land use...................................285 Tipi kraških polj v Sloveniji, njihove poplave in raba tal.............................................300 Martin Knez Paleoekološke značilnosti vremskih plasti v okolici Škocjanskih jam.........................303 Paleoecological properties of the Vreme beds in the vicinity of Škocjanske jame (Škocjanske jame Caves, Slovenia)..............................................................................344 Trevor R. Shaw Baron Herberstein on the Cerknica karst lake - a phantom book of the 16th century? 349 Baron Herberstein o Cerkniškem jezera - neobstoječa knjiga iz 16. stol.?..................357 Trevor R. Shaw The Bonewell spring (England) in Valvasor's "Die Ehre dess Herzogthums Crain" (1689) - the author's sources.......................................................................................359 Izvir Bonewell (Anglija) v Valvasorjevem delu "Die Ehre dess Herzogthums Crain" (1689) - avtorjevi viri...................................................................................................367 Tadej Slabe Dejavniki oblikovanja jamske skalne površine ............................................................369 The factors influencing on the formation of the cave rocky surface.............................397 PREDGOVOR V letu 1993 je Inštitut za raziskovanje krasa ZRC SAZUpriredil troje pomembnejših mednarodnih strokovnih srečanj: na pobudo Slovenske nacionalne komisije za UNESCO 1. Mednarodno krasoslovno šolo "Klasični kras " septembrov Lipici, konec istega meseca mednarodni simpozij, posvečen 70-letnici akademika I. Gamsa, "Man on karst" v Postojni, novembra pa mednarodno okroglo mizo "E A. Marte! et le karst Slovene ". Prvotno smo načrtovali objaviti gradivo vseh treh srečanj v XXH1. številki Acta carsologica. Ker pa se je nabralo precej več gradiva, kot smo pričakovali, posebej še več tehtnih prispevkov o slovenskem krasu in krasoslovju izven programa teh srečanj, smo morali gradivo razdeliti na dva dela. Tako je v pričujoči številki objavljeno gradivo 1. Mednarodne krasoslovne šole "Klasični kras " in mednarodne okrogle mize "E A. Martel et le karst Slovene " ter seveda članki, ki jih je uredništvo sprejelo v objavo izven teh prireditev. Precej prispevkov, ki so bili predstavljeni na omenjenih mednarodnih srečanjih, povsem ne ustreza kriterijem za "izvirne znanstvene razprave ", kar pa je seveda razumljivo, saj so kriteriji in omejitve, predvsem prostorska oziroma časovna omejitev, za take prispevke drugačni. To pa ne pomeni, da bi bili zato manj vredni ali manj strokovni. Gradivo simpozija "Man on karst"pa bo objavljeno v naslednji, XXIV. številki Acta carsologica. Posebej bi želel opozoriti na prispevke o slovenskem krasu, ki so jih napisali avtorji, ki niso člani Inštituta za raziskovanje krasa, bodisi da gre za upokojenega univerzitetnega profesorja, za raziskovalca z univerzitetnega inštituta ali za Angleža, v vsakem primeru to potrjuje, da Acta carsologica ni le inštitutsko glasilo in upam, da bo revija še dalje uspešno težila v smeri proti resnični "osrednji krasoslovni reviji". Urednik INTRODUCTION In 1993 the Karst Research Institute ZRC SAZU has organized three important international professional meetings: by the initiative of the Slovenian National Commission for UNESCO the First International Karstological School "Classical Karst" in September at Lipica, at the end of the same month the international symposium, dedicated to the 70th anniversary of the academician I. Gams "Man on Karst" at Postojna, in November the international round-table "E.A. Martel et le Karst Slovene ". At first we planned to publish the material of all the three meetings in the 23''"' volume of Acta carsologica but there was much more material than we expected, in particular much more substantial contributions regarding the Slovene karst and karstology and thus we were forced to divide the material into two parts. In the present volume we publish the papers presented at the First International Karstological School "Classical Karst" and at the international round-table "E.A. Martel et le Karst Slovene " and the articles, received by the editorial board to be published out of these two meetings. There are several papers, presented at the above mentioned international meetings, that do not correspond entirely to the criteria of "the original scientific treatise " but it is self-understanding as the criteria and the limitations, in particular the time limitation, adopted for such papers are entirely different. But it does not diminish their value and it does not mean that they are less professional. The material concerning the symposium "Man on Karst" will be published in the next, 24"' volume of Acta carsologica. In particular I should like to draw your attention to the communications about the Slovene karst written by the authors who are not the members of the Karst Research Institute, fe. retired professor of the University, researcher of the University Institute or an Englisman, all confirming, that Acta carsologica is not the Institute's internal bulletin but that this publication is successfully aimed towards virtual "central karstological review ". The Editor papers presented at i^t international KARSTOLOGICAL school "classical karst", lipica, september 20™ - 23^» 1993 prispevki predstavljeni na 1. mednarodni krasoslovni šoli "klasični kras", lipica, 20. - 23. septembra 1993 unesco biosphere reserve: notranjski kras as a strategy for conservation and development UNESCO BIOSFERNO OBMOČJE: NOTRANJSKI KRAS KOT STRATEGUA ZA SOČASNO VARSTVO IN RAZVOJ BRANKA BERCE-BRATKO Izvleček UDK 504.7(497.12-13) Branka Berce-Bratko: UNESCO biosferno območje: Notranjski kras kot strategija za sočasno varstvo in razvoj UNESCO MAB Biosferno območje Notranjski Kras predlagamo kot strategijo, ki sočasno omogoča varstvo in razvoj območja. Osrednji del je Notranjski park, ki sodi v kategorijo regionalnih parkov. Le ta predstavlja osrednjo in varovalno cono MAB - Biosfemega območja, prehodno cono MAB območja pa ozemlje vseh štiri občin: Logatec, Postojna, Cerknica in Ilirska Bistrica. Poleg prednosti in slabosti UNESCO kategorije "Biosferno območje" je predstavljen tudi eko-turizem kot oblika primernega razvoja ter možne oblike upravljanja Notranjskega parka glede na dejstvo, daje pretežna večina zemljišč v zasebni lasti. Ključne besede: Biosferno območje, človek in kras, varstvo, razvoj, trajnostni-sonaravni razvoj, biološka raznovrstnost, kulturna raznovrstnost, sprejemljivost oz. obremenitvena zmogljivost, sonaravni turizem, eco-turizem, upravljanje, sistemi upravljanja, ureditveni in upravljalski plani. Abstract UDC 504.7(497.12-13) Branka Berce-Bratko: UNESCO Biosphere Reserve: Notranjski kras as a Strategy for Conservation and Development UNESCO-MAB Biosphere Reserve is proposed as contemporaneous conservation and development strategy based on Notranjski Park in a category of Regional park. The Core and Buffer zones of the MAB Reserve are within the Park's terrioty, and the Transitional zone is within the boundary of the four Municipalities: Logatec, Postojna, Cerknica and Ilirska Bistrica. Beside advantages and deficiencies of the MAB Reserve eco-tourism is discussed as one of the suitable development strategies and different management plans for the Notranjski park are discussed in a view of predominantly private ownership of the land. Key words: Biosphere reserve, man and Karst, conservation, development, sustainable development, biodiversity, cultural diversity, carrying capacity, sustainable tourism, eco-tourism, management plans, system plans. Address - Naslov dr. Branka Berce-Bratko Projektna skupina: Notranjski park, AREA, C. 4. maja 51, SI-61380 Cerknica INTRODUCTION The group Notranjski Park in AREA Cerknica has achieved to propose the area of the •four Municipalities: Logatec, Postojna, Cerknica and Ilirska Bistrica to UNESCO as Man and Biosphere Reserve (MAB-Reserve) called Notranjski kras. The idea was to establish Notranjski Park as first international recognition as MAB Reserve and the strategy was devised to achieve it. For cooperation with inhabitants, employees of AREA and local politicians, including promotion of the eco-tourism Liliana Mahne was responsible, for legal status of the park Matjaž Mlinar and the theoretical part and international connections were the responsibility of Branka Berce-Bratko. This paper is a joint venture of the group which collaborated in research project: Man and Karst. In this paper strategies of UNESCO for MAB reserves will be discussed in perspective of the regional park of Notranjski park, eco-tourism and management strategies for the Park in a view of participation in management as the majority of the land is owned privately. WHAT IS UNESCO MAB RESERVE The MAB Programme is a nationally based, international programme of research, training, demonstration and information diffusion aimed at providing the scientific basis and the trained personnel needed to deal with problems relative to rational utilisation and conservation of resources and resource systems and, to human settlements. The MAB Programme emphasizes research for solving problems; it thus involves research by multi-disciplinary teams on the interactions between ecological and social systems; field training; and the application of a systems approach to understanding the relationships between the natural and human components of development and environmental management (Practical Guide to MAB, 1987). MAIN CONCERNS OF MAB There were three main concerns present in the biosphere reserve concept from the beginning, and these are: 1. the need to reinforce the conservation of genetic resources and ecosystems and the maintenance of biological diversity (conservation concern); 2. the need to set up a well-identified international network of areas directly related to MAB field research and monitoring activities, including the accompanying training and information exchange (logistic concern); 3. the need to associate concretely environmental protection and land resources development as a governing principle for research and education activities of the MAB programme (development concern). It is the combination - and harmonization - of these three concerns which characterize the Biosphere Reserve. SPATIAL DISTRIBUTION OF MAB The biosphere reserve should normally consist of the three following types of areas: 1. Core area or areas Each biosphere reserve includes one or several core areas which are strictly protected according to well defined conservation objectives and consist of typical samples of natural or minimally disturbed ecosystems. Collectively these core areas should be large enough to be effective as in situ conservation units and, whenever possible, have value as benchmarks for measurements of long term changes in the ecosystems they represent and in the biosphere. The size and the shape of the core area(s) depend on the type of landscape or aquatic environment in which they are located and on the conservation objectives they are intended to meet. They can obviously be much larger in regions of low human population density than in regions with heavier human pressure and less available land. Core areas are usually delineated, but may remain undelineated in certain cases within a delineated buffer zone. 2. Buifer zone The core areas are normally surrounded by a buffer zone which must be strictly delineated and very often corresponds, together with the core areas, to a single and autonomous administrative unit (e.g: national park). This buffer zone must have a clearly established legal or administrative status even when several administrative authorities are involved in its management. Only activities compatible with the protection of the core areas may take place. This includes, in particular, research, environmental education and training, as well as tourism and recreation or other uses carried out in accordance with the management requirements. Besides its other functions, the buffer zone often serves to protect areas of land that could be used to meet future needs for experimental research. 3. Transition area The core area(s) and the buffer zone are surrounded by a transition area which promotes several characteristic fianctions of the biosphere reserve, particularly its development func- tion. It may include experimental research areas, traditional use areas or rehabilitation areas. Usually, the transition area as a whole is not strictly delineated and corresponds more to biogeographic than to administrative limits. It normally extends the above- mentioned areas into a larger and open area where efforts are made to develop cooperative activities between researchers, managers and the local population, with a view to ensuring appropriate planning and sustainable resource development in the region while maintaining the greatest possible harmony with the purposes of the biosphere reserve. The management of the transition area is usually the responsibility of a variety of authorities and therefore requires appropriate coordination arrangements. MAB networks MAB supports international cooperation in research through its international networks where the sharing of information and resources is mutually beneficial to the cooperating countries. These networks are all informally constituted and there is no "ofFicial" MAB elaboration procedure. They differ greatly in character and in objective, as well as in their regional or international extent and degree of development. Some are based on geographical proximity, such as the countries of the southern cone of South America, and others on common linguistic or socio- cultural background, such as Francophone African countries. Wider in scope are the MAB Pilot Project Networks and the Biosphere Reserve Network, where common research frameworks and well- developed scientific exchange are encouraged. MAB Networks, whether regional or international are linked through: - voluntary cooperation; - information exchange; - exchange of scientists and researchers through consultant missions, study tours, field vis- its, training courses, etc.; -joint meetings, seminars, workshops. In addition, some Networks are linked through: - comparability of research design and data collection; -joint training programmes; - formal information systems; - network newsletters. PROPOSAL FOR BIOSPHERE RESERVE: NOTRANJSKI KRAS The proposed area is apart of karst area placed in Slovenia, a newly established European state. The boundary of this area is formed by four local communities: Logatec, Cerknica, Postojna and Ilirska Bistrica. Biosphere area: 1672 km^ Number of inhabitants: 59904 Number of settlements: 279 Number of Local Communities 52 Number of Municipalities 4 The proposed conservation area or core zones are protected areas which are a part of proposed Regional park - Notranjski Park. The Buffer zone is estimated on 570 kml To this area additional 200 or 400 km^ might be added as a part of scenic areas of karst geology in Slovenia serving as buffer and transitional zones. The natural landscape area is designated as Nature reserves with exceptional values according to lUCN categorisation: a) lUCN Category I: 2 000 ha b) lUCN Category III: 14 000 ha c) lUCNCategorylV and V: 41 000 ha These are: a) Parts of Snežnik massif and some caves, b) Snežnik and Javomik massif, and some periodical lakes (2), parts of Cerknica lake (3) and karst caves (10), c) various unique habitats: proteus, brown bear, lynx, wolf, different endemic birds, and Protected Cultural Landscapes. These areas of karst geology are of outstanding value in terms of world's natural heritage as: - karst eco-systems, - preserved biological resources in terms of genetic resources, and caves as heritage of karst geomorphology, - preserved traditional ways of farming, land use and landscape management, - drinking water resource reserve, - scientifically very important area for the research of cohabitation between natural systems and man's impacts on karst nature. The Cerkniško polje (Cerkniško plain) and its intermittent lake are proposed as Natural Heritage to be declared by Regional Government and is proposed to RAMSAR international convention. Cerknica lake is the the first drying up karst lake to be explored, and Valvasor became a Member of Royal Society in 1664 because of his description of that lake. Cerkniško jezero is internationally recognised as IBA, there are breeding about 90 species of birds. In lUCN Red List of Threatened Animals are 9 species of birds in categoi7 (E), 19 are in category V, and 6 are in category R (Gregory, Matvejev 1992). The karst area is particularly valuable for the biological diversity of its underground habitat, with 30 endemic species in Notranjski Karst recorded in the lUCN Red List of Threatened Animals. Significant is the karst system of river Ljubljanica with unique karst fields (polje), sink wholes and caves (e.g. Križna, Postojnska and Planinska jama) on the North West border of Dinaric mountains. On pure limestone area the river has found her underground way, but on impermeable areas is still running on the surface, and always with different name. It sinks eight times, and so the same river has 7 different names, there are some smaller periodical lakes like, collapsed dolina Rakov Škocjan. The only tectonically undisturbed transact through Mesozoic of South Eastern Europe from Borovnica to Kališe, the system of river Ljubljanica has the biggest known number of hypogean Taxons in the world. Many of them are endemic, even narrow endemic. The area has also the largest uninterrupted, natural and intact woodland area on the border between Dinaric and Alpine mountain chain. It is also known as Western most habitat of the brown bear in Europe with wolfs and lynx. The area is also a European foot-path between Baltic and Adriatic sea, and a nature reserve for endangered species of birds and plants. Visually the area changes every day, when the water is at its peak it is the greatest karst lake surface with the biggest island in Slovenia. The area offers a great landscape variety within a small area. Beside the core zones as strictly protected areas, there are cluster buffer zones as a part of protection policies concerning UNESCO -World Natural Heritage - Škocjanske jame. The Notranjska river is a wider buifer zone to Škocjanske caves. The smaller part of the South West buffer zone is a part of fiiture Kras Regional Park and is proposed on behalf of local inhabitants. The area proposed to MAB as Notranjski Karst is a part of the Kras Region in Slovenia. Long term we expect this area to be proposed as an extension of the proposed MAB Reserve. The proposal for an extension is viable after local people agree to it, like in the case of Notranjski Karst. The decision to make the border of the proposed MAB reserve was the convinience of four Municipalities which agreed to nomination of this area to UNESCO. Figure No. 1. is showing the MAB area with zonation. Park area and neighbouring protected landcsapes (Fig.l). In Notranjski Kras efforts are made to preserve the regional spatial, social and cultural identity. In that context originality and independence of inhabitants are their advantage, and the awareness of landscape values, such as: -identity of cultural landscape, natural and cultural heritage -variety enabling choice, and the choice means freedom -comprehension that man is an integral part of nature -ecological value of drinking water and conservation value. PROPOSAL FOR REGIONAL PARK: NOTRANJSKI PARK The buffer zone of the MAB Reserve is Notranjski Park shown on Figure No.l. Regional park is defined according to International Union for Conservation of Nature and Nature Resources- lUCN (1975) as: a relatively large area where one or several ecosystems are not materially altered by human exploatation and occupation, where plant anbd animal species, geomorphological NOTRANJSKI KARSX ? UNESCO-BIOSPHEtE RESERVE TRANSITIONAL ZONE -J (Um NOTRANiSSCA REGION] ij' J RAILWAY STATIONS CAVES f i 1 TOURIST IFORMA'nON CiLN'Tj^fiS ^^ MOTORWAY -—TRAFFIC LINKS — RAILWAY LINKS sites and habitats are of specific scientific, educative and recreative interst or which contain a natural landscape of great beauty. The proposed conservation area of Notranjski Regional Park is estimated on 400 km". To this area additional 200 or 400 km^ might be added as a part of scenec areas of Carst geology in Slovenia. The natural landscape area is designated as Regional Park and the cultural landscape area as the Country Park. A) Regional Park includes Cerknica and Planina plaine, Pivka and Javor massive, Postojna and Križna caves. B) Country Park includes Snežnik and Javor massive. These areas of karst geology are of outstanding value in terms of world's natural heritage, such as carst caves, drying up or sesonal carst lakes. Cerknica lake is the biggest drying up carst lake in the world, and the largest continous (uninterrupted) natural or intact woodland area, and as Western most habitat of the brown bear in Europe. The area is European foot-path between Baltic and Adriatic sea , and a nature reserve(ation) for endengered spccioius of birds and plants. Visually the area changes every day, when the water level is at its peak it is the greatest carst lake surface with the biggest island in Slovenia. The area offers a great landscape variety within a small area. Beside natural qualities there are some small scattered settlements, approximately 20 hamlets with not more than 3000 inhabitants. Strategies and measures to achieve conservation and development: To promote both in the karst area which is known as one of the most sensitive eeo systems, it is needed: - information and education of local people and visitors in ecological terms and sustainable development options - raising awareness of the uniquness of the karst systems - democratic approach with widespread public involvements to achieve ecologically sound development - participation and collaboration of local people in all matters of conservation and development - monitoring and research of the area utilising the special knowledge and expertise of scientists, both those who live locally and experts from sarthir afieled - action plan to prepare Management Plan - preparation of Management plan in consultation with inhabitants. To elaborate this proposal eco-turism is discussed in more detail. ECO-TOURISM AS STRATEGY FOR DEVELOPMENT AND CONSERVATION The Biosphere reserve offers unique opportunity to maintain the natural and cultural heritage enhanced with human activities appropriate to the formal status of the area. Tourism can be beneficial to local residents in economic and social terms, but can cause problems in terms of conservation of the area. There are conflicts between conservation and development, local identity in economic terms has to be enhanced by initiating locals to be entrepreneurs in tourism, for the purpose of conservation some strategies has to be devised. CONFLICT BETWEEN CONSERVATION AND DEVELOPMENT The concept of sustainable development is a relatively recent one, resulting from concern that the needs and ways of life of an ever growing world population are outstripping our planet's capacity to support us. "Caring for the Earth" a report produced in 1991 by the World Conservation Union (lUCN), World Wildlife Fund (WWF) and the United Nations Environment Program (UNEP), sets out a strategy for sustainable living. The strategy defines sustainable development to mean: "improving the quality of human life while living within the carrying capacity of supporting ecosystems" (Loving them to death, p.36). According to lUCN, there are categories as follows: I - Scientific reserve/strict nature reserve with exceptional visits allowed. II - National Park, primarily serves the ftinction of conservation. III - Natural monument, strictly protected. IV - Managed nature reserve or wildlife sanctuary with limited visits. V - Protected landscape which enable visiting under certain rules of sustainability and equals regional designation ( Notranjski park ) and English National Parks. These landscapes are less protected and allow visitors to enjoy and explore the area. VI - Resource reserve has different uses which are ecologically viable. VII - Natural biotic area or anthropological reserve important on local and regional level. VIII - Multiple use management area/manager resource has different uses which has to be in terms of sustainable development. IX - Biosphere reserve which has three zones : core-zone which equals to nature reserve and is strictly protected, buffer-zone equals to lUCN category V, and those two zones are either natural original territories, transitional-zone where more or less scarcely populated areas around the park are joined together into MAB-reserve. X - World Heritage Site is outstanding site of international importance in rarity, scientific importance and beauty. Conservation is of particular concern, but some of the growing demand for leisure-tourism or special interest-tourism has to be met within such areas because it is believed that it can generate local economy in a sustainable way. The lUCN recommendations: 1. Additional legislation is needed at European and national levels to ensure that effective national systems for protected areas are established in all european courtiers. This legislation should include controls over tourist activities and tourism developments. Sufficient resources must be provided to manage protected areas adequately; 2. Tourism development should only take place in and around protected areas if it is sustainable in the long term; 3. National sustainable tourism strategies and policies must be developed which set protected areas and their immediate surroundings in a wider context; 4. Improved information and trends on tourism related to protected areas is needed at European, national and local levels. Better information systems are needed to use this data and these should be compatible between different parks; 5. The tourism sector must adopt policies for sustainable operation for tourism associated with protected areas and adapt their practices so its to be sustainable; 6. Protected - area managers and the tourism sector must work more closely together to develop sustainable forms of tourism for protected areas and in order to pool resources and skills; 7. Standards and safeguards are needed for sustainable tourism operations related to protected areas. A European Charter for Sustainable Tourism for Protected Areas needs to be agreed by protected - area managers and the tourism sector and adopted for use throughout Europe. Inhabitants and tourism Looking to this problems it is important to establish the potential market and organise locally based initiative in enterpreneurship in tourism "industry" developing soft tourism with local inhabitants where tourism is a part of their income generated in the park area. MODERN TOURIST TRENDS AND MARKET GROUPS Initial characteristics of contemporary tourist trends in the world: - gradual increase of numbers of tourists, - aging of the tourist population in general, - general increase of tourist flexibility in terms of time and space concerning the spatial distances, - in general search for a higher quality in every aspect of tourist service, - aspirations for contents of vacations enriching personal development, - the importance of activities on vacations has gradually increased, -general increase in ecological consciousness of tourists. For the analysis of tourist trends in Slovenia the data from the research of Ingrid Petrovič and Petra Kalan for the year 1991 can be used. According to authors mentioned in Slovenia there were 32% tourists of domestic origin. The same data can be traced in Studio Marketing research stating that Slovenians are the most important tourist guests to Slovenia as they represent 33% of all official overnight lodgings. The age structure varies considerably, but the majority represent guests of middle age group. The vast majority are traveling with their families, 57 percent; with friends 22 percent, with partners 18 and alone 3. The surveyed tourists mainly stay in one place, 1/5 is traveling and taking a vacation together, while 1 /5 is only traveling. The highest percentage takes vacations only once a year at the coast. 25 percent are taking holidays in the spring and autumn. Beside the coast the most popular vacation isto the mountains. For Slovenia it is characteristic that 7 percent of domestic tourists are taking their vacation in the countryside. Their intents are: - rest 20 percent - the discovery of new places and people 29 percent - recreation 18 percent The destination is decided mainly according to the recommendation of friends. The primary transport is by car, but it is encouraging that 3 percent are cycling and 4 percent are on foot. It is characteristic, that 41 percent of the surveyed tourists has at least 10 one-day-trips a year. The potential markets were distinguished into: home, neighbouring and distant markets. STRATEGIES TO ACHIEVE CONSERVATION IN AREAS OPENED TO TOURISM To achieve conservation it is necessary to establish carrying capacity for different areas and to zonate areas accordingly. As a pilot example the Cerkniško jezero is proposed for zonation. In the case of Notranjski park most of the lUCN recommendations are acceptable and are enhanced with UNESCO - MAB programme guidelines. One of the important development tasks is the tourist-product of the Notranjski regional park. NOTRANJSKI PARK ZONATION From the international data of (Boo,WWF 1988) it is evident that country's natural areas were the main criterion in selecting destination (56%), very important (28%) for visitors. Similar results were obtained in our own Survey (Bratko et al., 1992). Therefor it is of prime importance to preserve the most valuable areas from destruction. From the experience abroad and in our country it appears that zonation is the most appropriate strategy. In the central zone of Notranjski park only scientific visitors are allowed in butTer zone guided visit and free access to visitors is enabled. The proposed zonation corresponds to UNESCO-MAB recommendations. ZONES FOR RECREATION AND TOURISM IN AND AROUND PROTECTED AREAS 1. A sanctuary zone which is strictly protected from any form of tourism development. 2. A quiet zone where access is limited to small, mainly guided groups and few faccilites are provided. 3. A zone for compatible forms of tourism without additional development where activities and facilities compatible with the type of protected area continue but without further development of facilities. 4. A zone for development of sustainable forms of tourism where activities and developments, compatible with the type of protected area concerned, are developed. Tourism should be based around nature, cultural and educational activities. Developments should be small-scale and in keeping with the local culture and building styles. The zonation of the Cerkniško jezero is presented in Figure no.2 After looking to the the conservation and development aspects the aims for the project were decided as follows: a. The continuance of relationship between man end environment on this territory in such a way, that the natural environment is preserved also for next generations; b. employment opportunities of local people; c. making the conditions for promotion, visiting and researching of this territory; d. making a collective product of Notranjska territory and indirectly creating the Notranjska identity as the today's and world's principles demand in tourist market. ACTIONS The first steap in developing sustainable tourism was to hold seminar involving researches, local administrations, managers of protected areas and tourism developers. The action plan for sustainable tourism in Notranjski park will be an integral part of the national plan for tourism. It includes the following aspects: 1. The control of tourism in the reserve; the issue of regulations and the training and testing of guides. 2. The diverzification of tourism: including rest cures and recreation such as sport fishing, canoeing, flying, cycling, caving, rural and scientific tourism. 3. Zoning in time and territory: tourism activity will be spread across the buffer and transitional zones according to thein carrying capacity. This will enable the carst and the forest areas to b more fully used throughout the year. 4. A system of information: is needed for both: tourists and local people and includes: the publication of infomiation, the marking of strictly protected areas, camping, fishing zones, cavex, the organization of guided traveling..... In order to attain these goals which are in accordance with UNESCO - MAB programe listed strategies were defined: THE NOTRANJSKI PARK ZONATION PROPOSED DIVISION OF THE PROTECTED AREA: 1,2 - OSREDNJI PREDEL 3 BLAXILNi TREDEL 4 - TURIS ! IČNI PRKDE!, p^S CKNTRAl,'iONE ----- BUFFER ZONR - TOURISI ZONK a. arrangements that are necessary for protection, conservation and sustainable development; b. a consistent protection of natural and cultural environment; c. research of needs for the protectoin and conservation and establishment of conditions for advancing the co-natural model of development; e. establishment of international connections; f promotion and information; g. permenent education of inhabitants and visitors. MANAGEMENT AND FINANCIAL ORGANISATION OF NOTRANJSKI PARK To discuss this matter it is of prime importance to look for legislative background to be able to find proper management and financial organisation. LEGISLATIVE BACKGROUND Important existing legislation where the Bill on Notranjski Park can endorse acts and paragraphs with comments are: - Bill on Natural and Cultural Heritage, 1981 On the basis of this particular legislation the Triglav National Park had been established, at the very moment the only park of "national - state " importance which represents 4% of the national territory. According to the last Strategy of Nature Protection there is the intention to designate for protection approximately 20% of the total territory of the State of Slovenia. The major shortcomings of the Bill Of Natural and Cultural Heritage is that it regimes of protection are based on prohibitions, and there is not specified what is permitted and under what conditions. There is no guidance given in what way it would be permissible to develop this area, so also no directions are available on competence of administration and control of protection ( guardianship) and the same applies to the problem of development. The most important regulations are: - competence, - authority(authorization), - finance, - relations towards other users, - relations towards local government, - relations towards inhabitants, and - relations towards associations. If all these regulations are not determined there are major problems which are evident not only in financial side but could eventually lead towards the closure of the Park. Because of these shortcomings only Bill on Natural and Cultural Heritage is not suitable as the basis to designate and establish the parks. - The Bill on Environmental Potection, 1992 The Bill is widely based as the Bill on Natural and Cultural Heritage as h also deals with problems of environmental protection, pollution, quality of life. This Bill is of prime importance because it allows direct designation in a package in connection with spatial planning legislation. The main problem is that spatial planning legislation is only being prepared. Management concerns are based on the fact that Regional park is dependent on many development sectors, not only nature nonservation. Therefor the proposal is put forward for the management system which is called GOVERNMENT AGENCY and its main task is to be integral to overcome problems seen by one sector only. The concessions for: - scientific research, - promotion and information, - coordination of conservation and protection, - coordination of development. Beside concessions there is a need to provide the genuine democracy in establishment of park by naming the COUNCfL of the park which consists of political bodies and local people, especially professionals of nature conservation and different nature conservation and ecological associations. This Agency should establish legal body to enable the financial construction for the establishment of the Notranjski Regional Park. The actual political position is that Government Agency should be in place for the Notranjski Park funded either from National or Regional budget. The proposal presented in figure No. 3. is an alternative where there is Public Agency fiinded nationally and has the responsibility of programming park activities, planning responsibilities, the overall co-or-dination of conservation and development with mainly budgetary funding for conservation and responsibility for financing the operation of the park required as their statutory duty. Beside already described responsibilities they are responsible for concessions and licensing for conservafion and development purposes. The new idea is that inhabitants will be participants in shareholder company called Notranjski Park responsible for actual conservation implementation on their properties, promotion and marketing of the park. The idea behind it is that marketing part is located in a separate company which operates as shareholder company where profits are used privately. CONCLUSIONS In the case of Notranjski park most of the lUCN recommendations are acceptable and are enhanced with UNESCO - MAB programme guidelines. The aim of the project is to establish MAB Reserve Notranjski Kras and Regional Park. Eco-torism and maqnagement possibilities were discussed in order to show possibilities and the variety of approaches. Major activities are: - conservation, - appropriate development, STATE COUNCIL OF THE GOVERNMENT OF THE REPUBLIC SLOVENIA law power authority GOVERNMET AGENCY INTERDEPARTEMENTAT GOVERNMENT 1 AGENCY government office institution programming planning financing co-ordinating IN iEKNATIONAL LINKS (UNESCO) RESEARCH ACTIVITIES || concession - license NOTRANJSKI PARK shareholder company conservation implementation promotion marketing - research - logistics, - international co-operation, - legal status - managerial and financial, - promotion and information. In order to attain these goals which are in accordance with UNESCO - MAB programme listed strategies were defined and arrangements that are necessar>' for protection, conservation and sustainable development like: - consistent protection of natural and cultural environment by helping with proper legislation and implementation, - research of needs for the protection and conservation, - establishment of conditions for advancing the co-natural model of development, - establishment of international connections, - promotion and information, - permanent education of inhabitants and visitors, are the first priority and are being inplemented in the proposed area of the MAB Reserve and Notranjski Park in striving for balanced approach to conservation and development. REFERENCES Alpine, L., 1986, Trends in special interest travel, Specialty Travel Index, Fall-Winter: 83-84 Bitting Bernhardt: Zielkonflikte zwischen Oekologie und Ekonomie; DISP 59/60; Oktober 1980, Zuerich Boech Martin: Oekologische Kriterien zur Beurteilung von Entwiclungsprojekten; Bern 1981 Boo, E. (1990) Ecotourism: The potentials and pitfalls, World Wildlife Fund, Washington D.C. Bratko - Berce B. (1990) Kulturoloska analiza kot metoda za ugotavljanje vplivov na okolje in kot metoda za izboljševanje okolja, doktorat FAGG, Ljubljana. Bratko-Berce B. (1991) Socialni kriteriji za opredeljevanje prioritet ali omejitev območij, prednostno namenjenih razvoju turizma, ekspertiza za MVOUP. Bratko-Berce B. (1992) Cultural Tourism as Potentais for Development, Lecture for Ph. D. Students, Glosgow, Centre for Planning, University of Strathclyde. Bratko - Berce B. (1992) Cultorological Analysis in Rehabilitation: Cases in Slovenia and Scotland, PhD, University of Strathclyde, Glasgow. Bratko - Berce B. (1992) Application for Biosphere Reseve to UNESCO -Technical report. Area, Cerknica Bratko-Berce B, Mahne L., Mlinar M.(1993) Notranjski park; razlogi za vzpostavitev in predlog globalne strategije (Notranjski park: reasons for designation and proposal of global strategy) Area, Cerknica Britton, S. G.(1980) A conceptual model of tourism in peripheral economy, 1- 12 v D. G. Pearce (1990). Campbell, C.K. (1966) An approach to reserach in recreational geography, p.85- 90, Occasional Papers no.7, Departement of geography University of British Columbia. Cohen, E., 1972, Towards a sociology of international tourism, Social Research, 39: 164-182 Daten zur Raumplanung, teil C - Fachpianungen und Raumordnung; Akademie fuer Raumforschung und Landesplanung, Hannover 1989 Dixon,I.A & Sherman, RB. (1990) Economics of protected areas, Earthscan FNNPE Sustainable Tourism Working Group, October 1992, The need for sustainable tourism in Europe's Nature and National Parks Frick, D. (1992) Die Entwicklung der Kultut Turismus in der Inner Städte, Institut fur Raumordnung und Entwicklung, Berlin Goudie, A. (1990) The human impact on the natural environment, Oxford, Blackwell. Greer, T and Wall, G. (1979) Re: a theoretical and empirical creational hinterlands: a theoretical and empirical analysis, p. 227 - 45 v Wall G. (ed), Recreational Land Use in Southern Ontario, Departement of Geography Publication Series, no. 14, University of Waterloo. Heywood, P., 1990, Truth and beauty in landscape - trends in landscape & leisure. Landscape Australia, 12 (1): 43-47 Jansen - Verbeke, M. (1988) Leisure, Recreation and Tourism, Netherlands Geographical Studies 58, Amsterdam Nijmegen. Jansen - Verbeke, M. (1992) Managing Tourism in Historic Cities, International Cultural Centre, Krakow. Johnston, R. J. & Gregory, D. & Smith, D. M. (1991) The Dictionary of Human Geography, Oxford, Basil Blackwell. Krippendorf, J., 1987 b. The holiday makers: understanding the impact of leisure and travel, Heinemann Professional Publishing, Oxford Lundgren, J, O. J.(1982) The tourist frontier of Nouveaux Quebec: fiinctions and regional linkages. Tourist Review, 37, 10-16. Mariot (1976) v Matley, I.M. (1976) The Geography of international tourism. Resource Paper 76-1, Assn. of American Geographers, Washington Messerli Paul: The Development of Tourism in the Swiss Alps: economic, social and environmental effects; Experience andreccomendations from the Swiss MAB program; Mountain Research and Development 1/1987, Boulder Colorado Music, V.B. 1993, Primerjalne prednosti Ljubljane v razvoju urbanih centrov regije Alpe- Jadran, MRSL naloga str.l -106. OECD: The Impact of Tourism on the Environment, Paris 1980 Pearce, D.G. 1981, Tourism Development v knjigi: The Dictionary of Human Geography, 1991, Str. 493-494) Pearce, D.G. (1987) Tourism in France: regional perspectives, Cantenbury monogaphs. University of Cantenbury Pearce, D.(1990) Tourism Today: A geographical analysis, New York, Longman 1-3 Piano urbanistico regionale generale del Friuli-Venezia Giulia, Vol 1 /1,1/2,2, 3,4, Norme; Assesorat del pianificazione e bilancio, Servizio della pianfificazione territoriale, 1976-1978 Regione Veneto, Piano territariale reginale di coordinamento, 1992 Repič-Vogelnik, K. (1992) et al. Oblikovanje turistične ponudbe in zasnova dolgoročnega razvoja turizma na območju Ljubljane, Ljubljana, UI RS str. 1-126, cit. str. 1-8 in str.41 -44. Skoberne, P. et al. (1992) Naravovarstvena ocena območja predvidenega za Notranjski regijski park, Ljubljana, RZVNKD, tipkopis UNESCO (1987) A Parctical guide to MAB, UNESCO Urry, J. (1990) The Tourist Gase: leisure and travel in contemporary societies, Bristol, Sage (str. 134- 156) Venth, O., 1985, Umweltsensiblät und Konsequenzen für das Tourismusmarketing, Gesellschaftlichen Wertesystem, Berlin World Tourism Organiztion, 1984, The role of recreation management in the development of active holidays and special interest tourism and consequent enrichment of the holiday experience, World Tourism Organization, Madrid UNESCO BIOSFERNI REZERVAT - OBMOČJE: NOTRANJSKI KRAS KOT STRATEGIJA ZA VAROVANJE IN SOČASNI RAZVOJ OBMOČJA Povzetek Biosferni rezervati, ki smo jih v Sloveniji poimenovali Biosferna območja, ponujajo enkratno priložnost, da združimo ohranitev, zaščito in razvoj na osnovah trajnega razvoja. Strategija obravnava človeka kot del narave in pravilnega fizičnega, socialnega (ekonomskega) in kulturnega okolja. Razvoj je osnova za zaščito. Poleg ohranitve biološke raznovrstnosti je cilj ohranitev in ojačanje kulture v najširšem pomenu besede. Pomembno je, daje tako območje razdeljeno na več con treh kategorij, kar omogoča, da so obrobna območja vključena brez omejitev razen služiti kot ekonomski faktorji skupaj z naravno zavarovanimi območji, kot npr. v Notranjskem parku. Torej je meja biosfernega rezervata -MAB-a na območju štirih občin: Cerknica, Postojna, Logatec in Ilirska Bistrica. Najpomembnejši je obstoj človeka na Krasu s tremi glavnimi nalogami: - ohranitev narave, - razvoj, - logistika. Da bi te tri naloge izpeljali je bistveno, da se: - zviša zavest med prebivalci in obiskovalci krasa, daje to območje enkratno in unikatno, - doseže ekološko zdrav razvoj z demokratičnim pristopom in visoko udeležbo prebivalstva, - doseže sodelovanje lokalnega prebivalstva pri vseh poskusih ohranitve in razvoja, - opazuje in preučuje območje s pomočjo izkušenj znanstvenikov iz tega področja in od drugod, - gleda na relacijo človek - narava oz. človek - kras kot na osnovo za kulturno krajinski in ekološko prijazen razvoj. Del razvojaje v skladu z ekoturizmom, kije mehke narave in se z njim ukvarjajo lokalni kmetovalci kot s postransko zaposlitvijo ter lokalni podjetniki, ki delujejo na osnovi koncesij, ki jih podeljuje Uprava parka. Glavno vprašanje ostaja: Kako upravljati regionalni park, za katerega država pričakuje, da se bo financiral sam. Bodisi kot delniška družba, kjer bi imela večino delnic v rokah država, druge pa bi pripadale prebivalcem bodisi kot družba, ki je bolj odprta tudi tujim investitorjem, kot pa samo domačim oziroma lokalnim prebivalcem. Zadnja alternativa je, da bi park prešel v državno last, čeprav je že doslej več ko 80 % zemljišč v zasebni lasti prebivalcev. Trenutno bi bila taka odločitev proti ustavi, je pa v skladu z obstoječim zakonom o naravni in kulturni dediščini. Ta zakon je iz leta 1984 in se trenutno pripravlja njegova revizija, zato je primeren čas, za izražanje dilem in predlogov za vnos sprememb. GEOLOGICAL BASIS OF ANCIENT GREEK COLONIZATION GEOLOŠKE OSNOVE STAROGRŠKE KOLONIZACIJE DORA P. CROUCH Izvleček UDK 711.4(37/38):550.8 Crouch, Dora P.: Geološke osnove starogrške kolonizacije Prispevek je predhodno poročilo o interdisciplinarnem preučevanju pomena fizične osnove urbanizacije v antičnem svetu. Z vidika geologije so medsebojno primerjana grško-rimska mesta. Ali fizične poteze kažejo na medsebojni vpliv med geološkimi procesi in človekovimi gradbenimi izražanji? Kakšne geološke spremembe so se dogodile v tem času? Počasne geološke procese je težko datirati, toda plazove, poplave in zamuljevanja je lahko določiti in primerjati s podatki o človekovih zgradbah. Geološka informacija lahko pomaga k podrobnejši opredelitvi mestne zasnove, zgodovine in arheologije posameznega mesta. Ključne besede: interdisciplinarnost, inženirska geologija, grško-rimski čas, hidrogeologija, hidravlika, vpliv, morfologija, strukturna geologija, mestna zasnova, urbanizacija. Abstract UDC 711.4(37/38);550.8 Crouch, Dora P.: Geological basis of ancient Greek colonization This is a preliminary report on a new collaborative study about the importance of the physical base for the process of urbanization in the ancient world. Greco-Roman cities are compared in terms of their geology. How do physical features show evidence of interaction between geological processes and human construction efforts? What geological changes took place during the period? Slow geological processess are difficult to date, but avalanches, floods and silting up can be bracketed and compared with the dates of human structures. Geological information can make more specitic the urban design, history, and archaeology of each site. Key words: collaborative, engineering geology, Greco-Roman, hydrogeology, hydraulic engineering, intervention, morphology, structural geology, urban design, urbanization Address - Naslov Dora P. Crouch, Ph. D., Professor Emeritus School of Architecture Rensselaer Polytechnic Institute Troy, New York, USA INTRODUCTION This is a preliminary report of a new study relating the geological base to the history of urbanization in the ancient Greco-Roman world. The study is based on preliminary work done by each of the investigators, such as Water Management in Ancient Greek Cities by Dora Crouch, leader of the team. She is an urban and architectural historian. Other team captains are Prof. Dr. Paul G. Marinos, an engineering geologist at the Technical University in Athens; Prof. Dr. Ünal Özis, an hydraulic engineer at Dokuz Eylül University in Izmir; Dr. Laura Ercoli, a structural geologist at the University of Palermo; and Dr. Giovanni Bruno, an applied geologist at the Technical University in Bari. Our junior collegues are hydraulic engineers, geologists, and speleologists, and we also have the cooperation of Italian, German and French archaeologists who have been working on our selected sites. This pioneering study will be the first to compare groups of cities in terms of their geology. Of course, there are existing studies of groups of cities, such as Rorig's of German trading cities of the Hanseatic league (Medieval Towns), Andrews' of the urban design history of Maya Cities, and Hohenberg and Lee's of the economic history of European cities (The Making of Urban Europe, 1000-1950)'.Yet to compare cities in terms of their geological base, analyzing both form and function in terms of that base, has not been done. In the Mediterranean region, karst is the major type of geology, and is related strongly to urban location and form, as I know from my preliminary study. Indeed, Vit Klemes (then president of the International Association of Hydrological Sciences) told me that there was no Greek city that was not built on or next to karst terrane, citing as proof the Greek cities of Asia Minor. From the twenty-five Greco-Roman sites studied in my first volume, we have selected eleven which exemplify differing geological situations for further study: in Sicily: Agrigento, Morgantina, Selinus, Syracuse in Greece: Argos, Corinth, Delphi, Delos in Turkey: Miletus, Perge, Priene. The chosen sites will be analyzed in terms of their structural geology, hydrogeology, morphology, and engineering geology. We are particularly interested in how their physical features were ammenable to hydraulic engineering and urban design. For instance, we will examine the relationships between siting and foundations, consider building materials in Rorig Medieval Towns. G. F. Andrews Maya Cities. 1975. University of Oklahoma Press. P. M. Hohenberg and L. H. Lee, The Making of Urban Europe, 1000-1950. 1985. Harvard University Press. terms of what was available on or next to the site and what the aesthetic characteristics of such materials were, and analyze the utilization of water for baths, public fountains, drainage channels, etc. QUESTIONS In studying the ecology of human settlement as set of practical constraints on human needs, desires, imagination - not as a set of theories - we will be asking the following questions: 1. What is the underlying geology and hydrogeology of the site? As an illustration our integrative work, the person who did a recent dissertation on the morphology of Argos will restudy that site with us, integrating new hydrogeological and archaeological information into her previous understanding of the site and giving us the benefit of her morphological understanding. Maps of hydrogeological and geological features will be made if they do not already exist, and correlated with archaeological maps. 2. What geological changes took place at the site during the period studied? How much and what kind of correlation can be determined with datable changes in urban form during the same period? Slow geological processess are difficult to date, but rapid events such as avalanches, floods and silting up, can be bracketed and compared with the dates of human structuress and pottery, to some extent. I will supply historical dates known from previous studies, and the geologists will ascertain the probable chronology of the geological events. It is likely that the Turkish sites will be most amenable to our attempts at dating, as the geological processes along the Ionian and Aegean coasts have been very rapid during the last 2500 years, and are not too difficult to correlate with human constructions in the area. 3. How does the local geology provide construction materials, water, and building sites? How was water managed at the site? Construction materials and building sites can be determined by surface reconaisance by a historian/archaeologist plus reference to the archaeological literature, but investigation of water supply will take the collaboration of geologist, hydraulic engineer, and urban historian. It is likely that our Morgantina and Perge studies will be the most fully developed for the question of water supply, as we have hydraulic engineers working specifically on these sites. Without the input of geologists, however, many of the nuances of of the sites hydrogeology would be overlooked. 4. How does this geology affect agriculture or port facilities here? In the period studied, the choice between farming and herding was largely determined by geology, in the sense of suitable land for the activity adjacent to the settlement. At Selinus and Agrigento, settlements were sited to dominate the rich agricultural land which was the basis of the wealth of each city. We are already speculating that the silting up of the rivers at Selinus with concommitant scourge of malaria was a geological change that caused the abandonment of the settlement in the second century BC. Soil types and conditions further determined what crops could be grown. In addition to having a food-producing hinterland, five of the cities to be studied were ports, for which we hope to determine the interaction of geological base and human construction. Syracuse is perhaps the most noted port, but we will also examine Miletus and Priene in terms of the silting up of their ports. 5. Which features of the urban form were determined by specific geological materials, factors, and events? At Priene, for example, the Stadium Bath was located in order to utilize a karst spring, recently cleared but not reported in the literature. This spring is now dry, but when when the dewatering occurred is an interesting question for urban form. Was the later Roman bath near the theater built merely for the convenience of the population, or was its new location necessary because the lower spring had gone dry? 6. How do visual features of the city acknowledge the geological base? The grottoes above the theater at Syracuse, serving as fountains and reservoirs, were visible evidence of the termination of natural and man-made water lines. Their location in such a public place not only provided an amenity but also drew attention to the cooperation of nature and government in supplying water to the people. More abstractly, we may ask how are sight lines organized, such as the gap between the Erechtheum and the Parthenon as seen from the Propylaea, at Athens - a gap that draws the visitor's attention to Mt. Lykabettos. Such site organization is well-known since Doxiados^ and we will look for similar features at our sites. 7. What features of the geology were altered or affected by human intervention? We are thinking particularly of karst channels, shafts, and springs being altered for use by humans. Quarrying, port development, and irrigation systems have also altered the landscape. Some examples: At Delos, an inn was built around a natural karst shaft that alternately filled and emptied. At Priene, drainage from the western part of the city was poured into a karst shaft. At Corinth, karst channels were utilized in the agora and the Askelepion either for water supply or drainage, or as reservoirs. We will inspect all of our sites for such features. We will know that we have completed the field work we set out to do when we have on hand: 1. Maps of the geology and hydrogeology of each site, correlated with maps of Greco- Roman buildings, streets, ramparts, etc. For each site, a new map will be created correlating the two kinds of information, geological and archeological. 2. For each site, a list of geological events during the period studied (800 BC to 400 AD). ' C. A. Doxiadis, Architectural Space in Ancient Greece. Cambridge, Mass.: M.I.T. Press, 1972. Correlation of these events with human building at the site, to the extent possible. Explanation of what kind of correlation was found (if any), how this correlation was arrived at, and the degree of certitude of these findings. 3. A brief catalog for each site of major buildings, houses, etc., and the sources of materials for eachl An account of the geological basis for the agriculture or grazing at each site, and for port facilities. For some of the sites, a detailed account of the karst geology that produced water year round and made settlement possible here. 4. Description of the features of the urban form that were determined by the local geology in materials, placement, events or all three. An example could be the theater at Morgantina, made from limestone blocks of the hill against which it leaned; it was buttressed against the movement of the layer of clay on which it stood; eventually the theater was partially destroyed by that movement. Discussion of the ways that the urban form referred to and exploited the geological base. 5. Lists of geological features at each site that were altered by humans, and description of how they were used. An example is the use of the caves called "latomia" at Syracuse, which are the outfalls of the karst system, as prisons (after the late fifth century war with Athens) and as ropewalks. My team will be looking for evidence of interaction between geological processes and human construction efforts. We hope that this infusion of specific geological information will make more exact, specific, and plausible the urban history and archaeology of each site. Although we realize that more than one study will be needed to define the correlation of geological and human timescales, we expect our efforts to illuminate this question for the sites examined and germinate further research by others. Our study brings together the broadest concepts of how human society relates to its physical environment, with the most exacting attention to underlying geological structure and processes, as well as to visible features such as hills and valleys, perennial springs, and quarries for building stone. Previously, only limited, site-specific, building-type studies of our sites have been done"*. We are looking for the link between historical developments and geological change during the period from the eighth century BC to the fifth AD - a long time by historical standards, but a moment by geological standards. By correlating these entities which had not previously been thought to have much connection, we will achieve keener insights into how the sites functioned as loci of human development both tangible and intangible. Through this new way of seeing, our team's research could lead other scholars to apply geological insights to other groups of cities, such as those that ring the Swiss alps or the group of Caribbean ports. Our study will demonstrate the importance of the physical base for the process of urbanization in the ancient world. At one site (Argos, for example) we will study the hydrogeology and correlate it with the long distance water lines and with water distribution within the city. At Miletus and Priene, the quite different forms of karst at the two sites ' R. E. Wycherly, The Stones of Athens. 1978. Princeton University Press. " e. g., B. H. Hill. 1965. American School of Classical Studies. resulted in quite different water potential, since existing karst features became elements in Priene's water and drainage system but the "older karst" with fewer on-site springs at Milettis required development of long-distance water supply lines as early as the sixth century BC. In Sicily, if we can determine for Selinus where it obtained its water supply, that will give new insight into the relation of colony to hinterland on the frontier of Greek territory in the seventh through fifth century BC. Another result will be the placement of science and technology firmly within the subject matter of history and other humanistic disciplines. It is common, at least in the United States, to assume that "the general educated reader" is concerned with literature, history, psychology, and art but not with science and technology. Yet if our survival depended on the invention of cities, and cities depended on carefijl resource management, and this in turn depended on profound understanding of the geography of urban location, we see that science and technology which learn about and control the environment are squarely at the center of human history, nor peripheral. Human culture includes water management and farming practices as well as religion, language, and marriage customs. Anticipated results of our study will be first, understanding the geological constraints on social activity (such as colonization) in the Greco-Roman period. Second, correlation between geological features and details of urban form in these cities. Third, development of parallel chronologies of human construction and destruction with events of nature as revealed in the geological record during the period studied, by utilizing the documentary and archaeological record. CASE STUDY By checking the comparability of the geological situations of a mother city and a colony, this study will also make a contribution to the growing literature on colonization. Here as in other aspects of the geology of ancient cities, we will make no attempt to be study every possible example. Corinth and its eighth century BC colony Syracuse are ideal subjects for comparison, partly because each is well documented and partly because team members are thoroughly familiar with each of them. After listing team members and their qualifications, this paper will cover the geology of the two cities as is known at the beginning of our study, a list and description of water technology available in the 8-7th century, the urban history clues for geological dating at these sites, and an analysis of each city's urban design in geological terms. Most unusually for Greco-Roman cities, Greek and Roman Corinth do not form a continuity. The Greek settlement was destroyed and left deserted for a century. Then the Roman city was built anew and populated by immigrants from Italy. This fact should prove usefiil in our attempts to correlate geological and architectural change. To compare the geology of the mother-city Corinth with the daughter-city Syracuse will probably require not only numerous details about the geology of both cities, but also an intellectual leap to some level of abstraction. For instance, the karst or karst-like behavior of water in stone may have abstract similarities while being different in operational details. We must ask whether any similarities we notice are intrinsic to the local geology in each case, or are merely artefacts of our modern mental construct. TEAM Investigatiors for Corinth are the author and Dr. Paul G. Marinos, who has already done studies of the water potential of the Corinth area and of the sea coast changes at the ports of Corinth. The cooperation of Dr. David Romano of the University of Pennsylvania Museum, who has been working on a topographical study of the area, will be valuable to our work, as will the accumulated knowledge of the present excavator, Dr. Charles K. Williams. For Syracuse, besides the author, the team consists of Dr. Laura Ercoli; Dr. Marina de Maio (a former student of Dr. Aurelio Aureli, foremost expert on the geology of Syracuse); Francesco Fanciulli, an hydraulic engineer and speleologist who has already investigated the water lines of the island of Ortygia, the original Greek settlement at Syracuse; and Dr. Rosario Ruggieri, another caver who does speleo-hydrogeological research; plus the collaboration of Dr. Deiter Mertens of the German Archaeological Inst, at Rome who is studying the Euryalus Fortress. We are hoping that Dr. Giovanni Bruno, who has already studied the springs of the harbor at Tarranto, will be able to join us for the study of the springs at Syracuse. GEOLOGY OF CORINTH The geology of Corinth as now known may be sumarized in a quotation from Donald Engels, Roman Corinth"': The soil occupying the area of the ancient city is neogenic, that is, derived from the decomposition and weathering of underlying sandstones, limestones, marl, and conglomerate. It is not composed of alluvium washed in from elsewhere. Except near the steep north slope of Acrocorinth, most of the area of the ancient city was level, and there would be little probability of debris washing downwards for long distances within the city. Indeed, debris was found far up the northern slope of Acrocorinth and along the city's eastern edge, which slopes gradually to the west. This fact indicates that even after thousands of years, considerable debris has not yet washed down even from steep slopes, and that the area occupied by ancient buildings as revealed by surface debris has not been significantly distorted through time. This general description may be supplemented by Hill's description of the geology at the location of the Peirene spring (Figure 1) immediately north of the Roman forum*": The ledge... is formed of geologically recent sedimentary rock - conglomerate, sandstone, and poros - resting upon a deposit of clay of great but unknown depth, which doubt- ' D. Engels, Roman Corinth, 1990. University of Chicago Press, The Springs (Corinth), p. 16. Fig. 1: Geological section at the location of the Peirene Spring, Corinth. Reprinted from Hill, The Springs, by permission of the American School of Classical Studies. SI. 1: Geološki prerez Peirene Spring, Corinth. Ponatisnjeno iz Hill, The Springs, z dovoljenjem American School of Classical Studies. less underlies the whole terrace. The conglomerate and a fine hard sandstone are found immediately above the clay. Over them is a very soft reddish sandstone, perhaps more accurately described as extremely hard earth (known specifically as "stereo" in local excavation parlance. It is here called sandstone very loosely, as it contains little true sand, its principal constituent being decomposed limestone), which reaches up to within 3 to 6 m. of the modern surface and constitutes the chief material of the entire terrace. Along much of the north side of the terrace this sandstone becomes more compact and changes into actual rock - the soft limestone of calcerous tufa known as poros which constitutes most of Temple Hill, the rock-cut foundation ofGlauke, and part of the seats and substructure of the Odion... The clay underneath this mass of porous material is very hard and uniform and quite impervious to water. It thus forms the floor of a great reservoir which holds the water that percolates from the surface through the upper strata of the terrace. It is impossible to be satisfied with these descriptions since modern geologist have different ways of classifying and understanding the evidence. For example. Dr. Marinos interprets the so-called clay of the side walls of the Peirene reservoirs as marl. Certainly the marl would function like impermeable clay in trapping the percolating waters and making them available for human use, but because of its greater hardness, it would present difficulties in the creation of reservoir chambers. It is known from excavation that during late Greek and early Roman times the previous '('alley between the three springs and the race course was deliberately filled in to produce the large level area on which the Roman forum was built; this enormous fill was made of clay? sandy earth? decomposed limestone? skree from Acrocorinth? all possibly cemented now by 2000 years of inundation and seepage by calcium-carbonate laden water. The geology of Syracuse as now known has layers (top to bottom) of clay and conglomerate, limestone, basalt, tufa, blue marble, and alluvial silt. Just from this list, we can see that clay, conglomerate, and limestone are found at both cities. The details of similarities and differences between the two are to be found in the kinds and clusters of the stone, clay, etc. and in the patterns of hydrogeological potential. We can get a sense of those details in the description of Syracuse by Burns': The plateau, its slopes, and its southernmost spur - the island of Ortygia - are parts of a calcerous massif that rests on a base of basalt and compacted sedimentary marine clays that form a continuous permeable stratum. This base has essentially the shape of a shallow bowl, slightly tilted, with the northwestern rim higher that the southeastern one. The bowl receives a great amount of water at its western end, where the Crimiti mountain range makes the prevailing winds shed their moisture. Because of the southward tilt of the bowl, the water trapped in certain sandy layers and pockets under the limestone is under considerable pressure, causing it to well up in copious springs wherever the edges of the impermeable strata reach the surface at lower elevations. Such springs are Arethusa near the southern tip of Ortygia, Ciane in the Anapo plain, and the so-called Occhio della Zillica, where sweet water wells up from the sea bottom in the Great Harbor. Mauceri experimentally confirmed these facts by drilling through the various strata into the aquiferous sands and bringing in artesian wells in selected places. In the eighth century when Syracuse was founded from Corinth, the traditional knowledge of water management already included; - collection and use of water from springs and rivers (since the prehistoric period) - cisterns (since the third to second millennium) - dams (since the third millenium) - wells (since the third millemnium) - reuse of excrement as fertilizer (since an unknown early date); - gravity flow pipes, channels, and drains (no later than second millenium) - long-distance water supply lines with tunnels and bridges (at least by the 8th century BC) - intervention in and harnessing of karst water systems (at least by the 8th century)^ Not all of these techniques would necessarily have been in use at any one site. Pressure pipes had been used at Minoan sites during the second millenium, but their use seems to have been forgotten and not reinvented until the sixth century. Underground long-distance water supply lines were developed first in Armenia in the eighth century, thence to Persia, and thence westward no later than the sixth century. However, since the natural behaviour of karst channels seems to have served as the model for these aqueducts', it is certainly possible that the "invention" was made simultaneously in several areas, like the practice of intervention in karst channels for human purposes. Further, since the dating of water system elements is rather loose, especially for the eighth and seventh centuries BC, it is difficult to ' A. Bums, "Ancient Greek Water Supply and City Planning: A Study of Syracuse and Acragas". 1974, Technology and Culture, Vol, 15 #3, drawing on F. S. Cavallari and A. Holm, Topografia atchaeologica di Siracusa. Palermo, 1883-91, pp. 95-142, and L. Mauceri, La fonte Aretusanella storiae neiridrologia. Siracusa, 1924, pp. 15-30. * This chronology is explained in D. P. Crouch. 1993. Oxford University Press, pp. 338, and "Avoiding water Shortages - Some Ancient Greek Solutions", Diachronie Climatic Impact on Water Resources, forthcoming proceedings of NATO-sponsored conference in Heraklion, Crete, Oct. 1993, ' Crouch, Water Management, Chapter 10, "Natural Models for Water Elements", pp. 115-120, ascertain whether any specific water element known at Corinth belongs certainly to this early period. If it does, then it could be a model for similar elements at Syracuse. At Syracuse, the points of investigation of the present study include the latomie and the catacombs, both studied in terms of karst, earthquakes, and human intervention. Shoreline changes since antiquity, and the question of fresh-water springs in the sea. Springs supplying water to the site. Tunnels of the water system as old karst channels and as later catacombs (human intervention). Correlation of geological features with urban form, namely in the locations of public open space, locations of water supply elements and buildings, and the changing city limits during the period studied. COHINTH SCHEttATlC MAP Of UA.TCK. LEVELS 1-1 SLOPtN« SOUTH TO NOR.TH a-SATE F - FOUNTAIN/SPiU^S T- T01PLB ' P-PATH TW-THEATHe Am -AMPHITHCATR-C A 1.1). Units of natural heritage are encircled in 5 groups (Fig. 2). Even one element of each gi;oup is enough to inventory a natural phenomenon as a natural heritage unit, more elements fetch higher rank to the unit. Criteria of evaluation are divided as elements of natural heritage in two gropus, physical and cultural-anthropological. Physical respectively earth science and biological criteria are resumed from methods of geology, geography, biology (botany, zoology and ecology), and mathematics (statistics), but cultural-anthropological ones from ethnology, cultural-anthropology (arheology, history, cultural and physical anthropology with quartarology and sociology of culture), philosophy (onthology - axiology, aesthetic) and artistry (prose and poetry, painting and sculpture, photography, film and video, history of art and literature). EVALUATION AND INVENTARISATION OF NATURAL HERITAGE THE FIRST GROUP OF CRITERIA Basis for evaluation of natural phenomena are modified methods of earth science and ecological research by aspects of natural heritage inventarization. In the 3'''' figure the criteria are displayed. CRITERIA OF COMPLEXITY Principle of complexity represents basical characteristic of geographical research. Nature is formed of more or less intervolven phenomena, which could be parsed or gathered in groups. Principle of complexity is used for determination of cohesions and/or intervoluations Fig.2_ I. group of natural heritage units - some elements of relief or geological and geomorphological heritage 19 L® II. group of natural heritage units - hydrological and iiival-glacial or hydrogeographical heritage IS E® III. group of natural heritage units - some elements of soil and vegetation or pedological and botanical, botanical, dendrological and forcstal heritage S« ® IIL® III.® IIL® IV. group of natural heritage units - some elements of animalitv or zoological heritage V. group of natural heritage units - natural heritage with anthropogencal elements or formed heritage parks, gardens collonades of trees among natural processes and phenomena. Outcomes of evaluation are ranked units of natural heritage. A rank of complexity onsets with basical unit, upwards the rank is limited by purport of further evaluation. Units of natural heritage may be simple or complex. Reflexive effect must be regarded by complexes, which is fundamental for its subsistence. Worth of natural heritage unit of higher rank is widened by number and grade of lower rank units and vice versa. Units of natural heritage complexity are distinguished by three groups. Basical units can not be divided, namely sense of a phenomenon is lost. For example a stalagmite, which represents a simple unit of geomorphological heritage can be divided into a foot, a middle part and a top, but this parts are senseless without totality. Complexes of natural heritage are those with phenomena of the same group (collapsed doline with karren, pothole and cave = geomorphological heritage) or that of higher rank with various kinds of natural heritage (collapsed doline with a fossil site, a growing site of rare species, springs, a waterfall and a ponor = geomorphological, geological, botanical' and hydrogeographical heritage) lying in a small encircled area. The area may be treated as a geomorphological heritage. Systems of natural heritage are the highest rank among the complexes. Units of the systems may be found even in different macro-regions. For example hydrological phenomena in drainage areas of Rakuljščica, Sušica and Mrzlek or Škrnik brooks. Velika voda -Reka, Soča and Timav (II Timavo) springs seeming unvolven phenomena, but hydrogeographical analyses indicate system of natural heritage linked by running water, lying in different Slovene mesoregions. Relative small complexes of natural heritage, for example: Ukmarjev dol with two potholes, and wide composite systems, for example: Velika voda-Reka - Vipava - Soča -Doberdobško jezero (Lago del Doberdo) - Timav (II Timavo) springs are distinguished in the Kras and Posočje regions. Cohesion and/or intervoluation among natural phenomena is more important then extent of natural heritage units. The highest grade of cohesion is represented by direct geneti-cal relationship, for example Martelova dvorana of Škocjanski jamski splet and Škocjanski kanal of Kačja jama. The lowest grade is represented by distant indirect junction, for example changing of water level in Rakuljščica brook, in Lindnerjeva dvorana of Lobodnica cave and in Timav springs. Extent of natural heritage units should not be overlooked. Upper limits of units have been set up accordingly to extent of Republic Slovenija and its physico-geographical regions. Situation or geographical position of natural phenomena is a particular problem. Direct genetical relationship (at least one the same and/or coactive process) is generally conditioned by geographical position. For instance: Vremska dolina - Škocjanski jamski splet -Kačja jama - Lobodnica - Timav - Dobrdobško jezero and Kras are of the similar origin. Units of natural heritage are ranked higher because of position in Kras, but the region is known just by the mentioned phenomena. The position of natural heritage unit is not conditioned by the relationship in many cases. For example limetrees near the Church in Škocjan are not junctioned by genesis of Škocjanski Kras, but the trees grow in the central settlement of the World Heritage Site and so they have been inventorised natural heritage. ECOLOGICAL CRITERIA The five criteria are resumed from ( Skoberne & Peterlin/Eds. 1988; 1991,22), the sixth one have been added in a study of natural heritage in the Škocjan World Heritage Site. MATHEMATICAL CRITERIA Numerical data of natural heritage may be surveyed by exact instruments or estimated. There are many difficulties by statistical processing of very rich natural heritage in Slovenija, the data are unverified or even unknown (speleological and other geomorphological phenomena) and/or of unknown origin. Many of natural heritage units have not been inventoried, yet. Diskriminantal and cluster analysis (Ferigoj 1989; SPSS 1975) of elements of the physical and of the cultural-anthropological groups are mentioned among statistical methods. CULTURAL-ANTHROPOLOGICAL CRITERIA Interbraids of natural and cultural heritage, role of natural heritage in community life and human relationship to natural heritage are evaluated by criteria of this group by outcomes and/or methodes of archaeological, historical, cultural-anthropological, ethnological, cultural-sociological, history of art and philosophical (ontology, axiology, aesthetic) research. Criteria are codified in two groups. The groups and the criteria are displayed in the Fig. 3. • Natural heritage and residues of material culture is a name of the first group of cultural-anthropological criteria. • A unit may be ranged by one criterion: Wittnessstand or interbraid of natural and cultural heritage. For instance archeological sites in natural monuments Tominčeva jama. Ozka špilja and Velika jama na Prevali. • Natural heritage and social and spiritual or mind culture. The second group of the criteria enclosed relations among natural heritage and sphere of human nonmaterial activities. A unit may be ranged by five criteria. • Symbolic sense of natural heritage is established when society identifies itself by the unit. For instance Triglav is Slovene symbol of more than millenium long combat for equality and freedom, which was realised by independent Republic of Slovenia in 1991. • Picturesqucness by the criterion aesthetic proportions of natural heritage unit may be found. Picturesqualy unit strikes visitors and/or it is/may be favourite motive of artists. • Exceptional features created by natural processes is a reason to range a natural phenomenon to natural heritage. Determining of fito-, zoo- and anthropo-morphical phenomena can be sapid. Žena (woman) in Svetinova dvorana of the Škocjan System is an example of anthropomorphical phenomenon. FIGURE 3 LIST OF CRITERIA FOR NATURAL HERITAGE EV ALUATION EARTH SCIENCE CRITERIA a simple unit of natural heritage COMPLEJftXy,, complex (F < 1 hi') of a single natura! heritage group a simple unil direct part of a natural heritage complex a simple complex of typical natural phentomena a simple unit a typical natural phcneomenon a simple complex (f < id km^) of various natural heritage groups a simple sysieffl (f < JOia') of natural heritage a phisicaf-geograpiiical meso-region (F < 501) kn'), abiiidaiil by saUrai lierita;e a small composed (F > 10 < IM b') system of natural heritage a phisical-geographical macro-region. (F > 590 lu^), atmadait by lattral terilage a middle composed (F> 1(KI<5iWId^) system of natural heritage a natural heritage unit as a part of phisical-geographical region, a big composed system (F > 500 kD^) of natural heritage aljindiiil by aalural krilaje ECOLOGICAL CRITERIA high degree preserved ecosystem ecosystem with large variety of habitats (stable ecosystem) rare ecosystem with a biotop or a biocenosis rare in SJovenf/a, Europe or even in the Earth ecosystems with botanical and zoological species - endangered - relics or endemits - with /ocus dassicus - in disjunctional, azonal, ekstrazonal and/or marginal areas areas of many diverse ecosystems ecotop of typical vegetation of characteristic pedological profile MATHEMATICAL CRITERIA rarity of natural heritage exceptional rare (up to 5 specimen in Republika Slovenija very rare rare rare in a region dimension/s in space maximal units of natural heritage (absolute maximum of all three dimensions) very big units of natural heritage (absoltite maximum of two dimensions) the -St (highest, deepest...) units of natural heritage (absolute maximum of one dimension) relative big unit of natural heritage miniature naJural phenomenon dimension/s in lime age of natural heritage unit natural heritage unit of acüve processes quantity, quality, ratio, distribution and condition of natural heritage elements and units exceptional quantity high quality, ratio and distribution exceptional condition frequency of natural features emerging in the same place permanent phenomena periodic phenomena CULTURALANTHROPOLOGICAL CRITERIA NATURAL HERITAGE AND RESIDUES OF MATERIAL CULTURE witnesstand or interbraid of natural and cultural heritage NATURAL HERITAGE, SOCIAL AND MIND OR SPIRITUAL CULTURE symbolic sense picturesqucness exceptional shapeness naturaf heritage unit, important landscape element local remarkable natural feature ' Natural heritage unit, important landscape element. Some units are important landscape elements. Importance may be establised like picturesqueness and symbolic sense in a process of establishing subjective relationship among vision and perceiving. • Local remarkable natural feature. Somewhere natural heritage units were recognized famous local features. Even settlements were named by natural features. For example natural window called Luknja (hole) or Otlica (something hollow) lending its name to the village (Rojšek 1992, 6, 170). NATURAL HERITAGE INVENTORY RECORD AND FOIL Inventory foil is appropriated to all kinds of natural heritage units. The foil exists in two forms as a print and as a digital record.*' It is composed of 135 fields. Records are organised in inventory as a printed register and as a data base. The most important data are that, which are gathered in situ. Quality of data (surveyed, estimated, resumed by sources and so on) must be clearly designated. Data fields of the record and the foil are classified in three groups. In the one data for identification are found, in the 2"'' one data for evaluation are used, and the one is documantary. Contents of the foil is presented in Fig. 4. CONCLUSION Natural heritage is composed of natural phenomena and noncommercial worths. Elements of natural heritage are coupled into physical and cultural-anthropological part (Fig. 1). Evaluation and inventarisation of natural heritage is a process linked to cultural rank of social development. Results of the process must be scientifically undoubtfull, and so respected and appreciated by authorities, individuals and society. Natural heritage is divided into units, which are organised in five groups (Fig. 2). In the first step of inventarisation natural phenomena are recognized. In the next one criteria of natural heritage evaluation are used and natural heritage units are formating. The criteria are divided into two groups of elements. In the first one earth science and biological criteria are resumed from methods of geology, geography, biology and mathematics. In the second one cultural-anthropological criteria are abstracted from methods of ethnology, cultural-anthropology, philosophy and art (Fig. 3). In the last step inventory foil of natural heritage unit (Fig. 4) is processed up, but inventories shoud be introduced to public, and have to being maintained by field controls and by office processing. The role of geography is very important during inventarisation of natural heritage (Rojšek 1991). ''during processing softwares STeve and EVE by P. Jakopin (1989, 1993) were being used. INVENTORY FOIL -135 FIELDS 001 regional or local evidence number 002 central state evidence number 003 settlement 004 commune 005 local community 006 land cadastre district 007 land cadastre parcel number 008 ev. number in Slovene cave cadastre 009 ev. number in former Italian cave cadastre VG 010 NAME Oil synonym/s 012 toponym/s 013 natural heritage unit - a "point" (F < B «p š|t - poinl o( 1 mdijaetti) 014 natural heritage unit - an "area" (F > 80mp liji ■ i^uarc of I m iide) 015 Gauß/Krüger coordinates: Y 016 X 017 Z 018 Z max. = the highest point as.1.019 Z min. = the lowest point a.s.L 020 Z pop. = mean sea level 021 after (rap of of big rale (liOCO, 10.ÜOC - TIN, 125.000 ■ TKIS/G), aitimeter/deptaeler.) 022 name of map TK 25/G 023 TTN 10 024 TTN 5 025 1" remark 026 SIGNATURE 027 DIMENSION/S: - lenght 028 -width 029 -height 030 -depth 031 - circumference 032 - area 033 - volume 034 2"" remark 035 accuracy (-(-/- %) 036 Instruments 037-047 GROUPS AND SPECIES OF NATURAL HERITAGE (-> figure 1) 048 LOCATION: on surface 049 in underground 050 beetwen surface and underground 051-95 EVALUATION (-> figure 2 - LIST OF CRITERIA FOR NATÜRAI HERITAGE EVALUATION) 096 FUNKCTION/S: - "monumental" or witnesstand 097 - reserve 098 - scinetific-researchal 099 - biotopic 100 - breeding-educational 101 - recreational 102 PLANE - JURISTIC STATUS: - republic obligatotry starting-point in planning 103 juristic status 104 juristic act 105 plane phase 106 conservaton status of Republika Slovenija 107 conservaton status of lUCN 108 conservaton status of European community 109 basic conservaton regime (number) 110 other conservaton regime/s (number/s) 111-114 BRIEF DESCRIPTION: 4 chapters 115 date/s of visit/s 116 date of last visit 117 STATUS: - of preservation 118 - of endangerness 109 photo-documentation - BW 120 - color slide/s 121 - color negatives 122 - film 123 - video 124 basic reference/s 125 other reference/s 126 basic source/s 127 other source/s 128 author/s of data 129 author/s of description 130 proces^d by 1313"" remark 132 remark 133 5'" remark 134 date/s of processing 135 date of the last change/s Fig. 4 REFERENCES Drašček, E. & M. Gorkič & N. Osmuk & D. Rojšek & M. Sušnik & J. Svetina, 1989: Krajinske zasnove Škocjan, (landscape plan Škocjan: typeprint of branch base for natural and cultural heritage protection in the World Heritage Site, the first natural heritage inventory of wider protected area, in Slovene), Nova Gorica, Zavod za varstvo naravne in kulturne dediščine Gorica v Novi Gorici. Ferigoj, A., 1989: Razvrščanje v skupine, (classifying into groups, book in Slovene), Ljubljana. Gams, I & & Habe, F. & Kranjc, A. & Krašovec, M. & Novak, D. & Osole, F. & Planina, T. & Rojšek, D. & Sket, B. & ŠušteršiČ, F. 1989: Jamarstvo, (caving, handbook in Slovene), Ljubljana. Jakopin, R,1989: Sieve Reference Manual, Ljubljana. Gorkič, M & Markič, M. & Jamnik, A. & Pokorn, A. & Rojšek, D. & Sušnik-Lah, M., 1990: Inventar naravne dediščine Občine Ilirska Bistrica, (natural heritage inventory of the Ilirska Bistrica commune, typprint in Slovene), Nova Gorica, Zavod za varstvo naravne in kulturne dediščine Gorica v Novi Gorici Nie, N.H. & Hull, C.H. & Jenkins, J.G. & Steinbrenner, K. & Bent, D.H. 1975: SPSS: statistical package for the social sciences, McGraw-Hill Book Company. Peterlin, S./Ed. 1976; Inventar najpomembnješe naravne dediščine Slovenije, (inventory of Slovene the most important natural heritage; in Slovene), Ljubljana, Zavod SRS za spomeniško varstvo. Rojšek, D., 1983-1: Hidrogeografske značilnosti in degradacija porečja Notranjske Reke ter Škocjanske jame (Hydrogeographical characcteristics and degradation of Notranjska Reka drainage basin and Škocjanske jame). Symposium international "Protection du Karst ä r occasion du 160-anniversaire de Škocjanske jame", 52-56, Sežana. Rojšek, D., 1987-1: Fizičnogeografske značilnosti in naravne znamenitosti porečja Notranjske Reke (Physico-geographical Characteristics and Natural Features of the Notranjska Reka R. Drainage Basin). Varstvo narave (Nature Conservation), 13,5-24, Ljubljana. Rojšek, D., 1987-2: Natural Heritage of the Classical Karst, Karst and Man (Proc. of the Int. Symp. on Human Influence on Karst), 255-265, Ljubljana. Rojšek, D., 1989-1: Conservation of cave features karst phenomena, in I. Gams and al. Rojšek, D., 1989-2: Methodology and inventory of geological, geomorphological and hydrogeographical heritage of the World Heritage Site in E. Drašček and al. Rojšek, D., 1990: Methodology of geological, geomorphological and hydrogeographical heritage inventarisation and inventory of geomorphological and hydrogeographical ..., in M. Gorkič and al. Rojšek, D., 1991: Geography and natural heritage. Geografski vestnik, 63, 117-118, Ljubljana. Rojšek, D., 1992-1: The Natural Features ofPosočje. 1-211, Ljubljana. Rojšek, D., 1992-2: About some names from Kras and Posočje. Geografski vestnik, 64,190, Ljubljana. Rojšek, D., 1992-3: Geographical Informatin Station Skocjan. Geografski vestnik, 64,202-203, Ljubljana. Rojšek, D., 1993-1: The Natural Features of Posočje. Brochure of Abstracts of the Malvern International Conference on Geological and Landscape Conservation, 126, Great Malvern, Joint Nature Conservation Committee. Rojšek, D., 1993-2: The Kras region of Slovenia - an international park ? Geological and Landscape Conservation; Brochure of Abstracts of the Malvern Conference, London and Great Malvern, Geological Society of London and Joint Nature Conservation Committee. Skobeme, R & Peterlin, S./Eds. 1988: Inventar najpomembnejše naravne dediščine Slovenije - 1. del, (inventory of Slovene the most important natural heritage - part 1, in Slovene), Ljubljana, Zavod RS za varstvo naravne in kulturne dediščine. Skobeme, P. & Peterlin, S./Eds. 1991: Inventar najpomembnejše naravne dediščine Slovenije - 2. del, (inventory of Slovene the most important natural heritage - part 2, in Slovene), Ljubljana, Zavod RS za varstvo naravne in kulturne dediščine INVENTARIZIRANJE NARAVNE DEDIŠČINE Povzetek Pojem naravna dediščina je sestavljen iz dveh polov. Prvega tvorijo naravni pojavi, v drugem pa najdemo vrednote. Tudi prvine naravne dediščine so zaokrožene v dveh skupinah, fizični in kulturno-antropološki (slika 1). Ovrednotenje in inventariziranje naravne dediščine je proces, kije povezan s kulturno stopnjo družbenega razvoja. Rezultati tega procesa morajo biti znanstveno neoporečni, kot take pa bi jih morali spoštovati posamezniki, oblast in družba. Naravno dediščino sestavljajo enote, ki so združene v petih skupinah (slika 2). Inventariziranje začnemo z evidentiranjem naravnih pojavov, nato jih ovrednotimo in izbrane uvrstimo med enote naravne dediščine. Merila za vrednotenje so razvrščena v dve skupini. V prvi najdemo naravoslovna merila, ki temelje na spoznanjih geologije, geografije, biologije in matematike (statistike). Drugo skupino tvorijo kulturno-antropološka merila. Ta so utemeljena na osnovi spoznanj etnologije, kulturne-antropologije, filozofije in umetnostne zgodovine (slika 3). Na koncu uredimo podatke v računalniški zapis oziroma zbirko podatkov in jih izpišemo na obrazcu, inventarnem listu (slika 4 ). Vendar inventariziranje ni končano, kajti inventarje je potrebno vzdrževati s spremljanjem stanja v naravi, novimi odkritji, pisarniško obdelavo podatkov in besedil ter predstavljanjem naravne dediščine javnosti. Geografija igra pri multiinterdisciplinarnem inventariziranju naravne dediščine pomembno vlogo (D. Rojšek, 1991). CLASSIC DOLINES OF CLASSICAL SITE KLASIČNE VRTAČE KLASIČNEGA KRASA FRANCE ŠUŠTERŠIČ Izvleček UDK 551.442 (497.12) France Šušteršič: Klasične vrtače klasičnega krasa. Ponovno je bilo proučenih nekaj vrtač, ki jih Cvijič navaja kot šolske primere. Izkazalo se je, da objekt, katerega presek je objavil v svojih monografijah, sploh ni vrtača. Zato je vrtža na lokaciji Skalčen Kamen, označena SK-022, predložena za novi holotip. Na istem kraju je bilo podrobno proučenih 17 vrtač. Kot kaže, so nastale z razpadom kaminov, ne pa kot zbirna območja krajevnih ponorov. Njihova podrobna oblikovanost je posledica pleistocenskega, perinivalnega preoblikovanja. Ključne besede: vrtača, brezno Cvijič, statistika, klasični kras, pliocen Abstract UDC 551.442 (497.12) France Šušteršič: Classic dolines of classical site. Some karst depressions referred by Cvijič as examples of solution dolines were revisited. It came out that the structure presented in section in his works is not a doline at all. Consequently, doline matched SK-022, at the location Skalčen Kamen, is proposed to be new holotipe. 17 dolines at the same location were studied in detail. It appears that they originate from desintegration of dome pits, rather than they evolve from local sinks. The particular shape of their "bowls" is predominantly controlled by the pleistocene peiglacial processes. Key words: (solution) doline, dome pit, Cvijič, statistics. Classical karst, pleistocene. Address-Nas lov prof. dr. France Šušteršič FNT Montanistika, Odsek za geologijo, 61 000 Ljubljana, Aškerčeva 12, Slovenija. As in many cases concerning the karst, the story began with Jovan Cvijic. This paper presents ideas which arose while revisiting the century old sites of Cvijic'c classical dolines research. The text reproduces my paper given at the session, as well as the topics covered by the field excursion to the sites in question. ABOUT THE ROOTS In 1893 (1895) J. Cvijic published his fundamental work, (the) Karst'. Among other karst phenomena he exhaustively discussed the medium sized closed karst depressions named dolines^. Since that time much work has been carried out on this topic. Surprisingly, at the moment, it does not seem that our understanding about dolines is any clearer. Rather than increased consistency, an overview of the literature reveals quite a divergenece in concepts. Sometimes it is evident that the students are not dealing with the same material, although they are using identical terminology. On such occasions one has to get back to the roots, reinspect the basic literature and - possibly - check the examples in situ. J. Cvijic (1893,1895) subdivided dolines into four main groups, and his divisions have in general remained used until the present (D.C. Ford, P.W. Williams, 1989, 398, Fig. 9.13), see also A. Bondesan & al. (1992, 6). Among these, solution dolines' have been The two books are of identical title and have essentially the same contents. It is sure that the German version (1893) is the one which set the fundamentals of modern karstology. The Serbian (1895) version is sligtly better elaborated and it presents some Cvijic's responses to the discussions inspired by the first one. I take in consideration the both. For home use Cvijic introduced the term "vrtača" instead of "dolina(e)". (See footnote 8!) The term "vrtača" has been generally explained as to originate from the verb "vrteti" (= to rotate, to whirl). Two decades of field work in several parts of the classical Karst have convinced me that this explanation may not be proper. Though the expressions "dolina" and "vrtača" prevail, at several places local people use the term "vrt" (= garden). They explain itthat a "polje" (= field) is ploughed but a "vrt" is done by hand. The modest extent of fertile soil at the bottoms of many dolines really does not permit any other way of cultivation than rudimentary gardening. However, this linguistic digression would be of little interest for a non-Slav reader, had the "whirling" explanation (tacitely, but selfunderstandably containing the idea of a swallet) not turned at least a part ofthe research of the dolines in wrong direction. As in many papers covering the same topic, in the following text the expression "doline" is used in the sense of "solution doline". the most studied, but also remain the most obscure. Cvijid (o.e.) explained them as the places of more intensive corrosional lowering of surface, controlled by rock fracturing. Obviously such an explanation requires intensive studies of doline cross sections. Though he lists a number of examples from the whole area of former Yugoslavia, he offers only one example of a doline section (J. Cvijic, 1893, 43; 1895, 63). This figure has become one of the most reproduced in the all geomorphological literature (Fig. 1). The remark (o.e.) "Ich habe solche angeschnittene Dohnen in dem zweiten Eisenbahneinschnitt suedlich von Unterloitsch'' in Krain' beobachtet (Siehe Profil)" promises an easy check of our understanding of his ideas. Unexpectedly, my first visit to this location was fruitless. Even though I searched a number of railroad cuttings some kilometers south of Logatec, no location fitted the drawing. Later I learned that since Cvijic's times the Logatec railway station has been enlarged. Eventually, the first cutting completely disappeared and the last remains of the second one are now part of the station complex. It came out that the object (Fig. 2) is the present state of the "doline", described by Cvijic. A closer inspection and the map*" of pre-reconstruction state revealed that Cvijic (Fig. 3, double circle) had observed a section of longitudinal terrain lowering along a SI. 1: Cvijičeva skica, ki jo je pomotoma imel za središčni prerez vrtače (J. Cvijič, 1893, 43; 1895, 63). Fig. 1: Reproduction of Cvijic's drawing, by mistake explained as the central section of a doline (J. Cvijic, 1893, 43; 1895, 63). "Unterloitsch" is the German form of the Slovene place name "Dolenji Logatec". Logatec is Slovene derivation from Roman expression "Longaticum", marked in Tabula Peutingeriana. "Krain" is German form of the Slovene expression "Kranjska" (= Carniola), covering the centra! part of Slovenia, predominantly the basin of the river Sava. Fig. 3 is redrawn and slightly simplified after the 1:1000 map used during the main reconstruction in the fifties. crushed zone', rather than a doline. If the parent rock were not a quite dalomitized limestone, a good example of a bogaz (Fig. 3, see the linar depression behind the cutting face!) would develop there. Undoubtedly, Cvijic had seen a number of sagittally transected dolines, and the structure he believed to be a centrally transected doline did not differ a great deal from them. So he was able to continue the former citation (o.e.): "Unter denselben kommen keine Hoehlen vor, der Schichteverband ist nirgends gestoert; vor dem Dolinenboden setzen sich aber zahlreiche Kluefte durch eine Zone verwitterter Kalksteine fort und sind bis in das frisch aussehende, wenig zersetzte Gestein zu verfolgen, welches die Unterlage bildet und ebenfals entbloesst ist.... Alle durchschnittenen Dohnen zeigen dieselben Erscheinungen in groesserem oder kleinerem Masstabe." This is well illustrated by his sketch, and its constant reprinting has only proliferated his notion. But he never did actually see a central section of a doline! The further expansion of his ideas is easily understood. For him, dolines were the attack-points of surficial waters on the parent rock (o.e., 57 (81): "In den sproeden, reinen Kalksteinen finden sich zahlreiche Angriffspunkte, naemlich verschiedenartige Fugen und Kluefte, es findet laengs derselben eine starke vertikale Erosion oder eine Intensive Aufloesung des Kalksteines statt und bleiben dabei unbedeutenede Loesungsrueckstaende, durch welche die Erweiterung und Vertiefung der entstandenen Dohnen nicht wesentlich beschraenkt wird. In solchen Kalksteinen werden oft die Absorptionsspalten und schmale Roehren zu Ponoren erweitert". Combined with general belief of the time that the karst is just an episode between two fluvial phases in relief development his misobservation introduced several notions which have become almost axioms. A. Bondesan & al. (1992, 1) say: "From a morphodynamic point of view the doline constitutes an elementary hydrographic unit, comparable to a simple basin, which, with its system of slopes, conveys water to the absorbing points at the bottom into an underground network." Only few readers of Cvijič's later citation (o.e., 5 7, (81)) feel that the expression "Ponor" is not used in the way it is used elsewhere in the book, i.e.: a swallet, leading to a well formed karst channel, but is used in the way local people do, i.e.: any, even the tiniest, opening able to receive water. Thus, there are at least two weak points jeopardizing the present expansion of Cvijic's ideas: 1. From his false example it follows that dolines result from locally intensified surficial, possibly subcutanean karstification. 2. Too rigid understanding of the term "ponor" brought about the notion that dolines® are small catchement areas. The expression is meant in the sense of S. Šebela and J. Čar (1991, 221). Even the term "doline" seems to be misunderstood in the least detail. A. Bondesan &al. (1992, 4) wrote "Cvijic (1893) first introduced the name "doline" which means "small valley", to underline the analogy between this form and a small normal hydrographic basin." Cvijic just followed the terminology introduced in 1848 by Morlot (I. Gams, 1974,20). He was completely aware of very vague meaning of this term in Slav languages, so he used the expression "vrtača" (see footnote 2!) in his Serbian text. "Dolina" (see Fairbridge, R. W., 1968) primarily SI. 3: Tloris Cvijičeve "vrtače" in soseščine pred širihnjo postaje v šestdesetih letih. Fig. 3: Plan of the Cvijič's "doline" and its neighbourhood, before the reconstruction works in the sixties. means any negative relief form. In the fluvial circumstances it is any stream valley, in the high mountains it is its glacier analogue. In the karst, where surface fluvial features are unknown, it predominantelly means solution or collapse "doline", but sometimes even polje (popularly, the Planinsko polje is called "Planinska dolina"). Cvijič found no reason why to abandon the term "doline" in the scientific language, but he did not intend to stress the arialogies with the fluvial system. ItwasGrund(1914) who "considered their place in the karst landscape to be similar to that of valleys in fluvial terrain" (Ford, D. C., P. W. Williams, 1989,396). Yet, it is questionable whether the notion of catchment area was so precisely defined at his time as it is today. The two ideas are hardly consistent, if not contradictory. Nevertheless, a tenet is common for both: dolines are product ofsurficial processes and the role of underground voids is completely passive. In order to avoid ambiguity if the holotype of a fossil is lost, paleontologists define paratypes. Cvijic did not reason in this way, but, fortunately, he did mention a number of locations where examples of dolines appear. Among them, the citation (o.e. 44(65)) "Die Karstplatten und Karstplateaus sind die wichtigsten Obeflaecheformen, auf welchen Dohnen in der Regel in ungeheuerer Menge auftreten. .., wie die Umgebung von Unterloitsch (Ravnik und Scalcen Kamen),... u.s.w." is very useful, as the location Skalčen Kamen lies only 6 km SE from Logatec station, and it is a well known road crossing. The location lies in the middle of a forest and it is practically untouched by human activity. In order to check what kind of closed depressions he really did mean when using the term "doline", a detailed study of 17 dolines at this location was carried out in 1992 and 1993. THE METHOD In this paper, I present and discuss primarily the results of morphometry. Within a 150 m wide strip in the direction 95° all karst phenomena, including 17 dolines, were studied in detail, and within an about 1 km wide area along the same line, all dolines were mapped. Their position attributes are the locations of the lowest elevation (= "bottom point" in the following text), which were surveyed by compass and meter tape, and later related to the spot elevation points (given grid coordinates), marked on the technical map 1:5000. The dolines which centres lie within the inner strip were measured, and data processed according to the method described in F. Sušteršič (1985, 1987, and 1989), and discussed byA. Bondesan &al. (1992, 31). The elevation data of 72 measuring points within the doline, arranged in a regular pattern, are shrunk in a small number of Fourier coefficients. It permits a comprehensive reconstruction of the whole doline and computation of practically all descriptive parameters ever defined (see A. Bondesan, o.e.). When determining the dolines the definition of the perimeter is crucial. If the surrounding terrain were absolutely flat it would probably be no problem. However, dints and other forms of surface karstification induce short wave undulations of about 1 m amplitude, to say nothing about longer waves, or the general trend of the relief Many authors advocate two boundaries: 1. The terrain divides betwen dolines, as the borders between their influence areas. 2. The actual contour of the closed depression (overflow contour). According to the experience of my previous work (F. Šušteršič, 1985,1987), both can be abandoned. The primary reason is operative. Despite the opposite opinion, based predominantly on the use ofaevial photos or large scale maps (1:5000), it is relatively easy to determine the doline perimeter on the spot. It is marked by an abrupt change of the slope, though small in its value, dividing the "normal karst surface" and the area influ- enced by slope processes, induced by local centrical mass defficiency (doline)'. On the otfier hand, there are more substantia! reasons. In the karst of the Skaicen Kamen (and the large karst area hundreds of kilometers around it, too) there are no traces of any recent subaerial or epikarstic drainage. The karst is "pure" in the sense of F, Šušteršič (1982, 1986) and the notion of stable divide is untenable. The "overflow contour" would be of paramount importance if the doline depressions operated as lakes during at least one stage of their development. Opposingly, the study of their slopes (F. Šušteršič, 1987) revealed a number of indications of processes which do not respect the "overflow" contour at all. The method is oriented in the presentation of dolines as a whole, rather than evaluation of single, possibly linear parameters. Nevertheless, the program "VRT" computes 30 simple parametres, some of which are discussed in the following. The numbers, which are used in tables also relate to the numbering in the program output. (5), (6) - The shortest and the longest radius of the perimeter, according to the bottom point. ]n Šušteršič( F., 1987) I showed that the opposite slopes of a doline are usually the most different, too, and there is no reason to discuss the diameter. (8), (9) - The lowest and the highest elevation of the perimeter, according to the bottom point. The measured dolines lie in, although undulating, predominantelly flat terrain, and these parameters express the surface roughness rather than the slope of the general surface. (10) - Relative volume ofthe doline, i.e. the volume of the space between the doline sides and the general relief trend. The doline is cut into 360 slices which partial volumes are computed analytically and then added together. However, the notion of the volume depends on dolines history. If they are superimposed in a relatively inert relief the defmiton is fair. But if the dolines display different lowering rates between different spots the idea becomes untenable. (11) - Planimetrie area. The doline area within the horizontal projection ofthe perimeter is cut in 360 slices which partial areas are computed analytically and then added together. (15) - Shift of the gravity center. Grid coordinates, relative to the bottom point, of the gravity center of the planimetric area are computed. The shift is their Pythagorean sum. (16) - Azimuth of the shift of the gravity center. In general, dolines are neither symmetric nor of regular shape, and this results in the shift of the gravity center. If there exist preferred directions, the shift may result from some oriented process. (17) - Normalized shift of the gravity center. When divided by square root ofthe planimetric area, the shifts of dolines of different sizes become comparable. (20), (21) - Lengths of the major and minor axis of the (normative) ellipse with equal planimetric area and equal momentum of inertia to the doline ground plane is It holds true only for the dolines which remained untouched by man. In cultivated land, farmers had obtused their "lips" a long time ago in order to facilitate ploughing or mowing. computed. Axes of the ellipse were introduced instead of various "diameters" which are highly unstable parameters. (22) - Direction (azimuth) of the major axis of the normative ellipse. (23) - Elongation of the normative ellipse. Ratio between the major and the minor axis. (24) - Length of the axis of the normative cone. The doline is approximated by a rotational cone of equal volume and equal planimetric area of its basal plane. Beacause dolines do not generally lie in flat terrain, the basal plane is obtained by truncation of a vertical cone by the plane, best fitting to the elevations on the doline perimeter. The length of the axis is the vertical distance between the apex and the basal plane. This parameter was introduced instead of various "depths" of the doline. (25) - Inclination of the normative cone surface. Replaces "average inclination of slopes". (28) - Shift of the apex. Similar to (15), taking the apex of the cone instead of the planimetric area gravity center. (29) - Normalized shift of the apex. Similar to (17), taking coordinates ofthecone's apex instead of the planimetric area gravity center. (30) - Direction of the apex position. Similar to (16), taking coordinates of the cone's apex instead of the planimetric area gravity center. (V/A) - Relative denudation (d) within the doline space may be viewed as the thckness of a slab of equal planimetric area (V = A*d). When processing, the information about the doline geometry is transformed into the Fourier coefficients. During further procedure (F. Šušteršič, 1985), it is separated into two packs, containing fundamental shape of the doline, and the noise, respectively. On the base of the former data "undistorted" shape of the doline is recomputed (o.e.). An example is ground plane and some semiprofiles of the doline SK-22 (Fig. 4). The shape of a geometric figure is described by its derivatives, that is formalized into inclination and aspect angles in geomorphology. Fig. 5/a displays the inclination of the slopes of the same doline, and Fig. 5/b presents their aspects. The broken line in Figs. 5/a and 5/b is the "overflow" contour. The spatial distribution of inclinations within a slope section (see also semiprofiles. Fig. 4) displays a very common pattern: relatively gentle slopes close to the perimeter, evidently greater inclinations further towards the center, and a practically flat area in the middle of the doline. The extreme inclination is south of the bottom point, and will be discussed in the next section. The strip of the minimum inclination west of the bottom is probably a weakly pronounced suture (according to F. Šušteršič, 1987, 80) that is visible also on Fig. 5/b. It is also evident that the aspects tend to approach some preferable directions (and vice versa) rather than to point straight to the center. The directional distortion of the slopes provides even more information. At each position the difference between the aspect and straight direction towards the bottom point is computed. Taking cosines ofthese angles one obtains correlation coefficients between true and ideal shape of the doline (Fig 6/c). At same positions (hatched areas) correlation / / y' \ \ 'V V \ \ \ 1 o \ x' /1 / \ \ \ \ \ I y \ r> SI. 4: Tloris in nekajpolrezov vrtače SK-022. Korakplastnic znaša 0,5 metra. Črtkana so območja, kjer se padnica pomočjo preveč odklanja od smeri proti središču. Fig. 4: Plan and some semiprofiles of the doline SK-022. Contour lines per 0.5 m. "Nonproper" areas (see text!) are hatched. SI 5: Pobočja vrtače SK-022: a/ nakloni pobočij (črtkana črta je "prelivna" plastnica): b/ smeri pobočij; c/korelacija smeri pobočij s smerjo proti središču; d/ odstopanja od idealne oblike (v stopinjah). Fig. 5: Slopes of the doline SK-022: a/slope angles (hatched is "overflow" couture), b/ aspect angles, c/ correlation with the ideal shape, d/ deviations from the ideal shapes (in degrees). a. X b. vy^ c. d. e. + L E & E N D S/. 6: Privlačne (debelo) in odbojne (črtkano) črte ničelnega odklona v vrtačah pri Skalčem Kamnu. Dvojne tanke črte predstavljajo možne nosilne strukture. Fig. 6: Attractive (bold) and repulsive (broken) zero deviation lines within the measured dolines at Skalčen Kamen. Double thin lines represent possible geological structures. is lower than 0.90 (absolute deviation approx. 25°). It means that semiprofiles across these areas are not proper (F. Sušteršič, o.e., 81). They may serve just as information, but must be omitted in numerical taxonomical operations. Deviation angles are both positive and negative, and obviously there do exist lines of zero deviations (Fig. 5/d). Again, they are attractive if the radial component of the neighboring slope vector is directed towards them, and repulsive if the radial component is directed away. Physically, this means that the attractive zero lines reveal the positions of relative mass deficiency, and the repulsive ones a mass surplus. In other words, the attractive zero lines appear where the karstification is faster (possibly tectonically affected areas), and the repulsive zero lines are found where the rock is either more resistive, or accumulation of slope material appears. These structures do not generally run in a radial direction; most probably they form a trellis-like network. This pattern is verj' usual with the buried grikes-and-clints surface outside the dolines (Fig. 6). So, it is quite possibile that there is no difference between the processes acting upon the rock surface, beneath the soil veneer within the dolines and outside of them. But one restriction must be imposed. Due to relatively small number of measured semiprofiles (6), aliasing in tangential direction is very likely, and along the semiprofiles the higher harmonics were abandoned intentially. Consequently, the pattern may be detected in general lines only, and its details would be better revealed when studying the "noise". Doline SK-22 is formed in mechanically relatively unresistant rock, so that downslope transport has obscured the underlying limestone surface shaping. Nevertheless, a Dinaric structure and one of its normals are quite distinguishable. DOLINES AT SKALČEN KAMEN LOCATION The location Skalcen Kamen is part of the transect Borovnica and Grčarevski vrh. The project is explained in more in detail in F. Sušteršič (1987, Fig 1.). At the location, roughly indicated byCvijic (o.e.), all the dolines fitting the main strip of the transect vrh were surveyed. It must be noted that only the area west of the "Krožna pot'"" has been studied up to the present. The only exception is the doline matched "SK-22" which lies the closest to the actual crossing Skalcen Kamen. The Skalcen Kamen lies in the Ravnik", an approximately 1.5 - 3 km wide, and 13.5 In Slovene it means "circular road". The road was built for forestry purposes as the master communication for effective removal of logs. At the location Skalcen Kamen a secondary road branches off it. Within the delimited area which was used for density calculations there are 62 dolines while 68 dolines were mapped in total. km long strip of grossly flat terrain between Begunje and Logatec. In its axial direction it is inclined about 30'. According to occurence of typical sediments it is evident that at some time in Pleistocene, a surface stream running in NW direction penetrated the Ravnik. However, it was just an episode in the completely karstic evolution, and its surprisingly straight flanks imply a predominantly tectonic origin. Unfortunately, a complete geomorphic study has not carried out yet. The Ravnik surface crosses several carbonate formations of the Mezozoic. At the Skalčen Kamen the bedrock is of Malmian age, mainly limestone with an approx. 38 m thick dolomite intercalation. The dip is uniform, 252,3 /31.6 (21 measurements, spherical variance = 0.0156), Detailed studies of the rock and the structure have presently been undertaken. At present, the main courses of the sinking river Ljubljanica, between Cerkniško polje, Planinsko polje, and the Vrhnika springs pass about 100 - 150 m below the surface. Traces of some fossil river caves were found, but vertical shafts prevail, typically not deeper than 20 m. At the actual location there are only five shafts, and two rather ambiguous segments of phreatic tubes. The spatial position ofa doline is identified with the grid coordinates (Y, X and Z) of its "bottom point". The central parts of the dolines are generally filled with loose material and relatively flat. Consequently, Easting and Northing coordinates should be taken with SI. 7: Računalniška rekonstrukcija "idealnega " reliefa brez vrtač, in njihovi obodi (črtkano) Fig. 7: Computer reconstruction of the "ideal" relief in the neighbourhood of the measured dolines, and the "lips" of the dolines (broken lines). relative (about 1 m) tolerance. In order to enable further investigations these positions were marked with metal markers. The area where all the dolines (62 in total)" were registered covers 0.174 km% that means the density of 356.1 dolines/km^. Thus, the influence area of a doline covers 2808 m^ the radius of the equivalent circle being r = 29.9 m. This density nearly equals the one established on Upper Cretaceous (352.5 per km^), and differs from the one on Lower Cretaceous (212.2 per km-) (F. Šušteršič, 1987, 79), in the same transect. In order to understand the role of the dolines, two patterns are of paramount importance: their planar distribution, i.e the network of lines that they presumably lie on, and their coordination, visualized by the Voronoi diagram. Both the procedures rely upon the relations between points. If the dolines were spaced at greater distances, the question which non-dimesional point should represent the doline, would not be of great importance. However, in conditions when the dimensions of larger dolines exceed the radius of the average influence area it becomes crucial, especially if it is considered that the bottom points do not coincide with the ground plane gravity centres, and both of them with the equivalent cone apices, too. Until the roles ofthe three are not sufficiently cleared, this interesting question is put aside. Sixteen dolines lie within the inner strip (Fig. 7) and they permit some insight into their spatial distribution. Among them, only three (SK-11, SK-15, SK-16) stand completely alone. The perimeters of the rest make contact in different ways. Dolines'SK-1 and SK-2, and SK-4 and SK-5 "bowls" cut one another. The intermediate terrain between the SK-6 and SK-7, and SK-3 and SK-4 does not differ from the surface further out from the dolines, but the whole contact lies within a general relief lowering. These two types are well known in literature. Opposingly, the one between the SK-12 od SK-13 which appear literaly intervolved, does not seem to have been encountered before. However, it may be either a single outcome of absolutely local circumstances, or, more seriously, an effect of incorrect definitions. The latter is the object of further study. Dolines may be just the spots where local terrain lowering surpasses the general denudation rate, but there is no difference in the actual processes. If it is so, then it is rather risky to view them separately from the surrounding relief On the other hand, the mere existence of doline-generated surface processes which reflect in well determined "lip" suffices to accept the working hypothesis that dolines are genetically individuals, lying within a surface of different origin. In that case the "maternal" surface may be extrapolated over the dolines. In order to obtain it 220 spot elevations, mainly on the intermediate terain, and partly on the dolines perimeters were measured. Program Surfer'^ was used to obtain the contour lines (Fig. 7). Due to the lack of experience, all possible default values were retained. Inspection of the figure is very instructive. The terrain which looked random at first SURFER Access System Ver. 4.15, Copyright (C) Golden Software Inc. 1989. sight is well organized in the Dinaric and South-North direction. Nearly all the dolines are gathered within the hypothetical terrain lowerings. Their bottom points lie in relative depression, below the computed 535 m contour, but avoid the extreme low positions. If the surface shaping determines the dolines position this may mean that at some time - presumably in cold ages of Pleistocene - the surface was relatively impermeable, and that dolines were collectors of surface drainage. But, in that case dolines would occupy the very lowest parts, which is not the case. On the other hand, if the occurence of dolines in a certain area brought about general lowering of neighbouring relief surface, one would expect that this area was shaped in some specific way. But inspection in the field did not reveal this, and well expressed "lips" imply that the surface development within dolines and outside of them go their own, different ways. Their predominantly lateral, typically tectonically directioned positions possibly imply that the terrain lowering occurs where the parent rock is more fractured, and that dolines appear on the borders of these zones. The differences may be very tiny and might be revealed by minute tectonic analysis which has not been done yet. The doline-less strip (noticeable also on Fig. 7), dividing the dolines in two groups approximately matches the dolomite layer. Idealized dolines (normative cones) were projected" on a vertical plane stretched in the dip direction (Fig. 8). It is evident that the approximate distance between the two groups fits the horizontal width of the dolomite layer reasonably well, but that they do not coincide. At the bottom the volumes of dolines are projected on the same plane, and flirther filtered by a cosine bell, as wide as the horizontal section of the dolomite layer. The gap between the two groups is expressed much clearer. It would overlap the dolomite stripe better if the surface were 15 m higher, that corresponds to 250 ka denudation (surface lowering), if taking in account its present rate (I. Gams, 1974, 71). Indications exist that the previously mentioned alluvium is approximatively the same age. PARAMETRIC PRESENTATION The following tables present some parametres provided by the program VRT'''. The intention is primarily to give an impression about the dolines dimensions. However, some parameters, especially when inspected along with the other figures, give quite an insight into the formative processes. In the first column there are doline labels, while in the first line there are parameter codes, explained at the bottom of the table. The units are metric. In fact, the bottom points were projected. The length of the normative cone axis (parameter 24) was used as the "depth", and inclination of its surface (parameter 25) was used as inclination of slopes. Fig. 8 is vertically exaggerated 4 times. The program is written in QBasic 4.5. The ASCII code or compiled version are available with the author or at the Karst Research Institute, ZRC SAZU, 66 230 Postojna, Titov trg 2, Slovenia. Table 1 5 6 8 9 SK-001 13.41 29.38 2.84 8.15 SK-002 17.57 33.52 2,94 8.80 SK-003 12.88 27.53 2.74 6.70 SK-004 7.48 17.69 2.20 5.18 SK-005 21.42 28.96 4.77 10.43 SK-006 12.81 29.93 3.06 9.03 SK-007 9.08 27.53 1.66 7.93 SK-008 6.89 23.55 0.56 5.20 SK-009 19.77 45.47 3.98 12.49 SK-010 12.82 26.65 2.60 6.68 SK-011 22.96 31.14 7.46 10.82 SK-012 10.32 32.32 2.04 8.23 SK-013 19.56 32.04 3.48 7.47 SK-014 18.27 32.26 5.53 7.33 SK-015 22.62 47.51 7.15 17.19 SK-016 13.78 28.80 5.16 9.54 SK-022 12.60 36.12 4.20 8.26 (5), (6) - the shortest and the longest radius (8), (9) - the lowest and the highest elevation of the perimeter These parameters provide only information about the dolines size order. It is also evident that they are far from geometric regularity. Table 2 0 10 11 V/A 24 25 SK-001 3351.33 1513.18 2.21 6.64 18.35 SK-002 4532.41 1947.35 2.33 6.98 17.00 SK-003 3146.03 1266.97 2.48 7.45 21.52 SK-004 979.37 632.25 1.55 4.65 21.20 SK-005 5379.75 2105.58 2.55 7.66 17.46 SK-006 4106.44 1544.47 2.66 7.98 20.61 SK-007 2062.63 979.06 2.11 6.32 22.57 SK-008 1290.12 780.76 1.65 4.96 19.60 SK-009 8616.05 2737.43 3.15 9.44 18.62 SK-010 2114.28 1161.52 1.82 5.46 16.24 SK-Oll 5486.18 2101.92 2.61 7.83 17.95 SK-012 3522.64 1649.21 2.14 6.41 17.83 SK-013 4603,63 1955.86 2.35 7.06 17.15 SK-014 4287.95 1805.59 2.37 7.12 17.54 SK-015 16026.07 3835.63 4.18 12.53 20.26 SK-016 4714.52 1627.57 2.90 8.69 22.22 SK-022 4414.83 1753.64 2.52 7.55 19.01 (10)- relative volume of the doline, (11) - planimetric area, (V/A) - relative lowering, (24) - length of the axis of the normative cone, (25) - inclination of the normative cone surface ( )• SI. 8: Zgoraj: normativni stožci izmerjenih vrtač in dolomitna skladovnica (črtkano), projicirani na navpično ravnino skozi padnico skladov. Štirikratno previšanje. Spodaj: Projekcija zhistrenih prostornin na isto ravnino (glej besedilo!). Fig. 8: Top: normative cones of masured dolines and the dolomite layer (hatched), projected on a vertical plane running in the dip direction. 4 X vertical exageration. Bottom: Projection of filtered dolines volumes (See text!) The volumes (10) and the planimetric areas (11) indicate primarly the size order of the dolines. Values of their quotients are predominantly 2.1 to 2.7. It follows that the relative surface lowering within the doline perimeter amounts to about 2.4 m in general (Fig. 9/a). The quotient is larger with the dolines SK-009, SK-015 and SK-016. Consequently, the mass removal has either been lasting longer, or it has been faster. Respective conclusions may be drawn concerning the dolines SK-004, SK-008 and SK-010 where relative lowering was smaller. It is interesting that the dolines of the smallest lowering rate are in touch with the ones with the greatest (especially the group SK-008, SK-009, and SK-010; also the group SK-003, SK-004, and SK-005). One may assume that higher inclination of slopes means faster mass removal, and that an estimate of the doline growth dynamism is given by inclinations of the cone surface (25). The angles range from 16.2° to 22.6°. A simple calculation shows that the volume of a cone increases for the factor 1.43 if its inclination changes within the mentioned range (Fig. 9/b). The plot of the V/A ratio against the inclination angle (Fif 9/c) reveals very interesting relations. If the former assumption is fair then there exst dolines of large amount of denudation, and of great activity at the same time, too. But therea are no dolines of great activity at present, and large denudation at past (above the bold line). Thus, there exists a well defined time limit since when dolines have begun to appear. In the case of the Skalčen Kamen this conclusion is supported by other geomorphic facts, but this method might be applied also upon other localities where such an evidence is missing! Table : 0 20 21 22 23 SK-001 21.95 20.42 302.61 1.07 SK-002 28.10 21.34 18.00 1.32 SK-003 20.50 19.05 36.40 1.08 SK-004 15.29 12.53 79.09 1.22 SK-005 25.99 24.48 303.71 1.06 SK-006 23.91 19.82 60.89 1.21 SK-007 24.13 12.31 273.71 1.96 SK-008 15.81 14.30 289.84 1.11 SK-009 29.89 27.34 56.51 1.09 SK-010 20.77 18,11 36.96 1.15 SK-011 26.72 23.57 4.36 1.13 SK-012 26.74 18.55 7.51 1,44 SK-013 24.72 23.82 321.00 1,04 SK-0] 4 26.85 20.14 6,04 1,33 SK-015 34.52 34.48 44.87 1,00 SK-016 23.60 20.69 24,04 1,14 SK-022 24.05 21.45 2.05 1.12 (20), (21)- lengths of the major and minor axis of the ellipse (22) - direction (azimuth) of the major axis of the ellipse (23) - elongation of the normative ellipse Fig. 9 The ellipses which fit the best the planimetric shapes of the dolines were computed. If the doline is reasonably regular, the axes of the ellipse is a fair estimator of the doline direction. However, if the ground plane of the doline is not regular, and even the idea of the direction loses its meaning, the ellipse longer axis still indicates the planar distribution of the negative mass. A rose diagram (Fig. 10) reveals that the preferred direction is the S-N. Table 4 0 15 16 17 28 30 29 SK-001 8.53 25.85 0.2192 12.99 357.50 0.1753 SK-002 2.25 355.42 0.0509 10.28 258.41 0.2445 SK-003 4.54 53.85 0.1276 10.10 56.27 0.1564 SK-004 3.08 336.34 0.1225 9.70 318.03 0.2724 SK-005 1.22 240.75 0.0266 7.31 301.35 0.1480 SK-006 5.26 16.59 0.1339 10.92 43.39 0.1695 SK-007 4.43 89.29 0.1417 12.49 178.80 0.4224 SK-008 8.09 22.60 0.2897 10.45 55.04 0.2024 SK-009 12.72 232.80 0.2431 8.31 198.64 0.1429 SK-010 1.56 265.33 0.0456 4.43 2.39 0.1299 SK-011 3.44 351.98 0.0751 6.63 89.92 0.1719 SK-012 7.05 44.42 0.1737 11.52 324.13 0.3067 SK-013 5.15 296.38 0.1164 7.81 2.03 0.1667 SK-014 5.24 12.86 0.1234 13.94 354.06 0.2150 SK-0I5 6.24 256.55 0.1007 10.83 282.28 0.0948 SK-016 5.83 76.09 0.1446 2.70 333.52 0.1720 SK-022 10.42 344.63 0.2489 11.35 22.59 0.1704 (15) - shift of the gravity center, (16) - azimuth of the shift of the gravity center, (17) -normalized shift of the gravity center, (28) - shift of the apex, (30) - direction of the apex position, (29) - normalized shift of the apex SI. 9: Denudacija znotraj vrtač: A: dejanski iznos = prostornina /ploščina, a/ < 2m, b/2m < 2.75m, d 2.75m <. B: intenzivnost odnašanja = naklon plašča normativnega stožca (E). d/ < 19°, e/ < 18°. C: Soodvisnost iznosa in intenzivnosti denudacije. Debela črta je približna meja "prepovedanega" (glej besedilo!) območja. Fig. 9: Denudation within dolines: A: actual amount = volume divided by planimetric area, a/ < 2 m, b/ 2 m < 2.75 m, d 2.75m. B: intensity = inclination of the normative cone (E). d/ < 19", e < 18". C: Plot of the denudation against the intensity. Bold line is approximative limit of the "forbidden " area (See text!). It is evident that the ground plane gravity centres, as well as the positions of the normative cone apexes, are shifted quite far from the bottom points. Though the directions seem scattered (Fig. 10), the directional statistics reveal coherent results. The average direction of the gravity centres shift is 351.6° (circular variance = 0.5358), and the apexes position 357.7° (circular variance = 0.5153). Differences, as well as scattering are due to SI. 10: a: Smeri odmikov težišč tlorisov (debelejša puščica) in vrhov normativnih stožcev (tanjšapuščica), b: Rožni diagram smeri odmikov težišč tlorisov, c: Rožni diagram odmikov vrhov normativnih stožcev. Dvojni tanki črti s puščico sta povprečni smeri. Fig. 10 a: Direction of shifts of the planar gravity centres (bold arrow) and the normative cone apices (thin arrow), b: Rose diagram of shifts of the planar gravity centres, c: Rose diagram of the normative cone apices (thin arrow). Double thin lines with pointer represent average directions. uneven neigbouring terrain, but the general trend northwards is not neghgible. In other words, this means that the deepest position of the doline lies towards the southern part of the ground plane. This may be the result of greater production of slope material on southward oriented slopes, and the creep of it towards south. Provided that the whole area has been predominantly forrested during the historical time, it is very likely that the displacement of the deepest position in the doline is due to Pleistocene subarctic conditions. GEOMETRY The first impression ofthedolines one obtains when observing the map concerns their planar shape. As stressed in my {previous work (F. Šušteršič, 1984,1987), and also evident from A. Bondesan (& al., 1992, Figs. 14, 15), they are not as regular as many simple morphometric methods presume. Some of those irregularities are due to the roughness of the neighbouring terrain, and they do not imply irregularities of the "bowls" themselves. The others are probably due to the greater dynamism of the whole doline which does not permit the "bowl" to achieve the regular shape. The research of the considered dolines ftirther supports my previous observations (o.e.) that the "bowls" of the dolines are not symmetrical enough to permit classification which includes "a priori" symmetry. Consequently, the classical subdivision (Cvijic, 1893, D. C. Ford, Williams, P. W., 1989, 397) may serve as the first step of recognition only, and the semiprofiles remain the stepping stone to a more realistic classification and numeric taxonomy. As a rule, within the perimeter, detailed morphometry revealed that the dolines geometry consists of three concentric areas. - In the center there is a flat area, generally covered by soil. More rarely the soil is missing, and the center of the doline is occuppied by an inverted cone of loose boulders. Very exceptionally there appear the openings of vertical shafls"". The outer limit of this zone may usually be recognized by eye. On some infrequent occasions the border between the massive soil accumulation in the center, and relatively thin veneer of thte soil on the solid slopes is virtually undistinguishable, and only detailed surveying or penetration would provide the proper information. If the soil deposit is somewhat more extensive, its surface is generally slightly inclined southwards. - Then follows the ring of most inclined, and also the toughest slopes. They are the least weathered part in the whole doline. The surface may even be solid rock. More generally, it is reminiscent of the surface on hillslopes outside the dolines. It must be stressed that the inclination is not constant and the inflection point of the doline slopes is always within this zone. , - In the outer belt slopes are gentler, usually inclined at about a half of the maximum. They are evidently less stable than the ones within the itermediate belt. Somewhere dints " The direction SE-NW is the direction of the main dinaric shear movements, while the N-S direction is the direction of the extension fissures of the same system. This was observed in quite an extent by Jennigs (J. N., 1975), without drawing further consequences. stick out of the veneer of colluvium. The vertical extent of this zone does not exceed about 3 m, but it varies from doline to doline, even from place to place within a single doline. Its outer border is the perimeter of the doline, which it is marked by an abrupt change of the slope. In the case study the dolines had not been modified by human activity. In the doline SK-022, the three zones are well evident from semiprofiles directioned 111.3° and 201.3° (Fig. 4). The inner belt is characterized by constant, linear increase of the slope angle. Thus, the slope is parabolic, which is a direct consequence of equilibration of the colluvium. The maximum slope is achieved in the intermediate belt, where slope angle changes according to the bell-like pattern. In the outer belt the slope angle tends to an approximate constant value. The slopes tend to be conical, which is an equilibrium reaction of an undercut, less stable layer. Other semiprofiles present more complex shapes, probably due to the reason that the "bottom point" has been shifted quite away from the center. Though the three belts remain recognizeable in any direction, the slope angles generally change according to the direction of the slope. The doline SK-022 was scanned in 1 m intervals, and the aspect and the slope angles were computed. The results of the rough count of scores are presented in the following table: Table 5 10 15 20 25 30 35 40 0- 19.9 5 18 8 6 9 11 20- 39.9 1 16 15 12 13 2 - 40 - 59.9 - 9 23 14 7 - - 60 - 79.9 - 6 47 8 - - - 80 - 99.9 - 12 55 7 - - - 100- 119.9 - 25 46 42 - - - 120- 139.9 1 37 50 60 4 - - 140- 159.9 1 38 59 49 31 - - 160 - 179.9 1 58 58 44 44 - - 180- 199.9 1 28 59 42 46 - - 200- 219.9 1 8 49 41 44 - - 220 - 239.9 2 4 17 60 36 - - 240 - 259.9 1 2 4 57 27 - - 260 - 279.9 - 1 1 38 17 4 - 280- 299.9 - - 1 30 10 10 - 300- 319.9 - - 1 13 13 9 - 320- 339.9 - - - 3 23 36 o J 340- 359.9 - 5 6 8 7 24 9 Vertical classification: aspect angle Horizontal classification: slope angle SI. 11: Levo: Frekvence smeri pobočij v vrtačah SK-001 do SK-016: a: O % -1 %; b: 1 % - 2 %; c: 2 % - 3 %; d: 3 % <. Desno: Vpad skladov matične kamnine (lok) in smer najstrmejših pobočij (debela črta) - stereografska projekcija. Opomba: Slika prikazuje dejansko usmerjenost pobočij. Če želimo poudariti njihov položaj znotraj vrtač, moramo sliko zasukati na glavo. Fig. 11 Left: Frequencies of the slope directions within the dolines SK-001 to SK-016: a/ 0% -1%, b/1% - 2%, c/2% - 3%, d/3% <. Right: Dip of the parent rock (arch) and the line (bold) of the greatest inclination of slopes (stereographic projection). Note: The figure is oriented according to actual aspects of slopes. If intending to visualize their position within the dolines the figures must be turned up-side-down. However, this arrangement is rather misleading because the areas of the spherical rectangles diifer between parallel belts. In order to obtain fair statistics, the widths of the slope classes were changed to obtain equal areas. Additional)', the data was changed to parts per mille: Table 6 0.00 7.18 14.48 22.02 30.00 38.68 0- 19.9 9 9 6 9 20- 39.9 5 12 10 7 40- 59.9 1 17 14 1 60- 79.9 - 30 5 - 80- 99.9 1 35 7 - 100- 119.9 2 36 27 - 120- 139.9 2 45 39 - 140- 159.9 1 51 50 - 160- 179.9 1 60 51 4 180- 199.9 2 47 41 II 200 - 219.9 2 27 42 10 220- 239.9 2 7 58 1 240- 259.9 1 2 44 4 260- 279.9 - 1 25 9 280- 299.9 - 1 19 9 300- 319.9 - 1 10 10 320- 339.9 - - 6 30 1 340- 359.9 1 5 5 19 5 Somewhat more comprehensive, but in essence the same picture displays the sumaric table for all the rest of the dolines at the Skalčen Kamen. Table 7 0.0 7.2 14.5 22.0 30.0 38,7 48.6 61.0 0- 19.9 2.2 12.3 22.6 21,9 4.6 0.1 0,2 20- 39.9 2.7 14.0 21.6 20.0 1.8 0.2 - 40- 59.9 2.1 16.8 24.3 18.5 1.2 • - - 60- 79.9 4.0 18.5 27.9 11.7 2.4 0.9 - 80- 99.9 2.6 14.4 21.7 8.1 1.9 0,4 - 100- 119.9 2.2 15.8 14.6 9.1 2.0 - - 120- 139.9 4.5 23.3 14.5 7.8 0.4 - - 140- 159.9 4.8 25.6 17.1 3.2 - - - 160- 179.9 4.6 26.1 23.8 3.0 - - - 180- 199.9 5.5 24.3 26.4 6.8 - - - 200- 219.9 5.5 26.3 30.3 8.6 0.1 - - 220- 239.9 4.1 16.7 32.3 10.1 0.3 - - 240- 259.9 2.1 15.0 35.2 11.6 0.8 - - 260- 279.9 2.4 12.1 33.1 12.2 1.6 - - 280 - 299.9 1.0 9.1 24.1 9.9 1.4 - - 300 - 319.9 1.4 6.5 21.1 10.2 1.4 - - 320- 339.9 2.6 7.0 16.2 11.7 2.5 - - 340 - 359.9 2.1 8.3 17,9 14.5 3.5 - - Total 56.4 292.3 424.9 199.0 25.7 1,5 0,3 The slopes oriented southwards are the gentlest and the slopes oriented northwards are the steepest. However, the dip angle of parent rock influences the slope formation too and the former tables present the interplay of both (Fig. 11). Combined with the previously discussed shift directions of the ground plane gravity centres and the normative cone apices towards the north, this is another hint that dolines had achieved most of their present form in cold periods of the pleistocene. At this times, exposition of slopes, and consequently, freeze and thaw oscilations were the most important factors controlling the slope formation. That the slopes feature forms of paraleli slope retreat is so selfexplanatory. Not ignoring an important detail: neither runnels or other traces of water streaming on the slopes, nor alluvial sedimentation at their feet were found. The only linear entrenchments, detected by computer analysis and hardly observable by naked eye are sutures, i.e. relative lowerings of tectonically crushed zones (F. Šušteršič, 1987, F. Šušteršič, 1988). It is clear that the extent of the central portion depends exclusively of the accumulation of the products of the slope processes, and thus it is only temporary. Then, what is below? According to Cvijic's drawing (o.e.), and its numerous replicas, there should be a zone of weathered rock gradually passing to a number of small channels in solid rock. Anglo- saxon students would prefer the idea of a swallet, continuing to one tube or two tubes. P. W. Williams (1985, 465, Fig. 2) presented a somewhat different picture which is a compromise between the former two ideas. Systematic examination of many dolines, especially in progressing faces of quarries, revealed that at least in this part of Slovenia, neither concept is fair. As dolines, cut by quarries (Fig. 12), as the relatively infrequent examples of completely empty dolines, display the same structure. The bottom of the "bowl" is of soHd rock nearly to the actual center, where there appears an abrupt break into a vertical shaft. Sometimes, the edge is smoothed to some extent, but it is absolute clear that the transition is not gradual (Fig. 13). The diameters of the shafts are from 5 m 1 Om, while their depth is not known. No quarry face is high enough to cut the whole shaft. At the moment, the deepest accessible one is about 60m- but the apparent bottom is a boulder choke! On the walls of the open shafts flowstone is quite usual. Shaping of their walls is typical for the pits, eroded by free falling water or by water films on the walls. In short, they are examples of the "ortovacua", defined by W. Maucci (1951 /52). It appears that they match the "domepits" (W. B. White, 1988, Ford, D. C., Williams, P.W., 1989, 304, Fig. 7.38) in anglo-saxon literature. The filling is predominantly loamy material, with loess or periglacial gravel mixed together. In many cases movement into the central shaft below is evident (Fig. 14) (also P. Habic, 1987). The sections in quarries, as well as minute study of dolines slopes reveal that in the vicinity there exist filled parallel shafts which are completely passive and do not perform any mass movement, much less any influence on the formation of the doline. SOME DISCUSSION If Cvijic's most cited object is not a doline, then another holotype must be determined. As mentioned before, the doline matched SK-022 was by no doubt implicitively referred to byCvijic, within the group example of dolines at Skalčen Kamen. Besides, it features well the forms and processes, encountered in all the dolines of the area, and more general, it is also a good representative of millions of dolines in the Dinaric karst on the Balkans peninsula. Therefore, it is proposed that this should serve as the holotype of Cvijic's dolines, while the structure reproduced in his two books must be abandoned. The attribute "Cvijic's" is important because there is quite an evidence that the dolines, studied predominantly by the Anglo-saxon researchers (J.N. Jennings, 1975 is partly an exception) are not of the same kind. Consequently, the role of the dolines in the karst surface must be reconsidered. This topic was extensively discussed by S. Bahun (1969); for our purpose his ideas might be simplified into three options: 1. Dolines are integral part of the karst surface. Due to local conditions lowering has been more extensive at some spots, but the processes are absolutely the same. 2. Dolines are specific phenomena of transition of the surface drainage into the underground one. Thus they are not just local lowerings, but they still play a role in the surface karstification. 3. Dolines are reproductions of the underground karst voids on the surface. The very act of intercourse is not a collapse, but denudation of the surface which is permanently opening the underlying caverns to surface. Having appeared on the surface these "negative masses" may have their own way of development, controlled by superficial processes. It is evident that Cvijic has chosen the first option. However, a fundamental objection arises automatically. If the weak-points on the surface are geological structures, which are linear as a rule, then, why are dolines so very circular, even if ranged along tectonical lines, and clearly displaying these structures even in their internal form. The second option is the one how Cvijic was predominantly understood. A number of the Anglo-saxon authors (M. Day: 1976, 1983, Ph. R. Kemmerly: 1976,1982,1986, P. W. Williams: 1985) support it more than enough. Even some rare examples from the karst of Slovenia might be best explained in this way. The third option appears to fit best the dolines at Skalčen Kamen and its wider neighbourhood. Bahun (o.e.) did not pay great attention to the initial caverns, while C. D'Ambrosi (1960) explictively derived dolines from the Maucci's (1952) "ortovacua", i.e. vertical shafts. This best fits my observations of the dolines. It appears that some other researchers, especialy (J. N. Jennings, 1975, G. Benvenutti & U. Sauro, 1977, and A. Bondesan, M. Meneghel, and U. Sauro, 1992) deal with the same matter, though not being completely aware of all the consequences. However, any further work depends greatly on our knowledge about the vertical shafts. At the moment, the classification of the vertical shafts is only rudimentary, and their origin has not been completely solved. It appears that only the domepits are prone to evolve into dolines, but the explanations of their origin diverge. In my experience, the explanation proposed by W. Maucci (o.e.), and further supported by A. Frumkin (1984, 1986) best fits the reality of the Classical karst. The present shape of the dolines at the Skalčen Kamen is predominantly due to the Pleistocene gelifraction, and consequently, parallel slope retreat. Nevertheless, it does not mean that they are only passive concavities in the karst surface. Within them quite different rates of mass removal have been detected. Surprisingly, this process seems to be time constrained, though not simultaneous in all the population. Rather than the loamy filling in the central part of the dolines, the mass removal affects the coarse material deeper in the centra! shaft. In the section of the doline Renčelica near Sežana (P. Habič, 1987) it is clearly visible that the pleistocene gravel is sinking in the center of the doline (Fig. 15). A similar process has been established in some collapse dolines (F. Šušteršič, 1973), even if actually not connected with active caves. It does not seem that the present dolines are any kind of catchment area. However, if the mass removal is so fast that the slopes can not cope with it, they will become steeper and steeper and the critical angle betweenvetical and superficial drainage is surpassed. In that case the second option of the doline interpretation becomes valid. In Pliestocene, when prmafrost appeared, this process might be quite widespread. However, the swallets formed in these conditions typically differ from the central shafts (dome pits). Many dilemmas remain. Perhaps, the guideline for the future is the citation from W. B. White (1988, 20): "Dolines and pits have traditionally been discussed separately, ... they are closely related to the same processes of vertical solution and transport". KLASIČNE VRTAČE KLASIČNEGA KRASA Povzetek Korenine Del svojega Karsta (1893,1895) je J. Cvijič posvetil zaprtim kraškim globelim srednjih izmer - vrtačam. Sto let nadalnjih raziskav je znanje o vrtačah bolj razširilo kot poenotilo. Zdi se, da raziskovalci uporabljamo isti besednjak, a ne govorimo vedno o istih naravnih pojavih. V takih primerih se samoumevno obračamo k koreninam in skušamo dognati, kaj so imeli v mislih pionirji, ki so postavili definicije. Cvijič (o.e.) se sklicuje na opazovanja po celotnem ozemlju nekdanje Jugoslavije, vendar nudi en sam oprijemljiv primer vrtače. To je presekana globel v boku useka na železniški postaji Logatec. Slika tega prereza (J. Cvijič, 1893, 43; 1895, 63) je postala ena najbolj ponatiskovanih v vsej geomorfološki literaturi (SI. 1). Današnje stanje tega prereza (SI. 2) je zaradi širitve postaje precej drugačno, vsekakor pa je jasno, da ne gre za centralni presek vrtače, temveč za prečni prerez linearnega znižanja površja vzdolž zdrobljene cone (SI. 3, krožeč). Napačno izbran primer je Cvijiča in naslednike zapeljal k dedukciji, ki je daleč od realnosti. Vrtačo je razumel kot znižanje reliefa na tektonsko bolj poškodovanem mestu, pod njo pa je pričakoval množico drobnih kanalov v zdrobljeni kamnini. Ker v rabi izraza "ponor" ni dosleden, dojemajo predvsem anglosaški raziskovalci vrtačo (doline) kot stično točko med krajevnim površinskim in kraškim odvodnjavanjem (M. Day, M., 1976, 1983; Ph. R. Kemmerly, 1976, 1982, 1986; P W. Williams, 1985). Njihova opazovanja takšno gledanje podpirajo - ne da pa se ga vskladiti z opazovanji vrtač na klasičnem krasu Slovenije oz. Dinarskega krasa. Da bi razčistil dilemo, sem podrobno obdelal 17 vrtač na lokaciji Skalčen Kamen 6 km jugovzhodno od Logatca, kjer Cvijič omenja lepe primere vrtač. Za v bodoče predlagam kot "holotip" vrtačo z delovno oznako SK-22. Metoda V nadalnjem so predstavljeni predvsem rezultati morfometrije. Znotraj preseka, definiranega v F. Šušteršič (1987), sem po metodah, opisanihv F. Sušteršič (1985 in 1989) izmeril in obdelal vrtače na lokaciji Skalčen Kamen. S pomočjo računalniškega programa VRT je bilo izračunanih 30 parametrov, med njimi: (5), (6) - Najkrajši in najdaljši tlorisni polmer vrtače glede na najnižjo točko. (8), (9) - Največja in najmanjša višinska razlika med obodom in najnižjo točko. (10) - Prostornina vrtače (zaprte globeli). (11) - Ploščina znotraj oboda. (15) - Premik težišča tlorisa glede na najglobljo točko. (16) - Azimut premika težišča. (17) - Normirani premik težišča (parameter 16 deljen s kvadratnim korenom tlorisne ploščine, deljene s pi). (20), (21) - Najdaljša in najkraša os elipse, ki ima enako ploščino in enak vztrajnostni moment kot tloris vrtače (normativna elipsa). (22) - Smer daljše osi normativne elipse. (23) - Razmerje med daljšo in krajšo osjo normativne elipse. (24) - Dolžina osi normativnega stožca. Vrtači je prirejen stožec z enako prostornino in tlorisno ploščino, presekan z ravnino, ki se najbolj prilega obodu. Ta parameter nadomešča intuitivno "globino". (25) - Naklon plašča normativnega stožca. Ta parameter nadomešča intuitivni "povprečni" naklon pobočij. (28) - Premik konice stožca glede na najglobljo točko vrtače. (29) - Normirani premik konice. Podobno kot pri parametru (17). (30) - Smer položaja konice glede na najglobljo točko. (V/A) - Relativni iznos denudacije znoraj oboda vrtače. Pri obdelavi je upoštevan samo "dolgovalovni paket", kar omogoča izločenje drobnih motenj v oblikovanosti vrtače. Tako dobimo "nemotene oblike" polrezov (SI. 4). Geometrijo vrtače podajajo iznos (SI. 5/a) in smer (SI. 5/b) naklona pobočij. Pobočja se odklanjo od idealne smeri proti najgloblji točki, zato so kosinusi kotnih razlik cenilka skladnosti oblike realne vrtače z idealno (SI. 5/c). Odkloni so pozitivni in negativni, zato obstojijo črte ničelnih odklonov, ki so privlačne ali odbojne (SI. 5/d). Privlačne ničelne črte so mesta reaktivnega znižanja znotraj idealnega pobočja vrtače. Skupinski vzorec privlačnih ničelnih črt v vseh izmerjenih vrtačah (SI. 6) spominja na škraplje v okolici, kar da misliti, daje podpovršinsko zakrasevanje zunaj vrtač in na pobočjih "sklede" v bistvu enako. Vrtače pri Skalčnem Kamnu Lokacija Skalčen kamen leži v osrednjem delu Begunjsko-Logaškega Ravnika. V širši okolici znaša povprečna gostota vrtač 356.1 na kml Vplivno območje posamezne vrtače pokriva 2808 m^ kar da polmer r = 29.9 m. Njihovo prostorsko razporeditev na ožjem območju kaže SI. 7. Na osnovi 220 merskih točk med njimi je bilo izračunano hipotetično površje, kamor so vrtače "vložene" (ista slika). Splošna organizacija površja "brez vrtač" je sorazmerno zelo pravilna, kaže pa značilne dimarske smeri. Nobena vrtača ne leži v dnu izračunanih globeli, kar kaže, da niso odtoki krajevno zbrane deževnice. Razviden je tudi pas brez vrtač, ki se približno krije z dolomitno skladovnico. Na navpično ravnino, ki poteka skozi padnico skladov, sem projiciral normativne stožce vrtač (SI. 8, Zgoraj) in njihove prostornine (spodaj). Približna širina dolomitnega pasu se ujema s širino pasu brez vrtač. Skladanje bi bilo popolno, če bi bilo površje 15 m višje, kar odgovarja 250 ka denudacije (po I. Gamsu, 1974, 71). Prej našteti parametri so v več tabelah (1 do 4, glej angleško besedilo!) razporejeni v smiselne skupine, kar omogoča zanimive primerjave. Kvocienti med prostorninami in ploščinami so pretežno 2,1 to 2.7. Torej znaša relativno znižanje znotraj oboda v povprečju 2.4 m (SI. 9/a). Kjer je večji, je bilo odnašanje mase hitrejše, ali pa je trajalo dlje. Večji naklon normativnega stožca (SI. 9/b) lahko pomeni intenzivnejše odnašanje. Na si. 9/c so nanešeni kvocienti V/A in naklonski koti. Torej obstojajo vrtače z visokim iznosom denudacije in veliko trenutno aktivnostjo, ni pa vrtač kjer bi bila denudacija velika v preteklosti, danes pa bi bila intenzivnost odnašanja nizka (nad krepko črto). Torej obstoji časovna meja, pred katero se vrtače niso pojavljale. Iz povprečnih smeri odmikov težišča tlorisa (351.6°, cirkularna varianca = 0.5358) (SI. 10/a) in konic normativnega stožca (357.7° (cirkularna varianca = 0.5153) (SI. 10/b) je očitno, da so najgloblje točke vrtač bliže južnemu kot severnemu robu. Po vsej verjetnosti je to posledica pleistocenskih pobočnih procesov, ki so bili učinkovitejši na prisojnih, severnih pobočjih. Meritve vrtač pri Skalčnem kamnu potrjujejo prejšnje ugotovitve (F. Šušteršič, 1984, 1987), da sestavljajo osnovni vzorec pobočij trije koncetrični pasovi, katerih nakloni seveda zavisijo tudi od osončenosti. V sredini je skoraj ravno območje ilovnatega polnila. Sledijo sorazmerno strma pobočja praktično v živi skali. Zunanji pas je položnejši - krije se z bolj preperelim, površini bližjim predelom matične kamnine. Ti pasovi so jasno razvidni s polrezov vrtače SK-022 (SI. 4). Sledeče tabele (5 - 7) prikazujejo statistiko naklonov pobočij v vseh vrtačah in posebej v vrtači SK-22. Potrjena je prejšnja ugotovitev, da na iznose naklonov močno vpliva osončenost, očiten pa je tudi vpliv vpada skladov (SI. 11). Ponovno lahko ugotovimo, da kažejo pobočja izključno sledi pleistocenskih pobočnih procesov, nikakor pa ne fluvialnih. Po vsej podobi se pod vrtačami nahajajo navpični jaški, zapolnjeni z ilovico in pleistocenskim materialom, kar kažejo tudi preseki v kamnolomih (SI. 12). "Skleda" vrtače prehaja v jaške zjasnim pregibom, lahko pate prehode minimalno zaobli (SI. 13) v notranjost polzeči material (SI. 14). Odkopavanja kažejo, da stene teh jaškov mnogokrat prekriva siga. Njihova globina ni znana - najgloblji (izpran) v Leskovi dolini je globok prek 60 m, v kamnolomih pa običajno sežjo preko višine celega čela. Kaže, da odgovarjajo "ortovakuolam", kot jih definiral W. Maucci (1951/52) in ki jih Anglosaksonci imenujejo "domepits". Nekaj razprave Ker smo odvrgli Cvijičevo tolmačenje vrtač in definirali nov holotip, moramo pretresti tudi vlogo vrtač v kraškem površju. Kaže, daje tematiko najbolje razčlenil S. Bahun (1969). Med različnimi možnostmi, ki jh ponuja, realnosti Skalčnega Kamna najbolj odgovarja tista, ki ima vrtače za preslikave kraških votlin na površje. Samo dejanje preslikave ni podor, temveč zniževanje površja, ki postopoma načenja prostore v globini. Po odprtju uberejo lastno razvojnoo pot, kjer se uveljavljajo površinski procesi. Bahun (o.e.) ni bil posebej pozoren na izvor prvotnih votlin in je prezrl, da je C. D'Ambrosi (1960) vrtače eksplictino izpeljal izMauccijevih (o.e.) "ortovakuol", torej brezen. Ta kombinacija se najbolje sklada z mojimi opazovanji (o.e.), delno pa tudi z J. N. Jenningsom (1975), G. Benvenuttijem in U. Saurom (1977) in A. Bondesanom, M. Meneghelom in U. Saurom (1992). Globlje spoznanje vrtač v veliki meri zavisi od razumevanja navpičnih brezen. Kaže, da se v vrtače razvije samo en tip, tisti, ki sta ga doslej proučevala W. Maueei (o.e.) in A. Frumkin (1984, 1986). Sedanja oblika vrtač je v veliki meri delo pleistocenskih pobočnih procesov. Ne znotraj vrtač, ne v okolici ni sledov fluvialnega oblikovanja. Ker se zdi slednje za vrtače Termesseeja dokazano dovolj prepričljivo (Ph. Kemmerly, 1986), gre po vsej verjetnosti za dvoje različnih pojavov, ki ju obravnavamo pod istim imenom. Vodilo nadalnjim raziskavam naj bo W. B. Whitova (1988, 20) misel: "Iz navade vrtač in brezen ne obravnavamo skupaj ... toda .. oboje je tesno povezano z istimi procesi navpičnega raztapljanja in transporta." LITERATURE Bahun, S., 1969; On the formation of karst dolinas. Geološki vjesnik, 22 (1968), 25 - 32, Zagreb. Benvenutti, G., U. Sauro, 1977: Morphological and geophysical surveys on some dolinas of the southern Monte Baldo (Venetian Pre-Alps). Proc. of the 7th int. spel. congr., ShefBeld, 1977, 33 - 37. Bondesan, A., M. Meneghel, U., Sauro, 1992: Morphometric analysis of dolines. International Journal of Speleology, 21 (14), 1 - 55, Trieste. Cvijic, J., 1893: Der Karstphaenomen. Geographische Abhandlun- gen, 5, 217 - 329, Wien. Cvijic, J., 1895: Karst, Geografska monografija. 1 - 173, Beograd. Čar, J., 1982: Geologic setting ofthe Planina polje ponor area (Summary). Acta carsologica, 10 (1981), 75 - 105, Ljubljana. D'Ambrosi, C.: 1960: SuH'origine delle doline carsiche nel quadro genetico del carsismo generale. Bolletino della della societa adriatica di seienze naturali in Trieste, 51, 205 - 231, Trieste. Day, M., 1976: The morphology and hydrology of some Jamican karst depressions. Earth surface processes, 1, 111 - 129. Day, M., 1983: Doline Morphology and development in Barbados. Annals ofthe Association of American Geographers, 73 (2), 206 - 219. Ford, D. C., Williams, P.W., 1989: Karst geomorphology and hydrology. Unwin Hyman, 1 - 601, London. Frumkin, A., 1984: Karst shafts in a mediterranean environment (Ofra, Israel). Thesis submitted for the degree ofmasterofsciences. The Hebrew university, Jerusalem, 1 - 140,1-XI, Jerusalem. Frumkin, A., 2 986: Speleogenesis of vertical shafts in a Mediterranean environment (Ofra, Israel). 9. Congreso internacional de espeleologia, 1,264 - 267, Barcelona. Gams, 1., 1974; Kras. Slovenska Matica, 1 - 360, Ljubljana. Habič, P., 1987: The Renčclica doline near Sežana. Man's impact in Dinaric Karst, guide book, 115-117, Ljubljana. Jennings, J. N., 1975: Doline morphometry as morphogenetic tool; a New Zealand example. New Zealand Geographer, 31, (1), 6 - 28. Kemmerly, Ph. R., 1976: Definitive doline characteristics in the Clarksville quadrangle, Tennessee, Geological Society of America Bulletin, 87, 42 - 46. Kemmerly, Ph. R., 1982: Spatial analysis of karst depression population: Clues to genesis. Geological Society of America Bulletin, 93, 1078 - 1086. Kemmerly, Ph. R., 1986: Exploring a contagion model for karstterrane evolution. Geological Society of America Bulletin, 97, 619 - 625. Maucci, W., 1952: L'ipotesi dell' "erosione inversa", come contributo alio studio della speleogenesi. Bollettino della societa adriatiea di scienze naturali in Trieste, 1951/52,46, 1 - 60. Šušteršič, F., 1973: On the problems of collapse dolinas and allied forms of high Notranjsko (Southcentral Slovenia) (Summary). Geografski vestnik, 45, 71 - 86. Šušteršič, F., 1982: Some considerations about the spatial organization of the karst tarrains (Summary). Geografski vestnik, 54, 19 - 28, Ljubljana. Šušteršič, F., 1985: A method of doline morphometry and computer processing (Summary). Acta carsologica, 13, 79 - 97, Ljubljana. Šušteršič, F., 1986: The "Pure karst model" and its consequences in the karst relief interpretation (Summary). Acta carsologica, 14-15 (1985-86), 59 - 70, Ljubljana. Šušteršič, F., 1987: The small scale surface karst and solution doHnes at the northeastern border of Planinsko polje (Summary). Acta carsologica, 14, 51 - 82, Ljubljana. Šušteršič, F., 1989: Calculation of the dolines slope incUnation as a means for the geologycal interpretation (Summary). Naš krš, 26-27, 121 - 128, Sarajevo. White, W.B., 1988: Geomorphology and hydrogeology of karst terrains. Oxford university press, 1 - 464, New York. Williams, P. W., 1985: Subcutaneous hydrology and the development of doline and cockpit karst. Zeitschrift fuer Geomorphologie, N.F., 29 (4), 463 - 482. SOME THOUGHTS ON THE PULL-APART ORIGIN OF KARST POLJES ALONG THE IDRIJA STRIKE-SLIP FAULT ZONE IN SLOVENIA NEKAJ MISLI O RAZPORNEM (PULL-APART) NASTANKU KRAŠKIH POLJ OB IDRIJSKEM ZMIČNEM PRELOMU MARKO VRABEC Abstract UDC 551.24 (497.12 Idrija) Marko Vrabec: Some Thoughts on the Pull-Apart Origin of Karst Poijes along the Idrija Strike-Slip Fault Zone in Slovenia There is still no satisfactory explanation of mechanisms for karst poijes formation. Some authors have recently assumed them to be pull-apart basins, yet they didn't provide convincing supporting evidence. This article takes into consideration detailed geological field maps, geophysical and borehole data and observations on geometry of poijes and surrounding lineaments. Regarding various published research describing pull-apart basins and their formation, it seems that poijes are not of pull-apart origin. However, depression in the central part of Cerkniško polje could be an early stage in pull-apart basin evolution, which would suggest that poijes are being deformed by current strike-slip activity in Idrija fault zone and are therefore of older origin. Still, more field evidence is required to substantiate this theory. Key words: karst poijes, pull-apart tectonics, Idrija strike-slip fault Izvleček UDK 551.24 (497.12 Idrija) Marko Vrabec; Nekaj misli o razpornem (puH-apart) nastanku kraških polj ob idrijskem zmičnem prelomu Za nastanek kraških poij še ne poznamo povsem zadovoljive razlage. Nekateri raziskovalci so v zadnjem času domnevali, da so polja ob idrijskem prelomu nastala z mehanizmi razporne (pull-apart) tektonike, vendar ugibanj niso podprli s prepričljivimi argumenti. V tem prispevku so upoštevani rezultati preteklih detajlnih geoloških kartiranj, geofizikalni podatki in podatki plitvega vrtanja ter opazovanje geometrije polj in okoliških lineamentov. Iz primerjave z raziskovalno literaturo, ki obravnava razporne bazene in njihov nastanek, se zdi, da polja niso razpornega nastanka. Špranjasta depresija v centralnem delu Cerkniškega polja bi lahko bila začetna stopnja v razvoju razpornega bazena, kar bi lahko pomenilo, da trenutna zmična aktivnost ob idrijskem prelomu polja deformira in so polja potemtakem starejšega izvora. Tudi ta domneva pa bi zahtevala še dodatnih terenskih dokazov. Ključne besede; kraška polja, razpoma (pull-apart) tektonika, idrijski prelom. Address-Naslov Marko Vrabec Department of Geology, University of Ljubljana Aškerčeva 12 61000 Ljubljana, Slovenia. ACKNOWLEDGEMENTS This article originated as a seminar paper in the course of undergraduate study of geology at the University of Ljubljana. Tlie autiior would like to thank his advisor J. Čar and F. Šušteršič for their support, discussions, and sharing of field data, and to T. Verbič and J. Vrabec, who commented and thus improved the manuscript. INTRODUCTION Neotectonic activity in the Slovenian teritory is generated by collisional/postcollisional processes between the Eurasian and African litospheric plates. Considering the physical nature of plate tectonic processes, we can assume broadly continuous tectonic activity over a large period of time rather than distinct episodes of "orogeny" and calm times. "Tectonic phases" should therefore be regarded as periods of different stress fields and strain rates, which can, as was found recently, change relatively fast over a geologically short period of time. It is reasonable to expect that surface morphology (relief) of the Slovenian teritory is strongly determined by tectonic activity. However, the interesting question remains, especially in classical karst areas, to what extent this influence is active (relief produced by uplift and subsidence of tectonic blocks) and to what extent only passive (relief shaped by intensified weathering along mechanically weakened fault zones). In either case, in karst areas structurally produced relief forms mostly tend to be unmasked by mass transport processes, as the principal transport direction is downwards (see e.g. Šušteršič 1986). The major Slovenian karst poljes lie along the Jdrija strike-slip fault zone, which trends diagonally in the NW-SE direction across southwestern Slovenia. The question of their origin is nearly as old as karstology, the main dispute being over their tectonic vs. erosional/ corrosional fomiation. Although many ideas developed in the last 100 years (see Gospodaric and Habič 1978, for a review) we do not find any of the proposed theories acceptable. The theory of tectonic origin of poljes seems to be favoured by most geologists. Jevšenak (1986), for example, states that poljes are "neotectonic depressions (seismotectonic grabens)" without giving any further explanation or argumentation. In the search for an explanatory mechanism, some recent papers suggested the pull-apart origin of poljes (Poljak 1986, Verbič et al. 1992); however, they did not provide much supporting evidence. The purpose of this work was to gather available field data in order to evaluate the feasibility of poljes pull-apart origin theory. STRIKE-SLIP TECTONICS AND PULL-APART BASIN FORMATION Fig. 1: Restraining (left side) and releasing geometries for right-lateral strike-slip fault, a) Fault bend, b) Overstep between en-echelon faults, c) Fault junction. Large arrows indicate relative movement of blocks, smaller arrows show sense and orientation of stress. SI. 1: Kompresijske=stiskajoce (na levi strani) in relaksacijske=sproščujoče geometrije poteka trase desnozmičnega preloma, a) Prevoj trase preloma, b) Prečni preskok med vzporednima (ešaloniranima) prelomoma, c) Stik dveh prelomov. Večje puščice kažejo smer relativnega premikanja blokov, manjše puščice pa smer in orientacijo mehanskih napetosti. Strike-slip faults are defined as the faults along which predominantly horizontal displacement in the direction of the fault strike has taken place. Magnitude and obliquity of the slip can vary significantly along the same fault. Areas of convergent and divergent tectonic regimes also exist inside strike-slip zones and consequently produce associated structural phenomena such as folds, normal and reverse faults, thrusts and basins. Interested reader should turn to other sources for more in-depth treatment and further references (e.g. Sylvester 1984, Allen and Allen 1990, Twiss and Moores 1992). Fig. 2: Continous model of pull-apart basin development (Mann et. al, 1983). a) Right-lateral strike-slip fault with a releasing bend, b) Spindle-shaped basin (pull-apart basin initiation) c) Lazy-Z shaped stage d) Rhomboidal basin. Faults bounding the basin are termed master faults. Secondary structural pattern inside the basin is not shown. Basin grows with progressing offset along the fault. SI. 2: Model zveznega razvoja razpornega bazena (po Mann et. al. 1983). a) Desnozmični prelom z relaksacijskim prevojem trase, b) Spranjasti bazen (začetek rasti razpornega bazena), c) Bazen oblike razpotegnjene črke "Z", d) Bazen romboidalne oblike. Preloma, ki omejujeta bazen, literatura imenuje glavna preloma. Sekundarne strukture znotraj bazena niso prikazane. Bazen raste s povečevanjem zmika ob glavnih prelomih. It is known that structural patterns in strike-slip zones tend to be similar regardless of scale (Aydin and Nur 1982). On a local scale (several km to several 10km), extension and/ or compression is mainly due to curvature of the fault trace, stepovers between en-echelon faults or due to stress at fault junctions (Fig. 1). Note that the fault geometry and the sense of slip determine the stress regime. Pull-apart basins form in the zones of extension within the strike-slip zones. They are predominantly elongated and usually of rhomboidal shape. Their further characteristics include high subsidence rates, large total subsidence and therefore rapid sedimentation with thick sediment accumulations (Ballance and Reading 1980, Sylvester 1984, Christie-Blick and Biddle 1985, Allen and Allen 1990). Fig. 3: View of the SW Slovenia showing the Idrija fault zone and major karst poljes. The Ljubljansko barje basin is a quaternary graben structure (Mencej, 1989). Image produced by edge enhacement (Laplacian method) of Digital Elevation Model data. Width of area shown is 60 km. SI. 3: Slika jugozahodne Slovenije prikazuje cono idrijskega preloma in večja kraška polja. Bazen Ljubljanskega barja je kvartarna tektonska udorina (Mencej 1989). Slika je izdelana z računalniško obdelavo (ojačanje robov po Laplaceovi metodi) digitalnega modela reliefa. Širina območja na sliki je 60 km. Several models of pull-aparts evolution were proposed, based on field observations as well as numerical modelling and theoretical considerations (see Mann et al. 1983, for review), Of those, the continuous model of Mann et al. (1983) is most widely accepted (Fig. 2). This, however, is not the only known basin-forming mechanism in strike-slip settings (see e.g. fault-wedge basins in Crowell 1974). IDRIJA STRIKE-SLIP FAULT ZONE The Idrija fault is a right-lateral strike-slip fault extending diagonally in the NW-SE direction accross southwestern Slovenia (Fig. 3). Its trace can be well seen on satelite images and is therefore regarded as a structure of regional importance, although this aspect, to our knowledge, hasn't been fully studied yet. The fault was most thoroughly studied in the Idrija mercury mine area where plenty of surface and subsurface data was available (Placer 1982). The maximum horizontal slip has been determined to amount about 2500m (Placer 1982). The fault is highly active as recent movements of 1 cm/year have been postulated from changed position of trigonometric points since the beginning of the century (after unpublished work of Vodušek, in Car and Pišljar 1993). Field data show that the Idrija fault is a zone of several parallel faults rather than a single fault. Detailed field maps are scarce, however, and cover only a minor portion of the entire zone (Placer 1982, Čar 1981, Čar and Gospodaric 1983, Šušteršič 1989). Lineaments observed on the computer image (Fig. 3) correspond well with larger faults that were determined (Fig. 4). Therefore it seems justified to use this image in the evaluation of the major structural patterns in the area. Čar and Gospodarič (1983) have determined four generations of faults during their painstaking study of the area between Planinsko and Cerkniško polje. According to their observations the Idrija structures are the youngest as they cut and displace the older ones. The magnitude of the displacements seems to be quite small, which was also supposed by Placer (personal communication), who predicted the slip to be nearly vertical at Planinsko polje. POLJES INSIDE THE IDRIJA FAULT ZONE Within the Idrija strike-slip fault zone lie three large karst poljes; Planinsko, Cerkniško and Loško (Fig. 3). Their geometry seems to be strongly influenced by geological structures. Poljes are covered with thin (several m) sediment cover, ranging from clay to sand (Gospodarič and Habič 1978). Their limestone/dolomitic basement is more or less uniformly flat with many small scale irregularities due to various karstic forms, mostly dolines and shafts (Ravnik 1976, Gospodarič and Habič 1978). If poljes are indeed of predominantly tectonic origin as many workers claim (see the Introduction), the model of their formation should be argumented as well. One of the possible explanations could be pull-apart processes. A definite answer cannot be given until a detailed geological mapping of the broader area including further geophysical investigations is carried out. Yet, the data gathered so tar allow at least a feasibility evaluation of this theory. Although at a first glance poljes, notably Planinsko, are geometricaly similar to pull-apart basins described elsewhere (see references in the Section 2 of this text), many inconsistencies with the classical pull-apart models exist. 1. The lenghth of poljes is greater than the total slip assumed at the Idrija fault zone, which contradicts observations of Mann et al. (1983), according to which pull-apart basins are generally much shorter. Fig.4: Larger faults as mapped by detailed field work, a) Faidts. b) Thrust front (direction of thrusting towards the S). c) Outline of major lineaments (see text for discussion). Structures in white after Čar (1981), Čar and Gospodaric (1983); black after Šuštersič (1989). SI. 4: Potek pomembnejših prelomov, povzeto po rezultatih podrobnega geološkega kariiranja. a) Prelom, h) Narivno čelo (smer narivanja je proti jugu), c) Potek glavnih lineamentov (razlaga v besedilu). Strukture, izrisane v beli barvi po Čarjii (1981), Čarju in Gospodariču (1983); strukture v črni barvi po Šušteršiču (1989). 2. Known field data and observation of lineaments on Figs. 3 and 4 indicate mostly parallel faults without significant releasing bends or en-echelon arrangement of fault segments, which usually generate pull-apart basins. 3. The rhomboidal shape of Planinsko polje is oriented opposite to the geometry necessary to produce divergence in the right-lateral slip environment. Therefore, if the northern edge of Planinsko polje was a fault bend or an overstep connecting parallel faults, right-lateral movement would cause a compression and not an extension (see Fig. 1). 4. If poljes are (or have been) active tectonic basins, we expect their basement would be segmented by secondaiy faults and differentialy subsided, which is not the case with poljes (see Mencej 1989, for comparsion, or Allen and Allen 1990, their Fig. 7.54, for examples from pull-apart environment). Borehole and geophysical data (Ravnik 1976, Gospodaric and Habič 1978) show flat and uniform basement, as already mentioned above. 5. Rapid subsidence, as generally observed in pull-apart basins, would undoubtedly produce more significant sediment accumulations than seen today in poljes, at least in the Fig. 5: Basement contours of Cerkniško polje (map after Gospodaric and Habič 1978), showing hypotetical spindle-shaped pull-apart basin. Contours at every 2m. a) Trace of major mapped fault, b) Hypotetical fault trace c) Earthquake epicenters after Jevšenak (1986). SI. 5: Oblika kameninske podlage Cerkniškega polja (karta po Gospodariču in Habiču 1978) s prikazanim hipotetičnim špranjastim razpornim bazenom. Izohipse na vsaka 2 metra, a) Potek pomembnejših prelomov (po objavljenih geoloških kartah), b) Hipotetični potek preloma, c) Epicentri potresov po Jevšenakovi (1986). form of marginal talus and debris fans (the opposite view migtit be that the solutional lowering of poljes surroundings is rapid enough to compete with their subsidence). 6. The shape of Loško polje is highly irregular with height to width ratio well above the 3:1 average for pull-apart basins (Aydin and Nur 1982) If the shape of Cerkniško polje is approximated by a pair of parallelograms, their longer axis is inclined for about 20 degrees to the Idrija fault zone (Fig. 4). The shorter sides of those parallelograms as well as some other lineaments from the area have approximately the same orientation as the first generation of faults mapped by ar and Gospodaric (1983). Those faults are reported to be very prominent with wide crumbled zones and are presumably significantly older than the fourth generation (Idrija) faults. Such correlation made on the base of lineaments seen on images is doubtful, however, until proven in the field. A large number of boreholes was made on Cerkniško polje in order to determine thickness of Quaternary sediments. A basement map (Gospodaric and Habič 1978) shows a prominent elongated depression lying accross the polje (Fig. 5). Its ends trend towards two larger faults of the Idrija fault zone. The faults are most probably linked together, in which case there is a releasing bend or an overstep in between. According to Jevšenak (1986), several earthquake epicenters have been located along this inferred line. The depression could therefore be an initial stage of pull-apart basin development of Mann et al. (1983, see Fig. 2). CONCLUSION It seems that strike-slip faults of the Idrija fault zone cross and deform poljes, which, if tectonic origin is still assumed, are therefore of older origin. As already mentioned, extensive field work will be needed to substantiate this theory and borehole data from Cerkniško polje must be statictically re-evaluated to prove that the observed basement depth differences are significant. REFERENCES Allen, P.A., Allen, C.R., 1990: Basin analysis. Blackwell Scientific Publications, Oxford. Aydin, A., Nur, A., 1982: Evolution of pull-apart basins and their scale independence. Tectonics 1, 91-105. Ballance, P.F., Reading, H.G. (eds.), 1980: Sedimentation in oblique-slip mobile zones. Spec. Publ. Int. Assoc. Sedim. 4, Oxford. Christie-Blick, N., Biddle, K.T. (eds.), 1985: Strike-slip deformation, basin formation and sedimentation. Spec. Publ. Soc. econ. Paleont. Mineral. 37, Tulsa. Crowell, J.C., 1974: Sedimentation along the San Andreas Fault, California. In: Tectonics and sedimentation (Ed. by W.R. Dickinson), Spec. Publ. Soc. econ. Paleont. Mineral. 19, 292-303. Čar, J., 1981: Geološka zgradba požiralnega obrobja Planinskega polja (English summary: Geologic setting of the Planina polje ponor area). Acta Carsologica 10, 78-105. Čar, J., Gospodaric, R., 1983: O geologiji krasa med Postojno, Planino in Cerknico (English summary: About geology of karst among Postojna, Planina and Cerknica). Acta Carsologica 12, 93-106. Čar, J., Pišljar, M., 1993: Presek Idrijskega preloma in potek doline Učje glede na prelomne strukture (English summary: Cross section of the Idrija fault and the course of the Učja valley regarding the fault structures). Rudarsko-metalurški zbornik 40, 79-91. Gospodaric, R., Habič, P., 1978: Kraški pojavi Cerkniškega polja (English summary: Karst features of Cerknica polje). Acta Carsologica 8, 11-162. .Tevšenak, B., 1986: Strižne razpoke in recentno napetostno polje na področju Cerkniškega jezera (English summary: Shear joints and recent strain field in the Cerknica lake area). XL kong. geol. JugosL, knjiga 3, 369-393. Mann, P., Hempton, M.R., Bradley, D.C., Burke, K., 1983: Development of pull-apart basins. Journal of Geology 91, 529-554. Mencej, Z., 1989: Prodni zasipi pod jezerskimi sedimenti Ljubljanskega barja (English summary: The gravel fill beneath the lacustrine sediments of the Ljubljansko barje). Geologija 31-32, 517-553. Placer, L., 1982: Tektonski razvoj Idrijskega rudišča (English summary: Structural history of the Idrija mercury deposit). Geologija 25, 7-94. Poljak, M., 1986: Strukturna evolucija Slovenskih Vanjskih Dinarida u terciaru i kvartaru (English summary: The structural evolution of the Slovene Outer Dinarides in Tertiary and Quaternary). XI. kong. geol. JugosL, knjiga 3,299-322. Ravnik, D., 1976: Kameninska podlaga Planinskega polja (English summary: Bedrock of the Planina polje). Geologija 19, 292-315. Sylvester, A.G. (comp.), 1984: Wrench fault tectonics. Amer. Assoc. Petrol. Geol. Reprint Series 28, Tulsa. Sušteršič, F., 1989: Informacija o kartiranju dolomitnega pasu Loškega in Babnega polja (English summary: An information about the geological mapping of the Loško and Babno polje dolomitic stripe). Rudarsko-metalurški zbornik 36,289-296. Sušteršič, F., 1986: Model čistega krasa in nasledki v interpretaciji površja (English summary: The "pure karst model" and its consequences in the karst relief interpretation). Acta Carsologica 14-15, 59-70. Twiss, R.J., Moores, E.M., 1992: Structural geology. W.H. Freeman & Company, New York. Verbič, T., Vrabec, M., Poljak, M., 1992: Structural evolution of the large scale relief in Slovenia. Terra Nova 4 abstract supplement 2, 68-69. NEKAJ MISLI O RAZPORNEM (PULL-APART) NASTANKU KRAŠKIH POLJ OB IDRIJSKEM ZMIČNEM PRELOMU Povzetek Za nastanek kraških polj še ne poznamo povsem zadovoljive razlage. Nekateri raziskovalci so v zadnjem času domnevali, da so polja ob idrijskem prelomu nastala z mehanizmi razpome (pull-apart) tektonike, vendar ugibanj niso podprli s prepričljivimi argumenti. V tem prispevku so upoštevani rezultati preteklih detajlnih geoloških kartiranj, geofizikalni podatki in podatki plitvega vrtanja ter opazovanje geometrije polj in okoliških lineamentov. Iz primerjave z raziskovalno literaturo, ki obravnava razpome bazene in njihov nastanek, se zdi, da polja niso razpornega nastanka. Spranjasta depresija v centralnem delu Cerkniškega polja bi lahko bila začetna stopnja v razvoju razpornega bazena, kar bi lahko pomenilo, da trenutna zmična aktivnost ob idrijskem prelomu polja deformira in so polja potemtakem starejšega izvora. Tudi ta domneva pa bi zahtevala še dodatnih terenskih dokazov. PAPERS PRESENTED AT INTERNATIONAL ROUND TABLE "E. A. MARTEL ET LE KARST SLOVENE", POSTOJNA, 12™ -13™ NOVEMBER 1993 PRISPEVKI PREDSTAVLJENI NA MEDNARODNI OKROGLI MIZI "E. A. MARTEL IN SLOVENSKI KRAS", POSTOJNA, 12. -13. NOVEMBER 1993 EDOUARD ALFRED MARTEL AND THE SLOVENE KARST EDOUARD ALFRED MARTEL IN SLOVENSKI KRAS ANDREJ KRANJC Izvleček UDK 551.44 (497.12) : 929 Martel E.A. Kranjc, Andrej: Edouard Alfred Martel in slovenski kras Martel je trikrat obiskal kras na današnjem slovenskem ozemlju. Pokrajina Kras je po njem "prva pokrajina, kjer so resno in znanstveno preučevali podzemeljsko hidrologijo". Odtod tudi njegovo zanimanje za obisk tega krasa: najpomembnejša je bila njegova odprava med 8. septembrom in 24. oktobrom 1893. V tem času je premeril, skupaj z vodilnimi avstijskimi speleologi in postojnskimi jamarji, podzemeljsko Pivko in s tem je postala Postojnskajama najdaljša v Evropi. Ključne besede; krasoslovje, speleologija, speleozgodovina, Martel E. A., Slovenija, Postojnskajama Abstract UDC 551.44 (497.12) : 929 Martel E.A. Kranjc, Andrej: Edouard Alfred Martel and Slovene Karst Martel visited karst in nowadays Slovenia three times. Country Kras was, by his own words, "the first country where underground hydrology was seriously and scientificaly studied", hence his interest to visit it. The most serious were his investigation from 8"" September to 24"' October 1893. During this visit the survey of underground Pivka river was realized with the help of the leading Austrian speleologists and cavers from Postojna, and thus Postojnskajama cave became the longest one in Europe. Key words: karstology, speleology, speieohistory, Martel E.A., Slovenia, Postojnskajama. Address-Nasshv Andrej Kranjc Dn geogr, viš. znanstveni sodelavec Inštitut za raziskovanje krasa ZRC SAZU Titov trg 2 SI-66230 Postojna, Slovenija E. A. Martel was born on July, 1859 at Pontoise and died on June, 1938 at his castle La garde near Montbrison. According to the accessible documents he visited Austria four or five times: in 1866 (?), 1867, 1879, 1893, and 1896. In October 6*, 1879 he visited with parents and five other Frenchmen Postojnska jama for the first time. He was deeply impressed, as he wrote afterwards: "les splendeurs de la caverne d'Adelsberg me firent envier les heureux pionniers souterrains..." (Casteret 1950; Marte! 1894). Before Martel came to Kranjska (= Carniola) he was known speleologist already and he wanted to see and to explore also the karst - to be exact "les pays calcaires" - out of France too. Here it has to be mentioned that he did not like "neologisms" and he did not used the words "karstification" and "phenomenes karstiques" but "phenomenes du calcaire" instead of For him Austria was "la Terre classique des cavernes" and Kras itself "veritable terre des cavernes" (Martel 1894). During the Martel's epoch the knowledge of the karst of Kranjska had long tradition already. I have to mention the earliest descriptions and investigations of caves and karst from 16"' century on (Wemher, Kircher, Valvasor, Nagel, Steinberg, Hacquet, Gruber), cave tourism (Vilenica in 17"' Cent., regular tourism in Postojnska and Škocjanske jame since 1819 on), and applied investigations (water supply, prevention of floods, tourism, etc.). These include deep potholes investigations on the Kras itself (Lindner - Labodnica or Trebiciano), Škocjanske jame (Svetina 1839), caverns of Notranjska and Kras (Schmidl about 1850), Škocjanske jame by Deutsche und österreichische Alpen Verein (from 1884 on). In Vienna the first speleological society "Verein für Höhlenkunde" was founded in 1879 and from 1889 at Postojna speleological society Anthron existed. Martel knew all this as may be seen also from his statements that the Kras "... c'est le premier sol ou I'on ait serieusement et scientifiquement etudie I'hydrologie souterraine ..." and that it "possede des grottes et des rivieres interieures qui, pour la beaute et la puissance, se placent au premier rangparmi leurs semblables." (Martel 1894). On the other hand Martel was well known to the Austrian speleologists with whom he had scientific relations too. Already before his speleological visit of Kranjska, on the August 17"' 1890, a new discovered chamber in Škocjanske jame was named after him the "Martel Dom" (Pazze 1893). One out of Martel's earlier and greater mission to the foreign karst was his visit to the Austrian karst in 1893 (from 8"' September to 24"' October 1893) during which he stayed at Postojna from 14* September to 24"' September. The prepar3tions for his study voyage were exhaustive as usually. He turned for help directly to the Austrian government. In Vienna the karst of Kranjska was well known, regarding the fact that the Ministry of Agriculture was intensively occupied with the financing of the Notninjska karst investigations and floods prevention plans for the karst poljes. I am ignorant of Martel's proposals and arguments sent to Vienna, but I am sure they must exist in Vienna's archives. In any case Martel's arguments were very good and he got the support from the highest court's and professional circles. Let Martel tell himself: "Par votre arrete en date du 16 Aoüt 1893 vous avez bien voulu me confier une mission scientifique ä I'effet d'etudier les grottes et riviefes souterraines du Karst (Carniole, Istrie, Dalmatie, Bosnie, Herzegovine et Montenegro ...'' (Martel 1893; Kranjc & Kranjc 1988). The Agriculture Minister Falkenhayn himself handed him recommandation letters for the civil and military authorities for the mentioned territories. And "... son Excellence le comte Falkenhayn, alors ministre d'Agriculture ä Vienne, avait mis ä ma disposition Mr Wilhelm Putick, inspecteur adjoint des forets ä Villach (Carinthie), ce dernier etait, par ordre superieur, charge de me conduire dans les principals et les plus interessantes des cavernes qu'il avait decouvertes et explorees ..." (Martel 1893). Putick was specialist (Kranjc & Kranjc 1981) for the investigations of karst underground and karst waters in Kranjska. He became the leading Austrian speleologist, primarily as a field researcher. But Putick was not simply appointed to accoinpany Martel, the formalities were respected. "Hofrath" Salzer personally came from Vienna to Postojna to introduce Putick to Martel. Martel's underground investigations executed between September 15"'and 20"" are well known, a lot was written already about them and they are described in details in the chapter "Karst" of his book Les Abimes (Martel 1894). For Carniola's karst the essential is Martel's underground navigation from Postojnska jama to Magdalena jama, thus the Postojnska jama system became the longest one in Europe, with the total lenght of about 10 km. And Martel's sentence published ifl Les Abimes, that Postojnska jama is "maybe the most beautiful in the World" had great influence upon the francophone and even larger public. For the history of our speleology the fact that this achievement was made by the help of Postojnska jama workers, of the members of Anthron Club, and of W. Putick and F. Kraus personally, is of the same importance as the underground adventure itself Specially important is that Martel in Les Abimes mentioned all the names of his assistants. Martel's book and his letters were the only source of our knowledge upon Anthron Club, and before we found the Anthron's Statute also the only direct proof of the existence of the club itself (Kranjc 1988; Kranjc 1990). For Postojna as a town the meeting of, we can say, the most eminent speleologists of the period was extremely important. Minister Falkenhayn ordered that "Flofrath" Salzer came personally from Vienna to Postojna to introduce Putick to Martel, and for this occasions at Postojna beside mentioned Martel, Putick and Kraus gathered also Pazze, Marinitsch, Müller and Novak. I may say that we are a bit disappointed that municipality did not mark some of these events by a monument, a table, by a name of house or street. The direct Martel's influence was felt at Postojna too: few years later Postojnska jama administration purchased the same type of boats that Martel had. Martel visited also an important part of Notranjski kras and Kras in its strictest meaning; that is less known but nevertheless important and interesting for our speleohistory: for Rakov Skocjan and Zelške jame in particular he said "Je ne connais rien de plus bizarre que cette disposition"(Martel 1894), in Velika Karlovica he found safety exit (where Putick and his workers were trapped by sudden flood few years earlier), in the entrance pitch of Logarček (in that period called "Falkenhayn Höhle") the wooden ladders from 1887 were repaired by Putick's command, he made an experiment to measure the ceiling height in Škocjanske jame by the means of paper "mongolfier" running on hot air, etc., etc. Less known and studied is the influence that had our karst and Martel's visit to it on Martel himself and on his later work. However it is well known that he published special articles talking about our karst, he mentioned and used the examples from our karst in his other works (specially as references and for comparation), he came back to Austrian karst, and he maintained the contacts with Austrian speleologists and organizations (Postojnska jama included), and maybe the best proof is the legacy of the copy of the Austrian cave register, made by Kraus, to Martel, to the Societe de Speleologie respectively. Named after Martel, there are beside the Martel's Dom in the Škocjanske jame which was mentioned already, along the underground Pivka river the Martel's Hall and the Martel's Breakdown, and on the Trieste Kras there is the Fovea Martel (Kranjc 1993). Translated by Maja Kranjc REFERENCES Casteret, N., 1950: E.-A. Martel explorateur dumonde souterrain.- 1-232, Mayenne Kranjc, A., 1988: E. A. Martel o Anthronu.- Naše jame, 30, 18-20, Ljubljana Kranjc, A. & M. Kranjc, 1988: E. A. Martel na jugoslovanskem krasu.- Naš krš, 14,24-25, 149-158, Sarajevo Kranjc, A., 1990: Društvo Anthron (1889), kot se kaže po svojih pravilih.- Naše jame, 32, 110-112, Ljubljana Kranjc, A. & M. Kranjc, 1981: Viljem Putick (7.7.1856 - 26.1.1929).- Naše jame, 22,147-150, Ljubljana Kranjc, A., 1993: Martel, Edouard Alfred.- Enciklopedija Slovenije, 7, p. 9, Ljubljana Martel, E. A., 1893: Rapport sommaire sur mes recherches dans les Cavernes du Karst etc. Septembre Octobre 1893.- 1-8, Paris Martel, E. A., 1894: Les AMmes.- 1-578, Paris Pazze, P A., 1893: Chronik der Section Küstenland des DÖAV 1873-1892.- 2-372, Triest EDOUARD ALFRED MARTEL IN SLOVENSKI KRAS Povzetek Martel je trikrat obiskal kras na današnjem slovenskem ozemlju. Po njegovih lastnih besedah je Avstrija "klasična dežela jam", Kras sam pa "prava zemlja jam", kjer je bila "podzemeljska hidrologija prvič resno in znanstveno preučevana". Martel ni maral neologizmov in sije v svojih delih prizadeval, da ne bi uporabljali izrazov "kras" in "kraški", pač pa "apnenčev" ali "podzemeljski". Njegova najpomembnejša odprava na naš kras je bila med 8. septembrom in 24, oktobrom 1893, med katero je bil deset dni (14.-24. septembra) v Postojni. Za ta obisk je dobil podporo in priporočila Kmetijskega ministrstva z Dunaja. Med 15. - 20. septembrom je Martel ob organizacijski pomoči V. Puticka in F. Krausa ter v spremstvu članov društva Anthron in vodnikov Postojnske jame preplul podzemeljsko Pivko od Velike dvorane v Postojnski jami do Magdalene jame. S tem je Postojnska jama dosegla dolžino okoli 10 km in postala najdaljša v Evropi. Za Postojno je bilo gotovo velikega pomena, kar sicer ni ovrednoteno niti posebej obeleženo, da so se ob omenjeni priliki ,1.1893 srečali v Postojni z Martelom takratni vodilni avstrijski speleologi Kraus, Marinitsch, Müller, Novak, Pazze, Putick in Salzer - največje priznanje tako Postojnski jami kot postojnskim jamarjem. Obisk našega krasa je imel velik vpliv tudi na Martela in njegovo kasnejše delo: - objavil je več prispevkov o našem krasu; - v drugih svojih delih često omenja kras in jame z našega krasa; - še večkrat je obiskal takratni avstrijski kras; - ohranil je stike z avstrijskimi speleologi. E. A. MARTEL IN BRIEFEN AN CARLO MARCHESETTI UND ERZHERZOG LUDWIG SALVATOR PISMA E. A. MARTELA CARLU MARCHESETTIJU IN NADVOJVODI LUDWIGU SALVATORJU BRIGITTA MADER Izvleček UDK 044 ; 929 Martel E.A. 551.44(091): 929 Martel E.A. Mader, Brigitta: Pisma E. A. Martela Carlu Marchesettiju in nadvojvodi Ludwigu Salvatorju Avtorica objavlja pisma E. A. Martela botaniku, prazgodovinaiju in direktorju Naravoslovnega muzeja v Trstu, Carlu Marchesettiju in avstrijskemu nadvojvodi Ludwigu Salvatorju, naravoslovcu in avtorju znanstvenih del. Nadvojvoda je povabil Martela naj razišče "Cuevas del Drach" na Mallorci, kar je razvidno tudi iz korespondence. Iz Martelovega pisma je opazen trud, da bi pridobil Marchesettija za sodelavca revije "La Nature", pa tudi Martelovo zanimanje za kras v današnji Sloveniji. Ključne besede: zgodovina, speleologija, speleozgodovina, Martel E. A., Marchesetti C., Ludwig Salvator Erzherzog. Abstract UDC044 : 929 Martel E.A. 551.44(091): 929 Martel E.A. Mader, Brigitta: E. A. Martel's letters to Carlo Marchesetti and Erzherzog Ludwig Salvator The author is publishing the letters of E.A. Martel to the botanist, prehistorian, and director ofNatu-ral History Museum in Triest, Carlo Marchesetti and to the Austrian Erzherzog Ludwig Salvator, natural history scientist and author of scientific works. Erzherzog invited Martel to explore "Cuevas del Drach" on Mallorca, which can be seen from the correspondence too. From Martel's letter may be seen his wish Marchesetti to be the author for the "La Nature" review, as well as his interest for the karst in nowadays Slovenia. Key words: history, speleology, speleohistory, Martel E. A., Marchesetti C., Ludwig Salvator Erzherzog. Address - Naslov Dr. Brigitta Mader Via Cordaroli, 26 I-34135 TRIESTE ITALIA Im Goldenen Buch des Naturhistorischen Museums von Triest' findet sich am 16. Oktober des Jahres 1893 die folgende Eintragung: E. A. Martel avocat ä Paris avec Madame. Auch Carlo Marchesetti, unter dessen Direktion das Museum von 1876 - 1921 stand, vermerkte den Besuch Martels in den Jahresberichten^. Marchesettis Kontakte zu Martel beschränkten sich jedoch nicht nur auf die üblichen Pflichten des Hausherrn, sondern erstreckten sich, wie zwei Briefe aus der reichen Korrespondenz Marchesettis mit Gelehrten aus aller Welt, die im Diplomatischen Archiv der Städtischen Bibliothek Triesf aufbewahrt wird, bezeugen, auch tlber das gemeinsame Arbeitsgebiet der Karst- und Höhlenforschung. Besonders interessant und aufschlußreich ist in Hinblick auf den wissenschaftlichen Austausch Martels Brief vom 10. Dezember 1907 an Marchesetti''. Marchesettis Schreiben vom 5. Dezember 1918 oder 1919' - die beiden letzten Ziffern sind übereinander geschrieben -, das nur als Konzept vorliegt, gibt hingegen in erster Linie der Freude über den beendeten Ersten Weltkrieg und die wiedergewonnene Freiheit sowie der Hoffnung auf eine Wiederaufnahme der alten, freundschaftlichen Beziehungen zu Martel Ausdruck. Paris le 10 dec. 1907 23, RUED'AUMALEIX. TEL. 120. 68 Cher Monsieur La poste m 'a bien remis les 24 h. 30. Puisque vous ne voulez pas accepter cette modique somme de retribution'', je le remettrai de votre part au secretaire ' Albo d'oro, Museo Civico di Storia Naturale di Trieste 2 C. Marchesetti, Atti del Museo Civico di Storia Naturale di Trieste Ix (S. N. Ill), 1895, S. 24 ' Archivio Diplomatico - Biblioteca Civica di Trieste, R. P. MS. Misc. 88/F/16 und 88/0/A-F und 88/P/G-O und 88/Q/P-Z Archivio Diplomatico - Biblioteca Civica di Trieste, R. P. MS. Misc. 88/P/G-O: M2 ' Archivio Diplomatico - Biblioteca Civica di Trieste, R. R MS. Misc. 88/F/16 '' Wahrscheinlich handelt es sich um das Honorar für Marchesettis Beitrag "La necropole qui a, un pen (tres peu) arrange voire texte. Mais une autre fois veuillez bein garder ce leger honoraire qui est adresse non pas par moi, mais par les editeurs: ils paient un tarif general de Ofr. 15 la ligne, qui est bien faible, mais les depenses pour les gravures (que nous soignons de notre mieux) sont toujours grosses. Quant aux 50 numeros, nous vous les offrons avec grand plaisir, ä cause de V inter et special de votre article, qui a eu grand succes. II en est de mime du service gratuit de la Nature, que nous offrons aussi ä une cinquantaine de correspondants en France ou ä I'etranger en echange des documents ou sujets qu 'ils peuvent nous fournir Lorsque vous penserez qu 'un article peut nous Interessen proposez nous le avant de le rediger pour que nous vous disions s 'il nous convient: aussi vos nouvelles recherches sur I'komme prehistorique du Karst sont tres curi-= euses, mais ne conviendraient pas ä notre revue. En revanche une notice sur les Castelli Preistoricf nous serait agreable; nous pourrions empreindre quelques vues et plans ä votre volume de 1903, et si vous en aviez de nou-= veaux cela serait excellent. prehistorique de Santa Lucia (Autriche)", erschienen in der Zeitschrift "La Nature" (Revue des sciences et de leurs applications aux arts et a I'industrie.) Jg. 35, Nr. 1799 (16. H. 1907). ' Martel bezieht sich auf Marchesettis Werk "I Castellieri preistorici di Trieste e della Regione GiuHa". Trieste 1903. De meme les objets suivants seraient les bienvenus.: 1 Le Meereschwinde du Teufelsbrunnen pres Abbazia, mentione dans la Höhlenkunde de Von Knebel (1906, p. 107) 2 Les travaux de dessechement du lac Cepič (s 'ils sont termines/ 3 L 'amelioration des Ponors et Polje de Croatie, Bosnie, Dalmatie, Herzegovine 4 La grotte bleue de 1 'ile Busf 5 L 'origine et les variations de la cascade source de la Save (Wochein Terglou/'^ 6 L 'etat actuel des mines d'ldria'^ 7 Les nouvelles etudes sur la faune souterraine du Karst (au est 1 'affaire de. M. Valle, un de M. Apfelbeck) etc, etc, etc, et autres analogues. Tous ces sujets avec photographies. Vous voyez che vous pouvez nous rendre largement service. Un resume sur la civilisation d'Hallstadt, - un autre sur le ' Der nunmehr gänzlich trockengelegte Čepič-See befand sich im Nordosten Istriens, heute erinnern die Toponyme Čepic un Čepic polje nördlich von Plomin an die einstige Lage des Sees. Vgl.: Zepitscher See in J. W. Valvasor, Die Ehre des Herzogthums Krain, III. Bd. XI. Buch Seite S. 660 f. (mit Abb.), Laibach-Nüherberg 16892 ' Gemeint ist die "Blaue Grotte", heute "Modra spilja", eine durch einen Kanal vom Meer her zugängliche Höhle auf der Insel Biševo (ital. Busa), der Nachbarinsel von Vis (ital. Lissa), in Mitteldalmatien. Die Grotte ist ein seit jeher behbtes Touristenziel, vor allem wegen des besonderen Farbenspiels. Vgl. Grieben Reiseführer - Dalamtien. Bd. 161, Berlin 1930, S. 150. Wochein = Bohinj Terglou = Triglav Gemeint sind der Wasserfall der Savica aus dem letzten Triglav=see und der Oberlauf der Save (Bohinjsko jezero und Sava Bohinjka) " Quecksilberminen von Idrija in Slowenien bronze de Bologna, - seraient aussi les bienvenus. Faites mes amities a Monsieur Valle'l Madame Martel vous aussi ses meilleurs souvenirs et je suis cordialment a vous E. A. Martel • Vmf JiM^i^ • rT^ , pt^ TkjtlM'cl,^ i^H-tM^ t-/- ^ T ■ as, RUC »'AWaAkB IXf rtL. 1*«.M ill I.. d ie - CUl ''^/W'/HlH/^ OfJ//• ■ ■/ ; v ■wnf y-^ «^^uw F/g. 7.- Facsimile ofMartel's letter to C. Marchesetti (10.12.1907). SI. 1: Faksimile Martelovegapisma Marchesettiju (10.12.1907). A. Valle war unter Marchesetti Konservator am Naturhistorischen Museum, er war auch Vizesekretär des "Bolletino della Societa Adriatica di Scienze Naturali in Trieste" sowie Mitarbeiter der Societa di Pesca e Piscicoltura marina in Triest. Paris 10. Dezember 1907 23, Rue d'Aumale 9. Tel. 120.68 Werter Herr Die Post wurde mir rasch zugesandt, 24h 30. Da Sie diese bescheidene Summe als Bezahlung nicht annehmen wollen, werde ich Ihren Teil dem Sekretär über geben, der Ihren Text ein wenig (zu wenig) eingerichtet hat. Aber ein anderes Mal werden Sie dieses unbedutende Honorar, das durchaus nich durch mich, sondern durch die Herausgeber ergeht, wohl annehmen wollen: sie zahlen einen Einheitstarif von OF. 15 proZeile, was recht gering ist, aber die Kosten für den Druck (den wir bestens besorgen) sind immer hoch. Was die 50 Nummern anbetrifft, su überlassen wir sie Ihnen mit großen Vergnügen aufgraund des speziellen Interesses Ihres Artikels, der großen Erfolg hatte! Es ist ebenfalls ein kostenloses Service von La Nature, das uns auch für ca. 50 Korrispondenten in Frankreich oder im Ausland im Austausch von Unterlagen und Aufsätzen, die uns jene liefern können, geboten wird. Wenn Sie meinen, daß uns ein Artikel interessieren könnte, schlagen Sie ihn uns ehe Sie ihn verfassen vor, damit wir Ihnen miteilen können, ob er uns recht ist: auch neue Forschungen über den prähistorischen Menschen im Karst sind bemerkenswert, passen aber nicht in unsere Zeitschrift. Stattdessen käme uns ein kurzer Bericht über die "Castelli Preistorici"'' gelegen: wir könnten einige Ansichten und Pläne zu Ihrem Buch von 1903 abdrucken und wenn Sie noch neue hätten, so wäre das ausgezeichnet. Folgende Themen wären gleichfalls willkommen: 1 Die Meeresschwinde von Teufelsbrunnen bei Abbazia, erwähnt in der Höhlenkunde von Von Knebel (1906, S 107) 2 Die Trockenlegungsarbeiten des Cepič - Sees^ (ob sie schon beendet sind) 3 Die Melioration der Ponore und Polje in Kroatien, Bosnien, Dalmatien, Herzegovina 4 Die Blaue Grotte auf der Insel Busf 5 Ursprung und Variationen des Quellflusses mit Wasserfall der Save (Wochein -Terglou)'" 6 Der aktuelle Zustand des Bergwerks von Idrija 7 Die neuen Studien über die unterirdische Fauna des Karstes (wo ist die Sache von Hrn. Valle, jene von Hrn. Apfelbeck) etc., etc., etc. und ähnliche andere. All diese Themen mit Photographien. Sie sehne, daß Sie uns einen großen Dienst erweisen können. Eine Zusammenfassung über die Hallstatt - Kultur, - eine andere über die Bronzezeit von Bologna, - wären auch willkommen. Grüßen Sie mir Herrn Valle^^. Mit den besten Empfehlungen auch von Madame Martell verbleibe ich herzlichst Ihr E. A. Martel Briefkonzept: Marchesetti an Martel Martel Parigi 5/12 18 oder 19 Cedute finalmente le barriere che si isolavano completamente dal resto del mondo civile, invio dalla nostra Trieste redenta nell'amplesso d'Italia un caloroso entusiastico saluto, a Lei vanto e gloria della eroica Francia liberata anch 'essa delle onde barbariche che per un lungo tempo la straziavano crudelmente. Evviva la liberta! Ewiva il trionfo della giustizia e della civilta! Sperando che Ella e la sua distinta Signora stiano bene e che riannodermo le antiche amichevoli relazioni Nachdem endlich die Barrieren gefallen sind, durch die wir vom Rest der zivilisierten Welt vollkommen abgeschnitten waren, sende ich aus unserem in Italiens Umarmung erlösten Triest einen herzlichen, enthusistischen Gruß, Ihnen Ruhn und Glorie des heroischen Frankreich, das nun ebenfalls befreit ist von den barbarischen Gewalten, die es für lange Zeit grausam peinigten. Es lebe die Freiheit! Es lebe der Triumph der Gerechtigkeit und der Kultur! In der Hoffnung, daß Sie und Ihre geschätze Gattin wohlauf sind und wir die alten, freundschaftlichen Beziehungen wieder aufnehmen werden Von Martel spricht aber auch Erzherzog Ludwig Salvator'^ in einem Brief an Marchesetti'''. Ludwig Salvator, selbst Naturforscher und Autor zahlreicher Werke wissenschaftlichen Charakters, weilte häufig auf seinem Landgut in Zindis unweit von Triest un stand über Jahrzehnte mit Marchesetti in freundschaftlichem Kontakt'^ Am 11. September 1895 dankt er Marchesetti aus Venedig für dessen Arbeiten und meint weiter: Venezia 11. Settembre 1895. ... Isuoi studi sulle grotte^^potrebbero farse gettare importante luce anche su quelle delle Baleari, le qualiper tale scopo sipropone Martel d'investigare secondo varie lettere che mi ha scritto, ma che non ha potuto fino adesso levare a capo causa le molteplici occupazioni... Ludwig Salvator von Toskana, Erzherzog von Österreich, Sohn des Großerzogs Leopold IL von Toscana und der Maria Antonia von Sizilien. Archivio Diplomatico - Biblioteca Civica di Trieste, R. P. MS. Mise. 88/P/G-O: L" " F. De Farolfi, Un grande dimenticato. Atti e Memorie della Societa Istriana di Archeologia e StoriaPatria. XX-XXIN. S., (LXXII-LXXIII della Raccolta), Trieste 1972-73, 335 ff., 349 f. und 369 f. B. Mader, Signor dottor Carlo de Marchesetti-Museo di StoriaNaturale in Trieste-Austria. I rapporti di Marchesetti con Vienna attraverso la sua corrispondenza. Atti della giornata internazionale di studi "Carlo Marchesetti a cent'anni dalla pubblicazione di "Scavi nella necropoli di S. Lucia presso Tolmino", Trieste 1993. in Druck Da Ludwig Salvator für die in den "Atti" del Museo Civico di des Naturhistorischen Nuseums ... Ihre Studien über die Höhlen^''könnten vielleicht auch wichtin und aufschlußreich ßr jene der Balearen sein, deren Erforschung Martel, mehreren briefen, die er mir schrieb, zufolge, vorhat, womit er jedoch bis jetzt wegen mehrfacher Beschäftigungen noch nicht beginnen konnte... Ein Jahr später schließlich kam es zur Realisierung des langgehegten Projektes. Anfang September 1896" begaim Martel auf Mallorca mit der Erforschung der "Cuevas del Drach", die zuvor schon Ludwig Salvator in seinem mehrbändigen Werk über die Balearen ausführlich beschrieb. Er fugte auch einen genauen Plan des Höhlensystems sowie mehrere Abbildungen bei, bezeichnete die Höhle als "Hauptanziehungspunkt von Manacor" und meinte, daß sie "...wenn auch nicht an Großartigkeit, doch an Schönheit der Cova de Artä gleichkommt, ja sie sogar nach Meinung einiger übertrifft. Noch in selben Jahr veröffentlichte Martel die Ergebnisse seiner Forschungen im Jahrbuch des Französichen Alpenvereins". Der Abschluß dieser Arbeiten bedeutete aber keineswegs auch das Ende der Kontakte^" zwischen Martel und Ludwig Salvator, der höchstwahrscheinlich Martel noch gerne zur Erforschung weiterer der so zahlreich auf Mallorca befindlichen Höhlen bewegt hätte. Wie aus den folgenden zwei in Österreichischen Haus-, Hof- und Staatsarchiv in Wien aufbewahrten briefen Martels an Ludwig Salvator aus den Jahren 1913 und 1914^' hervorgeht, standen die beiden noch lange Jahre in briefkontakt, tauschten ihre Werke aus und Martel plante (1914) sogar eine neuerliche Reise nach Mallorca, wo er den Erzherzog zu sehen hoffte. Nur Höhlen wollte der damals 5 5 jährige Martel aus Altersgründen nicht mehr bogehen. Trotzdem aber überlebte er Ludwig Salvator, der im Oktober des darauffolgenden Jahres verstarb, um vieles^^. Triest erschieneen Arbeiten dankt, beziehen sich die "Studien über die Höhlen" höchstwahrscheinlich auf folgende Arbeiten Marchesettis: La grotta azzura di Samatorza, Atti del Museo Civico di Storia Naturale di Trieste IX (N. S. III), 1895, S. 249-255 L'ursus ligusticus iss. nelle Alpe Giulie, ebendort S. 265-271. " H. Schwendinger, Erzherzog Ludwig Salvator. Der Wissenschaftler aus dem Kaiserhaus. Wien-München 1991. S. 213. Ludwig Salvator, Die Balearen in Wort und Bild geschildert. Bd. V/2, Die eigentlichen Balearen. Leipzig 1884. S. 496 ff (mit Abbn.) Der Höhenplan befindet sich in Anschluß an Seite 496 und trägt die Aufschrift: Piano de la Cueva del Drach situado en el predio Son Moro/Manaeor, Isla de Maliorca propriedad del Sr. Dn. Jose Jgnazio Moragues. Maßstab 1:500. " Les grottes du Crach. Annuaire de Club Alpine Francaise. Bd. 23, 1896. Bei H, Schwendinger, wie Anm. 17, S. 218 ist vom Ende des Briefwechsels mit 1910 die Rede. Wo sich die betreffenden Briefe befinden, ist nich angeführt. Österreichisches Staatsarchiv Wien, Abteilung: Haus-, Hof- und Staatsarchiv. Habsburger Familienarchiv, Ludwig Salvator 3 (Brief vom 29.V.1914) und 7a (Briefvom 25.VIII.1913). Ludwig Salvator stirbt am 12. Oktober 1915 in Brandeis im Alter von 68 Jahren. Martel Stirbt 23 Jahre später 1938 in Paris. Der tod Ludwig Salvators, vor allem jedoch der Ausbruch des Ersten Weltkrieges - ein Monat nachdem Martel seinen Besuch auf Mallorca angekündigt hatte, erfolgte die Ermordung des österreichischen Thronfolgers - scheint den Schluß nahe zu legen, daß wir es hier mit einem der allerletzten, vielleicht sogar dem letzten Brief Martels an Ludwig Salvator zu tun haben. Es ist auch anzunehmen, daß Martels Reise infolge der Kriegserignisse nicht mehr zustande kam. Paris 25 aoüt 1913 23, RUED'AUMALE W. TEL 120.68 Monseigneur, Depuis bien longtemps, - plus d'un an je crois, - je me reproche de ne pas m 'etre rapelle a voire excellent et haut souvenir J'ai en beaucoup d'occupations et de soucis pendant ce delai: ily a en d'abord d'aout ä octobre 1912 un voyage de trois mois que j 'aifait aux Etats-Unis d'Amerique; - ensuite depuis six mois ma mere a etefort malade et se trouve actuellement paralysee dans un etat tres attristant. J'ai ete bien touche de voir que cependant vous ne m 'oubliiez pas; car en novembre 1912 j 'ai regu de I'editeur le tres bel album Excusez-moi de ne pas vous en avoir remercie plus tot. Au printemps de 1912, je crois, je vous avais envoye moi--meme un paquet de mes demiers memoires: il est revenu ' "Miramar" war der Name des Wohnsitzes von Ludwig Salvator auf Mallorca. ä Paris avec l 'adresse dechiree et tout ouvert. Je n 'ai pas pu savoir pourquoi il n 'etaitpas arrive ä destination. Si cette lettre vous parvient et si vous daignez me donner votre adresse, je me ferai un devori de vous refaire cet envoi. Je n 'oublierai jamis les belles journees que j'aipassees ä Miramar et ä Majorque, par votre haute protection et estime; c 'est un des plus jolis souvenirs de mes voyages. Madame Martel se joint ä moi pour vous prier d'accepter, Monseigneur, nos plus respectueux et sympathiques hommages, E. A. Martel Paris 25. August 1913 23, Rue d'Aumale 9. Tel. 120.68 Monseigneur, Seit recht langer Zeit - mehr als einem Jahr glaube ich - mache ich mir Vorwürfe mich nicht Ihres vortrefflichen und hohen Geschenks erinnert zu haben. Ich war die inzwischen verstrichene Zeit über sehr beschäftigt und hatte Sorgen: Zuerst gab es von August bis Oktober 1912 eine dreimonatige Reise, die ich in die Vereinigten Staaten von Amerika unternommen habe, - sodann litt meine Mutter 6 Monate an einer schweren Krankheit und befindet sich derzeit nunmehr gelähmt in sehr betrüblichem Zustand. Ich war sehr gerührt zu sehen, daß Sie mich unterdessen nich vergessen haben, denn im November 1912 habe ich vom Verleger das wunderschöne Album der Skizzen aus Miramaf-^ erhalten. Entschulding Sie, daß ich Ihnen nich früher dqßr gedankt habe. Im Frühjahr 1912, glaube ich, habe ich selbst Ihnen ein Paket mit meinen letzten Abhandlungen geschickt: es ist offen und mit zerissener Adresse nach Paris zurückgekommen. Ich konnte nich erfahren, warum es nicht am Bestimmungsort angekommen ist. Wenn Sie diser Brief erreicht und Sie geruhen würden mir Ihre Adresse zu geben, werde ich es mir eine Pflicht sein lassen Ihnen diese Sendung erneut zu schicken. Ich werde niemals die schönen Tage, die ich durch Ihre hohe Gunst und Wertschätzung in Miramar und Malorca verbracht habe, vergessen. Sie gehören zu meinen schönsten Reiseerinnerungen. Madame Martel schließt sich mir an, Sie Monseigneur, zu bitten unsere hochachtungsvollsten und wohlgefäfflisten Ehrerbietungen entgegenzunehmen E. A. Martel 23, RUE DA UMÄLEIX. TEL. 120.68 PARIS 29. V. 14 Monseigneur, Une fois de plus je regus de vous un interessant volume sur Porto Pi,^" qui me rappeile d'heureux souvenirs dans un bien beau pays. En vous remerciant bien sincerement j 'ai le plaisir de vous dire que nous avons le projet de retourner a Ma-=jorque en septembre prochain, si nul evenement ne nous en empoche. Nous avons un vif desir de revoir encore Vile magnißque et ravissante! Et je serais bien heureux si nous avions ä cette epoque Ludwig Salvator, Porto Pi - In der Bucht von Palma de Mallorca. Prag 1914. la joie d'aller vons saluer ä Miraman Mais il ne sera plus question pour moi, helas, d'explorer des grottes; l'äge est venu, pesant et fatigue et, pour bien des chases, il me faut philosophiquement me contenter des souvenirs! Croyez, Monseigneur, ä mes sentiments les plus respectueux E. A. Martel • >.MUC Ci>AU«ALC IXi X /li JAW V ^t /u^ . hmo''liAJL. /fVI/^ž^^ J/UU^ppymi^ t ^ '^M^ (t/mryt) iV^ ifte^ yC yv yntiryi-j If u./k, c/ii-^M^ /hti l J lu JC^K IvuiA^-Hui. , /U^ a „ i Fig. 2: Facsimile of Martel's letter to Ludwig Salvator (29.5.1914). SI. 2: Faksimile Martelovega pisma Ludwigu Salvatorju (29.5.1914). 23, Rue d'Aumale 9. tel. 120.68 Paris 29. V. 14 Monseigneur, Wieder einmal habe ich von Ihnen einen interessanten Band über Porto Pi^'^ erhalten, der in mir glückliche Erinnerungen an eine sehr schöne Gegend wachruft. Ich danke Ihnen ganz aufrichting undfreue mich Ihnen gleichzeitg mitzuteilen, daß wir, falls uns nichts dazwischen kommt, vorhaben, im nächsten September wieder nach Mallorca zu kommen. Wir haben den lebhaften Wunsch die wunderschöne und zauberhafte Insel noch einmal zu sehen. Und ich wäre sehr glücklich, wenn wir in dieser Zeit das Vergnügen hätten Sie in Miramar zu begrüßen. Leider, aber, wird es für mich nicht mehr in Frage kommen Höhlen zu erforschen: das Alter ist gekommen, schwer und müde, und ich muß mich daher in vielem auf philosophische Weise mit Erinnerungen begnügen! Seien Sie, Monseigneur, meiner größten Hochachtung versichert E. A. Martel PISMA E. A. MARTELA CARLU MARCHESETTIJU IN NADVOJVODI LUDWIG U SALVATORJU Povzetek V pričujočem prispevku predstavi avtorica tri pisma E. A. Martela botaniku, prazgodovinarju in od 1876 do 1921 direktorju naravoslovnega muzeja v Trstu, Carlu Marchesettiju, kot tudi avstrijskemu nadvojvodi Ludwigu Salvatorju, naravoslovcu in avtorju številnih znanstvenih del (1847 -1915). Na pobudo Ludwiga Salvatorja je Martel prevzel raziskavo "Cuevas del Drach" na Mallorci v letu 1896. Napotke za v tem času pripravljenemu, sicer že dalj časa planiranemu projektu, najdemo v pisanju Ludwiga Salvatorja Carlu Marchesettiju (1895). MartelovapismaLudwigu Salvatorju, ki so shranjena v avstrijskem družinskem, dvornem in državnem arhivu na Dunaju, izvirajo iz let 1913 in 1914 in pričajo o mnogo let trajajočem sodelovanju in znanstveni izmenjavi. V bogati korespondenci Marchesettija z učenjaki vsega sveta je zgolj eno samo Martelovo pismo, ki se nanaša predvsem na Marchesettijevo sodelovanje pri francoskem časopisu "La Nature", vendar pa kaže tudi Martelovo veliko zanimanje za Slovenijo, tedanjo avstrijsko Primorsko in Dalmacijo. V konceptu pisma iz leta 1918 ali 1919 izraža Marchesetti veliko veselje nad koncem prve svetovne vojne in upa na obnovo prijateljstva z Martelom. Obe omenjeni pisanji, kot tudi omenjeno pismo Ludwiga Salvatorja Marchesettiju, so v diplomatskem arhivu mestne knjižnice v Trstu. KRAUS UND MARTEL - EINE VERBINDENDE ACHSE IN SACHE KARST KRAUS AND MARTEL - AN AUSTRIAN-FRENCH CONNECTION IN KARST RESEARCH KARL MAIS Izvleček UDK 551.44(497.12) : 929 Martel E.A. 551.44(497.12) : 929 Kraus F. Mais, Karl: Kraus in Martel - avstrijsko-francoska povezava pri raziskovanju krasa. Kraus (1834-1897) in Martel (1859-1938) sta osebnosti, ki sta močno vplivali na razvoj krasoslovja konec 19. stol. Oba sta pričela raziskovati iz osebnih nagibov, njune kasnejše raziskave pa so imele pomemben znanstveni in tudi javni pomen. Kraus je ustanovitelj prvega speleološkega društva (Dunaj 1879), raziskoval je kras v okolici Postojne, kjer se je udejstvoval tudi Martel (1893). Medsebojno sodelovanje the dveh speleologov je imelo velik pomen za razvoj speleologije v Evropi. Ključne besede: speleologija, speleozgodovina. Kraus F., Martel E. A. Abstract UDC 551.44(497.12) : 929 Martel E.A. 551.44(497.12) : 929 Kraus F. Mais, Karl: Kraus and Martel - an Austrian-French connection in karst research.. Kraus (1834-1897) and Martel (1859-1938) were the personalities having great influence upon the development of karstology at the end of 19'" Century. Both started to investigate from their personal interest, later on their investigations became of great scientific and public interest. Kraus founded first speleological society (Vienna 1879), he investigated the karst in the vicinity of Postojna, where Martel (1893) was active too. Connection between those two speleologists had great influence upon the further development of cave science in Europe. Key words: speleology, speleohistory, Kraus F., Martel E.A. Address - Naslov Dr. Karl Mais Naturhistorisches Museum Wien Institut Ilir Höhlenforschung Messeplatz 1, Stiege 10 A - 1070 Wien, Austria zu FRANZ KRAUS, 1834 - 1897 Der 1834 in Wien zur Welt gekommene Franz KRAUS erfuhr eine, für den väterlichen Betrieb entsprechend sorgfältige kaufmännische Ausgebildung, indem er nach der Schul-und Lehrzeit in Wien seine weitere kaufmännische Ausbildung bei Geschäftspartnern in Cette in Frankreich und Barcelona in Spanien erweiteren konnte. Die merkantilen Erfahrungen erweiterte er durch Reisen nach Nordafrika und Italien und setzte die Erfahrungen mit fremden Völkern, Sprachen und Landschaften gut um, besonders fur seine allgemein naturwissenschaftlichen Interessen. Er übernahm schließlich das väterliche Unterehmen, führte es jedoch nur wenig über das Jahr 1872 hinaus fort und zog sich dann, etwa 40jährig ins "Privatleben" zurück. So konnte er sich seinen erdwissenschaftlichen Interessen widmen, zuerst vertiefte er sich in die Gebiete Mineralogie und Geologie. Er wurde auch Mitglied bei wissenschaftlichen Gesellschaften. Bei einigen Vereinigungen fungierte er als gründendes Mitglied, wie beim "Wissenschaftlichen Klub" in Wien (1876). In diesen naturwissenschaftlichen Kreisen nahm er regen Anteil am fachlichen Leben und war ein kompetenter Motor für viele Aktivitäten. Das machte ihn zum geschätzten Freund. Unter anderen Persönlichkeiten dieser Zeit pflegte er etwa mit dem Direktor der k.k. Geologischen Reichsanstalt im Wien, Hofrat von HAUER und dem Intendanten des Naturhistorischen Museums Wien, Ferdinand v. HOCHSTETTER enge Kontakte. Mit diesen kam es im Jahre 1879 zur Gründung des "Verein für Höhlenkunde" in Wien, um ein Gremium für ihr spezielles Interessensgebiet zu schaffen. HÖHLENFORSCHUNG UND DAS ÖFFENTLICHE INTERESSE Zuerst befaßte sich Franz KRAUS mit den Höhlen alpiner Regionen von Oberösterreich, Salzburg und der Steiermark. Über diese erschienen ab 1878 verschiedenste Beiträge von ihm. In zunehmendem Maße fesselten ihn jedoch die karstdynamischen und großräumig verfolgbaren Phänomene der "Kesseltälem" Krains. Er war bemüht das bereits erarbeiteten Wissen über die Zusammenhänge der unterirdischen Entwässerung, für die agrarische Nutzung der Karstgebiete Krains auszuwerten, sowie durch gezielte Forschungen zu erweitern. Dadurch gelang es ihm, die gesellschaftsrelevate Bedeutung der Speläologie hervorzukehren und das Interesse staatlicher Stellen, insbesondere des k.k. Ackerbauministeriums an diesem Fachgebiet wach zu halten. Im renomierten Österreichischen Touristenklub, zu dessen Mitgliedern Prominenz aus Wissenschaft und Gesellschaft gehörten, initiierte Franz KRAUS die Gründung eines eigenen "Karst-Comites". Zu dessen Mitgliedern als Präsident der Intendant des naturhistorischen Hofinuseums Franz Ritter von HAUER zählte, weiters der Initiator des Comites Franz KRAUS, Josef SZOMBATHY, aber auch der Reichtagsabgeordnete Fürst Ernst WINDISCHGRÄTZ, der Abgeordnete und Geologe Prof. Eduard SUESS und zahlreiche andere fachlich kompetente Persönlichkeiten. Das Comite hatte sich zu Beginn des Jahres 1885 etablierte und nahm bereits im Sommer des selben Jahres die Arbeit im Bereich Adelsberg - Pivka auf (HAUER 1986). Diese Untersuchungen verblieben nicht im privaten Kreise, sondern erfolgten im allgemein nutzbringenden Interesse, unter Einbindung des k.k. Ackerbauministeriums in Wien und der Landesregierung der Kronlandes Krain in Laibach. Franz KRAUS richtete am 4. April 1885 ein Schreiben an die Stadt Triest, in dem er für die Wasserversorgung der Stadt ein Projekt zur "subterranen Hydrographie des Karstes" im Hinterland von Triest detailiert und mit einer auch flir heutige Verhältnisse umfassenden Methodik, unter Einschluß von Tracerversuchen, darstellte (ILMING & TRIMMEL 1983). Die Anregung zur Wiederaufnahme einer intensiven karstkundlichen Erforschung des triestiner Karstes fand jedoch auch nach einem weiteren Brief aus dem Jahr 1888 keinen direkten Widerhall. Erst 1892 unternahm die Societä Alpina delle Giulie mit ihrer Commissione Grotte, deren Gründung auf das Jahr 1883 zurückgeht, einen Tracerversuch mit Fluoreszein. Diese Untersuchungen entsprachen zwar durchaus den seinerzeitigen Vorstellungen von KRAUS, erfolgten jedoch ohne den Rahmen der damals vorgeschlagenen systematischen Begleituntersuchungen. Im innerkrainer Karst hingegen waren die Projekte des "Comite" gerne angenommen und brachten erfolgreiche Ergebnisse. Der Forstassistent Wilhelm PUTICK leitete dabei, ab 1886 die Vermessungen und Untersuchungen vor Ort, wobei er von Ing. V. HRASKY unterstützt war (HAUER 1887: 60-61; 1889). Wegen seiner Verdienste um die Karst-Melioration, speziell die Eindämmung der Überflutungen des Planinsko - Poljes wurde Franz KRAUS zum Ehrenbürger von Planina ernannt, eine Anerkennung, auf die er sehr stolz war. Neben dem Karst-Comite arbeiteten im engeren und weiteren Gebiet des klassischen Karstes auch die obgenannte Commissione Grotte, sowie auch die "Abtheilung für Grottenforschung der Section Küstenland" des Alpenvereins (gegründet 1883). Das Arbeitsgebiet der Section Küstenland mit den Herrn A. HANKE, J. MARINITSCH, Fr. MÜLLER und P.A. PAZZE lag vornehmlich im Bereich der Reka bei St. Kanzian und hatte einerseits den Ausbau der Höhle für den öffentlichen Besuch und andererseits die Verfolgung des unterirdischen Verlaufes der Reka gegen die Trinkwasserquellen bei Aurisina und des Timavo zum Ziele. Die Berichte über diese speläologischen Forschungen sind in vielen Veröffentlichungen festgehalten. ZUR "HÖHLENKUNDE" UND "LES ABIMES" Seit dem Beginn der 80er Jaiire hatte Franz KRAUS eine Zusammenfassung der lokalen Ergebnisse aus der alpinen und außeralpinen Höhlenforschung, sowie ihre überregionale Bedeutung systematisch verfolgt und dabei auch die entsprechenden Ergebnisse aus aller Welt verarbeitet. Als 1894 seine "Höhlenkunde" als erstes zusammenfassendes Handbuch auf diesem Gebiet erschien, bezog er sich vielfach auch auf einen französischen Forscher: auf Edouard Alfred MARTEL, mit dem er bereits seit längerer Zeit einem sehr freundschaftlichen Kontakt gepflegt hatte. Der französiche Advokat Edouard Alfred MARTEL war ebensowie der Geschäftsmann Franz KRAUS sehr am Alpinismus und den Geowissenschaften, besonders aber an der Höhlenkunde interessiert, vielleicht mehr, als an seiner direkten beruflichen Basis. Beide verfugten über eine umfassende Bildung und unstillbare Wißbegierde. Ihre solide finanzielle Grundlage, sowie die gesellschaftliche Stellung gewährte ihnen den fur ihre Geländearbeiten nötigen Rückhalt. Dadurch besaßen die Ergebnisse ihrer Forschungen eine entsprechende Akzeptanz in den wissenschaftlichen und politischen Gremien ihrer Länder. Beide hatten sich in bergsteigerischen Kreisen einen guten Namen geschaffen und eine weitgehende Literaturkenntnis auf ihrem Fachgebiet erarbeitet. Franz KRAUS durch den Aufbau seiner Literaturkartei, die zum "Literatur-Anzeiger" des Vereins für Höhlenkunde in Wien, 1879 - 1880, ftlhrte (MAIS 1984) und die er konsequent ergänzte; E.A. MARTEL durch die Betreuung der "Chronique et bibliographic des montagnes" des Club Alpine Francaise, ab 1884. Über die höhlenkundliche Literatur ergab sich ein entsprechend zunehmendes Verhältnis der Beiden. Franz KRAUS schätzte die Arbeiten seines um 25 Jahre jüngeren Kollegen sehr, was deutlich daran zu erkennen ist, daß er die Ergebnisse des forscherischen Elan ab 1890 immer wieder in angesehenen Zeitschriften referrierte und in den Titeln den Forscher auch selbst nannte. Etwa 1893: "E.A. Martels Höhlenfahrten in Krain." in der Zeitschrift Gaea (Leipzig) und 1895: "E.A. Martels Höhlenforschungen." ebendort. Franz KRAUS baute an vielen Stellen seines 1894 erscheinenden Buches "Höhlenkunde" Forschungsergebnisse MARTELs ein. 33 Nennungen erfolgtem in verschiedenen Zusammenhängen im Text, 9 Bilder und Pläne MARTELs fanden als Illustration Verwendung. Unter den Abbildungsvorlagen und zusätzlichem Material für die "Höhlenkunde", welche am Naturhistorischen Museum Wien verwahrt werden, befinden sich Spirituskopien von Handskizzen, die offenbar MARTEL für die Umzeichnung durch den Graphiker angefertigt hatte (Abb. 1), sowie Bürstenabzüge von Höhlenplänen des ebenso 1894 im Druck erscheinenden Werkes "Les Abimes". Franz KRAUS hatte diese Entwürfe von seinem Freund zur Information und freien Verfügung erhalten. Ein Bürstenabzug einer Tafel über den "unterirdischen Lauf des Poik Flusses bei Adelsberg in Krain" für Petermann's Mitteilungen mit den von MARTEL zusammengestellten Entdeckungsphasen stellt eine geringe Umarbeitung von MARTELs Entwurf dar. Für die Übersichtstafel in der "Höhlenkunde" generalisierte jedoch KRAUS die Abbildung deutlich, ohne den Charakter weSfentlich zu ändern. So haben beide Autoren nach der gleichen Grundlage gearbeitet, sie jedoch in anderer graphischer Bearbeitung ihren Werken beigegeben. Siehe Abb. 2. T!IAU?. * )»tit-il' 1891 1893 1893 18y4 1»)5 IK97 1898 !899 !9rt) 19(12 1903 1905 1906 lycF 1908 1909 1910 1911 1912 19i3 1914 ALGERIA O AUSTRIA mi nil ■d ■ BELGIUM i, ** « ** I i 7*T * ♦ ♦ □ □ ** TOHEMIA& MC«AVIA !T BOSNIA □ BULGARIA ■ C0R5ICA CROATIA ENGLAND III »•I • II • ■k ■ □ *- GERMANY m n T GREECE ■ HUNGARY I ■ ■ ■ IRELAND II * □ n-ALY except Trieste I T * r * *• LAOS □ MALIIÄCA I • •• • MONTTENEGRO NORWAY * Mutei puMicatioii T mcmberinncd ■ paper by member □ p^byolher • aole by RKtnber O neue by o C (D 0) i E (D 0) Ü S C E D) =L O) i m Se ■ Hg ICu posamezni osebki (individual specimens) ^ S sprednjim delom glave po dnu, ko išče svoj plen, bi bila velika verjetnost, da močeril sprejema precejšen del mikroelementov nakopičenih v rečnih sedimentih. V nadaljnjih raziskavah nameravamo vključiti redno kontrolo kopičenja kovin v tkivih in naravnem okolju močerila, proučevanje možnih poti privzema v telo močerila, transporta, porazdelitve, biotransformacij in izločanja mikroelementov. RAZISKAVE KOZE Koža oz. integument ima pri močerilu ohranjene mnoge larvalne značilnosti. Med temi moramo vsekakor omeniti Levdigove žlezne celice in mikrovilarno zgradbo vrhnje plasti epidermisa, ki imamukozno naravo . Dobro so diferencirani čutilni organi oktavolateralnega sistema (mehanoreceptorni nevromasti in elektroreceptorni ampulami organi)(Istenič in Bulog 1984, Bulog 1988, Bulog in Bizjak.- Mali v pripravi). V koži nipterinov, to je barvil, ki so značilna za ostale dvoživke, prisotne pa so relativno visoke koncentracije riboflavina (330 - 340 jig/g suhe teže), ki naj bi bil osnova za rumenkasto osnovno obarvanost kože (Istenič in Ziegler 1974). Zadnje raziskave integumenta vključujejo kožo nepigmentiranega močerila in kožo temno pigmentiranih primerkov (Kos 1992, Kos in Bulog 1993), ki so bili najdeni v Beli krajini pri izviru Dobličice (1986) in nekoliko kasneje pri bližnjem Ješevniku in opisani kot podvrsta Proteus anguimts parkelj (Sket 1993, Sket in Arntzen 1994). Obe obliki močerila imata v koži zvezdaste pigmentne celice nameščene v zgornjem delu usnjice. Prve ultrastrukturne raziskave nakazujejo večjo gostoto odstavkov teh pigmentnih celic v usnjici kože pri pigmentiranem osebku, medtem ko je teh odstavkov manj v koži svetlih osebkov. Domnevamo lahko, da nastopa manjše število pigmentnih celic v koži pri svetlem osebku. Pri nepigmentiranih živalih postane koža, kije dalj časa izpostavljena naravni ali umetni svetlobi temneje pigmentirana, kar dokazuje da sinteza melanina oz. njemu podobnega pigmenta v pigmentnih celicah ni povsem zavrta. Preliminarne ultrastrukturne analize kože obeh oblik močerila nakazujejo nekoliko več značilnosti kože metamorfoziranih reparih dvoživk pri temnih osebkih (Kos in Bulog 1993). Koža na dorzalni strani glave, anteriorno od oči je pri temno pigmentirani podvrsti slabše pigmentirana. V tem predeluje v strehi medmožgan (diencephalon) razvito pinealno telo. Kaže, da bi pri močerilu ta ekstraoptični fotoreceptorni organ lahko imel pomembno vlogo v življenju teh živali. Kompleks pinealnega organa in pinealnega telesa (pri žabah) in pinelno telo (pri repatih dvoživkah) naj bi bili pomembni v adaptaciji pigmentiranosti, sinhronizaciji cirkadiane lokomotorne ritmike in v orientaciji po soncu (Duellman in Trueb 1986). Fotoreceptorne celice v pinealnem telesu so inhibirane s svetlobo in stimulirane v odsotnosti svetlobe. Stimulacija receptorjev povzroči sproščanje hormona melatonina, ki deluje na dermalne melanofore. Povzroči agregacijo melanosomov v melanoforah in na ta način bledenje kože v temnem okolju. RAZISKAVE ČUTILNIH ORGANOV Vprašanje čutilne sposobnosti močerilaje usmerilo del naših ra.zKkm v študijo čutilnih organov, pri katerih je bilo pričakovati ustrezne dražljaje v njegovem življenjskem okolju (Istenič in Bulog 1976, 1979, 1984, Bulog 1986, 1987, 1988, 1989a, 1989b, 1990, 1993, 1994). Pozornost tujih raziskovalcev (predvsem francoskih) je bila usmerjena sprva v proučevanje pokrnelih oči, poznavanje drugih čutilnih organov pa je bilo v veliki meri zanemarjeno. Ostalo je namreč na nivoju klasičnih morfoloških raziskav iz prejšnjega stoletja. OKTAVOLATERALNI SISTEM V ta okvir sodi oktavolateralni sistem, ki vključuje tako bočno linijo z nevromasti in ampularnimi organi kot tudi notranje uho. Pomembno vlogo pa igrajo tudi kemoreceptorni okušalni brstiči in vohalni organ. Naša obnovljena anatomska analiza notranjega ušesa predstavlja osnovo za nadaljnje ultrastrukturno proučevanje otičnega labirinta, ki že nekaj let poteka v sklopu raziskovalnih projektov v okviru Skupine za primerjalno anatomijo in embriologijo vretenčarjev (Istenič in Bulog 1976). Svetlobnomikroskopske analize krovnih struktur v otičnem labirintu pri močerilu so prvič opozorile na prisotnost dveh kristalizacijskih oblik kalcijevega karbonata (kristali aragonita v sakulu in kristali kalcita v utrikulu) v notranjem ušesu dvoživk. Na podlagi rezultatov svetlobnomikroskopske analize lahko primerjamo morfološke značilnosti notranjega ušesa močerila z ustreznimi karakteristikami pri drugih repatih dvoživkah. Na osnovi enajstih karakteristik otičnega in periotičnega labirinta je bil ugotovljen trend k redukciji posameznih struktur zaradi pedomorfoze (neotenije) kot primitivne karakteristike, na drugi strani pa večja izdelanost senzoričnega sistema kot izpeljana karakteristika. V okviru neoteničnih skupin se značilnosti protejevega ušesa v največji meri ujemajo z značilnostmi pri pisanem nekturu (Necturus maculosus). Svetlobnomikroskopska analiza otičnega labirinta sicer podpira sistematsko uvrstitev proteja in njegovega površinskega ameriškega sorodnika nektura v skupno družino Proteidae, ne more pa prispevati k poznavanju prilagojenosti notranjega ušesa v povezavi s troglobiontskim načinom življenja. Specifičnosti v diferenciranosti posameznih čutilnih epitelov v notranjem ušesu močerila, ki naseljuje podzemski vodni habitat, v primerjavi z diferenciranostjo pri površinskih predstavnikih, lahko pokažejo kakšna je adaptiranost takega senzoričnega sistema na posebnosti podzemskega vodnega okolja. Nadaljnje raziskave smo zato poglabljali na ultrastrukturni nivo. Elektronskomikroskopska analiza je tako omogočila tudi funkcio-nalno-morfološki pristop v proučevanju morfogeneze otokonialnih kristalnih mas z ultrastrukturno analizo predstopenj v procesu nastajanja oz. obnavljanja otokonijev in morfogenezo tvorbe in degeneracije čutilnih celic senzoričnih epitelov v notranjem ušesu (Bulogl989a, 1989b, 1993,1994). Naosnovi SEM (vrstična elektronska mikroskopija) in TEM (presevna elektronska mikroskopija) analize posameznih čutilnih epitelov so bili proučevani posamezni morfogenetski stadiji v procesu nastajanja novih čutilnih celic. Procese morfogeneze smo spremljali z elektronskomikroskopsko analizo čutilnega epitela sakularne makule v notranjem ušesu pri mlajših subadultnih stadijih in pri adultnih osebkih. Dokazana je bila permanentna tvorba novih čutilnih celic tekom življenja živali, posebno na periferiji omenjenega čutilnega epitela (Bulog 1989b) V čutilnih epitelih notranjega ušesa pri močerilu je bilo \xgotoN\]Qn\\ivsaj pet različnih tipov čutilnih celic, ki se ločijo po apikalnem ciliarnem delu. Na osnovi pestre morfologije ciliarnih delov čutilnih celic bi lahko predpostavili, da so nekateri čutilni epiteli v notranjem ušesu pri močerilu tonotopično organizirani in na ta način sposobni frekvenčne diskriminacije na periferiji. Tonotopična organiziranost pomeni sposobnost sekundarnih čutilnih celic v notranjem ušesu, da delujejo kot mehanski filtri z različno "uglašenostjo" na osnovi različne dolžine in togosti ciliarnih delov čutnic (Bulog 1989b, 1990). Na osnovi mnogo bolj zapletene funkcionalno-morfološke orientiranosti čutilnih celic v sakularni makuli močerila v primerjavi z drugimi urodeli lahko predpostavimo vlogo tega čutilnega epitela v zaznavanju smeri vira zvočnega valovanja. Pri tem moramo upoštevati tesno funkcionalno-morfološko povezavo sakularne makule z obsežno otokonialno maso v sakulu notranjega ušesa pri močerilu. Ta značilnost nakazuje specifično adaptiranost notranjega ušesa jamske dvoživke(BuIog 1989b, Bulog 1990). Elektronskomikroskopske raziskave so omogočile ultrastrukturno analizo otokonialnih membran in natančno kristalografsko analizo otokonialnih mas nad posameznimi makulami in potrdile domnevo o prisotnosti dveh različnih kristalizacijskih oblik kalcijevega karbonata (Bulog 1989a, Bulog in Rode 1989). Relativno mala masa nad utrikularno makulo ima diferencirane velike kalcitne kristale, podobne kristalom v notranjem ušesu višjih vretenčarjev. Po drugi strani pa sta ogromna otokonialna masa sakularne makule in manjša otokonialna masa lagename makule grajeni iz mnogo manjših aragonitnih kristalov značilnih za nižje vretenčarje. V sakulusu in lageni notranjega ušesa smo uspeli analizirati organske globularnc predstopnje za aragonitne kristale. Najmanjše kroglaste predstopnje so znotraj celic posameznega senzoričnega epitela. Te globularne predstopnje z gladko površino prodirajo skozi apikalne dele opornih celic celic čutilnega epitela in se na prehodu skozi mukopolisaharidno in glikoproteinsko otokonialno membrano pretvarjajo v večje kroglaste predstopnje s spužvasto površino. Te predstopnje imajo verjetno tudi več kalcija in se ob prodiranju skozi apikalno površino otokonialne membrane pretvarjajo v končno formirane kristale aragonita na spodnji strani otokonialne mase (Bulog 1989a, 1994). Te analize so pokazale, daje ohranjena potenca tvorbe novih aragonitnih kristalov tekom življenja živali. Zadnje ultrastrukturne analize čutilnih epitelov krist v polkrožnih kanalih notranjega ušesa pri močerilu so pokazale prisotnost nekaterih čutilnih celic v različnih fazah degeneracije, kar je podkrepila tudi prisotnost specifičnih organelov podobnih lizosomom v teh čutilnih celicah in jasno opazno sproščanje celičnega materiala (apoptoza) skozi apikalno površino celic (Bulog 1993, 1994). Slušne sposobnosti urodelov so ostale relativno slabo raziskane. Za razliko od anurov urodeli nimajo votline srednjega ušesa in ne timpanalne membrane. Kljub temu, da pri urodelih ni razvito tipično uho za izenačevanje impendance, so eksperimentalne raziskave pokazale, daje njihovo notranje uho občutljivo na zvok večjih intezitet, ki se širi po zraku, in vibracije s podlage (Hetherington in Lombard 1982). Pod vodo pa se razmere spremenijo. Raziskave pri nekaterih drugih dvoživkah so pokazale, da votlina srednjega ušesa, ustna votlina in verjetno tudi pljuča lahko pod vodo služijo kot pretvorniki zvočnega tlaka (Hetherington in Lombard 1983). Pri analizi histoloških rezin v predelu notranjega ušesa smo pri močerilu ugotovili tesno anatomsko povezavo med stropom ustne votline in ovalnim oknom. Preko te povezave bi se lahko zvočno valovanje izvodnega okoljamočerilaprenašalo skozi obsežno ustno votlino do notranjega ušesa. Predpostavimo lahko, da je notranje uho pri močerilu pomemben mehanoreceptorni čutilni organ, ki živali omogoča orientacijo v specifičnem podzemnem vodnem habitatu. Upoštevajoč fiziološko dokumentacijo o možnostih registracije zvočnega pritiska pri urodelih lahko predvidevamo, da močeril zaznava določeno zvočno valovanje, v območju nižjih frekvenc. Morda notranje uho lahko služi tudi za medsebojno zvočno komunikacijo med sovrstniki upoštevajoč tudi sicer nepreverjene podatke nekaterih starejših avtorjev, da se močeril lahko oglaša s šibkimi cvilečimi zvoki. Sistem bočne linije spada v oktavolateralni sistem in zajema mehanoreceptorne nevromaste in elektroreceptorne ampularne organe. Svetlobnomikroskopske raziskave so omogočile histološko analizo nevromastov v vrhnjici kože na glavi in na bočnem delu vrhnjice kože na trupu. Na glavi pa smo odkrili nov tip čutilnih organov, ki so jih klasični morfologi pri močerilu opredelili kot razvijajoče se nevromaste (Istenič in Bulog 1984). S poglobljeno ultrastrukturno analizo teh kijasto oblikovanih čutilnih elementov smo podprli domnevo, da gre za elektroreceptorne ampularne organe. S serijskimi prečnimi ultrastruktumimi rezinami smo uspeli izdelati tridimenzionalno rekonstrukcijo tega na novo odkritega čutilnega sistema, ki smo ga podrobno analizirali (Istenič in Bulog 1984). Ugotovili smo tri velikostne razrede mehanoreceptornih nevromastov pri močerilu, kar si razlagamo s tvorbo sekundarnih nevromastov znotraj obstoječih garnitur čutilnih elementov (Bulog in Bizjak-Mali v pripravi). Sklepajoč po dosedanjih fizioloških raziskavah mehanoreceptornih nevromastov pri ribah so ti čutilni elementi občutljivi na bližnje oscilacije in lokalne premike v vodi, oddaljenih virov zvočnega valovanja pane zaznavajo(SchuijfinBuwalda 1980, Sand 1981). Upoštevajoč te ugotovitve, lahko zaključimo, da se oba mehanoreceptoma sistema (notranje uho in nevromasti bočne linije) uspešno dopolnjujeta v zaznavnju različnih kvalitet zvočnega valovanja. Ampulami organi zaznavajo šibka električna polja animaličnega in neanimaličnega izvora v okolju in posredujejo živali informacije za komunikacijo in orientacijo, istočasno pa verjetno omogočajo močerilu, da zazna svoj plen. Ampularne organe so našli skoraj izključno pri vodnih vretenčarjih s šibkim vidom in sama elektroreceptivnost se praviloma povezuje z življenjem v pogojih slabe vidljivosti (Zakon 1988). Upoštevajoč redukcijo oči v odraslem stanju in specifični podzemski vodni habitat, močeril lahko s pridom uporablja svoje elektroreceptorne čutilne elemente. V potrditev teh naših domnev so na osnovi etoloških in fizioloških raziskav nekaj let kasneje nemški raziskovalci eksperimentalno dokazali, da močeril zaznava direktna tokovna polja in njihovo polarnost. Reagira na tokovno gostoto 0,03 mA/cm (Roth in Schlegel 1988, 1994). Z elektrofiziološkimi odvajanji od aferentnih živčnih končičev so ugotovili, da ampiularni elektroreceptorji pri močerilu odgovarjajo s porastom hitrosti razelektritev pod vplivom katodnih tokov in znižanju le te pod vplivom anodnih tokov (prag: do 0,1 m V/cm) OKUSALNI BRSTIČI Analizirali smo tudi stniktume diferenciacije ustno žrelne sluznice pri močerilu s pomočjo svetlobne in elektronske mikroskopije ter ugotovitve vključili v funkcionalno-morfoioško obravnavo (Istenič in Bulog 1979). Na serijskih rezinah glave smo s pomočjo svetlobne mikroskopije ugotavljali razsežnost ustno-žrelne sluznice, njeno zgradbo in histokemijo. Analizirali smo okušalne brstiče, ki nimajo pore in segajo z receptornimi deli na površino ustno-žrelne sluznice. Osnovna zgradba brstičev v ustni in žrelni sluznici pri močerilu kaže ustrezno zgradbo okušalnim brstičem , ki so bili opisani pri nekturu (Farbman in Yonkers 1971). Glede na določene ultrastruktume karakteristike so bile ugotovljene določene razlike med posameznimi brstiči v ustni sluznici v primerjavi s tistimi ob vhodih v škržne reže. Specifični brstiči ob vhodu v škržne reže morda služijo lahko preizkušanju kemizma vode in s tem v deoksigenirani vodi posredujejo ustrezno senzorično informacijo, ki sproži zračno dihanje. Močeril plena ne melje ali razkosava ampak požira celega. Plen se zadržuje v ustni votlini in prihaja v tesen kontakt z okušalnimi brstiči. OKO - Odkritje črne podvrste močerila (Istenič in Bulog 1986, Istenič 1987, Sket 1993, Sket in Arntzen 1994) je omogočilo tudi prve morfološke analize oči, ki so že na prvi pogled bolj diferencirane kot pri odraslih osebkih nepigmentirane vrste (Bulog 1992). Metrična analiza serijskih semitenkih rezin je omogočila določitev maksimalnega premera očesnega zrkla (1300 (im)pri črnem osebku (subadultna samica s telesno dolžino 187 mm). Premer bolj ali manj okrogle leče znaša okoli 200 )im. Opravili smo tudi preliminarno analizo posameznih delov mrežnice in pozornost usmerili predvsem na fotoreceptorne čutilne celice in na sinaptične povezave med posameznimi sloji mrežnice. Francoski raziskovalec Durand (1971) je v svoji obsežni raziskavi proučeval zgodnji razvoj močerila in morfogenezo ter končno degeneracijo očesa. V subadultni fazi (osebki dolžine 100-220 mm) imajo "beli" osebki očesno zrklo s premerom 300 - 520 |im. Premer leče pa se zmanjšuje od 105 |am do O ^m oz. leča popolnoma zgine. Izležena larva ima maksimalno diferencirano oko in v obdobju larvalnega razvoja se oko le nekoliko poveča brez nadaljnje diferenciacije. V nadaljnjem regresivnem razvoju očesa postane supraoptični epidermis debelejši. Oko zadrži splošen embrionalni videz tudi po juvenilni fazi razvoja, štiri mesece po izleženju. V tem času se oko pomika vedno globje v tkiva na glavi. Pomanjkanje pigmentacije in očesna degeneracija se smatrata kot dve bistveni karakteristiki adaptacije živali na podzemske biotope. V bistvu se pigmentacija pri močerilu pojavlja na začetku razvoja v odsotnosti kakršnekoli svetlobne stimulacije kot ugotavljajo francoski raziskovalci (Durand 1976). Mlade ličinke, osvetljevane z lučjo imajo melanofore in rumene kromatofore. Pigmentacija je očitno kontrolirana s fiziološko regulacijo odvisno od prisotnosti svetlobe ali teme v njenem okolju. Očitno ima pomanjkanje pigmenta v koži pri močerilu adaptivni karakter in ne degenerativne značilnosti. Francoski raziskovalci so z eksperimenti osvetljevanja z naravno in umetno svetlobo ugotavljali morebitno regeneracijo oči. Rezultati so pokazali, da pod vplivom večletnega osvetljevanja živali ni prišlo do preprečitve degeneracije vključno z ugrezanjem očesa v orbito, izginjanjem leče in zadebelitvijo dermalne roženice (Durand 1976). Nekateri avtorji degeneracijo očesa pri močerilu razlagajo kot sekundarno adaptacijo na podzemsko okolje, drugi jo nasprotno smatrajo kot neotenični razvojni karakter ali kot zgodnejšo preadaptacijo na jamski način življenja (Hawes 1945). Po eni hipotezi naj bi bila očesna redukcija pri močerilu odvisna od neotenične preadaptacije, sekundarno ojačena z jamskim načinom življenja. Na osnovi ontogenije močerila francoski raziskovalci sklepajo, da redukcija očesa ni odvisna od omenjenih faktorjev, vsi anatomski in eksperimentalni dokazi pa potrjujejo, da so determinirajoči faktorji regresije genetski (Durand 1976). Rudimentarne oči pri močerilu in morda tudi pri drugih jamskih vretenčarjih naj bi bile posledica specifičnega razvoja in so rezultat motnje normalnih ontogenetskih procesov in celičnega metabolizma. RAZISKAVE PREBAVNEGA TRAKTA IN PREHRANE Raziskave prehrane pri naši jamski dvoživki so potrdile predatorsko naravo ter dale podatke o vodilnih prehranjevalnih organizmih. Ugotovljeno je bilo sezonsko kolebanje prehrane. Vodilni prehranjevalni organizmi v jesenskem času so raki in polži, poletna prehrana pa je bila dopolnjena z žuželkami. Sezonsko se pojavljajo tudi nematodi, ki so bili najdeni v srednjem delu prebavne cevi. Masovno se pojavljajo v zgodnjem poletnem času, pozno poleti le posamično, kasneje v jeseni jih ni bilo zaslediti. Pojav nematodov v lumnu prebavne cevi povezujemo z značilnimi kalcifikacijami v pankreasu (ciste s kalcificirano steno). Te kalcifikacije imajo morda značaj aktivnih skladišč za kalcij. Problematika homeostaze in skladiščenja kalcija je pri neoteničnih urodelih slabo poznana. Potrebno bo proučiti vlogo sezonskega pojavljanja kalcifikacij v predelu srednjega črevesa močerila ter izkoriščanje naloženih soli v vezivnih cistah za vzdrževanje mineralne homeostaze. Znano je, da lahko proteji izredno dolgo stradajo (Briegleb 1962). Na splošno pri dvoživkah stradanje ni redek pojav in domneva se, da nekatere larve dvoživk lahko preživijo mesece brez hrane. V tem času naj bi se hranile s pomočjo bakterij, ki se naselijo v mukusu vrhnjice kože. V literaturi se navaja sposobnost preživetjamočerila v laboratorijskih pogojih brez hranjenja dve do osem let (Vandel 1965). Pri kontroliranih poskusih stradanja v našem laboratoriju je bila ugotovljena velika sposobnost stradanja tudi do 10 let. V naših raziskavah proučujemo vplive stradanja na morfologijo in histokemijo stene prebavnega trakta (Mali 1992). Študije pa bomo poglobili tudi na ultrastruktumi nivo s citokemijskimi analizami z različnimi metodami za EM analizo glikoproteinov. Prof dr. Lili Istenič je kot ena največjih avtoritet v raziskavah močerila postavila temelje za funkcionalno-morfološke raziskave naše endemične jamske dvoživke in pričujoči prispevek je posvečen njenemu dolgoletnemu plodnemu raziskovalnemu delu. SUMMARY Proteus anguinus is the single species of the European cave salamander and the most famous troglobiont in the underground waters of the Dinaric Karst. It maintains neotenic characteristics throughout its life, for example, three pairs of outer gills, two pairs of gill slits, an integument with numerous larval characteristics, and typical visceral skeletal elements. Proteus also reveals some general troglomorphic characteristics: specialization of the sensory organs, elongation of individual body parts, especially the asymmetric growth of the head length, reduced eyes, skin depigmentation, slow metabolism, starvation resistance, expanded life period, and probably also the reduction of its intraspeeific aggression. The study of our endemic cave salamander has continued for at least 25 years at the Biotechnical Faculty, Department of Biology, University of Ljubljana. Part of the researches were focused to studies of Proteus adaptations to its underground aqueous habitat. This research included the terminal part of the Rak Branch of the underground river which ends as Lake Putick in the Planina Cave. There we determined 80% oxygen deficit, with a concentration of 2 mg/1. (Istenič 1979, 1986). The lowest oxygen concentration in the water (1,04 mg 0^/1) was also measured. The usual oxygen concentration in the other parts of Rak Branch is approx. 8-10 mg./ 1. The established hypoxic state is obviously a regular event connected to the high degree of mineralization in the underground water flow, which comes to a stand-still in the lake during low water levels (Istenič 1986). We first verified this by experimentally checking Proteus resistance in low levels of oxygen in water (1,4 - 0,3 mg/ I). Physiological and biochemical studies demonstrated its ability to survive in these waters (Sojar 1980). Metal levels were measured in the rivers Pivka and Rak, both streaming through the cave, and their sediments. (Dermelj et al. 1984; Cijan 1994). Contents of the microelements Fe, As, Cu, Sb, Zn, Hg, Mn, Cd, Co were measured with neutron activation analysis, cold vapor atomic absorption spectrometry, atomic fluorescence spectrometry and X-ray fluorescence. The comparison of metals' concentrations in the river sediments (Turekian and Wadepohl 1961) demonstrates their accumulation. The concentrations of metals in the water are far under the permitted maxima determined by Pristov (1992). We also established the contents of copper, zinc, arsenic, selenium antimony, cobalt, cadmium, and mercury in the liver, kidneys, integument, and muscles of Proteus. These were measured by neutron activation analysis. Preliminary analyses indicate that the liver of Proteus accumulates the largest quantities of metals and may be considered a target organ. The integument of pigmentless and pigmented specimens of Proteus maintains numerous larval characteristics. The microvillous surface differentiation of the mucous surface of the epidermis, composed of nonkeratinized cells, well-developed figures of Eberth, and a dermal basement lamella composed of layers of collagen fibrils, are also characteristics of the integument (Kos 1992, Kos and Bulog 1993). The analyzes of pigments in the skins of the pigmentless specimens manifested a total absence of tetrahydrobiopterin and a marked accumulation of riboflavin, up to 330 to 340 p-g/g dry weight (Istenič and Ziegler 1974). The mechanoreceptory and electroreceptory octavolateral system are also differentiated in the epidermal portion of the integument (Istenič and Bulog 1984, Bulog 1988, Bulog and Bizjak-Mali in prep.). Both forms of Proteus have stellate pigment cells with pigment granules in the dermis. The processes of melanophores under the basement lamella are more abundant in the pigmented specimen (Kos, Bulog 1993). The influence of the pineal organ on body pigmentation will be investigated in both the dark and pale forms, as well as the darkening of pigmentless specimens under a light stimulus. The pineal has also a significant role in the circadian rhythms of vertebrates, A portion of our research has been related to studies of those sensory organs that are presumably important to Proteus life in its underground habitat: the irmer ear, lateral line neuromasts, and ampullary organs (Istenič and Bulog 1976, 1979, 1984, Bulog 1986, 1987, 1988, 1989a, 1989b, 1990, 1993, 1994). We considered eleven characteristics and found the greatest similarity to lie between the gross morphology of the otic labyrinth of Proteus and its relative Necturus. Comparative ultrastructural analyses among specimens of different sizes confirms that new sensory cells are generated throughout life, mainly along the periphery of the saccular macula (Bulog 1989a). The irmer ear of Proteus incorporates at least five types of sensory cells that differ in their apical ciliary part. The tonotopical functional organization of the maculas and amphibian papilla is suggested by the rich differentiation of the apical ciliary part of the sensory cells. Ultrastructural analyses of the P^ cells support the assumption that these are developing sensory cells (Bulog 1989b). Contrary to this, preliminary ultrastructural analyses of the sensory cells in the cristae, lacking apical ciliary parts, infer that they are presumably degenerating sensory cells (Bulog 1993, 1994). There are two types of calcium carbonate crystals in the otoconial masses within the inner ear. The relatively small otoconial mass of the utricular macula occupies an area no greater than the diameter of the sensory epithelium, and is composed of calcite crystals. The enormous otoconial masses of the saccular macula and the lagenar macula are composed of aragonite crystals (Bulog 1989a). The presence of the globular precursors of the aragonite crystals in adult specimens shows that the formation of new crystals is a permanent, continuing process. The special adaptive value of the otic labyrinth is demonstrated by the complex functional-morphological orientation of the hair cells in the saccular macula (Bulog 1989a, 1990). Maybe Pro/ew^ uses these cells to orient itself in its underground water habitat, even using far-field sound source localization. The capability of sound pressure registration mProteus is supposed to be accomplished by the tight anatomical junction between the ceiling of the oral cavity and the oval window (Bulog 1989b, 1990). Beside the studies of inner ear sensory epithelia and mechanoreceptive lateral line system (Bulog 1988), we also determined the electroreceptor ampullary organs by electron microscopic analyses in the skin covering the head (Istenič and Bulog 1984).Later, the electroreceptors were experimentally proven by others: conditioning experiments pointed out that Proteus discriminates a back-and-forth moving direct-current field as well as its polarity (Roth and Schlegel 1988,1994). The general morphology and the cytoarchitecture of the taste buds of Proteus is in agreement with the gustatory buds in the tongue ofNecturus (Farbman and Yonkers 1971). We found differences in Proteus of the configuration between the buds in the mouth and those in the pharynx (Istenič and Bulog 1979). The eyes of matured specimens of Proteus are degenerated (Durand 1971): the eyeball undergoes normal development until growth and differentiation come to an end, and degen- eration sets in. A few years ago, one, dark pigmented specimen of Proteus was found near Črnomelj (Slovenia), and its morphological description was published (Istenič and Bulog 1986, Istenič 1987, Sket and Arntzen 1994). The dark examples of Proteus diverge from the pigmentless specimens of "normal" animals in their eyes as well as numerous other morphological differences. The eyes of the dark subspecies are much more differentiated in comparison with those of pigmentless specimens, as we ascertained in our preliminary light and transmission electron microscopic studies (Bulog 1991, 1992). The metrical analysis of the serial semi-thin sections established the maximal diameter of the bulb parallel to the surface of the skin: 1300 )im. The lens had a diameter of about 200 ^m. The outer segments of the receptor cells were composed of regular series of discs but this regularity was not always present in the outer segment of the sensory cells. In the outer plexiform layer we analysed typical synaptic bodies in the form of dense bars by electron microscopy. The degeneration of the eye in Proteus could be a secondary adaptation to the subterranean environment, or a neotenic developmental character, or an earlier pre-adaptation to a cavemicolous life (ref. by Durand 1976). The nutrition of Proteus alternates with the season. The main organisms eaten \vere crustaceans and snails. In the summer the diet was supplemented by insects. The seasonal alterations were also proven by the discovery of Nematodes in the middle part of the digestive tract. The seasonal appearance of Nematodes may be related to the characteristic calcifications in the pancreas, possibly a calcium reserve. Based on our observations, Proteus is able to survive for over ten years without any food. We wonder how starvation influences the morphology and histochemistry of the digestive tract. Its histological, histochemical, and ultrastructural characteristics will be studied in the fed and the starved animals using animals at different periods of food deprivation. Prof.Dr. Lili Istenič is one of the greatest authority on Proteus: she has placed the fundamentals of the functional-morphological studies of our endemic cave salamander. This article is addressed to her long and successful research work. REFERENCE Bulog, B., 1987: Ultrastructural studies of the inner ear sensory epithelia in the cave salamander, Proteus anguinus (Urodela, Amphibia). The Eighth European Anatomical Congress, Antwerp, September 6-12, 1987. Acta Anatomica 130/1: 14, Karger, Basel. Bulog, B., 1988: Surface ultrastructure of the lateral line sensory receptors in Proteus anguinus Laur. (Urodela, Amphibia). Inst. Phys. Conf. Ser. 3/93:151-152. EUREM 88, York, England. Bulog, B., 1989a: Tectorial Structures ofthe Inner Ear Sensoiy Epithelia of Proteus anguinus (Amphibia, Caudata). Journal of Morphology 201: 59-68. Bulog, B., 1989b: Differentiation of the Inner Ear Sensory Epithelia of Proteus anguinus (Urodela, Amphibia). Journal of Morphology 202: 325-338. Bulog, B., 1990: Čutilni organi oktavolateralnega sistema pri proteju Proteus anguinus.(Sensory organs of the octavolateral system ofProteus anguinus) (Urodela, Amphibia). I Otični labirint. (I Otic Labyrinth). Biol. Vestn. 38/4: 1-16, Ljubljana. Bulog, B., 1993; Ultrastructural analysis of the cristae ampullares of Proteus anguinus (Urodela, Amphibia). Proceedings of Multinational Congress on Electron Microscopy: 469-470. Parma, Italy. Bulog, B., 1994: Further studies of differentiation and degeneration of the inner ear sensory epithelia of Proteus anguinus (Urodela, Amphibia). Abstracts of XI International Symposium of Biospeleology,. Abstracts: 43. Florence, Italy. Bulog, B.& J. Rode, 1989: SEM analiza globularnih predstopenj za aragonitne kristale v otokonialnih masah notranjega ušesa pri proteju .(SEM analysis of the globular precursors for the aragonite crystals in the otoconial masses of the Proteus inner eaT.)(Proteus anguinus, Urodela, Amphibia). Zbornik YUSEM 89: 50-51. Plitvička jezera. Briegleb, W., 1962: Zur Biologie und Ökologie des Grottenolms. Zool. Anz. 166: 87-91. Byrne, A.R., Kosta, L. & Stegnar, P., 1975: The occurrence of mercury in Amphibia. Environ. Lett, 8(2): 147-155. Christiansen, K., 1992: Biological processes in space and time cave life in the light of modern evolutionary theory. In: Camacho, (Ed.), The Natural History of Biospeleology. Monografias del Museo Nacional de Ciencias Naturales: 454-478. Cijan, T., 1994: Mikroelementi v tkivih močerila (Microelements in the tissues of Proteus) Proteus anguinus Laurenti (Urodela, Amphibia) and in its environment. Graduation thesis. Clergue-Gazeau, M., 1974: Urodeles cavernicoles d'Amerique du Nord. Analyse critique des travaux effectues sur les trogloxenes. Ann. SpeleoL, 29: 435-457. Dermelj, M., L Istenič & L. Kosta, 1984: Podatki o nekaterih težkih kovinah v tkivih proteja (Data on some heavy metals in tissues of the europaean cave salamander) (Proteus anguinus Laur.). IX. Yug. Congress of Speleology. Duellman, W,E., & L. Trueb, 1986: Biology of Amphibians. McGraw-Hill Book Company, New York. Durand, J.P., 1971: Recherches sur l-appareil visuel du Protee, i^ro/eMi anguinus Lamenü, Urodele Hypogee. Annales de Speleologie 26/3: 497-824. Durand, J.P., 1976: Ocular development and involution in the European cave salamander, Proteus anguinus Laurenti. Biol Bull. 151: 450-466. Farbman, A. & J. Yonkers, Fine structure of the taste bud in the mudpuppy, Necturus maculosus. Am. J. Anat. 131: 353-370. Hawes, R.S., 1945: Ont the eyes and reactions to the light of Proteus anguinus. Quart. Jour. Micr, Sei. 86: 1- 53. Hetherington, T.E. & R.E. Lombard, 1982: Biophysics of underwater hearing in Anuran Amphibians. J. Exp. Biol.: 98: 49-60. Hetherington, T.E. & R.E. Lombard, 1983: Mechanics of underwater hearing in larval and adult salamanders Ambystoma tigrinum. Comp. Biochem. Physiol. 74A/3: 555-559. Istenič, L., 1971: Izgodišče za reševanje ekološke problematike človeške ribice (Ap- proach to the solution of the problem of the ecology of Proteus) {Proteus anguinus Laur,). Biol.vestn. 19: 125-130. Istenič, L., 1979: Pomanjkanje kisika v Putickovem jezeru Planinske jame (The oxigen deficit in Putic Lake of Planinska jama.) Acta carsol. 8: 331-352. Istenič, L., 1986: Evidence of hypoxic conditions in the habitat of the cave salamander Proteus anguinus in the Planinska jama. 9. Congr. Intern. Speleol. : 110-112, Barcelona. Istenič, L., 1987: O najdbi črne človeške ribice. (Ddiscovering the black human fish.). Proteus 49: 243-244. Istenič, L. & B. Bulog, 1976: Anatomske raziskave membranskega labirinta pri močerilu. (Anatomical investigations of membranous labyrinth mProteus) (Proteus anguinus Laurenti, Urodela, Amphibia). Razprave SAZU, XIX/2: 21-59, Ljubljana. Istenič, L. & B. Bulog, 1979: Strukturne diferenciacije ustno-žrelne sluznice pri močerilu (The structural differentiations of the bucal and pharyngeal mucous membrane of Proteus anguinus Laur). Biol, vestn. 27/1: 1-12, Ljubljana. Istenič, L. & B. Bulog, 1984: Some evidence for the ampullary organs in the European cave salamander Pro/ewj anguinus (Urodela, Amphibia). Cell and Tissue Research 235: 394-402, Springer-Verlag. Istenič, L. & B. Bulog, 1976: Anatomske raziskave membranskega labirinta pri močerilu. (Anatomical investigations of membranous labyrinth mProteus) (Proteus anguinus Laurenti, Urodela, Amphibia). Razprave SAZU, XIX/2: 21-59, Ljubljana. Istenič, L. & I. Ziegler, 1974: Riboflavin as "Pigmentö in the Skin of Proteus anguinus L. Naturwiss. 12: 686-687. Kos, M., 1992: Ultrastruktura kože močerila (Proteus anguinus Laurenti, Urodela, Amphibia) in primerjava kože nepigmentiranega in pigmentiranega osebka. (Fine structure of the skin of Proteus anguinus Laurenti (Urodela, Amphibia) and comparison of the skin of the pigmentless and the pigmented specimen.) Graduation thesis. Kos, M., B. Bulog, 1993: Differences between the fine structure of ProteM.? ang-wmM^ (Urodela, Amphibia) skin and the black pigmetnted Proteus sp. Proceedings Multinational Congress on Electron Microscopy: 439-440. Parma, Italy. Mali, L., 1992: Ultrastructure of the gut of Proteus anguinus (Amphibia, Urodela). Electron Microscopy. Vol. 3: Biological Sciences: 133 - 134, EUREM 92, Granada, Spain. Pristov, J., 1992: Raziskave kakovosti površinskih voda v Sloveniji v letu 1991. Hidrometeorološki zavod Republike Slovenije, Ljubljana. Sket, B., 1993: Nova rasa človeške ribice. (Kako se "naredi" novo podvrsto ali članek o članku). (New race of Proteus). Proteus 56: 3-11. Sket, B. & J.W Arntzen 1994: A black, non-troglomorphic amphibian from the karst of Slovenia: Pro?eMS anguinusparkelj n. ssp., (Urodela: Proteidae). Bijdragentot de Dierkunde, 64(1): 33 - 53 Amsterdam. Sojar, A., 1980: Udeležba zračnega dihanja pri preskrbi močerila (Proteus anguinus) s kisikom. (Participation of air respiration in oxygen supply of Proteus anguinus.) Biol, vestp. 28: 83-98. Roth, A. & P Schlehgel, 1988: Behavioral evidence and supporting electrophysiological observations for electroreception in the blind cave salamander, Proteus anguinus (Urodela). Brain Behav. Evol. 32: 277-280. Roth, A. & P. Schlegel, 1994: Tuning of electroreceptors in the blind cave salamander, Proteus anguinus. Brain Behav. Evol. (submitted). Sand, O., 1981: The lateral line and sound reception. In: W.N. Tavolga, A.N. Popper and R.R. Fay (eds.). Hearing and Sound Communication in Fishes, p.p. 459-480. Springer Verlag, New York. Shuijf, A. & R.J.A. Buwalda, 1980: Underwater localization - A major problem in fish acoustics. In: A.N. Popper and R.R. Fay (eds.). Comparative Studies of Hearing in Vertebrates, p.p. 43-77. Springer-Verlag, New York. Turkeian, K.K. & K.H. Wadepohl, 1961: Distribution of the elements in some major units of the Earth's Crust. Geol. Soc. Amer. Bull., 72: 175-192. Vandel, A., 1965: Biospeleology. The Biology of Cavernicolous Animals. Pergamon Press. Oxford, London. Zakon, H.H., 1988: The electroreceptors: Diversity in structure and function. In: J. Atema, R.R. Fay, A. Popper and W.N. Tavolga (eds.) Sensory Biology of Aquatic Animals, p.p.: 553-593. Springer-Verlag, New York, Berlin. KVALITETA VODE V CERKNIŠKEM JEZERU IN NJEGOVIH PRITOKIH WATER QUALITY IN CERKNICA LAKE AND ITS TRIBUTARIES ALENKA GABERSCIK, GORAZD KOSI, CIRIL KRUSNIK, OLGA URBANC-BERČIČ, MIHAEL BRICELJ Izvleček UDK 556.538 (497.12 Cerknica) Gaberščik, Alenka & Kosi, Gorazd & Krušnik, Ciril & Urbanc-Berčič, Olga & Bricelj, Mihael: Kvaliteta vode v Cerkniškem jezeru in njegovih pritokih V članku je podana ocena stanja vode v Cerkniškem jezeru in njegovih pritokih v letu 1993. Raziskave vključujejo analize fizikalnih, kemijskih in bioloških parametrov. Na podlagi vrstne analize bentoške združbe uvrščamo večino pritokov v II kakovostni razred. Najbolj onesnažena je Cerkniščica, ki smo jo uvrstili v II-III kakovostni razred. Ključne besede: Cerkniško jezero, pritoki, kvaliteta vode, perifiton, zoobentos, makrofiti. Abstract UDC 556.538 (497.12 Cerknica) Gaberščik, Alenka & Kosi, Gorazd «& Krušnik, Ciril & Urbanc-Berčič, Olga & Bricelj, Mihael: Water quality in Cerknica Lake and its tributaries In this work the estimation of water quality in Cerknica Lake and its tributaries is presented. Investigations include analysis of physical, chemical and biological parameters. On the basis of the bentic community structure the majority of tributaries were ranked into II quality class. The most polluted Cerkniščica was classified into Il-III water quality class. Key words: Cerknica Lake, tributaries, water quality, periphyton, zoobentos, macrophytes. Naslov - Address Dr. Alenka Gaberščik, dipl. bioL, Mag. Gorazd Kosi, dipl. biol.. Mag. Ciril Krušnik, dipl. biol.. Mag. Olga Urbanc-Berčič, dipl. biol., Dr. Bricelj Mihael, dipl, biol. Inštitut za biologijo National Institute of Biology Karlovška 19, 61000 Ljubljana, Slovenia UVOD Cerkniško jezero se po svojih značilnostih precej razlikuje od drugih jezer. Kot presihajoče jezero je edinstven kraški fenomen, ki zahteva poseben način obravnave. Hutchinson (1975), ki Cerkniško jezero omenja v svojem delu, ga po nastanku uvršča med jezera, ki so nastafa na topni kamnini (soiution iake), zaradi presihanja pa ga uvršča med občasna jezera (temporary lake). Podobno bi lahko Cerkniško jezero opredelili po klasifikaciji, ki jo navaja Wetzel (1975). Po Odumu (1971) lahko ta ekosistem opredelimo kot tip ekosistema, kjer so značilna nihanja vodne gladine (fluctuating water level type). Presihanje jezera ustvarja pogoje, ki neposredno vplivajo na življenje v jezeru. Nihanje vodne gladine omogoča hitrejše kroženje nutrientov. V sušnem obdobju se pospeši aerobna razgradnja nakopičenih organskih snovi, nutrienti, ki se pri tem sproščajo pa ob poplavljenju omogočaju bujno rast jezerske vegetacije. Jezero napajajo številni pritoki. Večina pritokov je kraških in so že pri izviru nekoliko onesnaženi (Hidrometerološki zavod Slovenije 1992). Zaradi presihanja jezera je kakovost vode v njegovih pritokih še pomembnejša kot bi bila, če bi bilo polje stalno poplavljeno. V času, ko Cerkniško polje, kije poraščeno z bogato močvirsko vegetacijo, preplavlja jezero, rastline sproti porabljajo nutriente in filtrirajo strupene snovi, kijih pritoki prinašajo v jezero. Sistem, ki deluje kot velika biološka čistilna naprava pa preneha delovati, ko jezero presahne. Do nedavnega je bilo spreminjanje vodne gladine mogoče predvideti. Cerkniško polje seje za osem mesecev na leto spremenilo v kraško jezero, ki včasih ni presahnilo vse leto. Kadar je bil vodostaj najvišji, seje na področju polja akumuliralo tudi do 80 milijonov m^ vode (Habič 1976). V zadnjem času pa je zaradi precejšnih meteoroloških sprememb polnj enj e in praznj enj e j ezera nepredvidlj ivo. Namen našega dela j e bil, na podlagi kemij skih in bioloških analiz ovrednotiti kvaliteto voda, ki pritekajo v jezero in spremembe kakovosti vode v jezeru. V letu 1993 smo zabeležili ekstremne razmere, saj se je jezero napolnilo in izsušilo do skrajnih razsežnosti. Ob koncu poletja je od jezera ostal le še skromen potoček v strugi Stržena, jeseni pa se je jezero hitro napolnilo in razlilo, ponekod celo preko običajnih meja. MATERIALI IN METODE Vzorce smo pobirali v petih pritokih Cerkniškega jezera (SI. )). S pobočja Slivnice priteče manjši potok Martinjščica (1). Vodo z Bloške planote prinašata kraška izvira Žerovniščica (2) in Lipsenjščica (3). Najpomembnejši kraški pritok je Obrh (4), ki prinaša vodo iz Loške doline. Na površino pride na jugovzhodnem delu polja kot Cemun in Obrh. Po površju priteče na Cerkniško polje še Cerkniščica (7). Na severnejšem delu polja, kjer dolomit prehaja v propustnejši apnenec so številni požiralniki. V svoje raziskave smo vključili Veliko Karlovico (8) v Jezerskem zalivu. Voda, ki tam odteka v podzemlje pride na dan v Zelških jamah (9) (Habič 1976). Občasno pa smo vzeli vzorce tudi na Vodonosu (10) pri Dolenjem jezeru, od koder poteka najdaljša podzemna vodna pot do izvirov pri Bistri. Poleg tega pa smo vzorčevali tudi pri Zadnjem kraju (5) in v Strženu (6). Vzorce vode za kemijske in fizikalne analize smo na večini lokacij pobirali enkrat mesečno (Tabela 1). Izjeme so lokacije Zadnji kraj in Vodonos, kjer je bilo občasno presušeno. Kadar pa je bilo Jezero popolnoma poplavljeno, smo vzorce jezerske vode pobirali le na lokaciji 6. Na mestu vzorčevanja smo izmerili naslednje parametre; temperaturo zraka in vode, pH vrednosti s pH-metrom, prevodnost in raztopljene snovi (TDS) s konduktometrom (Iskra MA 5968, SLO), koncentracijo raztopljenega kisika in nasičenje s kisikom z merilcem kisika (Oxygen Meter WTW 0X196). V laboratoriju pa smo po standardnih metodah spektrofotometrično določili anorganski fosfor (P-PO^), celokupni fosfor, nitratni, nitritni, amonijev, aluminijev in železov ion, silicij kot silicijev dioksid, detergente, fenole in formaldehid (Spektrofotometer Iskra Spekol 221 MA 9524). S titriranjem smo določili celokupno, kalcijevo in magnezijevo trdoto, kemijsko porabo kisika (KPK), biološko porabo kisika v petih dneh (BPK^), klorov in sulfatni ion. S plamenskim fotometrom (C.Z. Flapho 4, Germany) smo določali koncentracijo kalijevga, kalcijevega in natrijevega iona. Vse analize so bile narejene po standardnih metodah (APHA 1985). MPN bakterij fekalnega izvora smo določali z gojitvijo na McConcky gojišču, MPN koliformnih bakterij pa na LAP z gojitvijo na LAP gojišču. Biološka analiza je obsegala naslednje skupine: zoobentos, perifiton in makrofite. Ker v jezeru v poletnem času ni bilo vode, planktonskih organizmov praktično ni bilo. Nabrane vzorce smo shranili v 4% raztopini formalina in jih kasneje v laboratoriju določili. Pri bentoških organizmih smo določili tudi relativno pogostost posameznih taksonov (I -posamič, 2 - pogosto, 3 - masovno). Na podlagi bentoških organizmov smo nato izračunali saprobne indekse po Pantle-Bucku, modificirano po Marvanu (Pantle & Buck 1955; Marvan & Rotschein «feZelinka 1980). Saprobiološke analize smo naredili junija, julija innovembra. Te analize niso bile narejene v primeru, ko je bilo mesto vzorčevanja popolnoma presušeno ali pa prekomerno poplavljeno. Podobnost raziskanih lokacij glede na prisotnost bentoških organizmov smo analizirali s klastersko analizo, izračun po Brav-Courtisu (Clarke & Warwick 1990). FIZIKALNE IN KEMIJSKE MERITVE Rezultati fizikalnih in kemijskih meritev so podani na slikah 2 in 3 in v tabeli 2. Če primerjamo vrednosti fizikalnih in kemijskih parametrov ugotovimo, da najbolj odstopajo vzorci vode iz Žerovniščice, Cerkniščice in z lokacije pred Karlovico, glede na specifičnost biotopa pa tudi vzorci Raka iz Zelških jam. pH vrednosti nihajo med 7.5 in 8.5, kar je običajno za vode, ki tečejo po karbonatni podlagi. Večje so razlike v temperaturi vode. Voda krajših pritokov (Martinjščice, Žerovniščice, Lipsenjščice in Obrha), ki izvira razmeroma blizu mesta vzorčevanja je poleti precej hladnejša od vode na ostalih lokacijah, kar je razvidno tudi iz povprečnih letnih vrednosti, Manj šapa so tudi temperaturna nihanja. To paje v poletnem času, ko so pritoki bolj onesnaženi precejšna prednost, saj se z višanjem temperature aktivnost organizmov povečuje, kar pomeni tudi povečano porabo kisika. Vrednosti kemijske porabe kisikanihajomed2 in 6 mg kisika na liter (več kot 11 mg 0^/1 pa smo določili maja v Zelških jamah in avgusta v Cerkniščici). Biološka poraba kisika v petih dneh (BPK.) je majhna. Če primerjamo vrednosti anorganskega fosforja izstopajo Martinjščica, Žerovniščica in Cerkniščica, ki so posebno v poletnem času precej onesnažene. Najvišje vrednosti pa smo izmerili julija v Cerkniščici (0.48 mg/l). Podoben vzorec je razviden iz koncentracij celokupnega fosforja z maksimumom I.II mg/l (Cerkniščica v avgustu) in 1.19 mg/l (Obrh - Gornje jezero v avgustu). Vrednosti nitrata nihajo med I in 7 mg/l, precej večjo koncentracijo nitrata pa smo določili v vzorcih Raka v Zelških jamah, kar pa ni nič nenavadnega, saj v podzemeljskih vodah ni pogojev za razvoj primarnih producentov, ki so porabniki anorganskih snovi. Nitritni in amonijev ion se v največjih koncentracijah pojavljata v Cerkniščici in pred Karlovico. Podobno velja tudi za silicij. V Cerkniščici smo določili tudi povečane koncentracije kalijevih, natrijevih in kalcijevih ionov. Ostali parametri, ki so bili analizirani le občasno, ne kažejo velikih nihanj (tabela 2). BIOLOŠKE ANALIZE Bentoški organizmi Seznam bentoških organizmov je predstavljen v tabelah 3 in 4. Primerjava posameznih lokacij glede na prisotnost perifitona in zoobentosa kaže, daje navečja diverziteta organizmov v pritokih Žerovniščica in Lipsenjščica. Ob vzorčevanju v juliju smo na teh dveh lokacijah določili 42 oziroma 48 perifitonskih vrst. Po diverziteti bentoških organizmov sta si podobni tudi Cerkniščica in Martinjščica. Najmanjša paje pestrost v Zelških jamah, kar je glede na tip biotopa razumljivo. Podobnost posameznih lokacij glede na bentoške organizme je predstavljena na sliki 4. Iz slike je razvidno, da tudi ta analiza nakazuje podobnost nekaterih lokacij. Rezultati so podobni ugotovitvam dobljenih na podlagi kemijskih parametrov. Saprobni indeksi Pritoki Cerkniškega jezera (z izjemo Cerkniščice) so kratki, kljub temu pa so vrednosti saprobnih indeksov visoke, saj uvrščajo večino pritokov v II. kakovostni razred (SI. 5). Ob vseh treh vzorčevanjih je bilo najboljše stanje Lipsenjščice, ki jo lahko uvrstimo v l-II kakovostni razred. Stanje pritokov je posledica človekove aktivnosti v neposrednem zaledju Cerkniškega jezera, delno pa tudi posledica onesnaženosti kraških pritokov že na izviru. V najslabšem stanju je Cerkniščica (II-III kakovostni razred), kar je posledica urbanega okolja (industrija in kmetijske površine). Se nekoliko slabša pa je bila ob nizkem vodostaju kakovost vode na lokaciji pred Karlovico. Kljub kratki podzemni poti vode od Karlovice do Zelških jam pa kažejo biološke analize Raka precej boljše stanje. Razlago za to lahko najdemo v dejstvu, da se voda, ki priteče iz Cerkniškega polja, razredči z vodo, ki priteče z Javornikov. Odvzemno mesto v Zelških jamah tudi sicer težko neposredno primerjamo z ostalimi lokacijami, saj gre v slednjem primeru za jamski biotop. Makrofiti V spremenljivem okolju, kakršno je Cerkniško jezero, prevladujejo močvirske in amfibijske rastline. Velik del vodne vegetacije predstavlja emergentna vrsta navadni trst {Phragmites australis), ki ima kot kozmopolitska vrsta širok razpon uspevanja. Zaradi velikih nihanj vodne gladine je submerznih makrofitov malo. V času, ko je jezero poplavljeno, se na nekaterih lokacijah množično pojavlja hara {Charasp. - Zadnji kraj, Rešeto). Submerzni makrofiti se nahajajo v glavnem v pritokih Cerkniškega jezera in v strugi Stržena. Našteti submerzni makrofiti (tabela 5) so se pojavljali posamično ali v manjših sestojih. Bolj množično je bil v strugi Stržena pri Dolenjem jezeru zastopan dristavec (Potamogeton lucens). V Lipsenjščici in Obrhu so bile v bližini brega večji monosestoji vodne zlatice {Batrachium trichophyllum), medtem ko je bil osrednji del struge, kjer je tok močnejši, mozaično poraščen z nizkoraslimi amfibijskimi vrstami (Ludwigia palustris, Myosotis scorpioides mMentha aquaticä). V strugah Martinjščice in Cerkniščice (za čistilno napravo) in pred Karlovico, ni bilo makrofitov. DISKUSIJA Cerkniško jezero nima tipičnih lastnosti pravegajezera. Spremenljivi pogoji, predvsem pa nihanja vodne gladine, vplivajo na kvaliteto vode in življenje v jezeru. Raziskave so pokazale, da se pritoki razlikujejo po kvaliteti vode in po stanju biocenoze. Znano je, da Število vrst v vodotoku pod vplivom onesnaženja upade. Tako iz pestrosti bentoških vrst na različnih lokacijah lahko sklepamo, kakšna je kakovost vode. Na podlagi bioloških in kemijskih raziskav lahko zaključimo, daje od vseh preiskanih pritokov Cerkniškega jezera Lipsenjščica v najboljšem stanju. Nekoliko slabšo sliko kaže Žerovniščica. Zaskrbljujoči pa so rezultati analiz Martinjščice in Cerkniščice, ki sta vse leto precej onesnaženi. Prav v času presihanja pa je kvaliteta vode v pritokih zelo pomembna. V času, ko je jezero polno, se strupene snovi in nutrienti, ki pritekajo v jezero s pritoki, hitro porabijo in nevtralizirajo v sestojih vodne vegetacije, ki deluje kot naravni filter (Jorgensen 1990, Pieczynska, 1990, Wetzel, 1990). V sušnem obdobjuje tudi vodostaj v pritokih nižji in onesnaženost vode je povečana. Navadno takrat tudi jezero presahne. Močvirska vegetacija, kije prej opravljala funkcijo filtra in je sproti prestregla vse prinesene snovi ostane na suhem in tako izgubi funkcijo filtra. Vode pritokov se zbirajo v strugi Stržena. Samočistilna sposobnost Stržena je zanemarljiva v primerjavi s celotno površino jezera, zato vode onesnažene izginjajo v podzemlje. Do kakšne mere je voda v času nizkega vodostaja onesnažena, je razvidno iz vzorcev vode pred požiralnikom Veliko Karlovico. Pričujoče raziskave kažejo, da so nihanja v kvaliteti vode preko leta precejšnja. Cerkniško jezero v času vodnatosti deluje kot naravni čistilni sistem, ki pa odpove, ko voda presahne. Onesnaženje se takrat lahko nekontrolirano širi preko podzemnih poti, zato bi bilo potrebno v tem času skrbno nadzorovati dejavnost v zaledju. Raziskavo je financiralo Ministrstvo za okolje in prostor Republike Slovenije. LITERATURA American Public Health Association 1985: Standard Methods for the Examination of Water and Wastewater. 16"" edition. A.P.H.A., New York. Clarke, K., Warwick, R.M., 1990: Lecture notes prepared for the training workshop on the statistical treatment and interpretation on marine community data. Split, 26 June - 6 July 1990, part IL Long Term Programme for Pollution Monitoring and Research in the Mediterranean See. (Med Pol - Phase II), FAO, UNESCO, UNEP, Split. Habič, P., 1976: Investigations in Ljubljanica river basin. Geomorphologie and hydrologic characteristics. In: Undregraund water tracing. Ed. R. Gospodarič & P. Habič. Third International Symposium of Undregraund Water Tracing, Ljubljana - Bled 1976, 12-27. Hidrometerološki zavod Slovenije, 1992: Kakovost voda v Sloveniji, leto 1991, Ed. M., Zupan. - HMZ, Zavod republike Slovenije za varstvo okolja in vodni režim, Ministerstvo za varstvo okolja in urejanje prostora, Republika Slovenija, Ljubljana, 146-148. Hutchinson, G. E., 1975: A Treatise on Limnology, Vol. I, Georaphy, Physics, and Chemistry, New York - John Wiley & Sons, Inc., London - Chapman & Hall, Ltd., 164-195. Jorgensen, S. E., 1990: Erosion and filtration. In: Guidelines ofshore management. - Vol. 3, Ed. S. E. Jorgensen, H. Lölfler, International Lake Enwironmental Comittee, UNEP, 13-20. Marvan, P., Rothschein, J., Zelinka, M., 1980: Der diagnostische Wert saprobiologiseher Methoden. - Limnologica 12, 299-312. Odum, P. E., 1971. Fundaments of Ecology, Third Edition. W. B. Saunders Company, Philadelphia - London - Toronto. Pantle, R., Buck., 1955: Die biologische Überwachung der Gewässer und Darstellung der Ergebnisse. Gas - u. Wasserfach 96, 604. Pieczynska, E., 1990: Littoral habitats and communities. In: Guidelines of shore management, Vol. 3, Ed. S. E. Jorgensen, H. Löffler, International Lake Enwironmental Comittee, UNEP, 39-72. Wetzel, G. R., 1975: Limnology. W. B. Saunders Company, Philadelphia - London - Toronto, 14-35. Wetzel, G. R., 1990: Land-water interfaces: Metabolic and limnological regulators. - Verh. Internat. Verein. Limnol., 24, 6-24. Tabela 1: Mesta vzorčevanja vzorcev za ovrednotenje kvalitete vode. Table 1: Sampling points. Št. Lokacija Mesto vzorčenja Čas vzorčevanja (mesec) 1 Martinjščica za sotočjem obeh krakov I-XII 2 Žerovniščici za sotočjem Grahovščice z Žerovniščico I - XI 3 Lipsenjščica pod mostom I-XII 4 Obrh pod mostom pri Gornjem jezeru I-XII 5 Zadnji kraj pod mostom IIIIV v VIIIX XII 6 Stržen pod mostom pri Dolnjem jezeru I-XII 7 Cerkniščica za čistilno napravo II - XII 8 Karovica pred Karlovico II III V VI VII 9 Rak Zelške jame IIIV - IX XI 10 Vodonos - IV v IX Tabela 2: Maksimumi in minimumi nekaterih kemijskih parametrov (določeni v septembru, oktobru in novembru) in MPN (most probable number) bakterij (v LAP in Mc Concky mediju vzorčevano od maja do decembra - v oklepaju je mesec maksimuma, oziroma minimuma). Parametri, razen trdote vode (nemške stopinje - "N) in MPN (največje možno število v 100 ml), so izraženi v mg t'. Table 2: Minimum and maximum values of some chemical parameters (in September, October and November) and MPN (most probable number) of bacteria (in LAP and Mc Concky medium) sampled from May to December - the month of sampling is in parenthesis. The parameters, except water hardness (German degree - "N) and MPN (in 100 ml), are in mg V. Totalna trdota Min Max 15.300 15.800 12.400 12.600 10.800 12.400 6.500 9.400 6.900 8.200 Ca trdota Min Max 8.000 9,200 5.300 10.100 3.600 7.100 3.800 7.700 3.900 6.500 Mg trdota Min Max 6.100 7.800 2.500 7.300 5.100 7.200 1.700 2.700 0.400 4.300 Suspendirane Min 257.50 291.500 236.000 188.500 212.500 201.000 239.500 snovi Max 293.50 337.500 263,000 245.000 212,500 228.000 283.500 188.500 248,000 Alkaliteta Min 158,60 1.52,500 311,100 103,700 Max 475,80 445,300 439,200 164,700 24,400 262,300 Fe^- Min Max 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 Cl- Min 7,800 7,100 8,500 7,100 Max 14,200 15,600 18,400 24,100 1,300 21,300 Detergenli Min Max 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,010 0,000 0,000 0,010 0,010 Fenoli Min 0,010 0,000 0,000 0,000 0,000 0,000 0,000 0,000 Max 0,010 0,000 0,010 0,000 0,000 0,000 0,010 0,000 Formaldehid Avg 0,000 0,000 0,000 0,000 0,000 0.000 0,000 0,000 MPN/ LAP Min 190 (5) 336(5) 76 (6) 29(11) 29(5) 7(12) >336 (5) >336 (5) 58 (5) Max>4384(9)> 4384 (8) 4384(9) 439(9) 3501(12) 439(9) 9000(6) 9000(6) >438(7) MPN/ McC Min 104(08) 0(11) 0(11) 0(11) 0(5) 0(12) 760(11) 457(7) 15(11) Max 4384(9) 2712 (9) 492(9) 190(10) 46(12) 76(9) 9000(6) 9000(6) 190 (9) Tabela 3: Seznam bentoških alg prisotnih v pritokih Cerkniškega jezera. Vzorci so označeni z dvomestnimi številkami. Prva cifra predstavlja lokacijo, druga pa čas vzorčevanja (junij -1, julij - 2, november - 3). Table 3: The list ofbentic algae determined in the tributaries of Lake Cerknica. Samples are indicated by numbers. The first sign represents location, the second means the time of sampling (june -1, july - 2, november - 3). n 13 2J 22 23 31 32 33 41 42 61 7! 72 73 81 82 9) 92 93 BACTERIA Sphaerotilus natans Tetracladium sp. CYANOPHYTA Merismopedia punctata Chamacsiphon confervicoius Gloeocapsa montana Lyngbya kutzingii Lyngbya martensiana Lyngbya purpurasccns Lyngbya sp. Nostoc sp. Osciliatoria irrigua Oscillatoria limosa Osciliatoria sp. Pleurocapsa sp. Phormidium favosum Phormidium incrustatum Phormidium inundatum Phormidium lividum Phormidium sp. Rivularia haematites Schizothrix sp. Tolypotrix distorta Hydrurus foetidus Tribonemaviride BACILLARIOFHYIA Achnanthes inflata Achnanthcs lanceolata Achnanthes sp. Amphora ovalis Amphora ovalis v.pediculus Amphipleura pcllucida Caloneis silicula Ceratoneis arcus Cocconeis pcdiculus Cocconeis placentula Cyclotella meneghiniana Cymatopleura elliptica Cymatopleurasolea Cymbelia cesatii Cymbella lanceolata Cymbelia prostrata Cymbella sinnuata Cymbelia ventricosa Denticula tennuis Diatoma vulgare Diploneiselliptica Eunotia praerupta Fragilaria capucina Fragilaria crotoncnsis Fragilaria pinnata Fragilaria vauchcriae FrustuJia\'uJgaris Gomphoncma acuminatum Gomphoncma angustatum Gomphoncma constrictum Gomphoncma intricatum Gomphoncma oiivaccum Gomphonema parvulum Gomphoncma sp. Gyrosigma acuminatum Gyrosigma attcnuatum G>Tosigma scalproidcs Meiosira arenaria Melosiravarians Meridion circularc Naviculaavcnacca NavjcuJa baciJJum Navicuia cryptoccphala Navicula crypt, v. veneta Navicuia diceptuila Navicuia halophila Navicula gracilis Navicuia pupula Navicula radiosa Navicuia rhynchoccphala Navicula sp. Neidum iridis Nitzschiaacicularis Nitzschiaangustata Nitzschia dissipata Nitzschiafonticola Nitzschia linearis Nitzschia palea Nitzschia sigmoidea Nitzschia sp. Pinnularia viridis Rhoicosphenia curvata Rhopalodia gibba Stcphanodiscus sp. Surirella angusta Surircilaovata Surirella sp. Surirella spiralis Syncdra ulna Synedravauchcriac 11 13 2 3 3 1 I 31 32 3 41 42 61 71 72 73 - 3 3 3 1 I 3 3 3 I 1 1 1 1 82 91 92 93 CHLOROPHYTA Ankistrodcsmus falcatus Chlamydomonas sp. Cladophorafracta Cladophora sp. Clostcrium accrosum Clostcrium chrcnbergii Clostcrium Iciblcinii Clostcrium moniliferum Clostcrium sp. Clostcrium siriolatum Cosmarium sp. Cosmarium subprotumidum Microspora quadrata 1 I 11 13 21 22 23 31 32 33 41 42 61 71 72 73 81 82 91 92 Microsporasp, Microspora stagnorum Mougeotia sp. Oedogonium sp. Pandorina morum Pediastrum boryanum Pediastrum duplex Pleurococcussp. Scenedesmus ecomis Sccnedesmus obliquus Scenedesmus quadricauda Scenedesmus sp. Spirogyra sp. Stauraslrum punctulatum Stigeoclonium tenue Ulolhrix zonata Audouinella chalybea 1 3 3 3-13 3 13 3 3 - - - Tabela 4: Seznam zoobentoških organizmov prisotnih na posameznih lokacijah. Vzorci so označeni z dvomestnimi številkami Prva cifra predstavlja lokacijo, druga pa čas vzorčevanja 0'unij -1, julij - 2, november - 3, oznaka rv. pomeni različne vrste). Table 4: The list of zoobentic organisms determined on the different lacations. Samples are indicated by numbers. The first sign represents location, the second means the time of sampling (june - 1, july - 2, november - 3). 11 13 21 23 31 32 33 41 42 61 71 72 73 81 82 91 92 93 TURBELLARIA Dcndrocoelum lacteum Polycelis nigra Dugesia(Planaria) sp. Polycelis sp. NEMATODA i - 1 3 3 1 OLIGOCHETA Eiseniellatetraedra Enchytraeidac r.v. Lumbricidae r.v, Lumbriculidaerv. Stylaria lacustris Naididae r,v. Tubificidaerv, 1 - 1 1 i HIRUDINEA ErpobdeJJa sp. Glossiphonia sp. Haemopis sanguisuga Helobdellasp Piscicola geometra GASTROPDA Ancylus fluviatilis Bythinellasp. Lymnaea peregra Planorbis sp.juv. Sadlcriana fluminensis Viviparus viviparus 1 1 1 -1-11 } 1-33 1 - 1 - • 1-11 5 5 3 1 11 13 21 22 23 31 32 33 41 42 61 71 72 73 81 82 91 92 93 BIVALVIA Pisidiumsp. 1 - 3 1 3 3 1 1 3 1 - - - I - - - 1 COPEPODA AMPHIPODA Gamraarus fossarum Niphargus sp. Svnurclla ambulans 5 3 3 1 - 1 3 3 3 1S0P0ÜA Asellus aquaticus HYÜRACARINA 3 3 I 1 3 1 1 1 ] 1 3 3 5 5 1 5 3 11 - - 1 - 1 EPHEMEROPTERA Bactis sp. Clcon sp. Ecdyonurussp. Ephemera sp. Ephcmcrcllasp. Habrolcptoidcs sp. Habrophlcbiasp. Heptagenia sp, Paraieptophlcbia sp. Siphlonurussp. Torleya sp PLBCOPTERA Brachvptera sp. Capnia sp. TsopcrJa sp. Leuctra sp. Nemoura sp. Sialissp. HEMIPTERA Corixidac r.v. - 1 - 1 - - - 3 5 - - -13-331 1 1 1 - - - TRICHOPTERA Glossosomatidac r.v. Gocridac r.v. Hydropsychc sp. Hydroptj)idae r.v. Lcpidostomalidac r.v. Lcptoceridae r.v. Limncphilidaer.v. Odontoccrum albicome Philopotamidaer.v. Plcctrocncmiasp. Polyccntropodidae r.v. Rhyacophilasp. DIPTERA Alhcrlxsp. Bczzia sp. Chironomidae r.v. Limonidae r.v, Psychodidae r.v. Simulium sp. Tabanidac r.v. Tipulidacr.v. 3 - ] - - J 5 3 3 1 3 3 1-1-11 I - , . . 3 - - - 1 -1 ... 1 1 I 3 3 I 1 - - - - 1 1 1 3 3 5 5 3 3 3 1 1 3 I 1 COLEOPTERA Dryopssp, Elmidae r.v. Elmis sp. Dytiscidae Esolus sp. Haiiplidae Helophorus sp. Hydraena sp. Hydrophilidae Riolussp. 1 - 3 1 1 1 3 1 - - 1 - 1 - - 1 1113 11-11- Tabela 5: Makrofiti najdeni na mestih vzorčevanja v pritokih Cerkniškegajezera in vjezeru. Table 5: Macrophyte species in different locations in tributaries and in Cerknica Lake. 1. Za sotočjem obeh krakov Martinjščice Phragmites australis Lytmm salicaria struga brez makrofitov 2. Za sotočjem Grahovščice in Žerovriiščice Epilobium hirsutum Polygonum lapatifolium Filipendula ulmaria Iris pseudacorus Sparganium erectum Phragmites australis Myriophyllum spicatum 3. Lipsenjščica Lytrum salicaria Calhta palustris Epilobium hirsutum Phragmites australis Veronica anagalis Myosotis scorpioides Mentha aquatica Ludwigia palustris Callitriche sp. Batrachium trichophyllum Fontinalis antipyretica Cladophora sp. 4. Obrh pri Gornjem jezeru Myosotis scorpioides Ludwigia palustris Rorippa amphibia 5. Zadnji kraj Carex elatae Gratiola officinalis Senecio paludosus Galium palustre Lysimachia vulgaris Sium latifolium Lytrum salicaria Alisma plantago aquatica Plantago altissima Mentha aquatica 6. Strženpri Dolenjem jezeru Alisma plantago aquatica Alisma gramineum Rorippa amphibia Sium latifolium Senecio paludosus Schenoplectus lacustris Butomus umbelatus Nuphar luteum Potamogeton lucens Myriophyllum spicatum Batrachium trichophyllum 7. Cerkniščica Epilobium hirsutum Polygonum lapatifolium Filipendula ulmaria Sparganium erectum Alisma plantago aquatica Alisma gramineum Potmogeton filiformis Potamogeton crispus Batrachium trichophyllum CKRKNICA D.VAS V.Karlovica'^RKNlSKO POUlf MJCarlovica' lSy_ Vodonos GRAHOVO ŽEROVNICA LIPSENJ SI. 1: Zemljevid Cerkniškega jezera s pritoki. Mesta vzorčevanja so označena s številkami. Fig. 1: The scheme of Cerknica Lake and its tributaries. Sampling locations are indicated with numbers. 10 pH 5-20 10 0. 600; 400j 200-400. 200. water 1" conductivity {>2 satiiralion COD BOD 30 20 10 0 -200 100 0 10 12345 6789 10 12345 678 9 10 Sampling site Sampling site SI. 2: Povprečne letne vrednosti pH, temperature (°C), električne prevodnosti (flS), raztopljenih snovi (TDS - ppm), kisika (mgt'), saturacije kisika, kemijske porabe kisika (KPK-mgl') in biološke potrebe po kisiku po 5 dneh (BPK-mgl'). Pokončne črte pomenijo standardno napako (n=10-12). Sivo polje predstavlja območje med minimalnimi in maksimalnimi vrednostmi. Fig. 2: Average annual values of pH, temperature ("C), conductivity (jiS), Total dissolved solids (TDS-ppm), oxygen (mgt'), oxygen saturation, chemical oxygen demand (COD -mgl-') and biological oxygen demand after 5 days (BOD - mgl'). Vertical bars mean standard error (n=10-12). Grey area represents variation between minimum and maximum values. Sampling site Sampling site 8 9 10 SI. 3: Povprečne letne vrednosti P v obliki ortofosfata, totalnega P in nitratnega, nitritnega, amonijevega, silicijevega, kalijevega, kalcijevega in natrijevega iona. Vse vrednosti so podane v mgt'. Pokončne črte pomenijo standardno napako (n=10-12). Sivo polje predstavlja razpon med minimalnimi in maksimalnimi vrednostmi. Fig. 3: Average annual values of phosphorus (ortophosphate), P-total, nitrate, nitrite, amonium, silicium, sodium, calcium and potassium. The values are in mg l'. Vertical bars mean standard error (n=10-12). Grey area represents variation between minimum and maximum values. 0 20- ^ 40i > •c 60- I 80- 100^ 21 23 33 22 32 3 1 82 72 13 73 61 91 92 93 42 81 71 SI. 4: Primerjava posameznih lokacij (izračun po Bray-Courtisu) glede na bentoške organizme. Vzorci so označeni z dvomestnimi številkami. Prva cifra predstavlja lokacijo, druga pa čas vzorčevanja (junij -1, julij - 2, november - 3). Fig. 4: The comparison of different locations (after Bray-Courtis) with respect to bentic organisms. Samples are indicated by numbers. The first sign represents location, the second means the time of sampling (june -1, july - 2, november - 3). June 1 2 3 4 6 7 8 9 Sampling site SI. 5: Vrednosti saprobnih indeksov, ki smo jih določili na osnovi vrstne sestave zoobentosa in perifitona. Fig. 5: Values of saprobic indexes, estimated on the basis of zoobentos andperiphyton. WATER QUALITY IN CERKNICA LAKE AND ITS TRIBUTARIES Summary During the year 1993 water quality of Lake Cerknica and its tributaries was monitored. The results of some physical, chemical and biological analysis were taken as a cryteria. Lake Cerknica is not a typical lake. Great fluctuations of water level influence water quality and organisms in the lake, as well. Our investigations showed variations in water quality. The best was water quality of Lipsenjščica, somewhat worse situation showed the results of analysis of Žerovniščica. Cerkniščica and Martinjščica were affected with the pollution. During the dry period the quality of water is the most important. When the area of Cerknica Lake is flooded, toxic substances and nutrients which reach the lake by the tributaries are actively mineralized and neutralised in stands of dense aquatic vegetation, which function as natural filter. In dry period the water level drastically decreases. The areas covered with aquatic vegetation become dry and they lose the filtering ability. The water from the tributaries flows into the bed of Stržen. The self-purification efficiency of Stržen is negligible in comparison with the efficiency of the whole lake area. Polluted waters are spread through the underground pathways without any control. Our results showed the extend of variations of water quality during the year. TYPES OF THE POLJES IN SLOVENIA, THEIR INUNDATIONS AND LAND USE TIPI KRAŠKIH POLJ V SLOVENIJI, NJIHOVE POPLAVE IN RABA TAL IVAN GAMS Izvleček UDK 551.44 (234.422.1)(197.12) Gams, Ivan: Tipi krašldh polj v Sloveniji, njihove poplave in raba tal Prispevek prinaša nove elementa za klasifikacijo kraških polj, kot dodatno gradivo k avtorjevi zasnovi, objavljeni 1983 (Gams). Predvsem se naslanja na povezavo med tipom kraškega polja, poplavami na njih in izrabo tal. Skupna lastnost polj je aluvijalni pokrov na dnu polja kot posledica odlaganja rečnega transporta v zastajajoči vodi pred ponori. IntMzivno kmetijsko rabo in gosto naseljenost kraških pofj v Sioveniji izpričuje gostota naseljenosti z nad 200 prebivafci/km', medtem ko je v visokem dinarskem krasu, izven kraških polj, med 10-20 prebivalcev/km-. Ključne besede: geomorfologija, geomorfogeneza, kraška morfologija, klimatska geomorfologija, kraško polje, raba tal. Dinarski kras, Slovenija, Dinarski visoki kras Slovenije Abstract UDC 551.44 (234.422.1)(197,12) Gams, Ivan: Types of the pelješ in Slovenia, theii- inundations and land use The article contributes new elements to the karst poljes' classification as additional arguments to the one the author published in 1983 (Gams). In the foreground are connections between the polje type, floods and land use. Common characteristic of all the poljes is alluvial cover of the bottom of the polje as the result of fluvial transport sedimentation in the calm water in front of ponors. Intense agricultural land use as well as dense population of Slovene karst poljes are prooved by 200 inhabit-ants/km% while in the high dinaric karst, out of karst poljes, this density is not higher than 10-20 inhabitants/km'. Key words: geomorphology, geomorphogenesis, karst morphology, climate geomorphology, karst polje, land use, Dinaric karst, Slovenia, high Dinaric karst in Slovenia. Address - Naslov Prof Dr. Ivan Gams, Academician Ul.Pohorskega bat. 185, 61113 Ljubljana, Slovenia Opomba: Prispevek je bil predstavljen na 2. mednarodni krasoslovni šoli "Klasični kras", ki je bila v Postojni med 27. - 30. junijem 1994 FOREWORD The topics dealt with in this paper were suggested by the organizers of the present karst school devoted mainly to the poljes and man's impact on karst. It contains new argumentation for classification of the poljes in Slovenia in respect to the sheme published in 1983 (Gams). In foreground are relations among the polje type, floods and land use. For the more detailed picture see the references cited at the end of this article. The most recent description of the poljes of Notranjsko is published in the Guide-book of the Study group IGU -Man's impact in Karst (1987). PIEDMONT POLJES The Velo polje (= Great Polje) is situated among the peaks Mišelj vrh (2350 m), Vernar (2225 m) and Mali Triglav (2738 m) in the Julian Alps. It is 330 m long and 300 m wide. The local name polje denies the opinion that in the Slavonic languages polje means field only. Its bottom at altitude 1700 m is too high for tillage. In the Slovene popular language it means also larger plain (Badjura, 1953, p. 43). In the Slovenian Dinaric Karst the poljes are called usually "dolina" (= valley) (Loška, Ribniška dolina) or "dol" (Globodol = Globoki dol). Rubble which built the bottom is deposited by the torrent from the Veljska dolina (valley) after snow melting in spring and heavy storm. The surface drainage is there enhanced by the steep slope below the massif of Triglav and inlayers of semipermeable strata. On the polje's bottom the water of torrent penetrates into the rendzina which covers the rubble. The suballuvial corrosion of the limestone basis is proved by collapse alluvial dolines which are often on the margin. The limestone ridge which divides the two basins - Velo and Malo polje is only few metres high at its lowest point. Both poljes represent the beginning of the dry valley with glacier in the glacial periods of the Pleistocene. In Malo polje the hydrochemical measurements of the water flowing from the spring at one side for a while on the humus black soil mixed with limestone rubble have shown the increase of the total hardness from 100 CaCOj/l to 124 mg CaCO/1 and from 108 mg CaCO^/l to 125 mg CaC03/l of the carbonate hardness. Higher on the slope at the Vodnik hut where the tree-line is at the altitude of 1850 m (Lovrenčak 1986) the spring water began its running on the humus rendzina of the pasture. Up to Malo polje its carbonate hardness increased from 76 to 113 mg CaCO^/l. This increase is congruent with the similar measurements of the water flowing from bare lime- BORDER POLJE PERIPHERAL POLJE OVERFLOW-POLJE POLJE IN THE PIEZOMETRIC LEVEL 'LEVEL OF HWH WEZOMeTER PCZOMETRIC LEVEL OF LOW WATER PIEDMONT-POLJE IS^ 3 -- 4 ------ 5 Fig. 1: The types of Karst polj es in Slovenia. Legend: 1 = Permeable sediments (limestone). 2 = Unpermeable and partially permeable sediments (ßysch, dolomite etc.). 3 = Alluvium. 4 = Permanent flow. 5 = Periodic flow. SI. 1: Tipi kraških polj v Sloveniji. Legenda: 1 = prepustni sedimenti (apnenec) 2 = neprepustni in deloma prepustni sedimenti (fliš, dolomit, itd.) 3 = aluvij 4 = stalni tok 5 = občasni tok Fig. 2: Karstpoljes in Slovenia. SI. 2: Kraška polja v Sloveniji. «-0 -1 UJ 1—\ J —) O O zr o CL CL cv —J f ^ > C a l-U > —' LU O- O UJ _J LL. X D- _f ' ' ' Ct: t-U CC LU OL)l \ SILICATES i-iROuyte^WM I ~ -I flA^N > ___]ALLUViUn O^ Sterne. Stone of the Julian Alps to the karst covered by soil. The development of the basins of Malo and of Vclo polje may be attributed to the suballuvial and to this type of accelerated corrosion. As the vegetational belts in the Pleistocene glacial periods were lower for 800-1300 m, then the similar processes are presumed to be active also in the poljes situated in Dinaric Karst in Carniola in the altitude 400 - 800 m (Gams 1965; 1967). Since the Middle Ages on Velo polje existed the pasture with the cattle pens. Floods are often but of short duration as the bottom is inclined and the ground permeable. Two concrete dams were built till now to retain the rubble from spreading on the pasture and both are filled already. Fig. 4a: The piedmont (foot-hill) polje Velo polje (Julian Alps) is situated on the contact between the forested-grass and stony surface. Belts of rubble, deposited by torrent are shifted in last some tens of years, as they are soon overgrown by grass. In spite there is no sign of the thickening of the alluviation in Holocene. The local accelerated corrosion is proved (photo by I. Gams). SI. 4a: Piedmontsko kraško polje Velo polje (Julijske Alpe) ima dno na stiku skalnatega in gozdnato-travniškega površja. Gruščati tokovi (svetle proge) hudournika so se zadnjih nekaj desetletjih večkrat premestili, ker jih kmalu preraste trava. Kljub temu ni znakov, da bi postala gruščnata naplavina na polju v holocenu debelejša. Dokazana je lokalno pospešena korozija (foto I. Gams). Fig. 3: Some examples of Karst poljes of the Slovene Karst. SI. 3: Nekaj primerov kraških polj s slovenskega krasa. BORDER POLJES The most impressive border poljes in the world are situated on the contact of impermeable silicious sediments with the limestone (see Lehmann 1959). In Slovenia the water sinking in the border poljes is draining the semipermeable Triassic dolomites and is recently mostly saturated with carbonates. But near to the tree-line, as today lies the Velo polje, in the following border poljes in Slovenia an aggressive sinking water is supposed to exist in the glacial periods of the Pleistocene. As seen on the geomorphological sketch, the bottoms of the border poljes developed mostly inside the dolomite and only at very high level the water reaches the ponors in the border limestone in case of bigger poljes. The second geomorphological feature is a higher terrace in limestone at the outflow side of the polje. On it remains of the Pleistocene river sediments were found. This is proved for the polje of Logatec (Mihevc 1986. See the sketch!). A similar but narrower Fig. 4b: In 30 years younger photograph of Velo polje the torrential rubble dams essentially differfrom those in the previous photograph. In front the Malo polje border (photo by I. Gams). SI. 4b: Na 3 desetletja mlaj si fotografij i Velega polja so hudourniški gruščnati nasipi precej drugačni kot na fotografiji iz 1. 1994. V ospredju rob Malega polja (Joto I. Gams). 1-3 m higher border limestone terraces are on the effluent side of the dolomitic polje at Rakitna and Babno polje. Already Melik (1955) stated the shortening of the river flow on the bottom of the polje as the result of the Holocene removal of the alluvium und unveiling the older sinks. The normal sinks of the water are at present in dolomite far from the end ponors in the limestone. In the polje of Bloke the final ponor of the Bločica under the village Metulje is 5.5 km distant from the ponor at low level. In the Logaško polje, the tributary Petkovški potok in the'Pleistocene spreaded on the northern part called Pusto polje a thick cover of gravel and sand. At present its normal ponor is 2 km distant (Mihevc 1986) and it reaches the polje through the dry valley once in many decades. In the transition belt from northern Triassic dolomite to the southern limestone there is between Ljubljana Moor and Krka basin a series of all sorts of karst basins with sinking rivers. There the largest border polje is the polje of Grosuplje (see the sketch!). Numerous tributaries concentrate in the main river Grosupeljščica. Near the village Boštanj are the main ponors at the contact limestone. Behind these ponors stretches 4 km long and 1 km wide "blind valley" called Radensko polje. The river floods it once in some years. This exceptionally big "blind valley" Melik (1955) explained by the primary flow of the river Raščica through Dobro polje to the Ljubljanica river. Contrary to that, Gams (1986) sees in the "blind valley" Radensko polje the end ponor of the Paleoljubljanica which by Quaternary tectonical subsidence of the Ljubljana Moor was captured by the Sava river. This opinion is based also on the Pliocene-Quaternary clay and loam, thick 1 -10m, building a slightly higher polje's bottom without sharp transition. Holocene flooded plain along the tributaries are built of clay and loam and they are according to the pollen analyses of Pleistocene and Holocene age (Buser 1965). On them meadows prevail and settlements on the higher bottom and on the dolomitic ridges are dense (Melik 1955). More marked Holocene shortening of the main river occured at the river Raščica. In Pleistocene it has spread over the northern, larger part of the Dobro polje (19.5 km^) accumulation terraces and also gravel (Sifrer, 1967). The rivers draining the Triassic dolomite usually transported no gravel or it was soon chemically and mechanically weathered. But in the river basin in the region Velike Lašče patches of the Permian schists and sandstone enabled the river to transport the silicious gravel from the region. But today the river sinks 3 km from the polje and only once in many years its flood reaches through the dry valley the NW, lower part of the polje (Kranjc 1980; Melik 1955) and endangers the settlements in the south-eastern narrower continuation of the polje called Struge (see the sketch!). It does not deposit at the normal ponor near the village Ponikve (=ponor) before Dobro polje (=good field) any gravel. At the village Ponikve (=ponor) is 2 km wide and 3 km long karst plain without considerable alluvium. The difference of the Pleistocene gravel deposits in the Dobro polje and the absence of it in the present river can be explained by the climatical geomorphology. In this sense the karst plain at Ponikve may be explained as the result of the flooding in the warm periods of the Pleistocene. Now the final part of the river is regulated. In the east of the Grosuplje polje geomophological evidence of the historical man made reverse transformation of a periodical border polje (or large blind valley) into normal river valley exists. Once the river Višnjica normaly disappeared in the ponors near the village Muljava in the southern end of the 1,3 km wide plain and only at high level continued its surface course to the head of the river Krka. As this head tectonically subsided, the denivelation enabled the tributary to sink at low and middle level in the border limestone around Muljava. To avoid inundations and for the drive of the mills the surface river bed was regulated and collapse dolines as new swallow holes were artificially filled. So the sinking river became a steady surface flow and thus the development of the rudimental semipolje stoped (Gams 1986). OVERFLOW POLJES The dam which forces the underground water on the inflow side of the polje to flow on the surface toward the ponors on the outflow side in limestone is in Slovenia built of Triassic dolomite only. The classical form of the overflow polje in Slovenia is the polje of Planina (9 km^, see sketch!). On this polje the project was prepared for the water storage for HP by blocking eca 120 ponors on the NE side (Jenko 1959). The project was refused for the sake of natural conservation of the typical Slovenian polje. In the Slovenian karst geomorphology the factors of polj es development are a matter of discussion between the advocates of tectonics (Habič 1982, and some geologists) and of suballuvium solution (Gams 1980). In this regard is to mention that along the main, Idrija fault, the contact of the Cretaceous limestone and Triassic dolomite transverses the top of the Jakovica ridge. It divides the main polje bottom from the bay Babni dol where around the numerous ponors and ponor caves behind them the basin is at most enlarged on the border limestone. The predominant dolomitic bottom and its enlargement on the limestone are covered by in average 2-5 m thick loam and sand of Holocene age. Locally up to 20 m deep swallow holes were found beneath (Jenko 1962; Melik 1955). The Holocene alluviation was explained by the trees fall. As the roots retaining the soil rotted the flood water blocks with loam the entrances to the stony ponors. Thus floods lasted longer, now about 3-5 weeks in the year. Although the ammelioration of ponors shortened the time of flood the bottom is in spite of the fertile soil still without fields and settlements and used only for meadows (Gams 1980). So the polje of Planina is an example in this regard. The dolomitic belt stretches through the whole Notranjsko podolje and is a dam also for the Veliki Obrh in the polje of Lož (12 km^). Contrary to the Planina polje here the floods are restricted to the two valleys of the Veliki and Mali Obrh and the settlements are dense on the higher dolomitic terrace where once fields prevailed (Gams 1973b). NW of the Lož polje the same dolomitic belt is enlarged in the bottom of the most famous Slovenian polje Cerkniško polje (45 km^). The river takes rise at the SE and E border limestone created in Pliocene parallel valleys which rested only some metres above the bottom between the poljes of Cerknica and Rakek (see the sketch! The geology is taken from the geological maps in the scale 1 ; 100.000). Probably due to the teetonical sinking which is proved also for the Holocene time (Gospodaric & Habič 1979; Habič 1980) the main ponors near the recent settlement Cerknica developed. With them the basin began to form. Before the Würmian these ponors were blocked by gravel and sand of the river Cerkniščica which drains the predominant Triassic dolomite. But there are also patches of silicious inlayers which provide together with steep dolomitic slopes the gravel. Before capturing and diverting into the polje the river has flown on the surface to Ljubljana Moor (Melik 1955), The fan at the Cerknica which is now used for fields of the settlements has blocked the ponors and so prolongated the floods in the seasonal lake which lasts 285 days in average per year (Kranjc 1981). The fan shifted the border corrosion to the NW edge thus enlarging the bottom on the limestone. Recently the ponors in dolomite renewed but only on the rim of the fan. From them the water flows directly to the Bistra river on Ljubljana Moor. The water from the Cerknica polje ponoring in the border limestone rises again in the spring on the SE side of the little polje in dolomite - polje of Rakek. It is seldom flooded and then the water is sinking in dolomite on the N side - the same as it was in the Cerknica polje before the fan the ponors were blocked (Gams 1965). Later the near basin composed of a pocket and blind valleys, called Rakov Škocjan developed as a consequence of the shifting the outlet from the Cerknica polje to the south. We may consider its 1.3 km long and narrow belt of alluvium as the beginning of the development of a new polje in the rocky bottom of the 4 km long and 40 m deep wooded uvala. This has to be explained as a result of tectonical subsidence. No other reliable reason of the uvala origin is known. After the shifting of the outlet from the Cerknica polje to the Rakov Škocjan the high water from there invaded the Rak channel of the Planina Cave which was previously , used for the outflow of the Postojna polje (Gospodaric 1976). This water sinks on the effluent side of the dolomite dam of Planinsko polje after flowing over the same dolomitic belt where before the fan the Cerkniščica accumulated sand near the bordering limestone. For the same reason that the project for water storage in the Planina polj e was abondoned also the experiment of making the Cerknica lake permanent by means of the dam on the ponor caves, this time for development of tourism, was given up. The dam only slightly prolongated the lake stage (20,3 km^ or 53 % of the polje's bottom) and the dry season still remained. The lake bottom is useless for agriculture which centered the fields in the higher dolomitic and limestone terraces on NE and SE border. There the settlements are dense (Kranjc 1985). PERIPHERAL POLJES The centrifugal drainage of the larger patch of the Eocene fiysch of the Mt. Brkini allowed on its border on the southern and northern side development of the blind valleys only. The area of Eocene fiysch near the Postojna town and in the drainage basin of the Pivka river is drained mostly in one river - that of the Pivka. It was therefore able to create with its tributaries the belts of alluvial plains. South of the Postojna town the plain at the confluence with the Nanoščica is 2-3 km wide, enough to determine the basin, 90 m deep with karst drainage as the (peripheral) polje. The northern plains mostly developed in the fiysch. In SE they stretch also on border limestone. Between the villages Slavina and Pivka the Pivka river receives some torrents from the western side draining the Eocene flysch belt, which is now reduced. Originally longer brooks presumably sank on the eastern border limestone. Thus developed dry valley Vlačno, 4 km long which generated probably as a blind valley, as well the bay of plain at the village Tmje. The estavellas in the periodical lakes of Petelinje and Palčje probably originated as ponors of the brooks from flysch. The bottoms of the basins with periodical lakes are at the same level as the river bed of the Pivka. The land surface in flysch was in the Quaternary lowered more than the limestones in the surroundings (Radinja 1972). This occured also with the flysch in the drainage basin of the Notranjska Reka bordering to the upper Pivka basin between the Pivka and Knežak settlements. There the plain of the Pivka consists of numerous open basins which are flooded at high water. Their origin may be considered as the effect of the ancient drainage from the higher surface built of flysch. Now it is separated by a crest built mostly of the Paleogene limestone. Later lowering of basins to the present level can be explained by the suballluvial corrosion in the piezometric water level maintained by the flysch inliers below the marginal limestone. To the north and east of the Postojna polje there is 10 to 80 m higher hilly terrace, many hundred metres wide. Till now only the northern terrace ("Postojna step") is attributed to the fluvial processes of the Pliocene Pivka. According to the sheme of the polje development and of the border solution also the eastern hilly terrace may be explained by the primary border corrosion of the river sinking below the Mt Javomiki. With more intense Pleistocene lowering of the surface in flysch the bottom plain of the peripheral polje was essentially reduced and thus the flooded area also. The deepest floods occur in front of the ponor of the Pivka in the Postojna Cave. The flooded plains are used for meadows, which predominate over the fields around the dense villages on the flysch hills. Limestone border terrace is overgrown by forest. BASELEVEL POLJE The Ponikve polje with its 450 m wide bottom is on the limit for a polje recognition (Gams 1973). Its often floods are caused by the fact that the outlet of the polje is rising on the border of the 1,2 km distant Ljubljana Moor about 4 m lower than the polje's bottom. The origin of the basin cannot be explained by lithological differences - it is in the Triassic dolomite - nor by fault line. The only fault line is acc. to the geological map higher on the NE slope on the contact with the Jurassic limestone. The basin can be explained mostly with the suballuvial corrosion and areal tectonical subsidence of the wider surroundings of Ljubljana Moor. This is proved also with the pothole, 47 m deep in the lake at the near village Jezero, both situated in a similar oval depression as Ponikve. Entirely in the same carbonate rock (limestone) is also the deepest polje in Slovenia, the polje Globodol. Its bottom is flooded mostly in the lower edge dotted with dolines. The central bottom is higher, with deep loam and gley soil. There are three settiements which are isles of densely populated area in the wooded surroundings. The floods occur in the level of the high piezometric level maintained by the spring of the Prečna in the near pocket valley Luknja (Gams 1959). Ford and Williams (1989) called this type baselevel polje. Three kilometres eastwards of Globodol is a basin with many similarities with Globodol - that of Mirna peč: a similar size, a similar direction towards Luknja and in the same Jurassic limestone. But in the basin of Mirna peč which is combined pocket and blind valley, the river flows with spring at one and sinks at the opposite end. The primary flow of the Paleo-Temenica through Globodol is therefore presumed. In it the NW comer where the river takes its spring is narrower and the southern end wider and there begins the dry valley stretching toward the Luknja. In it more than 100 m high mountain ridge is lowered to 50 m. COMBINED TYPE OF POLJE The Ribnica polje (see the sketch!) is a combination of the border and overflow type. The Triassic dolomite predominates in the alluvial bottom where in NW thick gley loam predominates (Rus 1925) considered by Melik (1955) to be of lacustrine origin . The NW dolomitic belt which reaches the spring Rakitnica, forces the underground water from the limestone mountain to rise also in the main spring Ribnica. These two rivers contribute to the border polje the additional overflow polje as they sink on the polje (Melik 1955). The border polje's type is represented by the river Sodraška Bistrica which drains mostly the dolomitic hills on the NW side. It sinks near to the limestone border S of the Ribnica town. When turning to south the river bed is connected by the artificial ditch with the ponor cave Tentera to avoide the flood on the polje's bottom at high water level or to prolongate the river flow on the polje at the drought (Rus 1925). The Ribnica town is not called according to the Bistrica which flows through it but according to the 2 km distant smaller river Ribnica. In respect to the medieval finding of the settlement the swallow hole of the Bistrica was presumably the Tentera cave. The polje's bottom is in Slovenia exceptional regarding the rocky plain on the NE side, mostly 2 km wide. It begins behind the ponor of the river Tržiščica (or Žlebiščiea) in form of some metres higher rocky terrace. Its first part in the northern edge of the polje, has considerable inclination which corresponds to the gravel transport of the Tržiščica which drains not only dolomite but also silicate-Permian sandstone, schistes and conglomerates. The rest of gravel built of these sediments can still be found on the northern part of the terrace. Later the rocky terrace gets a similar inclination as the alluvial plain of the Bistrica. The common flow of the Bistrica and Tržiščica over the rocky terrace ended when the Bistrica eroded in the 10 - 25 m high ridge a through valley near the contact of dolomite and limestone of the rocky terrace and invaded the dolomitic part of the polje. An even older change is recognizable. The dolomitic surface NW of Ribnica is levelled near the village Dane with terrace of 620 m of the altitude. Its continuation is between the ridge Bukovica and Mt. Mala Gora. South of Rakitnica begins in the mountainous relief in the altitude of 510-520 m a large karst plain. South of Grčarice and at Gotenica it is teetonically uplifted to 600 m and later lowered to 550 m at the village Morava. No other river can form this karstic plain as the combined rivers Sodraška Bistrica, Ribnica and Rakitnica, the last two ones before they were paptured by the dolomite belt in the polje. At high water level the joint water from the Ribnica polje flows through the dry valley which divided two hills Jasnica and Svinjski grič towards the polje of Kočevje. The dense settlements on the polje of Ribnica are situated on the dolomitic elevations and on the higher rim of the alluvial polje's bottom. It was used mostly for the fields and recently mostly for meadows and on the rocKy terrace for forest. The floods have been diminished with ammelioration of river beds snd ponors. The polje of Kočevje is a combination of peripheral and border type. The underground water firom the limestone mountains is forced by the Jurassic dolomite to spring as the Rinža. After flow in the limestone it sinks in the final ponors in the isolated Triassic dolomite near the village Črni potok.The peripheral character is given to the polje by the patch of the Tertiary sediments N of the town. It is built at the base of Miocene sediments. Upwards follow Pliocene schists, sandstone, marls and clay (Savic & Dozet 1985). The 100 m deep sediments are the rest of the lar^elly sized impermeable sediments with centrifugal drainage. On the NE side the rocky terrace continues from the Ribnica polje along the abondoned railway. The terrace is about 10 m higher than the surface of the Pliocene sediments and polje bottom along the Rinža. For the not yet explained reason the rocky terrace has no inclination toward SE. According to the geological map Delnice the lower surface is covered by lacustrine sediments. The Rinža flooded at very high level the whole alluvial plain and partially also the town. At low water its superficial flow is for 5 km sliorter. The final ponors near the village Črni potok are ammeliorated (Kranjc 1972,1982). As the alluvial plain covers less than one half of the bottom, the polje settlements are recently less dense than usually in the Slovene poljes and forests on the limestone terrace cOver greater percentage. As towards SE the basin is open and because of the large rocky terraces the size of polje is discutable (from 100 km^ - Kranjc 1972 - to 72 km^ - Gams 1978). CONCLUSIONS The review of the polje types in Slovenia and their mutual comparison resulted in the priorities of the geomorphological processes for their development. Tectonics as the initial state of the formation of the polje basin is obvious in the case of the uvala Rakov Škocjan. Due to the tectonic subsidence the cave ceilings are thin and liable to collapse. So the cave channels opened on air and in the narrow river basin floods began with deposition of the loam. The second case, the tectonical subsidence of the valley head with spring of the Krka created the vertical difference between it and the tributary Visnjica which began to sink in the border limestone near Muljava. The seasonal dry-up of the last river section and also the forming of the rudimentary polje were interrupted by man blocking the ponors and ammeliorating the river bed for drive of mills and to avoid the floods. Besides of the baselevel poljes which are related to the tectonics, the poljes in Slovenia are developed by other processes too. All are situated in front of the ponors near to the petrological contact of impermeable or semipermeable sediments with permeable limestone. Sinking of the river brings about the floods and sedimentation of the river load. Its accumulation is resulting in two morphological processes - border corrosion and suballuvial corrosion. The first one was in Slovenia measured by means of hydrochemical analyses in the blind valleys with sinking water from less carbonate flysch (Gams 1962). These basins have similar origin as the border polje. Technically is nearly impossible to measure the suballuvial corrosion, but it is consistent from the geomorphological point of view. The impermeable alluvial cover would make the underground rock higher than the karst surroundings where the corrosion of the precipitation water steady lowers the surface. This would lead to the disappearing of the basin. Prove of the suballuvial corrosion are the numerous collapse dolines encountered on the polje's bottom. In the altitude of climatic tree-line on the contact of covered and bare karst surface in the Alps the measurements proved the special type of the locally accelerated corrosion. During the flow on the Malo polje (1670 m) draining the higher bare surface, the water hardness considerably increased. In the cold Pleistocene periods the similar processes contributed to the deepening of the poljes in the Dinaric karst being situated at the altitude of 400-800 m. Then on the dolomitic surface and on the alluvial fan seasonal permafrost prolongated the surface rivers from dolomite to the ponor in the limestone border. But coarser river load was consequently favourable for the suballuvial solution. In the border poljes in Slovenia the rivers, draining the semipermeable dolomite sink. Their basins are shallow and presumably young. Before the basin fomation the surface rivers lowered the dolomite with erosional and solutional processes. After they lowered the dolomite surface below the surrounding limestone karst water from limestone began to spring on the contact with dolomite and invaded the initial polje (case of Ribnica and Cerknica). So the overflow poljes developed. The alluvium cover also in them enhanced the suballuvial solution based on the higher biological activity in the moist soil. Erosional widening of the rocky ponors is of second importance. By this process originated rubble is absent in the springs and must have been dissolved in the underground channels or transformed in sand (Kranjc 1989). The geomorhological study of the poljes in Slovenia revealed changes in the polje type in the geological past. The overflow polje of Rakek is now a diy polje in the dolomite. In the geological past it developed as the overflow polje so as the near Planina and Cerknica poljes are. The border polje of Ribnica was later combined with the overflow type. The role of the peripheral polje at Kočevje is diminished together with the diminishing size of the isle of the Neogene impermeable sediments. The centrigufal drainage in the peripheral polje at Postojna is now reduced and with it also the peripheral type of the polje. Due to the diminishing river load in Holocene the water streams on the bottoms of border and peripheral poljes are shortening but the exceptional floods rest although they are more seldom. The longest floods are in the baselevel polje. The periodical lake in the overflow polje of Cerknica is a consequence of the accidental piracy of the neighbouring river. Its gravels in form of a fan blocked the ponors near Cerknica. The flooding of the total bottom of the Planina overflow polje is attributed to the man's activity in Holocene where once grove and now only meadows are, and despite of the fertile soil the fields and settlements are absent. The plain bottoms of the poljes in the Dinaric karst are isles of the intensive land use and dense settled similar to the intramountainous basin in the nonkarstic Slovenia. In them the population density is more than 200 inhabitants/sq km, and outside them in the karst is in average 30 inh./sq km. In the so called high Dinaric Karst the communal seats are all in the poljes. TIPI KRAŠKIH POLJ V SLOVENIJI, NJIHOVE POPLAVE IN RABA TAL Povzetek Tematiko tega članka so predlagali organizatorji kraške šole v Postojni 1994, namenjeni predvsem kraškim poljem v Sloveniji in človekovemu posegu v kras. Nova argumentacija za tipe kraških polj v Sloveniji in njihovo medsebojno iskanje skupnih pogojev in razlik po tipih sta dala nove poglede na razvoj več kraških polj. Skupna lastnost polj je aluvialni pokrov na dnu kotanje kot posledica odlaganja rečnega transporta v zastajajoči poplavni vodi pred ponori rek. Ti so locirani na stiku vodoneprepustnih flišev ali polprepustnih dolomitov z apnenci. Drobnozmati aluvialni pokrov pospešuje robno in grobozrnati, kot je bilo v hladnih pleistocenskih razdobjih, podaluvialno (podnaplavinsko) korozijo. Tektonsko grezanje uvale Rakovega Škocjana je omogočilo začetek nastajaja novega kraška polja vzdolž rečnega toka Raka. Grezanje izvirnega območja Krke je zaradi nastale denivelacije omogočilo ponore Višnjice pri Muljavi, kjer pa je nastajajoče rudimentamo kraško polje preprečil človek z regulacijo reke in zamašitvijo nastajajočih novih ponorov za za odpravo poplav in pogon mlinov. Dna robnih polj so v Slovenija razvita predvsem na robnem dolomitu in tam so razdalje med ponori nizke in visoke vode dolge do več kilometrov. Kraški ravnik pri vasi Ponikve je pripisan toplodobnemu kvartarnemu naplavljanju Raščice, ki je v ledenih dobah nasula prodno teraso v 3 km oddaljenem Dobrepolju. Robna polja so plitve in mlade kotanje, nastale v območju predhodnega znižanja dolomita s skoncentriranimi rečnimi dolinami. Po nastanku kotanje je pričela pritekati voda iz robnih apnencev, kjer je podzemno vodo prisilila k dvigu dolomitna pregrada. Ribniško in Cerkniško polje sta s tem dobila kombinirani tip robnega in prelivnega polja. Reke Sodraška Bistrica, Ribnica in Rakitnica so pred spremembo skupno odtekale proti JV in izdelale kraški ravnik, ki gaje med Grčaricami, Gotenico in pol poti do Kočevske Reke tektonika dvignila na ok. 600 m, nakar se zniža do Morave na 540 m. V naslednji fazi sta Sodraška Bistrica in Tržiščica, slednja z bolj agresivno vodo, izravnal i na apnencu kraški ravnik, ki sega mimo Ribniškega še v Kočevsko polje, tu pa iz neznanih razlogov nima strmca. Kočevsko polje je kombiniran tip robnega in perifernega polja; slednji je nastal zaradi nekoč obsežnejšega otoka noegenih sedimentov pri Šalki vasi. Intenzivno kmetijsko rabo in gosto naseljenost kraških polj v Sloveniji izpričuje prebivalstvena gostota z nad 200 ljudi na km^. Izven polj je v visokem Dinarskem krasu v povprečju med 10 in 20preb./km^. Tam so na poljih, po stanju 1994, vsa občinska središča te regije. REFERENCES Badjura, R., 1953: Ljudska geografija. Terensko izrazoslovje. DZS. Ljubljana Buser, S., 1965:TolmačlistaRibnicaL33-76,Osnovageološkakarta 1 :100.000, Geološki zavod Ljubljana. Beograd 1974 Ford,D. & Williams, RW., 1989: Karst Geomorphology and Hydrology. Unwin Hyman. London. Gams, L, 1959: Hgeomorfologiji kraškega polja Globodola in okolice (Contribution to the karstic polje of Globodol and its surroundings) in Slovenia. Acta carsologica, 2. Ljubljana Gams, L, 1962: Slepe doline v Sloveniji (Blind valley in Slovenia). Geografski zbornik, 7, Ljubljana. Gams, I., 1963: Velo polje in problem pospešene korozije (Velo polje and problem of accelerated corrrosion). Geografski vestnik, 35. Ljubljana Gams, L, 1965: Types of accelerated corrosion. Problems of the speleological research. Prague (Reprint in: Karst geomorphology = Benchmark papers in geology, 59, Stroudsburg 1981) Gams, I., 1965: H kvartarni geomorfogenezi ozemlja med Postojnskim in Planinskim poljem (On the Quaternary geomorphologenesis of the area among the karst poljes Postojna, Planina and Cerknica). Geografski vestnik, 37, Ljubljana. Gams, L, 1969: Some morphological characteristics of the Dinaric Karst. Geographical Journal, 135. Gams, I., 1973a: The terminology of the types of poljes. Slovene karst terminology. Ljubljana Gams, I., 1973b: Die zweiphäsige quartärzeitliche Flächenbilung in den Poljen und Blindtälern des Nordwestlichen Dinarischen Karstes. Geographische Zeitschrift, Beihefte, Wiesbaden. Garns, L, 1977: Towards the terminology of the Polje. Proceedings of the 7"' Int. speleological congress, Sheffield. Gams, L, 1978: The polje: the problem of definition with special regard to the Dinaric karst. Zeitschr. f Geomorphology, 22,2. Berlin-Stuttgart. Gams, L, 1980: Poplave na Planinskem polju (Inundations in the Polje of Planina). Geografski zbornik, 20. Ljubljana. Gams, L, J 986: Razvoj reliefa na zahodnem Dolenjskem - s posebnim ozirom na poplave (Relief evolution in the western part of Lower Camiola (Dolenjsko) with special reference to floods. Geografski zbornik. Ljubljana. Gospodaric, R., 1976: Razvoj jam med Pivško kotlino in Planinskim poljem v kvartarju (The Quaternary caves development between the Pivka basin and polje of Planina). Acta carsologica, 7, Ljubljana Gospodaric, R., Habič, P., 1979: Kraški pojavi Cerkniškega polja (Karst phenomena in the Cerkniško polje). Acta carsologica, 8. Ljubljana. Guide-book. IGU, Mans's Impact in Dinaric Karst. Ljubljana 1987. Habič, P., 1982: Kraški relief in tektonika (Karst relief and tectonics). Acta carsologica, 10. Ljubljana Jenko, F., 1959; Hidrogeologija in vodno gospodarstvo krasa (The hydrology and water economy of karst). DZS. Ljubljana Kayser, K., 1955: Karstrandebene und Poljeboden. Zur Frage der Entstehung von Einebnungsflächen in Karst. Erdkunde, 9. Kranjc, A., 1972 : Kraški svet Kočevskega polja in izraba njegovih tal (The polje of Kočevje, Southern Slovenia, its types of areas and its land use). Geografski zbomik^ljubljana Kranjc, A., 1980: Prispevek k poznavanju razvoja krasa v Ribniški Mali gori (The Karst development in Ribniška mala gora, Slovenia, Yugoslavia). Acta carsologica, 9. Ljubljana 1981. Kranjc, A., 1981Poplavni svet na Kočevskem polju (Floods on the Kočevsko Polje). Geografski zbornik 21. Ljubljana Kranjc, A., 1985: Cerkniško jezero in njegove poplave (The lake of Cerknica and its floods). Geografski zbornik, J^, Ljubljana 1986. Kranjc, A., 1989: Recent fluvial cave sediments, their origin and role in speleogenesis. Opera 27 CI. IV Acad. Sei. et art. Slovenica. Ljubljana. Lehmann, FL, 1959: Studien über Poljen in den venezianischen Voralpen und im Hochapennin. Erdkunde. Sonderdruck. Arch. Wiss. Geographie, B. 13, 4. Bonn. Louis, H., 1956: Die Entstehung der Poljen und ihre Stellimg in der Karstabtragung, Erdkund, B. 10, 1. Lovrenčak, F., 1986: Zgornja gozdna mej a v Julijskih Alpah in na visokilTkraških planotah Slovenije (Upper tree-line in Julian Alps and on the high karst plateaus of Slovenia). Geografski zbornik, 17. Ljubljana. Melik, A., 1955: Kraška polja Slovenije v pleistocenu (Les poljes karstiques de la Slovenie au pleistocene). Opera 7 Geografskega inštituta SAZU. Ljubljana Mihevc, A., 1986: Geomorfološka karta ozemlja Logaških Rovt. (Geomorphological Map of Logaške Rovte region). Acta carsologica, 14-15. Ljubljana. Osnovna geološka karta SFRJ, listi: Postojna 1 : 100.000 L 33-65, Ribnica 1 : 100.000 L 33-66, Delnice 1 : 100.000 L 33- 78 (Geological map 1 : 100.000, sheets Postojna, Ribnica, Delnice. Ljubljana - Zagreb. Radinja, D,, 1972: Zakrasevanje v Sloveniji v luči celostnega morfogenetskega razvoja. Geografski zbornik 13, Ljubljana Rus, J., 1925: Morfogenetske skice iz notranjskih strani. Geografski vestnik, 1, Ljubljana. Savič, D. & Dozet, S., 1983: Tumač list Delnice L 33-90. Osnovna geološka karta 1 : 100.000. Beograd 1985. Šifrer, M., 1967 : Kvartarni razvoj doline Rašice in Dobrega polja (Quarternary development of the valley Rašica and of Dobro polje). Geografski zbornik, 10, Ljubljana PALEOEKOLOSKE ZNAČILNOSTI VREMSKIH PLASTI V OKOLICI ŠKOCJANSKIH JAM PALEOECOLOGICAL PROPERTIES OF THE VREME BEDS IN THE VICINITY OF ŠKOCJANSKE JAME (ŠKOCJANSKE JAME CAVES, SLOVENIA) MARTIN KNEZ Izvleček UDK 551.44 . 551.781 (497.12) Knez, Martin: Paleoekološke značilnosti vremskih plasti v okolici Škocjanskih jam Iz vremskih plasti sta iz paleoekološkega in deloma biostratigrafskega stališča obdelana dva profila iz neposredne okolice Škocjanskegajamskega sistema. Osnovni namen naloge je bil torej proučevanje okolja sedimentacije plasti z giroplevrami in aprikardijami v vremskih plasteh. Ugotovljeno je, da so številne školjke iz rodu Gyropleura, Apricardia in morda še druge školjke v apnencih vremskih plasti na drugotnem mestu. Giroplevre so živele v plitvi vodi nedaleč od obale. Na drugotno mesto so jih prinesli valovi in tokovi, ki so jih povzročila neurja in nevihte. Odsotnost rapidionin v horizontih z giroplevrami potrjuje trditev, da so bile lupine nametane proti obali, saj so rapidionine živele v izrazito lagunskem okolju. Na plitvo okolje sedimentacije kažejo tudi laminiti. Ključne besede: geologija, paleoekologija, biostratigrafija, vremske plasti, Gyropleura, Apricardia, Škocjanske jame, Slovenija Abstract UDC 551.44.551.781 (497.12) Knez, Martin: Paleoecological properties of the Vreme beds in the vicinity of Škocjanske jame (Škocjanske jame Caves, Slovenia) From paleoecological and partly biostratigraphical point of view two profiles of Vreme beds from the immediate vicinity of Škocjanske jame cave system are treated. The basic goal of this study was to find out the sedimentary environment of the layers containing Gyropleura and Apricardia within the Vreme beds. It was assessed that numerous shells of Gyropleura and Apricardia genus and maybe some other shells too within the limestones of the Vreme beds lie on the secondary site. The shells lived in shallow water not far from the coast. To the secondary site they were transported by the waves and currents caused by storms and tempests. The absence of Rhapydionina within the horizons containing Gyropleura and Apricardia confirms the statement that the shells were thrown towards the coast as the Rhapydionina lived in prominently lagoon environment. The laminites too indicate the shallow sedimentary environment. Key words: geology, paleoecology, biostratigraphy, Vreme beds, Gyropleura, Apricardia, Škocjanske jame, Slovenia Naslov - Address mag. Martin Knez, dipl. ing. geol., raziskovalni sodelavec Inštitut za raziskovanje krasa ZRC SAZU Titov trg 2 SI-66230 Postojna, Slovenija UVOD Iz vremskih plasti sta predvsem iz paleoekološkega in deloma biostratigrafskega stališča obdelana dva profila iz neposredne okolice Škocjanskega jamskega sistema. V vremskih plasteh sem podrobno proučeval predvsem plasti z giroplevrami ter način pojavljanja lupin in njihovih odlomkov v posameznih horizontih. S tem sem želel dobiti paleoekološke podatke, oziroma rešiti vprašanje primamosti ali sekundarnosti ostankov giroplever. Poleg giroplever so v nekaterih delih vremskih plasti številne tudi foraminifere in alge. Iskreno se želim zahvaliti mentorju prof. dr. R. Pavlovcu za kritične in vstrajne pripombe, sodelavcem na Inštitutu za raziskovanje krasa ZRC SAZU za razumevanje in moralno podporo, akad. prof dr. M. Pleničarju in doc. dr. B. Ogorelcu za ogled terena, pregled zbruskov in nasvete, T. Kolar-Jurkovšek za pomoč pri izbiri literature ter M. Zaplatilu, I. Lapajni in M. Grmu za izdelavo fotografij. DOSEDANJE RAZISKAVE OZEMLJA MED DIVAČO IN VREMSKIM BRITOFOM GLEDE NA OBRAVNAVANO PROBLEMATIKO POLOŽAJ PROFILOV VREMSKIBRITOF IN ŠKOCJANSKE JAME GLEDE NA ŠIRŠO GEOLOŠKO ZGRADBO Raziskana profila sta na prostoru Osnovne geološke karte listov Trst (Pleničar, Polšak & Šikič 1969) in Ilirska Bistrica (Šikič, Pleničar & Šparica 1972) in sicer v neposredni bližini Divače (si. 1). To je na jugovzhodnem robu tektonske enote Tržaško - Komenska planota blizu meje z brkinskim terciarjem (Šikič & Pleničar 1975; Pleničar, Polšak & Šikič 1973). Kot tektonska enota nižjega reda pripada Tržaško - Komenska planota oziroma Tržaško - Komenski antiklinorij (Buser 1973) Jadransko - Jonski nagubani coni (Pleničar 1970). To celotno ozemlje je del nekdanje Dinarske karbonatne platforme (Drobne et al. 1988; Buser 1989). Po Buserju (1988) pripada to ozemlje Zunanjim Dinaridom, M. Herak (1986, 1989) pa področje južne Slovenije uvršča v Adriatik. Na Tržaško-Komenski planoti so relativno homogene strukture, od katerih so najpogostejše sinklinale, antiklinale in obsežne prelomne cone. Te so posledica enotne karbonatne sestave ozemlja, ki so bile kot samostojen tektonski blok ob tektonskih pritiskih (Jurkovšek et al. 1989). Geološke strukture imajo v glavnem dinarsko smer. V zahodnem delu planote so tektonske linije usmerjene predvsem v smeri vzhod-zahod. LIBURNIJSKA FORMACIJA Pretežno karbonatne Sedimente, ki nastopajo v jugozahodni Sloveniji in Istri med rudistnimi apnenci in apnenci z alveolinami ter numuliti, kamor danes uvrščamo tudi vremske SI. 1. Položaj profilov. 1-Vremski Britofi 2-Skocjanske jame. Fig. 1. The location ofprofiles. 1 - Vremski Britof, 2 - Škocjanske jame. plasti, je imenoval G. Stäche leta 1872 liburnijska stopnja ali protocen. To skladovnico kamnin je (Stäche) podrobno preiskoval v letih 1859, 1864, 1867, 1872, 1875 in jo 1889 razdelil na tri dele: spodnji foraminifemi (imperforatni) apnenci, kozinske plasti z vložki glavnega haracejskega apnenca in zgornji imperforatni (miliolidni) apnenec. Stachejeva razdelitev naj bi imela le faeialni pomen (Hamrla 1960). Kasneje so liburnijsko stopnjo ovrednotili kot formacijo. Liburnijska formacija (Pavlovec & Pleničar 1979, 198la) naj bi bila kronolitološki pojem. To pomeni, da vključujemo v liburnijsko formacijo litološko in facialno podobne plasti iz istega razvojnega cikla (od maastrichtija do thanetija). D'Ambrosi (1931) je liburnijsko formacijo vzporejal s "spilecciano", Hamrla (1959, 1960) pa tudi "liburnik". Plasti liburnijske formacije so različni avtorji uvrščali v kredo, v terciar ali spodnji del v kredo in zgornjega v terciar (Stäche 1889; Pavlovec 1963a, 1963b, 1968; Bignot 1972, 1987; Pavlovec & Pleničar 1981 a). Danes imenujemo spodnji del liburnijske formacije vremske plasti, ki so zgornjemaastrichtijske starosti, srednji del so danijske kozinske plasti, vrhnji del pa miliolidni apnenci thanetijske starosti (Stäche 1889; Pavlovec 1963a, 1963b, 1965, 1981a, 1981b; Hamrla 1959, 1960; Drobne 1968, 1979; Bignot 1972, 1987; Hötzl & Pavlovec 1979, 1981; Drobne et al, 1988, 1989; Pavlovec & Drobne 1991). SI. 2. Profil Vremski Britof. Fig. 2. Vremski Britof profile. Obsežen zgodovinski pregled biostratigrafskih, geotektonskih, hidrogeoloških, paleolitskih, speleoloških, paleogeografskih raziskav ter raziskav mineralnih nahajališč v libumijski formaciji navajajo Pavlovec in sodelavci (1989). V sestavku, ki opisuje razvoj geološkega znanja o Krasu, kjer so tudi številni podatki o libumijski formaciji, podaja Martinis (1989). Meje treh delov libumijske formacije so zaradi vertikalnega in horizontalnega prepletanja favne nestalne (Stäche 1880, 1889; Plcničar 1956). To pomeni, da so istočasno na raznih krajih nastajali različni faciesi ali da ponekod nekaterih delov libumijske formacije sploh ni. V Istri in Dalmaciji ni vremskih plasti. Favna kozinskihplasti v Istri se nekoliko razlikuje od značilnih oblik v južni Sloveniji (Hamrla 1960). Nastanek libumijske formacije sovpada z laramijsko fazo (Buser 1989; Herak 1989). S tem si Tahko razložimo heterogenost in hitro spreminjanje sedimentacijskih pogojev (Pavlovec, 1981c). VREMSKE PLASTI Glede starosti vremskih plasti je bilo zelo veliko različnih mnenj. Stäche (1889) jih je uvrstil v "protocen", Schubert (1905) v danij (kreda), Vardabasso (1923) v eocen (paleocen) in D'Ambrosi (1942, 1955) v zgomjo kredo. Pleničar (1961) in Martinis (1962) imenujeta vremske plasti "apnenci z giroplevrami" in jim pripisujeta danij sko (kreda) starost. Pavlovec (1963a) je vremskim plastem dal iine in jih uvrstil v spodnji del libumijske formacije v danij (paleocen). Po Bignotu (1972) so vremske plasti senonijske starosti. Za danijsko starost seje opredelila tudi Drobne (1977, 1979). Ker Pavlovec in Pleničar (1979) trdita, daje meja med kredo in terciarjem nad vremskimi plastmi, Hötzl in Pavlovec (1979) zagovarjata maastrichtijsko starost plasti z giroplevrami v profilu Vremski Britof. Podobno se opredeljujeta tudi Pavlovec in Pleničar (1981 a) in prideta istega leta (1981 b) do zaključka, da so vremske plasti zgomjemaastrichtijske, kar velja še danes (Hötzl & Pavlovec 1979; Pavlovec I981c; Drobne et al. 1988, 1989; Pavlovec & Drobne 1991). Vremske plasti sestavljajo predvsem temni drobnoplastnati, ponekod močno bituminozni apnenci, redkeje lapomi apnenci in premogovi skrilavci ter vložki premoga (Pleničar 1956; Hamrla 1959, 1960; Pavlovec 1965). Med omenjenimi plastmi so najverjetneje tudi singenetske breče (Drobne & Pavlovec 1991). V nekaterih horizontih so številne "hamidne školjke" (Pleničar 1961) iz rodu Gyropleura in Apricardia (Pleničar 1992), foraminifere Rhapydionina libumica, Montcharmontia appenninica in miliolide (Drobne 1981; Pavlovec & Drobne 1991). S/. 3. Geološki stolpec profila Vremski Britof. 1-apnenec, 2-močno bituminozna kamnina, 3- giroplevre, 4-rapidionine, 5-št. horizonta z giroplevrami, 6-giroplevre, 7-rapidionine, 8-vzorec, 9-debelina (m). Fig. 3. The geological column of Vremski Britof profile. 1 - limestone, 2 - very bituminous rock, 3 - Gyropleura, 4 - Rhapydionina, 5 - no. of Gyropleura horizon, 6 - Gyropleura, 7 -Rhapydionina, 8 - sample, 9 - thicknes (in m). vz 23 22 21 20 19 « 17 B IS d 35 80- 25- 20 15 geološki stolpec I , !' I ' I I I lil OWKTO II i-3Ö«i0a 117 10 5-1 tip kamnine IZI TTT TTT ^Vja^» 7 I , 1 TTT I I nzL ' lU o'aojoOTj'S 5 0 I , I .■a^ai'Saaia I M biomikrit W biomikiit W biomikrit W biomikril P-G bioniknBfiant f biomikrit W-P biomikrit W-P biomikrit M biomikril W-P biomikrit M bioBikrit IG biomikrit M biomikrit M biomikrit W-P biomikrit W-P biomikrit M biomikrit W-P biomikrit g r L«g«flda 1 □C 2 HH 3 a 4 S 1-17 6 g 7 r 8 vz 9 d Fosilni ostanki kažejo, da seje večji del vremskih plasti sedimentiral v plitvem morju (Hötzl & Pavlovec 1981; Pavlovec 1981 c), blizu obale in deloma v plitvih lagunah (Drobne & Pavlovec 1991), ki so bile najverjetneje občasno omejene z rudistnimi biohermami (Pavlovec & Pleničar 1983). OKOLICA PROFILOV VREMSKIBRITOF IN ŠKOCJANSKE JAME Na podlagi 16-tih raziskovalnih vrtin, podatkov iz premogovnika in površinske geologije je Hamrla (.1959) opisal profil produktivnih liburnijskih plasti pri Vremskem Britofu v skupni debelini okrog 300 m. V tem opisu so posredno vključene tudi vremske plasti, ki naj bi po njegovih podatkih nastale deloma v morskem, deloma v brakičnem in sladkovodnem okolju. Hamrla (1959) horizontov z giroplevrami in rodu Gvropleura izrecno ne omenja. Prav tako ne omenja vrste Rhapydionina liburnica, temveč le peneroplide, čeprav so vsi ti fosili pogosti v opisanem profilu. Hamrla omenja nekatere rodove haracej, polžev in miliolid. Kaj misli z "morsko favno školjk" iz besedila ni jasno razvidno, vendar so to gotovo horizonti z giroplevrami. Pri ponovnem opisu profila iz okolice Vremskega Britofa Hamrla (1960) ne navaja bistvenih novosti. Podobno kot leta 1959 ugotavlja pod glavnim morskim horizontom v splošnem tri sladkovodne z dvema vmesnima morskima fazama, nad glavnim morskim horizontom pa dve sladkovodni fazi z vmesno morsko. Pleničar (1961) je pri podrobnejši obdelavi krednih plasti južne Primorske in Notranjske raziskoval tudi spodnji del liburnijske formacije, kamor spada tudi okrog 350 m debel profil številka 2 (Pleničar, 1961), ki se začne pri Škofijah ob kontaktu spodnjesenonijskih in zgornjesenonijskih apnencev (vremske plasti) in sega do "morskega horizonta" južno od Vremskega Britofa. Iz "morskega horizonta" v bližini Divače opisuje Pleničar (1961) dve pol metra debeli plasti hamidnih školjk iz rodu Gyropleura, ki sta med seboj oddaljeni okrog 1 m. Med njimaje apnenec z redkimi oogoniji haracej, foraminiferami in malimi ostrigami, ki kažejo na morsko okolje. Po njegovih podatkih dobimo obe plasti pri Divači, Kozini, vzdolž pasu liburnijske formacije od Vremskega Britofa do Lipice, ter na robu Reške fiišne kadunje. Omenja tudi vrsti Rhapydionina liburnica in Rhipidionina liburnica, tekstularide in rotalide. Pleničar (1961) je prvi opisal rod Gyropleura iz "foraminifernih apnencev in apnencev z giroplevrami", kot je imenoval te plasti. Med drugim ugotavlja, da so v spodnjem delu kozinskih apnencev giroplevre na primarnem mestu in da pripadajo ti apnenci kredni dobi. Pavlovec (1963a) se opira na Pleničarjev (1961) profil iz okolice Vremskega Britofa, opisal pa je med drugim tudi do takrat iz tega ozemlja neznane favnistične in floristične vrste. K Vremskem Britofu se vrača tudi pri problemu starosti vremskih plasti ter pri paleogeografski predstavitvi. Istega leta je Pavlovec (1963b) objavil podobno tematiko, vendar s poudarkom na stratigrafiji produktivnih liburnijskih plasti. Stratigrafski pregled liburnijskih plasti v severozahodni Jugoslaviji je Pavlovec podal leta 1964. Kratek pregled plasti s premogom iz Vremskega Britofa povzema Bignot (1972) po Lodinu (1883) in Iwanu (1904). Drobne (1979) omenja iz senonija ali danija v okolici Vremskega Britofa dva ali več horizontov školjk iz rodu Giropleura, med katerimi so v nekaterih plasteh foraminifere Rhapydionina liburnica in Rhipidonina libumica. V apnencih naj bi bili pogosti tudi ostanki haracej, miliolide in polži iz rodu Stomatopsis. Profil v cestnem useku pri vasi Vremski Britof sta prvič opisala Hötzl in Pavlovec (1979). Od skupne debeline 50 m sta na skici litološkega stolpca predstavila le 16 m. V spodnjem delu profila sta opisala svetlosiv apnenec z lupinami giroplever, ki so v nekaterih delih kamnotvorne. V srednjem delu se izmenjavajo plasti z giroplevrami s plastmi temnega bituminoznega apnenca, ki ponekod vsebuje do 10 cm premogu podobne vložke. V apnencu so pogoste različne foraminifere in redke alge. V zgornjem delu profila opisujeta v apnencu pogostejše giroplevre, miliolide in foraminiferi Rhapydionina liburnica in Rhipidionina liburnica. Med pomembnejšimi fosili omenjata še vrsto Montcharmontia apenninica, Discorbis (sensu Bignot 1972), Bolivinopsis sp., Miliolidae (Quinqueloculina sp., Triloculina sp., Spiroloculina sp.), Thaumatoporella parvovesiculifera in ostrakode. Opis profila pri Vremskem Britofli z nekaterimi novimi podatki se ponovno pojavi dve SI. 4. Tretji horizont z giroplevrami. Fig. 4. The third horizon containing Gyropleura. leti kasneje (Pavlovec 1981a). Avtor poudarja, da so horizonti z giroplevrami ena od značilnosti vremskih plasti. Istega leta omenjata profil pri Vremskena Britofu Hötzl in Pavlovec (1981). Menita, da so tu najbolje razgaljene vremske plasti, saj profilom v drugih krajih manjka spodnji oziroma zgornji del, ponekod pa so prekinjeni zaradi tektonike. V zvezi s problemom foraminifemih združb je leta 1981 omenjeni profil predstavila tudi Drobne. Omenja predvsem foraminiferni vrsti Rhapydionina libumica in Rhipidionina libumica ter med plastmi apnenca vložke premoga. Da se v maastrichtijskih apnencih iz okolice Vremskega Britofa pojavljajo dva ali več horizontov z školjkami iz rodu Gyropleura, ter da so med temi horizonti foraminifere Rhapydionina libumica, poročata še Drobne in Pavlovec (1991). Zadnja objava opisa profila pri Vremskem Britofu z nekaterimi novimi pogledi glede avtohtonosti oziroma alohtonosti giroplever, je iz leta 1991 (Pavlovec & Drobne). Profila Škocjanske jame ni do sedaj nihče opisal. Geologijo bližnje okolice Škocjanskih jam je nekoliko podrobneje opisal le Gospodaric (1983). V svoji razpravi daje večji poudarek speleogenezi Škocjanskih jam, vendar omenja vremske plasti kot skladnate in drobnoskladnate apnence s plastmi premoga. Uvršča jih v zgornji maastrichtij in morda danij. Osnovni geološki podatki za ta prostor pa so v Tolmaču za list Trst (Pleničar, Polšak & Šikič 1973) in Ilirska Bistrica (Šikič & Pleničar 1975) ter na Osnovnih geoloških kartah listov Trst (Pleničar, Polšak & Šikid 1969) in Ilirska Bistrica (Šikič, Pleničar & Šparica 1972). OPISI PROFILOV PROFIL VREMSKIBRITOF UVOD Profil je bil leta 1979 (Hötzl & Pavlovec) odkrit v dolžini okrog 130 m, debelina plasti je bila okrog 50 m. Zaradi zaraščanja in rušenja sten cestnega useka je danes mogoče videti le še slabih 40 m (si. 2). Horizonti z giroplevrami se pojavljajo v skupni dolžini 84 m in ta del sem tudi natančno opisal. Vpad plasti je večinoma 140/30. Kljub več opisom okolice Vremskega Britofa se do sedaj ni še nihče podrobno ukvarjal s horizonti z giroplevrami in s položajem lupin giroplever ter njihovih odlomkov. Pri nadaljnem opisu bom govoril le o bolj poznanem rodu Gyropleura, čeprav so po mnenju Pavlovca in Pleničarja iz leta 1983 v horizontih tudi školjke iz rodu Apricardia. V svoji razpravi pa Pleničar (1992) jasno navaja, da se pojavljajo v vremskih plasteh poleg giroplever tudi aprikardije in sicer vrsta (Apricardia pachiniana Sima), ki je značilna za zgornji senon. SI. 5. Odsek tretjega horizonta z giroplevrami z intraklasti (a) in dežnikasto poroznostjo (b). Legenda: 1-dobro ohranjene lupine giroplever, 2-razlomljene lupine giroplever, 3-intraklasti, 4-močno bituminozna kamnina, 5-relativna vrednost energije vode, 6-relativna debelina horizonta z giroplevrami (v cm). Fig. 5. A section of the third horizon containing Gyropleura with intraclasis (a) and shelter porosity (b). Legend: 1 - well preserved Gyropleura shells, 2 - broken Gyropleura shells, 3 - intraclasts, 4 - very bituminous rock, 5 - relative value of water energy, 6 - relative thickness of Gyropleura horizon (in cm). LEGA PROFILA VREMSKI BRITOF Profil Vremski Britof leži 3,5 km jugovzhodno od Divače v cestnem useku ceste Divača - Ribnica severno od vasi Vremski Britof v dolini reke Reke. HORIZONTI Z GIROPLEVRAMI V profilu Vremski Britof je 19 horizontov z giroplevrami (si. 3), ki sem jih označil z od spodaj navzgor zaporednimi številkami od 1 do 19. 1. giroplevrski horizont Debelina horizonta se spreminja od S do 8 cm. V tem horizontu so skoraj same cele lupine, velike večinoma do 3 cm; odlomkov, med katere štejem vse razlomljene dele lupin, je izredno malo, lateralno pa ponekod lupine in odlomki izginejo. Večinoma sta v sedimentu obe školjčni lupini skupaj. Pod in nad horizontom z giroplevrami ni drugih makrofosilov. Horizont z giroplevrami se ostro začne in pravtako konča, V spodnjem delu horizonta z giroplevrami leži nekoliko več lupin vzporedno druga nad drugo in tesno druga ob drugi. Lupine so verjetno zaradi pritiskov v sedimentu precej sploščene. Proti vrhu horizonta z giroplevrami je sploščenih lupin vse manj. Tudi nesploščenih lupin giroplever in njihovih odlomkov je tam manj. Postopno je navzgor vse več celih in lepo ohranjenih posamičnih lupin giroplever, ki se ne dotikajo med seboj, kot je to v nižjih delih horizonta. 2. horizont Ta horizont leži 70 cm nad prvim. Debel je 15 cm. V njem so večinoma razlomijene lupine giroplever. Celih lupin je po približni oceni največ 5%. Horizont z giroplevrami ima v spodnjem in zgornjem delu ostro mejo. V spodnjem delu horizonta je precej večjih (10 ram) zaobljenih delcev kamnine, katere uvrščam med intraklaste. Njihovo število se lateralno hitro spreminja. Spodnja površina drugega horizonta z giroplevrami je na nekaterih delih valovita in kaže na takratno podlago, na katero so bile lupine giroplever prenesene. Lateralno so ponekod celo do 4 cm velike vdolbine v nekdanjem morskem dnu, katere so zapolnjene z lupinami. Ker so vdolbine v drugem horizontu le lokalne anomalije, je potrebno poudariti, daje v splošnem spodnja ploskev horizonta z giroplevrami bolj ali manj ravna in gladka do rahlo valovita. Po celotnem drugem horizontu z giroplevrami so lupine giroplever v glavnem enakomerno razporejene. Izjema sta le najnižji in najvišji del, debela po 0,5 cm, kjer so lupine giroplever pogostejše. Horizont ima tako v vertikalnem preseku dva ekstrema v pojavljanju lupin giroplever. V sredini horizonta ležijo večji in manjši delci lupin giroplever v smeri plasti. Tam je tudi več celih lupin giroplever, ki jih je ponekod celo več kot odlomkov. 3. horizont Med drugim in tretjim horizontom z giroplevrami je 45 cm sivega mikritnega apnenca brez giroplever. Debelina tretjega horizonta je 17 cm. Spodnja površina horizonta je precej neravna, množina lupin giroplever pada od spodnjega proti zgornjemu robu horizonta. Proti vrhu horizontaje več drobcev (deli lupin, manjši od 5 mm) lupin (si. 4), ki končno postopno izginejo. Tretji horizont z giroplevrami torej nima tako razporejenih lupin kot drugi horizont SI. 6. Odsek četrtega horizonta z giroplevrami. Legenda pri si. 5. Fig. 6. A section of the fourth horizon containing Gyropleura. Legend at Fig. 5. Z giroplevrami. 1 am, kjer sc število giroplever navzgor zmanjšuje, opazimo številne dele v kamnini, kjer giroplever sploh ni ali so zelo redke. Na bazi horizonta je ! do 2 cm debel pas kamnine, v katerem so giroplevre izredno nakopičene. Lupine ležijo ena na drugi in so vzporedne s plastmi. 50 do 60 % lupin giroplever, velikih od 1 do 2 cm, je celih ali malo poškodovanih. Področja z redkimi giroplevrami imajo dvojen značaj (slika 5)'. a) Polja vsebujejo intraklaste, na katerih ležijo lupine giroplever; b) Pod lupinami opazujemo jasno izraženo dežnikasto poroznost (si. 5). 4, horizont Četrti horizont je 2,90 m nad tretjim in je debel 9 cm. Za četrti horizont je značilno, da so giroplevre v dveh tankih polah nad 8 cm debelo močno bituminozno plastjo (si. 6). Pri obeh tankih polah z lupinami giroplever izgleda, da sta bili odloženi na zgornjo površino dveh sedimentacijsko različnih apnenčevih delov plasti. Prvo, 2 cm debelo polo, ki leži na močno bituminoznem horizontu, sestavljajo drobni intraklasti, dmgo pa drobnozmat mikritni sediment, v katerem se navzgor manjša velikost zrn. SI. 7. Peti horizont z giroplevrami. Fig. 7. The fifth horizon containing Gyropleura. 5. horizont Peti horizont z giroplevrami leži 35 cm nad četrim horizontom in je debel 6 cm (si. 7). Spodnja ploskev petega horizonta z giroplevrami je zelo valovita, tako da variira navzgor in navzdol za okrog 4,5 cm. Vdolbine oziroma kotanje na nekdanji morski podlagi so zapolnjene tako z drobirjem lupin giroplever kot s celimi lupinami. Drobci lupin giroplever so nad vdolbinami razporejeni v zelo tankih (0,5 cm) nakopičenjih (v horizontu makroskopsko izgledajo kot debelejše črte), ki so vzporedni s plastnatostjo (si. 8). Med drobci so tudi redkejše cele lupine, ki imajo debelejše stene od drobcev. 6. horizont Med petim in šestim horizontom z giroplevrami je 105 cm apnenca brez lupin giroplever. Šesti horizont z giroplevrami je debel 7 cm. V najnižjih 2 cm horizonta so redki odlomki lupin giroplever, ki so se vsedli na rahlo valovito površino morskega dna. Množina odlomkov se po horizontu lateralno ponekod močno spreminja. Med lupinami v sedimentu ni intraklastov ali plastiklastov. Sledi 3 cm debel del horizonta, v katerem je do približno 85% celih lupin giroplever. Delu horizonta s celimi lupinami sledi do 2 cm debel del horizonta s številnimi pomešanimi celimi lupinami in njihovimi odlomki. 7. horizont Med šestim in sedmim horizontom je 11,80 m apnenca brez giroplever. Sedmi horizont je debel 7 cm in leži v profilu 4,60 m nad točko 26 iz profila, ki sta ga opisala Hötzl in Pavlovec(1979). SI. 8. Odsek petega horizonta z giroplevrami z valovito spodnjo ravnino. Legenda pri si. 5. Fig. 8. A section of the fifth horizon containing Gyropleura with ondulated lower plain. Legend at Fig. 5. Pod sedmim horizontom je 20 cm bituminoznega mikrita s homogeno sestavo, v katerem je nekaj stilolitnih šivov. V njem sem in tja opazimo redke dendrite. Fosilnih ostankov v mikritni plasti ni. Številne giroplevre se v sedmem horizontu pojavijo nenadoma. V tem horizontu dobimo večinoma cele lupine giroplever, nekaj je tudi odlomkov. Zdrobljenih lupin ni. Takoj nad horizontom z giroplevrami so v 30 cm debelem apnencu številne miliolide, ki jih nad doslej opisanimi horizonti z giroplevrami nisem opazil. Navzgor sledi mikritni apnenec brez fosilov. V njem so številni stilolitni šivi. Nad in pod sedmim horizontom z giroplevrami je apnenec veliko bolj temen, skoraj črn in bolj bituminozen kot v samem horizontu z giroplevrami. 8. horizont Mikritnemu apnencu brez fosilov sledi navzgor osmi horizont z giroplevrami, ki je oddaljen od sedmega 7,40 m in je debel od 13 do 16 cm. Bočno opazimo na kratke razdalje manjše spremembe debeline. Večina lupin giroplever je velika okrog 4 cm. Zelo lepo je izražena spodnja valovita površina horizonta, ki predstavlja nekdanje morsko dno (si. 9). Navzgor in navzdol odstopa za nekaj centimetrov. Osmi horizont z giroplevrami se začne z 1 cm debelo polo nakopičenih lupin giroplever, Si 9. Osmi horizont z giroplevrami. Fig. 9. The eight horizon containing Gyropleura. ki V sedimentu ležijo tako, da so z daljšo osjo vzporedne s plastnatostjo. Cele lupine giroplever so dobro ohranjene, njihovi odlomki pa imajo ostre robove. Zanimivo je tudi to, da je v zgornjem delu horizonta večina lupin giroplever dobro oliranjenih in v se druga druge ne dotikajo. Med seboj so oddaljene vsaj en centimeter. Podobno, kot pri šestem, so tudi v tem horizontu z giroplevrami jasno ločeni trije tipi vsedanja lupin giroplever (si. 10): a) V kotanjah oziroma nekakšnih vdolbinieah, globokih od 3 do 5 cm, ležijo v različnih smereh nakopičene lupine giroplever, ki kotanje popolnoma zapolnjujejo; b) Na bolj ali manj ravnem delu nekdanjega morskega dna so se vsedale lupine giroplever in kjer je horizont z giroplevrami debel nekaj centimetrov; ta del horizonta z giroplevrami hkrati v enaki debelini prekriva tudi zapolnjene kotanje; c) Na dvignjenih delih nekdanjega morskega dna lupin giroplever skoraj ni. Zanimivo je, da ležijo lupine giroplever v sedimentu vedno tako, daje njihova daljša os vzporedna s plastnatostjo. 9. horizont Med osmim in devetim horizontom z giroplevrami je 40 cm apnenca brez g. Debelina devetega horizonta je okrog 5 cm. Spodnja meja je zelo neizrazita, saj se začne postopoma z redkimi drobnimi odlomki lupin giroplever. Višje v horizontu je sicer odlomkov lupin giroplever več, vendar ne presežejo velikosti 1 cm. Deveti horizont z giroplevrami je zanimiv zato, ker se prvič v horizontih z giroplevrami pojavijo tudi rapidionine. 10. horizont Deseti horizont z giroplevrami je pri točki 30, v profilu Hötzla in Pavlovca (1979). Med devetim in desetim horizontom z giroplevrami je 40 cm apnenca brez g. Zaradi izredne nagrmadenosti sem nanešenih lupin giroplever je 6 cm debel deseti horizont z giroplevrami popolnoma črne barve in diši po bitumnu. Spodnji dve tretjini horizonta vsebujeta drobce SI. 10. Tri področja vsedanja lupin giroplever. Legenda pri si. 5. Fig. 10. Three areas of the Gyropleura shells deposition. Legend at Fig. 5. lupin giroplever, velikih nekaj milimetrov. Vrneš su redke miliolide. V zgornji tretjini horizonta z giropievrami dobimo skoraj cele lunine. Pad desetim horizontom z giropJcvrami je rjav do temnorjav apnenec z miiioiidami iri redkimi rapidioiiinami. Takoj nad njim je svetlejši, lemnosiv apnenec z redkimi odlomki giroplever in z maloštevilnimi rapidioninami, ki postanejo po petih do decetih centimetrih zelo številne. 11. horizont Med desetim in enajstim horizontom z giropievrami ležijo posamezne cele lupine giroplever in posamezni intraklasti, kar je sicer v profilu Vrernski Britof redkost. Enajsti horizont z giropievrami je 12 cm debel, temnorjav do črn, močno bituminozni apnenec, v katerem so nakopičene lupine giroplever, pori)e.šane z nj ihovimi odlomki. Srednji del horizonta vsebuje redkejše cele lupine giroplever. 12. horizont Dvanajsti, 4 cm debel horizont z giropievrami, se začne 10 cm nad enajstim horizontom. Večinoma zaradi pritiskov sploščene in zdrobljene lupine giroplever ležijo v črnem bituminoznem sedimentu. Horizont z giropievrami v zgornjem delu hitro preide v svetlosi v do temnosiv apnenec z redkimi miiioiidami iu rapidioninami. i* ■ \ ^ m v-« W'M^mm^^^^^^^^^^^m '-i •C.- : .r;.-.; .-„.j. s -■!■..-i''i ■ ..V--' v •■tr SI. 11. Zelo zdrobljene lupine giroplever. Fig. 11. Very broken Gyropleura shells. 13. horizont Med dvanajstim in trinajstim, 12 cm debelim horizontom z giroplevrami, je 50 cm apnenca brez giroplever in drugih fosilov. Mikrosparitni apnenec pod trinajstim horizontom z giroplevrami hitro preide v bolj debelozrnat apnenec s številnimi rapidioninami in odlomki ter drobirjem giroplever. Celih lupin giroplever v tem horizontu ni. Po celotnem horizontu so giroplevre enakomerno razporejene. Drobci lupin giroplever so znotraj trinajstega horizonta z giroplevrami razvrščeni v 1 cm debelih pasovih. Horizont se konča brez izrazitih prehodnih delov. Nad njim je mikrosparitni apnenec. 14. horizont 35 cm nad trinajstimje 11 cm debel štirinajsti horizont mikritnega apnenca z giroplevrami. Imapodobne značilnosti kot drugi horizont z giroplevrami. Ob spodnjem in zgornjem robu je v debelini 3 cm veliko nakopičenih celih lupin in odlomkov giroplever. V sredini horizonta so cele lupine redkejše in se le izjemoma dotikajo med seboj. Takšna razporeditev lupin giroplever v horizontu se ponekod bočno delno spreminja. V srednjem delu horizonta so tri, zaradi velike koncentracije lupin giroplever, temne proge. Rapidionin v tem horizontu nisem opazil. SI. 12. V sedemnajstem horizontu z giroplevrami so večinoma cele lupine. Fig. 12. Within the 17"' horizon containing Gyropleura the whole shells predominate. Štirinajsti horizont z giroplevrami preide navzgor v 40 cm debel, skoraj bel apnenec brez giroplever. 15. horizont Razdalja med štirinajstim in petnajstim horizontom z giroplevrami je 15 cm. Tri centimetre debel horizont s celimi lupinami giroplever in njihovimi odlomki se pojavi brez postopnega prehoda in v vrhnjem delu prav tako preide v svetlosiv mikrosparit s posameznimi miVioWäami. 16. horizont Med petnajstim in šestnajstim horizontom z giroplevrami je 85 cm svetlosivega apnenca z redkimi miliolidami in rapidioninami. Debelina šestnajstega horizonta je 90 cm. 5 do 10 cm pod šestnajstim horizontom število rapidionin hitro narašča in je v apnencu tik pod začetkom horizonta največje. Množina rapidionin ostane enaka ali se še nekoliko poveča v spodnjem delu šestnajstega horizonta, v katerem so skoraj izključno drobci in odlomki lupin giroplever (si. 11). Tuje rapidionin toliko, da so skoraj kamnotvorne. Proti vrhu šestnajstega horizonta z giroplevrami se množina zdrobljenih lupin giroplever postopno zmanjšuje, zmanjšuje pa se tudi količina rapidionin. Na koncu šestnajstega SI 13. Izsek devetnajstega horizonta z giroplevrami. Fig. 13. A section of 19"' horizon containing Gyropleura. horizonta, razen redkih izjem, izginejo tudi rapidionine. Takrat pa nastopijo v večjem številu miliolide, ki jih je prej skupaj z rapidioninami manj. 17. horizont Med šestnajstim in sedemnajstim horizontom z giroplevrami je 45 cm apnenca 35 cm debel sedemnajsti horizont se začne in konča z neizrazito mejo. V njem so večinoma cele lupine, giroplever (si. 12). V srednjem delu horizonta so med posameznimi drobci lupin giroplever tudi redke rapidionine, ki jih je nekoliko več le v zgornjem delu sedemnajstega horizonta, kjer drobci lupin giroplever prevladuje nad celimi lupinami. Rapidionin od tu naprej v profilu Vremski Britof ni več. 18. horizont Osemnajsti, 5 cm debel horizont z giroplevrami, je 170 cm nad sedemnajstim. Horizont vsebuje enakomerno pomešane cele lupine giroplever in njihove odlomke. 19. horizont Devetnajsti horizont je 180 cm nad osemnajstim. Debel je 20 cm in ima podobne lastnosti kot osemnajsti horizont z giroplevrami (si. 13). SI. 14. Profil Škocjanske jame. Fig. 14. Škocjanske jame profile. PROFIL ŠKOCJANSKE JAME UVOD Po Geološki karti krasa Škocjanskih jam (Gospodaric 1983) in drugih podatkih (Gospodaric 1984) sem izbral del, v katerem je zajetih večji del vremskih plasti. Profil sem označil kot Škocjanske jame (si. 14). LEGA PROFILA ŠKOCJANSKE JAME Profil Škocjanske jame leži v neposredni bližini upravne zgradbe Škocjanskih jam HTG v povprečno manj kot 1 m visokem useku poti med cesto, ki povezuje Matavun z regionalno cesto Divača - Kozina in upravno zgradbo Škocjanskih jam HTG. To je na skrajnem severovzhodnem delu Osnovne geološke karte SFRJ, list Trst, v merilu 1:100 000 (Pleničar, Polšak & Šikič 1969). Profil Škocjanske jame se začne tam, kjer je po Gospodaričevi karti (1983) začetek maastrichtijskih plasti in se konča tam, kjer je na tej karti maastrichtijske plasti prehajajo v spodnjepaleocenske. OPIS PROFILA ŠKOCJANSKE JAME Profil Škocjanske jame je dolg 160 m. Zaradi delne pokritosti v spodnjem in zgornjem delu lahko debelino plasti le ocenimo na približno 80 m (si. 15). V profilu se izmenjujejo večinoma zelo bituminozni lamelirani in nelamelirani apnenci različnih debelin. Fosili so v profilu redki, saj je v spodnjem delu le en horizont z oogoniji haracej, v zgornjem delu pa so v okrog dva metra debelih plasteh posamezni rudisti. V zgornjem delu profila je en horizont z giroplevrami. Vpad plasti v profilu se spreminja med 190/30 in 200/30. Plast 1 (O m) Spodnjih 28 m profila je slabo razgaljenih. Na začetku profila v plasti 1 je temnorjav do črn mikritni in rahlo bituminozni apnenec brez fosilov. Plasti 2 (7,5 m), 3 (20 m) in 4 (23 m) Med plastmi 2 in 4 je mikrosparitni apnenec svetlo siv, ponekod deloma zdrobljen in rahlo dolomitiziran. Tudi v teh plasteh ni fosilov. Plasti 5 (24,5 m) in 6 (26,5) V spodnjem delu (24,5 m) svetlosivega mikrosparitnega apnenca so posamezne miliolide. Pri 26,5 m je 10 cm debel horizont s posameznimi miliolidami. Apnenec je mikritnega tipa, temnorjav, bituminozen in močno prekristaljen. Plast 7 (28 m) V plasti 7 je apnenec temnorjav in ne vsebuje fosilov. vz 25 24 23 80 70 60 geološki stolpec •51 ^ I .22 21 20( 19 18 so- le 17 14 13 12 11 15 40 10 8 30- 5 4 zo- ro tip kamnine W-P biomikril S & I ÖQ ( o __^_ M-W biomikiit M mikrit F bioraikrit F biomikrit M iatramikrit M-W biomikrit M inlramikrit M-W biomikrit M intramikril M-W biomikrit M-W biomikril M mikn'l M mikrit g r m Legenda • 1 1 1 2 ö) 3 & 4 € 5 6 g 7 r 8 m 9 h 10 vz 11 d Plasti 8 (29 m) in 9 (31,5 m) Apnenec je A» tem delu profila mikrosparitnega tipa, svetlorjav in rahlo bituminozen. V plasti 8 so v nekaj centimetrih zelo redki nepoškodovani oogoniji haracej. Plast 10 (32,5 m) V plasti 10 leži na 10 cm debelem stromatolitnem apnencu 8 cm debel horizont mikritnega apnenca z oogoniji haracej Meje med stromatolitnim tipom apnenca in mikritnim apnencem z oogoniji haracej je ostra, vmes ni bilo prekinitve sedimentacije. Horizont s haracejami prehaja v 15 cm debel horizont svetlorjavega lameliranega apnenca brez fosilov. Plast 11 (33 m) Apnenec je drobno laminiran. Posamezne bolj ali manj ravne in med seboj vzporedne lamine, kijih sestavljajo drobni, 1 do 2 mm veliki intraklasti in plastiklasti, so debele do 2 mm. Dolomitizirani apnenec ne vsebuje fosilov. Plast 12 (35,5 m) Drobno vzporedno laminiran (debelina lamin je od 1 do 2 mm) stromatolitni apnenec (LLH-stromatoliti) preide pri točki 12 v nelaminiran homogen in gost mikritni apnenec brez fosilov. Logan, Rezak in Ginsburg (1964) razlikujejo dva osnovna tipa stromatolitov, ki se kažeta tudi v profilu Škocjanske jame: -LLH-stromatoliti ("Laterally Linked Hemispheroids"), ki se v sedimentu kažejo kot ravne do rahlo nagubane in s cementom bogate lamine; -SH-stromatoliti ("Stacked Hemispheroids") imajo med seboj deloma ločene valovito oblikovane skorje. Plast 13 (37 m) V plasti 13 je nekaj deset centimetrov drobno lameliranega stromatolitnega svetlo do temnorjavega apnenca tipa "LLH". Lamine se na prepereli površini izredno lepo vidijo. Apnenec ne vsebuje fosilov. Plasti 14 (39 m) in 15 (39,5 m) Mikritni apnenec je med plastema 14 in 15 svetlorjav in nelaminiran. V njem so posamezne haraceje ter stilolitni šivi, razporejeni v vseh smereh. V plasti 15 postane apnenec zopet izrazito laminiran (LLH-stromatoliti) in kodrav. Stromatoliti imajo značaj deloma LLH-stromatolitov, deloma SH-stromatolitov. SI. 15. Geološki stolpec profila Škocjanske jame. 1-apnenec, 2-giroplevre (rudisti), 3-miliolide, 4-oogoniji haracej, 5-polži, 6-giroplevre 7-rudisti, 8-miliolide, 9-haraceje, 10-vzorec, 11- debelina (m). Fig. 15. Geological column of the Škocjanske jame profile. 1 - limestone, 2 - Gyropleura (rudists), 3 - milliolides, 4 - oogonia ofHaracea, 5 - mollusks, 6 - Gyropleura, 7 - rudists, 8 - milliolides, 9 - Haracea, 10 - sample, 11 - thickness (in m). Plast 16 (41 m) Vzporedno laminirani apnenec hitro preide v nelamelirani temnorjav do črn apnenec z številnimi miliolidami. Horizont z miliolidami je debel 30 cm, sediment pa je vseskozi enak. Nad horizontom z miliolidami je 50 cm črnega, deloma razpokanega bituminoznega apnenca brez fosilov. Razpoke so zapolnjene z debelokristalastim kalcitom in so razporejene v nepravilni mreži. Plast 17 (41,5 m) Apnenec je v plasti 17 drobno laminiran. Lamine so med seboj oddaljene 1 mm. Debelina tega "LLH stromatolitnega" apnenca je 1 m. Plast 18 (47,5 m) Znotraj plasti 18 so v 16 cm debelem horizontu temnorjavega apnenca milioiide. Ta apnenec prehaja navzgor v lamelirani apnenec. Plast 19(51 m) Apnenec je drobno laminiran. Lamine so vzporedne s plastnatostjo (značilni LLH-stromatoliti). Drobna laminiranost se lepo vidi na prepereli površini (si. 16). Iz kamnine izstopajo zlasti svetlejše lamine. SI. 16. Drobna laminiranost v plasti devetnajst. Fig. 16. Thin laminae within the 19'^ layer Plast 20 (52 m) V plasti 20 se pojavljajo rudisti.Sledimo jih tudi nad plastjo 20 v skupni debelini 2 m. M. Pleničar je določil vrsto Bournonia vionceky. Rudisti so v temnorjavem apnencu zelo redki, saj je na površini 1 m^ največ 5 njihovih predstavnikov ter nekaj odlomkov lupin. Rudistni apnenec je mikrhnega tipa, homogen in ni iaminiran, deioma je prekristaljen. Plast 21 (56 m) Svetlorjavi apnenec debel 40 cm, vsebuje posamezne polže, ki jihje še manj kot rudistov. Višina prekristaljenih hišic polžev je do 2 cm. Vtem delu profila so plasti apnenca debelejše kot drugod (od 40 do 60 cm). Plast 22 (56,5 m) Pri 56. metru (plast 22) profilaje svetlorjavi gosti apnenec z briozoji, velikimi do 6 mm. Povprečna velikost osebkov je okrog 3 mm. Briozoji so razporejeni v več do 5 cm debelih horizontih, so vzporednih s plastnatostjo. V tanjših, do 2 cm debelih horizontih so briozoi še posebno številni. Plast 23 (58 m) Temnorjavi bituminozni mikritni apnenec ne vsebuje fosilov. Plast 24 (68 m) Na 68. metru (plast 24) je rahlo prekristaljen, svetlorjav apnenec z miliolidami. CT"' ^ SI. 17. Število lupin giroplever je približno enako v spodnjem in zgornjem delu horizonta. V sredini horizonta je lupin manj; tip B (zgoraj), diagram energije vode med sedimentacijo (spodaj). Legenda pri si. 5. Fig. 17. The number of Gyropleura shells is approximately equal in the lower and upper part of the horizon. In the middle of the horizon there are less shells; type B (up), diagram of the water energy during the sedimentation (down). Legend at Fig. 5. Plast 25 (80 m) Zadnja plast v profilu (plast 25) vsebuje do 4 cm debel horizont z giroplevrami. V tem horizontu so zelo številni odlomki školjčnih lupin, veliki nekaj milimetrov. Zapolnjujejo nekakšne vdolbine oziroma razpoke, ki so se verjetno na morskem dnu ustvarile med sedimentacijo. Smer zapolnjenih vdolbin in razpok je zelo različna, večkrat je celo pravokotna na plasti. Nad in pod horizontom z giroplevrami dobimo v mikritni osnovi posamezne do 5 mm velike odlomke lupin. PALEOEKOLOSKA OPAZOVANJA PALEOGEOGRAFSKE IN PALEOEKOLOŠKE ZNAČILNOSTI LIBURNIJSKE FORMACIJE Plasti libumijske formacije so nastajale od maastrichtija do thanetija (Pavlovec & Drobne 1991). Pleničar, Polšak in Šikič (1973) pišejo, daje prostor Slovenskega Primorja ob koncu krede zajelo laramijsko gubanje. V nastale sinklinale je v daniju in paleocenu transgrediralo morje. Po Šikiču in Pleničarju (1975) so v tem delu pri koncu krede znaki splošnega dviganja ozemlja. Na prehodu krede v terciar pa je morsko dno večkrat osciliralo. Po sedimentaciji plasti z rudisti, je sledila regresija, zaradi katere so v Sloveniji začele nastajati vremske plasti Pavlovec 1981c). Podobno opisuje zgodovino nastajanja tega dela ozemlja Buser (1973). V zgornjem senoniju so se nekateri deli Tržaško - Komenske planote dvignili iz morja. V senoniju in SI. 18. Največ lupin giroplever je v sredini horizonta in manj v spodnjem in zgornjem delu; tip C (zgoraj), diagram vode med sedimentacijo lupin (spodaj). Legenda pri sliki 5. Fig. 18. The most of Gyropleura shells are in the middle of the horizon and less in its lower and upper part; type C (up), diagram of water during the shells sedimentation (down). Legend at Fig. 5. paleocenu so se pogosto menjavali morski, brakični in sladkovodni pogoji sedimentacije. Sedimenti liburnijske formacije naj bi se po Stachejeveih (1872) predstavah usedale v bližini zelo razčlenjene obale. Morje naj bi bilo deloma brakično , med lagunami pa naj bi bili estuariji in ločena obalna jezera Stäche 1889). Z upoštevanjem pojavljanja koskinolin in miliolid se Cita (1955) bolj navdušuje za epikontinentalni kot kontinentalni nastanek liburnijskih plasti. Breče in boksiti liburnijske formacije, ki sd na več mestih po Primorski, kažejo na takratno regresijo morja, ki naj bi bilo plitvo s krajevnimi kopninami. V morskih lagunah in deloma v sladkovodnih jezerih se je sedimentacija liburnijske formacije vršila brez večjih vmesnih tektonskih premikov (Pleničar 1961). Na koncu krede je prišlo sicer do dviganja, ki pa je imelo značaj epirogenetskh in ne orogenetskih procesov (Pleničar 1970). Pri sladkovodnih plasteh liburnijske formacije seje Stäche (1889) opiral na polže, plasti premoga in haraceje. Vse tri značilnosti vremskih in kozinskih plasti se v številnih plasteh in horizontih pojavljajo v raziskanih profilih. Za polže je Pavlovec (1963a) izrazil dvom, da bi bili sladkovodni. Hamrla (1959) je prišel do zaključka, da so premogi nastajah tudi v limnično-brakičnem okolju. Nekateri mislijo, daje bil kras v času odlaganja liburnijske formacije že dobro razvit (Hamrla 1959; 1960) in da zato ne moremo pričakovati številnih tekočih voda, ki bi polnile obalna jezera (Pavlovec 1963a). Po Nortonovih conah je Rhapydionina liburnica, ki se v profilu Vremski Britof pojavlja v več horizontih, najvažnejši fosil maastrichtijskih vremskih plasti (Drobne et al. 1988) in je daleč najpogostejša v coni A, kjer naj bi bila globina morja do približno 9 m in temperattira morja od 21"C do SPC (Pavlovec 1963a). Glede na podatke K. Drobne in sodelavcev (1988; 1989), so se vremske plasti v okolici SI. 19. Število lupin giropleverse v horizontu postopno manjša od spodnjega proti zgornjemu robu horizonta; tip D (zgoraj), diagram vode med sedimentacijo lupin (spodaj). Legenda pri si. 5. Fig. 19. The number of Gyropleura shells in the horizon progressively diminishes from lower to upper horizon's part; type D (up), diagram of water during the shells sedimentation (down). Legend at Fig. 5. profila Dolenja vas, ki kaže podobnosti z v tej nalogi opisanimi profili, odlagali na mirnem in plitvem zatišncm šelfu z nizkim energijskim indeksom (1-2). Takšno okolje naj bi bilo enotno na širšem prostoru slovenskega dela Zunanjih Dinaridov. Torej, po novejših raziskavah niso plasti liburnijske formacije v celoti morske ali v celoti sladkovodne. Nad vremskimi plastmi so apnenci s številnimi haracejami. Ti apnenci kažejo na bližino sladkovodnega ali brakičnega okolja (Pavlovec, 1981c). VREMSKE PLASTI TIPI HORIZONTOV Z GIROPLEVRAMI Glede na pojavljanje lupin giroplever v preiskanih profilih razlikujem več tipov horizontov z giroplevrami. 1. Glede na vertikalne razlike v nastopanju lupin giroplever in njihovih odlomkov v horizontu sem določil pet tipov: SI. 20. Lupine giroplever so v horizontih večinoma tako številne, da se dotikajo med seboj. Fig. 20. The Gyropleura shells are so numerous within the horizon that they touch each other. Tip A: število lupin giroplever se v horizontu postopno veča od spodnjega proti zgornjemu robu horizonta; Tip B; število lupin giroplever je približno enako v spodnjem in zgornjem delu horizonta z giroplevrami. V sredini horizonta je lupin giroplever manj (si. 17); Tip C: Največ lupin giroplever je v sredini horizonta in manj v spodnjem in zgornjem delu (s!. 18); Tip D; število lupin giroplever se v horizontu postopno manjša od spodnjega proti zgornjemu robu horizonta, (si. 19); Tip E: število lupin giroplever je približno enako po vsem horizontu. 2. Glede na ohranjenost lupin giroplever v horizontu sem ločil tri tipe: Tip 1: Večinoma cele lupine giroplever; Tip 2: Cele lupine giroplever in njihovi odlomki; Tip 3; Večinoma odlomki lupin giroplever. SI. 21. V večini horizontov so lupine giroplever razlomljene in zdrobljene. Fig. 21. In most of the horizons the Gyropleura shells are broken orfragmented. I^ITERPRETACDA HORIZONTOV Z GIROPLEVRAMI Pleničar (1961) piše o hamidnih školjkah, kamor s tega področja uvršča samo rod Gyropleura. Živele naj bi od spodnjega dela zgornje krede do najmlajšega senona. V zadnjem času so geologi (Pavlovec & Pleničar 1983) mnenja, da niso vse školjke, ki jih danes dajemo v rod Gyroplevra iz tega rodu, kar je predvideval že Pavlovec (1963a). Zaradi slabe ohranjenosti so domnevali (Pavlovec & Pleničar 1983), da jih je vsaj del izrodu Apricardia ali še iz drugih rodov. Danes je znano, da se aprikardije (Apricardia pachiniana Širna) v vremskih plasteh resnično pojavljajo (Pleničar 1992). O avtohtonosti oziroma alohtonosti lupin giroplever so bila mnenja deljena, saj nekateri avtorji zagovarjajo avtohtonost, drugi alohtonost. (cf. Pleničar 1961; Pavlovec & Drobne 1991). SI. 22. Pod lupino giroplevre so v sparitnem cementu različni bioklasti. Fig. 22. Below the Gyropleura shells various bioclasts are found in sparitic cement. Že po prvih raziskavah sem se v večini primerov nagibal k tanatocenozi giroplever. To pomeni, da življenjsko okolje giroplever in aprikardij ni bilo na mestu, kjer jih najdemo danes. Hamidne školjke iz rodu Gyropleura in Apricardia so najverjetneje živele v mirni vodi, v plitvinah, zakopane v mulj {Pleničar, ustno sporočilo). Ta možnost ustreza tudi dejstvu, da kljub temu, da nekateri primerki lupin izgledajo izredno debeli (nekaj mm), so v povprečju še vedno tanjši od lupin školjk, ki so in še živijo v vodi z večjo energijo. Od slednjih bi namreč pričakoval debelejše lupine. Zunanja površina lupine je tudi brez dodatnih ojačitev (reber in podobno), kar navadno kaže na mirno življensko okolje. Primarnega nahajališča giroplever do danes še ne poznamo. Lupine giroplever so prinašali na mesto, kjer jih danes najdemo občasni vodni sunki, ki so imeli po mojem mnenju izvor v hujših nevihtah ali daljših neurjih. Valovi so lupine giroplever nakopičili (si. 20) v zatišnem delu sedimentacijskega bazena. O podobnih dogajanjih v reeentnih karbonatnih bazenih med drugimi pišejo tudi Ginsburg & Hardie (1975) in Schneider (1975). Ta ugotovitev se sklada tudi z dejstvom, da med horizonti ni lupin giroplever, saj bi v nasprotnem primeru lahko med horizonti z giroplevrami pričakovali vsaj nekaj lupin giroplever. Torej obstaja velika verjetnost, da so opisani horizonti tanatocenoza. Po prepričanju Ogorelca se v reeentnih zatišnih obrežnih delih bazenov lahko med nevihtnimi obdobji odloži tudi po več deset centimetrov sedimenta. Lupine rodu Gyropleura, ki jih je Pleničar (1961) izoliral iz sedimenta, niso zaobljene, torej ne kažejo znakov transporta in naj bi bile avtohtone. Vendar je takrat opisal samo dva horizonta z giroplevrami, medtem ko ni našel tudi po več deset centimetrov debelih SI. 23. Vse vdolbine nekdanjega morskega dna, globoke nekaj centimetrov, so zapolnjene z odlomki lupin in bolj ali manj celimi ostanki lupin. Nad zgornjim robom vdolbin pa je horizont z lupinami giroplever povsod enako debel, kot da vdolbin pod njim sploh ne bi bilo. Fig. 23. Ali the niches of the former sea floor, some centimeters deep, are filled up by the fragments of shells and more or less whole rests of the shells. Above the upper margin of the niches the horizon with Gyropleura shells is evenly thick giving the impression that there are no hollow below it. a b / L^y horizontov, polnih odlomkov in drobcev lupin giroplever. Tak tip horizontov namreč prevladuje v profilih Vremski Britof in Škocjanske jame. Celih lupin giroplever (tip 1) je v horizontih z giroplevrami (na primer prvi, drugi, sedemnajsti horizont) zelo malo (okrog 5%). Kjer dobimo cele lupine se večinoma med seboj ne dotikajo (floatstone). Med školjkami ni drugih fosilov. Ker so lupine dobro ohranjene in sta večinoma obe lupini skupaj, je najverjetneje, dajih je na mesto sedimentacije prinesel počasen, umirjen vodni tok. Vendar bi kljub temu pričakovali med školjkami ostanke drugih organizmov, ki so živeli v takratnem plitvem morju, na primer alge, foraminifere in drugo. Pri tem pa ne smemo povsem izključiti možnosti, da so giroplevre tipa 1 poginjale in situ in so zaradi le rahlega valjenja po morskem dnu ostale bolj ali manj nepoškodovane. V enem ali drugem primeru sklepam na umirjeno sedimentacijo. V večini horizontov so lupine giroplever nizlomljene in zdrobljene (tip 3) (si. 21), kar SI. 24. Horizonti so večinoma navzdol in navzgor ostro omejeni. Fig. 24. Downwards and upwards the horizons are usually sharply delineated. kaže na močne vodne tokove in valove, ki so s seboj nosili lupine giroplever in Jih na poti drobili. Velikost razlomljenih delov lupin giroplever je pri večini horizontov nekaj milimetrov in največkrat ne preseže en centimcter. Takšna stanja lupin giroplever je mogoče pojasniti najmanj na dva načina: 1. Lupine giroplever so se zdrobile ob daljšem transportu in so padale na morsko dno razlomljene. Velike količine drobirja lupin giroplever v nekaterih horizontih so lahko posledica večje energije vode v kateri so se lomile lupine. 2. Lupine giroplever so v nekaterih horizontih (na primer drugi horizont z giroplevrami) relativno tanjšc (1 mm) od lupin v prvem horizontu z giroplevrami in je morda to vzrok za močno lomljenje lupin. V tem primeru ni potrebno misliti na daljši transport. Hkrati je potrebno vedeti, da so lupine giroplever velike od 2 do 4 cm. Za trdnost je gotovo pomemno razmerje debelina lupin : velikosti lupin. V prostoru med lupinami giroplever so ponekod delci sedimenta, veliki tudi do nekaj centimetrov. To so intraklasti ter plastiklasti, ki so jih gibanje vode ali vodni tok nanesli v plitvejše vdolbine na morskem dnu. Vdolbine so izoblikovane v mikritni osnovi, ki je pomešana z odlomki lupin giroplever. Prav tak sediment obdaja in prekriva intraklaste. Ker so v horizontih z giroplevrami in intraklasti navzgor intraklasti vse manjši, sklepam, daje takšno sedimentacijo horizontov z giroplevrami najbrž potrebno pripisati pojemajočemu vodnemu toku. Ta je s svojo energijo najprej s seboj prenaša! intraklaste in drobil lupine, v končni fazi pa je že zdrobljene lupine giroplever v suspenziji le še odložil. Sl.25. En primerek B generacija vrste Rhapydionina liburnica, ki se ne pojavlja med lupinami giroplever. Prevladujejo miliolide. Fig. 25. One specimen of B generation of Rhapydionina liburnica species which does not occur among the Gyropleura shells. Milliolides prevail. VeČina horizontov (tipi A, B, E, 2 in 3) z giroplevrami ima ostro zgornjo mejo. Lupine giroplever naenkrat izginejo, spremembe v sedimentu pa ni. Na zgornjem robu horizonta cele lupine in njihovi odlomki ne ležijo vzporedno s plastnatostjo. Po njihovi legi sodeč so biU navpično in poševno zapičeni v sediment. Najverjetneje so se v mehko blato zapičili med premetavanjem po morskem dnu zaradi povečane energije vode. Ker imajo cele lupine giroplever in njihovi odlomki v zgornjem delu horizonta z giroplevrami ostre robove, menim, da lupine giroplever v tem horizontu niso preživele daljšega transporta. V primeru (predvsem tretji horizont z giroplevrami, tip D2), ko so posamezne lupine giroplever, ki se med seboj ne dotikajo, s konveksno stranjo obrnjene navzgor in je pod njimi interni sediment (si. 22), kaže stanje na manjšo energijo vode, saj bi lupine giroplever sicer odplavilo ali bi jih vodni tok nagrmadil drugo na drugo. Glede na gost, temnorjav do črn bituminozni mudstone okrog lupin giroplever in glede na orientacijo lupin predpostavljam, daje bila sedimentacija precej mirna. Zdi se, daje bila energija vode nizka, vendar s stalnim gibanjem, na kar kaže tudi rahlo izpran mikritni cement. Ker predpostavljam, da so lupine giroplever na mesto sedimentacije prišle bolj ali manj cele, bi zaradi stalnega gibanja vode na mestu tudi lahko prišlo do (dodatnega) drobljenja lupin giroplever na mestu sedimentacije. Ponekod so med drobci tudi posamezne cele lupine (tip 2), ki imajo debelejše lupine kot v drobcih. Pri tem se postavi vprašanje, ali drobci niso razlomljene lupine juvenilnih primerkov, starejše debelejše lupine pa so ostale cele. Možno je, da v takšnih horizontih z giroplevrami ni igral važne vloge samo način (različna energija vode) nakopičenja lupin, temveč trdnost lupin; transport lupin giroplever z nevihtnimi valovi je bil lahko sorazmerno počasen in so se pri tem razlomile le naključne b a V --_ Leg«nda: 1 9 3 0, 2 Oc SI. 26. Možen transport lupin giroplever med sedimentacijo. Fig. 26. A possible transport of Gyropleura shells during the sedimentation. šibkejše lupine, lahko paje bilo kopičenje lupin giroplever hitro in so se vse lupine, debelejše in tanj še, lomile enako. Možnost, da bi bili na področju, od koder so bile lupine giroplever prinesene, samo občasno ugodni pogoji za razvoj giroplever in bi takrat prišlo do hiperprodukcije organizmov, zavrača med drugim značilnost šestega horizonta z giroplevrami. Vse vdolbine nekdanjega morskega dna, globoke nekaj centimetrov, so zapolnjene z odlomki lupin in bolj ali manj celimi ostanki lupin. Nad zgornjim robom vdolbin paje horizont z lupinami giroplever povsod enako debel, kot da vdolbin pod njim sploh ne bi bilo (si. 23). Če bi giroplevre živele na mestu, kjer jih najdemo fosilizirane, bi bil horizont z giroplevrami vsaj približno enakomerno debel tako v vdolbinah kot tam, kjer teh ni. V šestem horizontu pa kotanje ne vplivajo na debelino horizonta z giroplevrami, saj je zgornja meja tega horizonta popolnoma ravna oziroma vzporedna s plastnatostjo. To nedvomno dokazuje, da so bile giroplevre vsaj nekoliko prenesene. V osmem horizontu z giroplevrami je lepo izražena spodnja meja, ki predstavlja nekdanje morsko dno. To predstavlja enega tipičnih primerov obrežnega dela morja, kjer pod vplivom valov in vodnih tokov pride do erozije morskega dna. S takšno razlago se strinja tudi B. Ogorelec. Johnson in Baldwin (1986) pišeta, da naj bi erozijske površine (kot je v našem primeru na sliki 9), ki "presekajo" enakomerno plastnatost, nastale v času kratkotrajnih valov ali tokov z visoko energij o vode kakor tudi med dalj šo periodo vetrovnega, nevihtnega vremena. Ista avtorja sta mnenja, daje v pogojih povečane energije vode kot tudi spremembe smeri vodnega toka erodiran vrhnji, nevezani del plasti. Pri tem voda odnese del materiala, ki ga lahko kasneje odloži na istem mestu ali v neposredni bližini. Erozijska sled pa v kamnini ostane. Glede na te podatke in v skladu z razmišljanjem o transportu in sedimentaciji lupine giroplever v šestem horizontu z giroplevrami predvidevam, da so bili med sedimentacijo osmega horizonta podobni paleoekološki pogoji. Valovanje oziroma vodni tok, s katerim so prihajale na prostor sedimentacije lupine giroplever, je bil nekoliko šibkejši, kot je bil med sedimentacijo šestega horizonta z giroplevrami, saj je med lupinami le malo njihovih drobcev. Lupine v šestem in osmem horizontu so enako orientirane, kar kaže, da so bile bolj ali manj mimo odložene na takratno morsko blato. Prenos materiala v krajših časovnih obdobjih opisujeta tudi Johnson in Baldwin (1986). Tako med drugim omenjata "facies sedimentov, ki so nastali pretežno pod vplivom plimskih tokov" ("Tide-dominated offshore facies"), ter "facies sedimentov, ki so nastali pretežno pod vplivom valov, viharjev ter neviht" ("Wave- and storm-dominated offshore facies"). V prvem primeru, ki ga navajata zgornja avtorja, bi zaradi sorazmerno počasnejšega sedimentiranja pričakoval dobro sortiranost lupin giroplever in njihovih odlomkov, ki so najrazličnejših velikosti. Prav tako bi pričakoval sortiranost sedimenta po velikosti, v katerem so lupine giroplever. Ker večinoma takšnih lastnosti v kamnini ne opazim, se moja predvidevanja skladajo z drugim primerom, ki ga navajata Johnson in Baldwin (1986). Avtorja govorita o nesortiranih nanosih materiala z valovi in tokovi, kar povzročijo vetrovi ob nevihtah in viharjih. Kljub temu, da glede na sediment predvidevamo, daje bilo okolje sedimentacije lupin giroplever plitvo (najverjetneje do 10 m) in daje bilo v takšnih globinah tudi njihovo življenjsko okolje, naj navedem podatek, da tip nevihtnih valov lahko s svojo bazo seže celo v globino 30 m (Seneš 1988). Po Johnsonu in Baldwinu (1986) se z nevihtnimi valovi prenaša material v gostih suspenzijah. Pri profilu Vremski Britof je bilo to drobnozrnato karbonatno blato, ki so ga valovi skupaj z lupinami giroplever dvigali s plitvega morskega dna. Sediment, ki ga danes dobimo med lupinami giroplever je večinoma mikritnega tipa. Ista avtorja (1986) pišeta, da takšni pogoji trajajo sorazmerno kratko v primerjavi z "nenevihtno" sedimentacijo, vendar lahko pričakujemo zaradi višje energije vode v zelo kratkih časovnih obdobjih znantne debeline sedimenta. Glede na recentna opazovanja smo skupaj z Ogoreleem, Pavlovcem in Pleničarjem podobno ugotovili tudi na terenu ob pregledu posameznih horizontov z giroplevrami. Horizonti s številnimi odlomki lupin giroplever so navzgor in navzdol ostro omejeni (na primer prvi, drugi, peti, dvanajsti, trinajsti in štirinajsti horizont z giroplevrami. SI. 24). Le v posameznih horizontih je postopen prehod iz apnenca brez giroplever v horizont z giroplevrami(deseti, sedemnajsti in osemnajsti horizont z giroplevrami). Posameznih lupin giroplever v apnencu med horizonti, razen redkih izjem, ni. To so osnovni dokazi za alohtonost lupin giroplever. LAMINITI V PROFILU ŠKOCJANSKE JAME Daje bilo v času sedimentacije vremskih plasti zelo plitvo okolje sedimentaeije, pričajo tudi znatne debeline dolomitiziranih laminitnih apnencev v profilu Škocjanske jame. Številni avtorji (Laporte 1975; Read 1975; Hoffman 1975; Wanless 1975) menijo, da se v laminitnih apnencih anorganske lamine največkrat izmenjujejo z laminami, ki so ostanki delovanja modrozelenih cepljivk. To domnevam tudi za laminitne apnence v profilu Škocjanske jame. Glede na raziskave recentnih morskih plitvin (Monty 1967) naj bi laminitne stromatolitne skorje nastajale namedplimskem (intertidal) kot tudi nanadplimskem področju (supratidal), redkeje pa v nekoliko globljem (subtidal) in od valov zaščitenem okolju. Do izmenjave organskih in anorganskih lamin je prišlo zaradi preplavljanja modrozelenih cepljivk na področju medplimske ravnice (intertidal) v času plime in sušitvijo med oseko (Gabelein & Hoffhian 1969). Najverjetneje je bilo to področje blago nagnjene morske obale, na kateri je bil občasno močan vpliv plime in oseke. Na takšno okolje sedimentacije opozarja tudi Tišljar (1987). Med oseko je bila na medplimski ravnici omogočena rast modrozelenih cepljivk, med plimo paje voda tj a nanesla tanj še ali debelejše plasti drobnozmatega materiala. Okolje med nastajanjem stromatolitnih skorij je bilo torej izjemno plitvo in za življenje mnogih organizmov neprimerno. Tudi v nekaterih odsekih profila Škocjanske jame, kjer sem našel stromatoliten tip sedimenta, ni drugih fosilov. Zaradi izhlapevanja morske vode ter zato hitre litifikacije se stromatoliti relativno lahko ohranijo (Tišljar 1987). Ker organsko snov zamenja cement, se trate modrozelenih cepljivk ne ohranijo. S propadom cepljivk nastanejo v sedimentu votline, ki jih kasneje zapolni kalcitni cement. Na ta način se v kamnini, kjer so bile nekoč cepljivke, kaže le fenestralna zgradba. RHAPYDIONINA LIBURNICA V PROFILU VREMSKI BRITOF A in B obliki vrste Rhapydionina liburnica se pojavljata v več horizontih v profilu Vremski Britof (Drobne 1981). Zanimivo je, da B generacije ni v horizontih s številnimi odlomki in drobci lupin giroplever (si. 25). Pravtako se v bližini horizonta z giroplevrami rapidionine ne pojavljajo v večjem številu. Med šestim in sedmim ter med sedmim in osmim horizontom z giroplevrami, kjer je rapidionin veliko, ni giroplever, ki bi tvorile horizont. Rapidionine se zopet v večjem številu pojavijo med osmim in devetim horizontom. Rapidionine in lupine giroplever se v sedimentu med šestim in osmim horizontom pojavljajo ločeno; enkrat ene drugič druge. V nekaterih primerih (na primer šestnajsti horizont z giroplevrami) so lupine giroplever skupaj z rapidioninami. V tem primeru rapidionine številčno prevladujejo nad giroplevrami. Lupine giroplever so med rapidioninami le kot odlomki in drobci, celih lupin med rapidioninami ni. Prav tako niso odlomki giroplever med rapidioninami nakopičeni niti v nekaj centimetrov debelih horizontih, temveč so nepravilno razporejeni po vsem horizontu z rapidioninami A generacije. Zato domnevam, da gre za povezavo pri odnosu rapidionine : odlomki lupin giroplever. Možne razlage za razmerje med lupinami giroplever in rapidioninami je naslednje. a) Vodni tok in valovanje sta lupine giroplever iz življenskega položaja nosila proti obali, kjer so živele rapidionine (Fleury 1970; 1979), vendar sta jih odložila pred biotopom z rapidioninami (si. 26, položaj A). Zaradi kratkega transporta so lupine giroplever ostale bolj ali manj nepoškodovane, celih lupin giroplever in rapidionin pa skupaj ne najdemo. b) Druga možnost je ta, da so lupine giroplever tokovi ali valovanje prenesli v zatišne plitvine oziroma lagune z rapidioninami, ki naj bi bile bolj oddaljene od sedimentacije celih lupin giroplever (slika 26, položaj B). Zaradi daljšega transporta v plitvejše in mirnejše okolje so lupine giroplever pretrpele hujše lomljenje in drobljenje, sedimentirale pa so se skupaj z rapidioninami. Nahajališče lupin giroplever je torej tudi v tem primeru tanatocenoza. V času, ko voda ni prenašala lupin giroplever v prostor z rapidioninami, so tam nastajali horizonti z rapidioninami, v katerih ni lupin giroplever. SKLEPI Osnovni namen raziskave je bil proučevanje okolja sedimentacije plasti z giroplevrami in aprikardijami v vremskih plasteh. Pri tem sem prišel do naslednjih ugotovitev. 1. Številne školjke iz rodu Gyropleura, Apricardia in morda še druge školje so v apnencih vremskih plasti na drugotnem mestu. 2. Giroplevre so živele v plitvi vodi nedaleč od obale. Na drugotno mesto so jih prinesli valovi in tokovi, ki so jih povzročila neurja in nevihte. 3. Odsotnost rapidionin v horizontih z giroplevrami potrjuje trditev, da so bile lupine nametane proti obali, saj so rapidionine živele v izrazito lagunskem okolju. Na plitvo okolje sedimentacije kažejo tudi laminiti. LITERATURA IN VIRI D'Ambrosi, C., 1931: Note illustrative della carta geologica delle Tre Venezie, foglio Pisino.-Uff. Idrogr. Magistr. Acque ven., 1-79, Padova. DAmbrosi, C., 1942: Cenni geologici sull'Istria nord-occidentale con particolare riguardo alia scoperta di nuovi afFioramenti eocenici.- Boll. Soc. geol. Ital., 60, 311-324, Rome. DAmbrosi, C., 195 5: Note illustrative della carta geologica delle Tre Venezie, foglio Trieste,-Uff. Idrogr. Magistr. Acque ven,, 1-60, Padova. Bignot, G., 1972: Recherches stratigraphiques sur les calcaires du Cretace superieur et de I'Eocene d'Istrie et des regions voisines. Essai de revision du Liburnien.-Trav. Lab. Micropaleont., 2, Univ. Paris, 6, 1-353, pl. 1-50, Paris. Bignot, G., 1987: volution comparee de deux bassins epicontinentaux dans le nord de la plaque Adriatique au Cretace superieur.- Mem. Geol. Univ., 11, 183-193, Dijon. Buser, S., 1973: Tolmač lista Gorica. Osnovna geološka karta SFRJ 1:100.000.- Zvezni geološki zavod Beograd, 50 str., Beograd. Buser, S., 1988: Dinaridi.- Enciklopedija Slovenije, 2, 190 str., Ljubljana. Buser, S., 1989: Developement of the Dinaric and the Julian carbonate platforms and of the Intermediate Slovenian Basin (NW Yugoslavia).- Mem. Soc. Geol. It., 40 (1987), 313-320, Roma. Cita, M. B., 1955: The Cretaceous-Eocene boundary in Italy.- Proc. 4. World Petrol. Congr., Sect. I/D, 6, 427-452, Rome. Drobne K., 1968. Nouvelles observations au sujet de couches de Trstelj en Slovenie.- Bull, sei. Acad. Yugosl., A, 13, 370, Zagreb. Drobne K., 1977: Alveolines Paleogenes de la Slovenie et de Flstrie,- Schweiz. Pal. Abh., 99, 132 p., 21 pl, Basel. Drobne K., 1979: Paleogene and Eocene Beds in Slovenia and Istria.-16th Europ. Micropal. Coll., 49-63, Ljubljana. Drobne, K,, 1981: Značilne foraminifere in njih združbe v podlagi danijskihplasti,- Simpozij o problemih danija v Jugoslaviji, Zbornik referatov. Proceedings, 2,85-97, Ljubljana. Drobne, K., Ogorelec, B., Pleničar, M. Barattolo, F., Tumšek, D. & M., Zucchi-Stolfa, M. L., 1989: The Dolenja vas section, a transition from Cretaceous to Paleocene in the NW Dinarides, Yugoslavia), Mem. Soc. Geol. It., 40, (1987), 73-84, 6 taw. n. t,, Roma. Drobne, K., Ogorelec, B., Pleničar, M., Zucchi-Stolfa, M. L. & Turnšek, D., 1988: Maastrichtian, Danian and Thanetian beds in Dolenja vas (NW Dinarides, Yugoslavia), microfacies, foraminifers, rudists and corals.- Razprave IV. razr. SAZU, 29, 147-224, Pl. 1-35, Ljubljana. Drobne, K. & Pavlovec, R., 1991: Paleocene and Eocene Beds in Slovenia and Istria.-Introduction to the Paleogene, SW Slovenia and Istria, Field-Trip Guidebook, IGCP Project 286-Early Paleogene Benthos 7-17, Ljubljana. Fleury, J. J., 1970: Le senonien et I'eocene ä microorganismes benthoniques du Klokova (zone du Gavrovo, Akamanie, Grece continentale).- Revue Micropal., 13, 30-44, Paris. Fleury, J. J., 1979: A propos d'une nouvelle espece du Cretace terminal de Grece. Place du genre Cyclopseudedomiaparmi les Rhapydionininae (Foraminiferes, Alveolinidae).-Revue Micropa!., 22, 19-28, Paris. Gabelein, C. D. & Hoffman, P., 1969: Algal origin of dolomite in interlaminated limestone-dolomite sedimentary rocks. In: Brieker, O. P. et al.. Carbonate Cements.- Bermuda Biol. Station, Spec. Publ., 3, 226-235, Hamilton. Ginsburg, R. N. & Hardie, L. A., 1975: Tidal and storm deposits. Northwestern Andros Island, Bahamas.- In: Ginsburg, R. N., Tidal Deposits, 201-208, New York. Gospodaric, R,, 1983: Jamski sedimenti in speleogeneza Škocjanskih jam,- Geol. zbor., UEK, FNT, Montanistika, 4, 163-172, Ljubljana. Gospodarič, R., 1984: Jamski sedimenti in speleogeneza Škocjanskih jam.- Acta carsologica SAZU, 12, 27-48, Ljubljana. Hamrla, M., 1959:0 pogojih nastankapremogišč na krasu.- Geologija, 5, 180-264, tab. I-6, Ljubljana. Hamrla M., 1960: K razvoju in stratigrafiji produktivnih libumijskih plasti Primorskega krasa.- Rudar. - metal, zbornik, 3, 203 - 216, Ljubljana. Herak, M., 1986: A new concept of geotectonics of Dinarides.- Acta, geol., 16, 1, 1-42, Zagreb. Herak, M., 1989: Relationship between Adriatic and Dinaric Carbonate platforms.- Mem. Soc. Geol. It, 40, (1987), 289-293, Roma. Hoffman, P., 1975: Shoaling-upward shale-to-dolomite cycles in the Rocknest Formation (Lower Proterozoic), Northwest Territories, Canada.- In: Ginsburg, R. N., Tidal Deposits, 257-268, New York. Hötzl, M. & Pavlovec, R., 1979: Excursion L, Vremski Britof-Vreme Beds.- 16th Europ. Micropal. coll., 225-228, Ljubljana. Hötzl, M. & Pavlovec, R., 1981: Vremske plasti kot podlaga danijskim plastem v Zahodnih Dinaridih." Simpozij o problemih danija v Jugoslaviji, Zbornik referatov, 133-136, Ljubljana. Iwan, A., 1904: Mitteilungen über das Kohlenvorkommen bei Britof-Urem-Skoflje nächst Divača im Triester Karstgebiete.- Oes. Zeit. Berg. Hüttenw., 52/16,197-199, Wien. Johnson, H. D. & Baldwin, C. T., 1986: Shalow siliciclastic seas. V: Reading, H. G,- Sedimentary Environments and Facies.- Blackwell Sei. Pub., 229-282, Oxford-London. Laporte, L. F., 1975: Carbonate tidal-flat deposits of the Early Devonian Manlius Formation of New York State.- In: Gisburg, R. N. Tidal Deposits, 243-250, New York. Lodin, M., 1883: Note sur certains combustibles tertiaires de I'lstrie et de la Dalmatie.-Ann. Mines., 8/3,209-233, Paris. Logan, B.W., Rezak, R. & Ginsburg, R. N., 1964: Classification and environmental significance of algal stromatolites.- Joum. Geol., 72, 68-83, Chicago. Martinis, B., 1962: Ricerche geologiche e paleontologiche sulla regione compresa fra il T. Ludrio ed il F. Timavo.- Riv. Ital. pal. strat., Mem., 8, 1-200, tav. 1-22, Milano. Martinis, B., 1989: The developement of geological information on the "Carso".- Mem. Soc. Geol. It., 40 (1987), 21-33, Roma. Monty, C. L. V., 1967; Distribution and structure of recent stromatolitic algal mats, Eastern Andros Island, Bahamas.- Ann. Soc. Geol. Belg., 90, 55-99, Bruxelles. Pavlovec, R., 1963a: Startigrafski razvoj starejšega paleogena v južnozahodni Sloveniji,-Razprave IV. razr. SAZU, 7, 419-556, Ljubljana. Pavlovec, R., 1963b: Stratigrafija produktivnih libumijskih plasti v luči novih raziskav-Nova proizvodnja, 14, 3-4, Ljubljana. Pavlovec, R., 1964; Stratigraphie des couches libumiennes au Nord-Ouest de la Yougoslavie.-Mem. B. R. G. M., n. 28 (Coli. Paleog. Bordeaux 1962), t. 2, p. 711-719, Bordeaux. Pavlovec, R., 1965; Regionalni obseg libumijskih plasti.- Geologija, 8, 135-138, Ljubljana.Pavlovec, R., 1968; Paleogenske plasti v Sloveniji.- Prvi kolokvij o geologiji Dinaridov, 1, 123-127, Ljubljana. Pavlovec, R., 1981 a: Vremski Britof-vremske plasti, zgornji maastrichtij.- Simpozij o problemih danijav Jugoslaviji, Povzetki referatov. Ekskurzija, 1, 48-52, Ljubljana. Pavlovec, R., 1981b; Profil Zavrhek-kozinske plasti, spodnji paleocen.- Simpozij o problemih danijav Jugoslaviji, Povzetki referatov, Ekskurzija, 1, 53-57, Ljubljana. Pavlovec, R,, 1981c; Nekaj primerjav s plastmi libumijske formacije izven jugoslovanskega ozemlja.- Simpozij o problemih danija v Jugoslaviji, Zbornik referatov. Proceedings, 2, 167-174, Ljubljana. Pavlovec, R. & Drobne, K., 1991; The Vremski Britof profile, Upper Maastrichtian,- Introduction to the Paleogene, SW Slovenia and Istria, Field-trip guidebook, IGCP Project 286-Early Paleogene Benthos 43-45, Ljubljana. Pavlovec, R. & Pleničar, M., 1979; The boundary between Cretaceous and Tertiary in the limestone beds of the West Dinarides.- Symp. Cret.-Tert. Boundary events, Copenhagen. Pavlovec, R. & Pleničar, M., 1981a; The boundary between Cretaceous and Tertiary in the limestone beds of the West Dinarides.- Rudar.-metal. zbornik, 28/1,25-31, Ljubljana. Pavlovec, R. & Pleničar, M., 1981b: Novi pogledi na razvoj maastrichtija pri nas,- Rudar.-metal. zbornik, 28/4, 383-386, Ljubljana. Pavlovec, R. & Pleničar, M., 1983; Der ältere Teil der Libumischen Formation in den NW-Dinariden.-Zitteliana, 10, 195-199, München. Pavlovec, R., Pleničar, M., Drobne, K., Ogorelec, B. & Šušteršič, F., 1989; History of geological investigations of the Karst (Kras) region and the neighbouring territory (Western Dinarides).- Mem. Soc. Geol. It., 40 (1987), 9-20, Roma. Pleničar, M., 1956: Razvoj paleocena in eocena v Sloveniji,- Prvi jugosl. geol. kongres, Bled, Predavanja in poročila, 45-46, Ljubljana. Pleničar, M., 1961: Stratigrafski razvoj krednih plasti na južnem Primorskem in Notranjskem.- Geologija, 6, 22-145, Ljubljana. Pleničar, M., 1970: Tolmač lista Postojna. Osnovna geološka karta SFRJ 1:100.000.- Zvezni geološki zavod Beograd, 62 str., Beograd. Pleničar, M., 1992: Apricardia pachiniana Sima iz spodnjega dela libumijskih plasti pri Divači.- Geologija, 35, 65-68, Ljubljana. Pleničar, M., Polšak, A. & Šikič, D., 1969: Osnovna geološka karta SFRJ Trst 1.100.000.-zvezni geološki zavod Beograd, Beograd. Pleničar, M., Polšak, A. & Šikič, D., 1973: Tolmač lista Trst. Osnovna geološka karta SFRJ 1:100.000.- Zvezni geološki zavod Beograd, 68 str., Beograd. Read, J. F.; 1975: Tidal-flat facies in carbonate cycles, PillaraFormation (Devonian), Canning Basin, Western Australia.- In: Ginsburg, R. N., Tidal Deposits, 251-256, New York. Schneider, J. A., 1975: Recent tidal deposits, Abu Dhabi, UAE, Arabian Gulf.- In: Ginsburg, R. N., Tidal Deposits, 209-214, New York. Schubert, R., 1905: Zur Stratigraphie des istrisch- norddalmatinischen Mitteleozäns.- Jb. Geol. R. A., 55, 153-188, Wien. Seneš, J., 1988: Principles of study of adriatic shelf ecosystems from the viewpoint of applications in geology.- Geologica Carpatica, 39, 3, 285-300, Bratislava. Stäche, G., 1859: Die Eozängebiete in Inner-Krainundlstrien.- Jb. Geol. R. A.,1,10 ,272-331, Ta£ 1-8, Wien. Stäche, G., 1864: Die Eozängebiete in Inner-Krainund Istrien,- Jb. Geol. R. A., II, 14, II-II 5, Taf. 1, Wien. Stäche, G., 1867: Die Eozängebiete in Inner-Krain und Istrien.- Jb. Geol. R. A., III, 17, 243-290, Taf. 1-6, Wien. Stäche, G., 1872: Geologische Reisenotizen aus Istrien.- Verh. Geol. R. A., 215-223, Wien. Stäche, G., 1875: Neue Beobachtungen in den Schichten der libumischen Stufe.- Verh. Geol. R. A., 334-338, Wien. Stäche, G., 1880: Die Libumische Stufe.- Verh. Geol. R. A., 195-209, Wien. Stäche, G., 1889: Die Liburnische Stufe irnd deren Grenz-Horizonte.- Abh. Geol. R. A., 13, 1-170, Taf 1-8, Wien. Sikic, D. & Pleničar, M., 1975: Tolmač lista Ilirska Bistrica. Osnovna geološka karta SFRJ ] :100.000,- Zvezni geološki zavod Beograd, 51 str., Beograd. Šikič, D., Pleničar, M. & Šparica, M., 1972: Osnovna geološka karta SFRJ Ilirska Bistrica 1:100.000.- Zvezni geološki zavod Beograd, Beograd. Tišljar, J., 1987: Petrologija sedimentnih stijena.- Rudarsko-geološko-naftni Fakultet Sveučilišta u Zagrebu, I-V + 242 str., Zagreb. Vardabasso, S., 1923: Uno sguardo alla stratigrafia del Terziario dell'Istria a proposito di un nuovo livello fossilifero.- Atti Acc. Ven. Trent. Istr., 14,27-45, Padova. Wanless, H. R., 1975: Carbonate tidal flats of the Grand Canyon Cambrian.- In: Ginsburg, R. N., Tidal Deposits, 269-277, New York. NEOBJAVLJENA DELA Jurkovšek, B., Poljak, M., Ogorelec, B., Buser, S., Toman, M. & Šribar, L., 1989: Geološka karta SFRJ 1:50 000, Kredne in paleogenske plasti Zunanjih Dinaridov. Vodnik ekskurzije.- 35 str., Ljubljana. (Tipkano poročilo. Arhiv Geološki zavod Ljubljana.) PALEOECOLOGICAL PROPERTIES OF THE VREME BEDS IN THE VICINITY OF ŠKOCJANSKE JAME Summary INTRODUCTION From paleoecological and partly biostratigraphical point of view two profiles of Vreme beds (the \ower part of the Libumian formation) from the immediate ^'icinity of Škocjanske jame cave system are treated: the profile Vremski Britof and the profile Škocjanske jame. In the Vreme beds 1 carefully studied the layers containing Gyropleura and Apricardia and the mode of the shells and their fragments appearance within the particular horizons. Thus I wished to get the paleoecological data, to solve the question of their primarity or secondarity respectively. In some parts of Vreme beds there are besides the Gyropleura and Apricardia numerous Foraminiferans and Algae. THE PROFILE VREMSKI BRITOF In 1979 the profile Vremski Britof was discovered (Hötzl & Pavlovec 1979) of about 130 m long, the layers being about 50 m thick. Due to vegetation growth and roadcut breaking down only some 40 m may be seen today. The horizons with Gyropleura appear in the total length of 84 m and this part I described in more detail. The dip of strata is 140/30 mostly. In spite of several descriptions of the Vremski Britof vicinity we are lacking the detailed study of GjTopleura and Apricardia horizons and the location of the shells or their fragments. In continuation I shall write about better known genus of Gyropleura, although, according to the opionion of Pavlovec and Pknicar (from 1983) in these horizons the shells of Apricardia exist as well. Pleničar (1992) in his treatise distinctly quotes that in the Vreme beds there are besides Gyropleura the Apricardia too, namely the species (Apricardia pachiniana Sima) characteristic for the Upper Senonian. In the profile Vremski Britof there are 19 horizons containing Gyropleura. THE PROFILE SKOCJANSKE JAME Since now nobody has described the profile in Škocjanske jame. The detailed geology of the Škocjanske jame vicinity was studied by Gospodaric (1983) only. In his treatise the spelegenesis of Škocjanske jame is more accentuated, nevertheless he mentions the Vreme beds as bedded and thin-bedded limestones containing some coal layers. The Škocjanske jame profile is 160 m long. As it is partly covered in lower and upper part it thickness may be evaluated to 80 m approximately. Very bitumunous laminated and non-laminated limestones of various thickness alternate within the profile. The fossils within the profile are scarce, in lower part there is one horizon only containing oogonia of Haracea, and in upper part there are in about two meters thick beds single rudists. In the upper profile's part there is one horizon containing Gyropleura. The dip of strata within the profile changes between 190/30 to 200/30. PALEOGEOGRAPHICAL AND PALEOECOLOGICAL PROPERTIES OF THE LIBURNIAN FORMATION The layers of the Liburnian formation, where the both profiles lie, were developing firom the Maastrichtian to the Thanetian (Pavlovec & Drobne 1991). Pleničar & Polšak & Šikič (1973) write that the area of the Slovene Littoral was subdued to the Laramian folding at the end of the Cretaceous. The sea transgressed into existing sinkline in the Danian and the Paleocene. According to Šikič & Pleničar (1975) there are in this part the indications of the general uplifting of the area at the end of the Cretaceous. At the transition of the Cretaceousa to Tertiary the sea floor frequently oscillated. After the sedimentation of the layers with rudists the regression followed which is the cause of the Vreme beds origin in Slovenia (Pavlovec 1981c). Similar description of the past of this part of the area is provided by Buser (1973). In the Upper Senonian some parts of the Trieste - Komen plateau uplifted from the sea. In the Senonian and in the Paleocene sea, brackish and fresh water conditions of sedimentation frequently alternated. The breccias and bauxites of the Liburnian formation found on numerous places in the Littoral show the then sea regression which is supposed to be shallow with local lands. In the sea lagoons and partly in fresh water lakes the sedimentation of the Liburnian formation went on without remarkable intermediate tectonic displacements (Pleničar 1961). However at the end of the Cretaceous the uplifting occurred having the character of epirogenetic and orogenetic processes (Pleničar 1970). According to the recent researches the Liburnian formation layers are not entirely marine nor entirely fresh water. Above the Vreme beds there are the limestones with numerous Haracea. These limestones indicate the vicinity of fresh or brackish water environment (Pavlovec 1981c). THE INTERPRETATION OF THE HORIZONS CONTAINING GYROPLEURA Pleničar writes about Chamidae shells and from this area he ranks among them the Gyropleura genus only. They are supposed to live since lower part of the Upper Cretaceous to the youngest Senonian. In the last time the geologists (Pavlovec & Pleničar 1983) believe that all the shells which today are classified to Gyropleura genus do not belong to it as it was supposed by Pavlovec (1963a) already. Due to bad preservation it was presianed (Pavlovec & Pleničar 1983) that one part at least belongs to Apricardia genus or to other genera even. Today it is known that Apricardia (Apricardia pachiniana Sima) really appears in the Vreme beds (Pleničar 1992). The opionions about the autochthonous or allochtonous origin of the Gyropleura shells were shared, as some authors argue for autochthonous and the others for allochtonous origin (cf. Pleničar 1961; Pavlovec & Drobne 1991). After the first researches already in most cases I was inclined towards the tanatocenosis of Gyropleura. It means that the living space of Gyropleura was not on the same spot where they are found today. The most probably the Chamide shells of Gyropleura genus lived in calm, shallow water burried into silt (Pleničar, oral communication). This possibility corresponds to the fact that although some samples of the shells are rather thick (some mm) in average they are thinner than the shells which lived and still live in the water with higher energy. Of the last we would namely expect thicker shells. The external shells surface does not have any additional strengthenings which usually indicate a calm life environment. Till now we do not know the primary finding site of Gyropleura. The Gyropleura shells were transported to the place where they are found today by seasonal water pushes having their origin, according to my opionion in storms or longer lasting tempests. The waves accumulated the shells on leeward side of the sedimentary basin. Similar events in the recent carbonate basins are described by Ginsburg & Hardie (1975) and Schneider (1975). This statement corresponds to the fact that among the horizons there are no Gyropleura shells and if the case would be the opposite at least some of them must have been found. Hence a probability exists that the described horizons belong to tanatocenosis. Referring to the B. Ogorelec conviction in the recent leeward places of the coastal parts of the basins during the storms several ten centimeters of the sediment may be deposited. According to appearance of Gyropleura shells in the studied profiles several types of the horizons containing Gyropleura are distinguished. 1. Referring to vertical stratification of Gyropleura shells and their fi-agments appearance, five types are distinguished: Type A: The number of Gyropleura shells within the horizon progressively increases from lower towards the upper margin of the horizon; Type B: The number of Gyropleura shells is approximately the same in the lower and the upper part of the horizon but in the middle there are less of shells; Type C: The most of Gyropleura shells are in the middle of the horizon and less in the upper and lower parts; Type D: The number of Gyropleura shells within the horizon progressively diminishes from lower towards the upper margin of the horizon; Type E: The number of Gyropleura shells is approximately the same all over the horizon. 2. Referring to preservation of Gyropleura shells within the horizon three types are distinguished: Type 1: Mostly complete articulated Gyropleura shells; Type 2: Complete Gyropleura shells and their fragments; Type 3: Mostly fi-agments of Gyropleura shells LAMINITES IN THE PROFILE OF ŠKOCJANSKE JAME Considerable thickness of dolomitized limestones in laminae within the profile of Škocjanske jame indicates that during the time of the Vreme beds deposition the sedimentary environment was extremely shallow. Several authors (Laporte 1975; Read 1975; Hofftnan 1975; Wanless 1975 ) believe that in these limestones the anorganic laminae the most frequently alternate with laminae which are the rests of the blue-green algae (cyanobaeteria). The same is supposed for the laminated limestones in the Škocjanske jame profile. Referring to recent researches of sea shoals (Monty 1967) the laminated stromatolitic crusts originated at intertidal or even supratidal areas and rarely in deeper subtidal environment, protected against the waves. CONCLUSION The basic goal of this research was to study the sedimentary environment of the Gyropleura and Apricardia layers within the Vreme beds. 1. Numerous shells of Gyropleura and Apricardia genus and maybe some other shells too are found within the Vreme beds at the secondary site. 2. Gyropleura lived in shallow sea not far from the coast, and have been transported to their secondary site by current action caused by storms and tempests. 3. The absence of Rhapydionina within the Gyropleura horizons confirms the statement that the shells were thrown towards the coast as Rhapydionina lived in lagoon environment. The laminae indicate the shallow sedimentary environment too. Translated by Maja Kranjc BARON HERBERSTEIN ON THE CERKNICA KARST LAKE - A PHANTOM BOOK OF THE 16TH CENTURY? BARON HERBERSTEIN O CERKNIŠKEM JEZERU - NEOBSTOJEČA KNJIGA IZ 16. STOL.? TREVOR R. SHAW Abstract UDC 551.44 (091) Shaw, Trevor R.: Baron Herberstein on the Cerknica Karst Lake - a Phantom Book of the 16th Century? De admirandis rebus naturae by Sigmund von Herberstein, cited as a published source in Valvasor (1689), can nowhere be traced. An apparent reference to it by Wernher (1551) proves to refer only to a verbal report. It is concluded that Valvasor, or his collaborator Francisci, was confused by the inclusion of Wernher's De admirandis Hungariae aquis as an appendix in Herberstein's Rerum Moscoviticarum commentarij without any prominent statement of its authorship. Key words: karstology, history of karstology. Cerkniško jezero, Herberstein S., Valvasor J. W., G. Wemher Izvleček UDK 551.44(091) Shaw, Trevor R.: Baron Herberstein o Cerkniškem jezeru - neobstoječa knjiga iz 16. stol. Dela "De admirandis rebus naturae" Sigismunda von Herbersteina, ki ga navaja Valvasor (1689) med svojimi tiskanimi viri, ni mogoče zaslediti. Wernherjeva (1551) navedba se nanaša najbrž le na ustno poročilo. Avtor meni, daje Valvasorja, ali njegovega sodelavca Franciscija, zavedlo dejstvo, daje Herbersteinovemu delu "Rerum Moscoviticarum comentarij" priključeno kot dodatek Wernherjevo delo "De admirandis Hungariae aquis" brez opazne navedbe avtorja. Ključne besede: krasoslovje, zgodovina krasoslovja. Cerkniško jezero, Herberstein S., Valvasor J. W., G. Wernher THE BOOK CITED When Georg Wernher (1551) described the intermittent karst lake of Cerkniško jezero in Slovenia, he acknowledged Sigmund von Herberstein as the source of his information. Nearly 140 years later Valvasor's Die Ehre dess Herzogthums Crain (1689) lists among the sources used De admirandis rebus naturae by Herberstein. So it has always been assumed that such a book must exist. What is this publication? What does it say? And where is it to be found? In the first volume of Valvasor's Die Ehre... is a 12-page "Verzeichniss aller derer Scribenten...", acknowledging publications used in the preparation of the book. The list was probably prepared by Valvasor's collaborator and editor, Erasmus Francisci (Baraga 1990), but this does not diminish its authority. The entry reads "Sigmund Freyherr von Herberstein de Admirandis Rebus Naturae" (Fig. 1). As is common throughout the list, the date and place of publication are not given. In his text it is described as a little book ("Buchlein") and also as being "in Quarto", i.e. with its sheets folded into four leaves and so of smaller height than the folio volumes of Die Ehre... Thus the book being described had evidently been examined. Georg Wernher's De admirandis Hungariae aquis hypomnemation (1551) includes a four-page description of Cerkniško jezero, and states that "Sigismund in Herberstein" provided the information. A modern English translation of this description, made by the late G. F. Pullen, a professional Latin scholar and translator and published as an appendix by Shaw (1979), renders this acknowledgement as"... I will describe it fi-om what you yourself have written". Both Wernher's book and Valvasor's refer in some detail to the caves, sinks and underground streams associated with the lake and both provide maps of it. It was tantalizing to wonder what of this information was derived from Herberstein and whether he had recorded any other facts about these karst phenomena. An intensive search was started for a copy of the original publication. Bearing in mind Wernher's reference in 1551, and Herberstein's birth in 1486, it seemed likely that the book must have appeared between about 1510, when Herberstein was 24 years old, and 1551. Furthermore Herberstein's other books were published from 1549 onwards, suggesting a date later rather than earlier in this period. THE BOOK NOT FOUND The existence of Herberstein's De admirandis rebus naturae as a printed book became less and less likely as the search continued. Enquiries showed that no copies exist in the national libraries of Austria, the Czech Republic, France, Great Britain, Hungary or Slovenia, nor in the Bodleian Library or the college libraries in Oxford, the library of the Royal Society, the Danish Royal Library, the Schleswig-Holsteinische Landesbibliothek in Kiel, the libraries of the Evangelisches Predigerseminar in Wittenberg or the Erdgenössische Technische Hochschule in Zürich, nor in Valvasor's own library (now in Zagreb). Neither this title or any similar one is recorded in the National Union Catalogue (covering libraries in USA) or in the bibliographies of Moller (1774), Ebert (1821) or Stillwell (1970). It is of particular significance that it is not included in the comprehensive Herberstein bibliography ofKrones (1871). Moreover Pochlin (1803), although he does list it, gives Valvasor's reference as the sole authority. It was not uncommon in the 16th century for a short piece of writing on one subject to be published as part of a larger book or as an appendix to a book on a quite unrelated subject. But searching showed that this was not so in this case; De admirandis rebus naturae was not contained in any of Herberstein's other books. Thus its non-existence as a printed book seems almost conslusive. There still remains the possibility of its existing, or having existed oncc, in manuscript only. This can never be disproved, but the European libraries listed above, which are among the most likely to hold such material, all report that they are not aware of such a manuscript. Extensive searches of catalogues of manuscripts have similarly failed to reveal its presence. ^iAmunt »on ^crfctTpcin de Admirandi» Rebus Naturae. / — —. Ejußdem Comment, de Rebus Mosco- vitlciö. 2Wpffcwitif(^e ©e^reibung. Fig. 1 - The reference to Herberstein's work, in Valvasor's book (1689, 1: (xliv)) SI. 1: Navedba Herbersteinovega dela v Valvasorjevi knjigi (1689, 1: XLIV). HERBERSTEIN THE MAN Baron Sigmund (or Sigismund) von Herberstein (Fig. 2) was born in the castle at Vipava (Slovenia) on 23 August 1486 and died in Wien on 28 March 1566 (Eyries 1817; Major 1851; Bergstaesser 1969; Sitar 1987). Although of German family he spoke Slovene. He studied law, became a soldier and fought against the Turks, and then from 1516 undertook diplomatic missions from the German court to Russia, Poland, Denmark, Turkey and elsewhere in Europe. The resulting travels provided materials for books, which seem to have Fig. 2 - Sigmund von Herberstein, aged 61, in 1548. An engraving by Angus tin Hirschvogel (reproduced by permission of the Staatliche Graphische Sammlung, München) SI. 2: Sigmund von Herber stein 1548, star 61 let, po gravuri Augustina Hirschvogla (objavljeno z dovoljenjem Staatliche Graphische Sammlung, München). been renowned for their accuracy. One on Russia, which he visited in 1517 and 1526, is the best known, running into at least 19 editions in four languages. Herberstein's birthplace, Vipava, is only 32 km from the Cerknica lake but, as his work as a diplomat took him to other countries, his native land seems not to feature in his books. WHAT WERNHER REALLY SAID Wernher dedicated his book De admirandis Hungariae aquis hypomnemation to Herberstein, and it has a foreword in the form of a letter from Herberstein to him encouraging him to publish and referring to his own experiences of springs but without mentioning Cerknica. In introducing his remarks on the Cerknica lake (Fig. 3) and writing as if addressing Herberstein, Wemher's actual words were "...de tuo sermone describam...". "Sermo" normally refers to speech, so his phrase is best translated as "I will describe from what you yourself have said" or"... told me". Thus Pullen's version, "I will describe it from what you yourself have written", hitherto the accepted English translation, is imprecise and misleading. There is thus no reason, from what Wemher wrote, to expect to find a published de^ scription by Herberstein of the Cerknica lake. But we are left with the fact that Valvasor (1689), or his co-author Francisci, refers defmetely to De admirandis rebus naturae as one of his sources. From this alone one might suspect that Herberstein did indeed write about the lake, possibly published after Wemher had used his verbal information in his own book, or perhaps left only as an unpublished manuscript. Or could the Valvasor reference have been an error? WHAT VALVASOR REALLY SAW The important question remains: what was it that Valvasor or Francisci was citing as De admirandis rebus naturae? There is no evidence of a completely spurious work being named Sed quid otftat,(luo minuslon facicm,vt earn ab alys delincataaccepifli, de tuo leimone defcri-bam, Claudi aicbas eum drcumquaq; niontibus, ^ quibus riui qiiidam i^obües /iio quifqj alueolö procurrat, aborientaliquidom plagatres, abau-ftraliquatuortfingulosquolongiusfluätjhocmi-nus ftatercaquis, terra nimirum i'pßs combibcte, doneepoflremo ab/orbeantur /črobibus faxeis, itanatis, vtliumanoopereexd&vidcripofsint. Hicaquisitarcdundatibusjvtrecipinonpoisint, fieri Fig. 3 - Wernher's acknowledgement, on lines 2 and 3, of Herberstein as the source of his information (Wernher 1551, f. 17b) SI. 3: Wernherjeva navedba, v 2. in 3. vrstici, Herbersteina kot vir informacij (Wernher 1551,f 17 b). elsewhere among the sources listed; nor would it have served any purpose. Errors in transcription were not rare at that time, but unless some other publication was known to Valvasor and his colleague that could have been erroneously recorded under that title, one is left to conclude that a manuscript account of the lake by Herberstein did once (and perhaps still does) exist. It is relevant, though, that none of the other authorities listed in the "Verzeichniss aller derer Scribenten" of Die Ehre... appear to have been unpublished. But there is a possible, even probable, way in which Valvasor's list of sources could, with a little careless copying, have produced "De admirandis rebus naturae" from a well-known book which does exist. Wernher's De admirandis Hungariae aquis hypomnemation (note the somewhat similar title) exists in several editions. As a separate publication it appeared in 1551 (Hungarian bibliographies show an edition of 1549, but no copy has been traced). This 1551 edition is of quarto size and contains only 20 leaves, so it is similar in appearance to the "Buchlein ... in Quarto" descibed in Die Ehre ... In additon, it was included (apparently without the map of the lake) as an appendix in several, but not all, editions of Herberstein's Rerum Moscoviticarum commentarij. In Latin it was published with the editions of 1556,1557 and 1571, and a German translation formed part of the 1563 and 1567 editions of the German version, Moscoviter wunderbare Historien. It appeared also, with the map, in Broniowski's book of 1595. In none of these editons was Wernher's name prominent on the title page and in the editions of 1556 and 1571 it did not appear there at all. Although his name was present in the title block of the poem, so was Herberstein's as the person to whom it was sent. It would be all too easy for a hurried editor or assistant to record the Wemher appendix under the principal name of the title page. Errors in transcribing the title in haste are also possible; such mistakes are not unknown in the 20th century. Confusion with Wernher's book is not precluded by the fact that Valvasor's list of sources includes also ""Georgius Wernerus de Admirandis Hungariae aquis"; indeed its likelihood is somewhat strengthened as even this otherwise accurate citation spells Wem(h)er's name differently from the way it is written in his book. CONCLUSION It has been shown that Wemher (1551) did not in fact refer to Herberstein's having written on the Cerknica lake but only to information obtained from him verbally. Extensive searching has failed to find any evidence of De admirandis rebus naturae by Herberstein existing at all, either printed or in manuscript. It is therefore concluded that this title, listed among Valvasor's sources as by Herberstein, is in fact an erroneous transcription of Wernher's De admirandis Hungariae aquis hypomnemation which was printed as an appendix in several editions of Herberstein's Rerum Moscoviticarum commentarij. What did Herberstein's book contain is therefore a meaningless question. What it would have contained, had it been written, would have been similar to what Wernher wrote, for the latter acknowledges that this is described "from what you [Herberstein] yourself have said." Wernher goes into sufficient detail to make it unlikly that he omitted any significant facts. ACKNOWLEDGEMENTS I am particularly grateful to Prof Dr Dieter Lohmeier, Director of the Schleswig-Holsteinische Landesbibliothek, who pointed out that Wemher's text did not in fact refer to a written description of the Cerknica lake by Herberstein; he also verified the holdings of the Danish Royal Library. W. Rudolf Reinbacher, of USA, took the Herberstein problem to heart and suggested contacts in several major libraries in Germany and Switzerland. Alan J. Clarke, Deputy Librarian of the Royal Society, and Erika Schulz of the library of the Evangelisches Predigerseminar in Wittenberg also made helpful suggestions. As always, the services of the British Library in London were indispensable. I thank also all those other libraries that reported their holding of Herberstein's Moscow book containing the Wernher text, and their non-holdings of his supposed De admirandis rebus naturae. The National Library of Hungary advised on the status of the commonly-cited 1549 edition of Wernher's book. The National and University Library of Slovenia told me of two important bibliographies. REFERENCES Baraga, F. 1990. Erazem Francisci - redaktor Valvasorjeve Slave. Valvasorjev Zbornik ob 300 letnici izida Slave vojvodine Kranjske. Referati s simpozija v Ljubljani, 1989, pp. 112-142 Bergstaesser, D. 1969. Herberstein Sigmund Frhr. Pp. 579-580 in Neue Deutsche Biographie. Berlin, Duncker & Humblot, vol. 8 Broniowski, M. 1595. Tartariae descriptio... Cologne, A. Mylius (Wemher, pp. 55-75) Ebert, F. A. 1821-1830. Allgemeines Bibliographischer Lexikon. Leipzig (vol. 1) E(yrie)s. 1817. Herberstein (Sigismond, baron de). Pp. 229-230 in Biographie universelle, ancienne et moderne, Paris, L. G. Michaud, vol. 20 Herberstein, S. von. 1556. Rervm Moscoviticarum commentarij. Basel, I. Oporinus (Wemher, pp. 173-194) Herberstein, S. von. 1557. Rervm Moscoviticarum commentarij. Antwerp (not seen; copy in Bibliotheque Nationale, Paris) Herberstein, S. von. 1563. Moscoviter wunderbare Historien. Basel (Wernher, pp. cxcii-ccxv(=ccxi)) Herberstein, S. von. 1567. Moscoviter wunderbare Historien. Basel (Wernher, pp. ccxxvii-ccxxxxvi) Herberstein, S. von. 1571. Rervm Moscoviticarum commentarij. Basel Oporinus (Wemher, pp. 173-194) Krones, F., 1871. Sigmund von Herberstein. Ein Lebensbild. Mittheilungen des historischen Vereins für Steiermark, 19, Graz, pp.[3]-76 (bibliography pp. 63-73) Major, R. H. 1851. pp. Ixxxviii, xcii & cxxxvi in Herberstein, S. von. Notes upon Russia... trans. & ed. by R. H. Major. London, Hakluyt Society, vol. 1 Moller, J. 1774. Cimbria literata, sive scriptorum utriusque Slesvicensis et Holstatici... Copenhagen Pochlin, M., 1803. Biblioteca Carnioliae. Wien, Kaiserlich-Königliche Theresianische Akademie. [Catalogus bibliographicus librorum ..., vol. 4, Appendix I (pp. [203] -316] (p. 247). [Marko Pochhn is spelled Pohlin in Slovenia, and is also sometimes listed in library catalogues as "Marcus, a Santo Antonio Paduano, Augustinian".] Shaw, T. R. 1979. History of cave science the scientific investigation of limestone caves, to 1900. Crymych, A. Oldham (pp. 413-414); and 2nd edn. Sydney, 1992 (pp. 269-270) Sitar, S. 1987. Sto slovenskih znanstvenikov, zdravnikov in tehnikov. Ljubljana, Prešernova družba (pp. 86-87) Stillwell, M. B. 1970. The awakening interest in science during the first century of printing, 1450-1550. An annotated checklist... New York, Bibliographical Society of America Valvasor, J. W. 1689. Die Ehre dess Herzogthums Grain. Laibach, 4 vols (vol. 1, pp. [xxxix] -[l];also vol.2, p.345) Wernher, G. 1551. De admirandis Hvngariae aqvis hypomnemation. Wien, E. Aquila BARON HERBERSTEIN O CERKNIŠKEM JEZERU - NEOBSTOJEČA KNJIGA IZ 16. STOL.? Povzetek Koje G. Wernher (1551) opisal Cerkniško jezero, je omenil S. von Herbersteina kot svojega informatorja. Skoraj 140 let kasneje Valvasor v svoji Die Ehre des Herzogthums Grain (1689) navaja med objavljenimi viri Herbersteinovo delo De admirandis rebus naturae. Torej se je vedno domnevalo, da ta knjiga mora obstajati. To delo bi moralo biti tiskano med leti 1510 in 1551, raje bliže 1550. Avtorje iskal po številnih knjižnicah in zbirkah dokumentov, a knjige ni našel, niti ni to delo v obliki dodatka objavljeno v kaki drugi Herbersteinovi knjigi. Iz tega izhaja sklep, da ta knjiga ni bila tiskana. Avtor domneva, daje Valvasor napačno prepisal vir - Wernherjevo delo De admirandis Hungariae aquis hypomnemation - ki je tiskano v dodatku nekaterih izdaj Herbersteinovega dela Rerum Moscoviticarum comentarij brez posebne navedbe Wemherjevega imena kot avtorja. ff iL THE BONEWELL SPRING (ENGLAND) IN VALVASOR'S "DIE EHRE DESS HERZOGTHUMS GRAIN" (1689) - THE AUTHOR'S SOURCES IZVIR BONEWELL (ANGLIJA) V VALVASORJEVI "SLAVI... (1689) - AVTORJEVI VIRI TREVOR R. SHAW Izvleček UDK 551.44 (091) Shaw, Trevor R.: Izvir Bonewell (Anglija) v Valvasorjevi "Slavi... (1689) - avtorjevi viri Bonewell (Bone Well ali Boney Well), ki ga omenja Valvasorjev sodelavec Erazem Francisci v Die Ehre dess Herzogthums Grain, je izvir iz apnenca, ki je naplavljal kosti žab. Avtorjev vir, J. C. Becmann, ga navaja po knjigi Britannia (izdaja 1607) angleškega topografa Williama Camdena. Ključne besede: krasoslovje, kraškahidrologija, kraški izvir, zgodovina krasoslovja, Anglija, Bonewell. Abstract UDC 551.44 (091) Shaw, Trevor R.: The Bonewell Spring (England) in Valvasor's "Die Ehre dess Herzogthuras Crain" (1689) - the author's sources The Bonewell (Bone Well or Boney Well), referred to by Valvasor's collaborator, Erazem Francisci, in Die Ehre dess Herzogthums Crain, is a limestone spring from which frog bones used to be washed out. The author's stated source, J. C. Becmann, obtained his information from the 1607 edition of the book Britannia by the English topographer William Camden. Key words: karstology, karst hydrology, karst spring, history of karstology, England, Bonewell. Address - Naslov Dr. Trevor R. Shaw, O.B.E. Old Rectory Shoscombe Bath BA2 8NB, U.K. In reviewing karst phenomena in parts of the world outside Slovenia, Die Ehre dess Herzogthums Grain (Valvasor 1689) refers to "Der Beinlein, Brunn in Engeland": In einer Englischen Provintz Herford-Shire bey Richards Castle (oder dem Schloss Richardi) findet man einen Brunnen welchen die Innwohner the Bonewell, (die Bein = Quelle) zu nennen pflegen; selbiger schwimmt voller Beinlein welche denen so man in den Fröschen findet nicht ungleich sehen und wann man sie gleich alle heraus nimt so ersetzt sie doch der folgende Tag wieder in voriger Menge, (a) (a) J. C. Bechmannus, Historia Orb. Terr. Part 1. Cap III 4 In the English county of Herefordshire, near Richards Castle one finds a spring which the local people call the Bonewell; the same flows full of small bones which are not dissimilar to what one finds in frogs and when they are all taken out it replaces them the following day in the same quantity. This passage is one of the several in Valvasor's book, providing background for phenomena in Slovenia, that were written by his collaborator and editor Erazem Francisci (Baraga 1990). What is this spring? How did knowledge of it reach Valvasor? And were bones really present in the water? THE SPRING The spring known as the Bone Well or Boney Well is about 5 km south-west of the town of Ludlow at latitude 52°19'43" N and longitude 2°45'48" W, more conveniently located by the National Grid Reference, SO 481703 (Fig. 1). Richard's Castle, now ruined and all but disappeared, is one of the earliest castles in England, being built about 1050 AD. The village near it is also called Richard's Castle. The standard account of springs in the county of Herefordshire (Richardson 1935) describes the Bone Well as "a strong overflow spring from the top of the Aymestry Limestone where it disappears beneath the [impervious]... Upper Ludlow beds" of the Upper Silurian period. Richardson also states that "From the collecting chamber near the spring the Manor House, Batchcott, the rectory and church are supplied by gravitation. A pipe also leads to Moor Park and several cottages." All these are shown on the map (Fig. 1) and most of them are many centuries old or have replaced older building on the same sites. The spring is now usually known as Boney Well, as printed in the official maps of the Ordnance Survey since the 19th century. The volumetric output of the spring is not known, but the National Rivers authority has authorized the use "of a maximum of 2250 gallons (10,23 m') per day and not more than 821,250 gallons (378,5 m') in any calendar year for domestic and agricultural use on the estate" (Abstraction Licence No. 18/54/ 9/5; Catherine Bason of the National Rivers Authority, pers. comm.). The present landowner. Sir Humphrey Salwey, states that the spring currently supplies seven house and is also used for providing water for livestock. VALVASOR'S SOURCES As Francisci (in Valvasor 1689) acknowledges, his immediate source was a book by Johann Christoph Becmann. This was first published in 1673, and the extract below is taken from the 2nd edition of 1680. The description there, and in the 3rd edition of 1685, is almost word for word the same as the text in Valvasor's book, except for being written in Latin. It is not known which edition Francisci used. In Herford-shire, Provincia Angliae prope Castellum Richardi, Richards Castle, Fans est Pons Ossiim, the Bonewell, communiter dictus, qvod Ossiculis fluat, lis qvae m ranis sunt non dissimilibus, qvibus etiam, si examinantur omnia, seqventi die eadem copia scatet. 48 49 HEREFORD AND WORCESTER EURO CONST LEOMINSTER CO CONST RICHARDS CASTLE (HEREFORD) CP Meeres 0 Kilometres f cSo ° r- 'c, V s \ Yards 0 Miles T- I 350 Fig. 1 - The surroundings of the Boney Well (Bone Well) at Richard's Castle SI. J: Lega izvira Boney Well (Bone Well)pri Richard's Castle. In the English county Herefordshire, near Richards Castle, a .spring is commonly called the Bonewell, because small bones flow outfi-om it, to which those offrogs are not dissimilar, which if they are all [removed &] examined, gush out the next day just as abundantly. Becmann, in turn, undoubtedly derived Iiis basic description from Britannia of William Camden, a pioneering topographical survey of the British Isles first published in 1586 and the source of very many subsequent descriptions of places in England. Valvasor does include "Camdenus" (no date) in the list of works consulted but, as has been seen, it was Becmann's book that was acknowledged as the source of the Bonewell information. When Britannia was first published, the text concerning the Bone Well was as follows: Richards Castle... Sub quo natura quae nusquam magis quam in acjua miraculis ludit, fonticulum eduxit pisciculoru ossiculis semper scatentem, quamuis subinde exhauriantur, vnde Bone Well vocitatur Mentioning fish bones only. However Camden continued to modify and add to the book until 1607, in which year the much enlarged 6th edition was issued. Here it is that the alternative of frog bones is first mentioned: Sub hoc, natura quae nusquam magis quam in aqua miraculis ludit, fonticulum eduxit pisciculorum (vel vt putant ranularum) ossiculis semper scatentem, quamuis subinde exhauriantur, vnde Bone Well vocitatur. Fig. 2 - The Bone Well about 1833 (reproducedfrom Murchison 1839, p. 250). The date is deduced from information in Thackray (1978) SI. 2: Bone Well okoli 1833 (reprodukcija iz Murchisona 1839, str 250). Letnica je določena po navedbah v Thackrayovem delu (1978). A contemporar}' English translation is that of Philemon Holland (Camden 1610): Beneath this castle, Nature, who no where disporteth her selfe more in shewing wonders, then in waters, hath brought fourth a pretie well, which is alwaies full of little fish hones, or as some thinke, of small frog-hones, although they be from time to time drawne quite out of it, whence it is commonly called Bone well. A more easily understandable translation is the one by Bishop Edmund Gibson (Camden 1695): Beneath this Castle, Nature (which no where sports her self more in shewing wonders than in the waters) hath brought forth a little Well, which is always full of small fish-bones (or as others think, small frog-bones) notwithstanding it is ever now and then emptied and cleard of them; whence 'tis commonly call'd Bone-Well. OTHER DESCRIPTIONS OF THE BONE WELL Brief reference was made to the Bone Well in Michael Drayton's topographical poem Polyolbion first published in 1612: Fig. 3 - The Bone Well photographed on 30 April 1993. The collecting chamber made of brick can be seen SI. 3: Slika Bone Wella posneta 30. aprila 1993. Viden je zbiralnik iz opeke. ... with Strange and sundry tales, Of all their wondrous things; and not the least, of Wales; Of that prodigius Spring (him neighbouring as he past) That little Fishes bones continually doth cast. Although not containing sufficient information to be Becmann's source, this reference to the spring is an early example of how, once a place of phenomenon had been described by Camden, it appeared again and again in later literature, in England and elsewhere, no matter how small its real importance. Many, including the Bone Well, continued to attract attention because of their curiosity value. It is not surprising that local guide books to the region noticed the spring. One of the earli est of these (Anon. 1811) adds the fact that the appearance of the frogs' bones "happens at two particular seasons of the year only, viz. March and September" and the writer supposed that "the coldness of the water first killed the frogs, and then destroyed and dissolved the flesh". The distinguished geologist Sir Roderich Impey Murchison (1839) had a small box of bones from the spring examined and they were identified as being exclusively of frogs, with no fish bones at all. The illustration reproduced here as Fig. 2 is taken from Murchison's book and the place is hardly changed today except that it is overgrown with vegetation (Fig, 3). lie writes; The water issues from one of the joints before described, and as this joint is doubtlessly connected with many other similar open cracks, which ramify through the higher slopes of the ridge, we can easily comprehend how the minute bones or frogs or even of mice, living and dying on the adjacent hills, shouldfrom time to time be washed down through connecting fissures and discharged at the first natural source wide enough to afford them egress; their occasional issue depending on floods, sudden thaws, and such causes. EXPLANATION OF THE BONES Wolfgang Zeuner (pers. comm.), a geologist living in the area, agrees that "Murchison was right. The explanation is that frogs got into fissures further upstream and died, and in times of flood, i. e. spring and autumn, their clean bones were washed down and settled out. Nowadays there ae not enough frogs, sadly, so no bones despite an adequate water flow". The present writer collected two very small bones from just outside the overflow of the collecting chamber in April 1993. Although they could have come from elsewhere, the spring is their most likely source. They were identified at the Natural History Museum in London (A. P. Currant, pers. comm.) as a very small bird femur and a fragment of a limb bone, possibly a femur, of a small mammal about the size of a Short Tailed Field Vole (Microtus agrestis) or Wood Mouse (Apodemus sylvaticu.s). f REFERENCES Anon. 1811. A description of the town of Ludlow... To which are added descriptions of seats and curiosities in the environs. Ludlow, W. Felton, 142 pp. (pp. 129-130) Baraga, F. 1990. Erazem Francisci - redaktor Valvasorjeve Slave. Valvasorjev Zbornik ob 300 letnici izida Slave vojvodine Kranjske. Referati s simpozija v Ljubljani 1989: 112-142 Becmann, J. C. 1673. Historia orbis terrarum, geographica et civilis, de variis negotiis... Frankfurt-am-Oder, iv, 460 pp. (There is a copy of this edition in the Bibliotheque Nationale in Paris, but none in London. The present writer has not seen it and cannot confirm whether or not it contains the passage used by Valvasor.) [Becmann, J. C.] 1680. Historia orbis terrarum, geographica et civilis, de variis negotiis... Frankftirt-am-Oder, (xii), 775, (62) pp. (p. 101) [Becmann, J. C.] 1685, Historia orbis terrarum, geographica et civilis, de variis negotiis... Frankfurt-am-Oder, (xiv), 368, (62) pp. (p. 101) Camden, W. 1586. Britannia sive florentissimorvm regnorvm, Angliae, Scotiae, Hiberniae, et insvlarvm adiacentivm ex intima antiquitate chorographica descriptio. London, R. Newbery, 556 pp. (p. 351). Camden, W. 1607. Britanna, sive florentissimorvm regnorvm Angliae, Scotiae, Hiberniae, et insularum adiacentium ex intima antiquitate. London, G. Bishop & L Norton, 860 pp. (p. 472) Camden, W. 1610. Britain, or a chorographicall description of the most flourishing kingdomes, England, Scotland, and Ireland, and the ilands adioyning, out of the depth of antiqvitie. Translated newly into English by Philemon Holland. London, G. Bishop & L Norton, xii, 822, 233, liv pp. (p. 619) Camden, W. 1695. Britannia, newly translated into English by Edmund Gibson. London, Swalle & Churchil, cxcvi, 1116cols. (col. 577) Drayton, W. (1612). Poly-Olbion. London, M, Lownes, I. Browne, L Helme & L Busbie, (xi), 303 pp. (p. 105) Murchison, R. L 1839. The Silurian system... London, J. Murray, xxxii, 769 pp. (pp. 250-251) Richardson, L. 1935. Wells and springs of Herefordshire. London, HMSO. (Memoirs of the Geological Survey of England), viii, 136 pp. (p. 84) Thackray, J. C. 1978. R. 1. Murchison's Silurian System (1839). Journal of the Society for the Bibliography of Natural History, 9 (1); 61-73. Valvasor, .1. W. 1689. Die Ehre dess Herzogthums Crain. Ljubljana. (1, p. 600) IZVIR BONEWELL (ANGLIJA) V VALVASORJEVEM DELU "DIE EHRE DESS HERZOGTHUMS GRAIN" (1689) - AVTORJEVI VIRI Povzetek Opis kraškega izvira Bonewell, ki ga opisuje Valvasorjev sodelavec Erazem Francisci v Die Ehre dess Herzogthums Grain, je takorekoč neposredni prevod odlomka iz dela J. C. Becmanna Historia Grb. Terr. (1673), ta pa gaje povzel po knjigi Britannia (izdaja 1607) angleškega topografa Williama Camdena. Izvir Bonewell je jugozahodno od mesta Ludlow (Herefordshire), pri vasi Richard's Castle, ki ima ime po enem najstarejših angleških gradov. To je relativno močan (do 10,23 m"" dnevno) prelivni kraški izvir, zajet za nekaj posestev, zažupnišče in nekaj kmetij. Imeje dobil po tem, da, kot navajajo stari viri, voda nanaša koščice žab - če se Jih pobere iz vode, jih voda takoj spet nanese. Znani geolog R. I. Murchinson (1839) je zbral koščice in jih določil kot žabje. Tudi današnji raziskovalci se strinjajo s tem, da so se žabe zalezle v razpoke ob vodi navzgor in ko so poginile, je voda nanašala njihove obeljene kosti. Žal danes ni več toliko žab in voda njihovih kosti ne nanaša več. jL DEJAVNIKI OBLIKOVANJA JAMSKE SKALNE POVRŠINE THE FACTORS INFLUENCING ON THE FORMATION OF THE CAVE ROCKY SURFACE TADEJ SLABE Izvleček UDK 551.442 (497.12) Slabe, Tadej: Dejavniki oblikovanja jamske skalne površine Speleogenetski dejavniki, ki oblikujejo skalni relief kraških votlin, se odražajo tudi na njegovi površini. Skalna površina je zato pogosto pomembna sled oblikovanja in razvoja votlin. Vodni tokovi zaradi raztapljanja in mehanskega brušenja kamnine ustvarijo gladko, razeno in obtolčeno površino. Skala je pogosto gladka tudi pod drobnozmato naplavino, drobno pa jo členi kondenzna vlaga in biogeni dejavniki. Pomembna spoznanja prispeva proučevanje skalne površine s pomočjo elektronskega vrstičnega mikroskopa. Pod velikimi povečavami so površine, ki so pri opazovanju s prostim očesom gladke, lahko raznovrstno, toda značilno drobno hrapave. Takšnaje tudi mehansko zglajena površina in skala oblikovana pod drobnozmato naplavino. Na nehomogeni kamnini je težje razbrati procese njenega oblikovanja. Površina odraža predvsem sestavo kamnine. Ključne besede: kraška votlina, skalni relief, skalna oblika, skalna površina, Slovenija, kraško ozemlje Abstract UDC 551.442 (497.12) Slabe, Tadej: The factors influencing on the formation of the cave rocky surface Speleogenetical factors influencing on rocky relief of the karst caverns reflect on its surface too. This is why the rocky surface is frequently an important clue of formation and development of the caves. Water creates either by the dissolution or mechanical polishing smooth, abrased or bruised surface. The rock is frequently smooth below the fine-grained sediments, it is thinnly etched by condense humidity or biogenic factors. The study by electronic microscope contributes important knowledge. Aided by great magnifications the surfaces seemingly smooth with a naked eye, are diversely, characterictically etched in detail. Such is also mechanically polished surface and rock below the fine-grained sediments. The processes of such formation are much more difficult to be viewed on the unhomogeneous rock. The surface reflects the lithology mostly. Key words: karst cave, rocky relief, rocky feature, rocky surface, Slovenia, karst area Naslov - Address Tadej Slabe, dr. dipl. geogr., znanstveni sodelavec Inštitut za raziskovanje krasa ZRC SAZU Titov trg 2 SI-66230 Postojna, Slovenia UVOD Pri proučevanju oblikovanja in razvoja jamskega skalnega reliefa, sestavljenega iz raznovrstnih skalnih oblik, pozornost posvečam tudi njihovi površini. Gladkost in hrapavost skalne površine sta posledici lastnosti in učinkovitosti dejavnikov, ki v različnih hidroloških pogojih povzročajo procese na kamnini in odnašajo njihove proizvode. Kamnina skalnega oboda rovov s svojo sestavo, skladovitostjo in pretrtostjo odloča o nastanku različnih skalnih oblik in vpliva na njihovo oblikovanje in površino. Skalno površino lahko opišemo kot gladko ali hrapavo, bodisi, dajo opazujemo s prostim očesom ali povečano. Pod velikimi povečavami elektronskega vrstičnega mikroskopa so skorajda vse skalne površine vsaj deloma hrapave. To je posledica zrnate sestave karbonatnih kamnin. Skalna površina je sprana, ko dejavniki, ki delujejo nanjo, odnašajo proizvode procesov, ali pa je preperela. Takšna je, ko jo prekriva mehka plast deloma raztopljene kamnine. Skalno površino in način njenega oblikovanja sem skušal predstaviti že v poročilih o proučevanju posameznih jamskih skalnih oblik. Z novimi dognanji dopolnjene in povezane izsledke sem strnil v samostojno poročilo, saj se izkazalo, daje površina jamskega skalnega reliefa pomebna speleomorfogenetska sled. Površino skalnih oblik je z elektronskim vrstičnim mikroskopom fotografiral V. Segala (Oddelek za geologijo, Montanistika). Delo poteka v okviru projekta Nastanek in oblikovanje kraških votlin, ki ga denarno omogoča Ministrstvo za znanost in tehnologijo Republike Slovenije. VIRI O PROUČEVANJU SKALNE POVRŠINE Pogosto so omenjene posamezne značilnosti skalne površine kot posledice litoloških značilnosti ali različnih dejavnikov, ki oblikujejo kamnino. Nisem pa zasledil celovitega pregleda tovrstnih izsledkov. Pomen litoloških značilnosti pri oblikovanju skalne površine, reliefa skalne površine kot ga imenuje Renauh (1958, 27) je izpostavilo več speleologov. Renault (1958, 27) je naštel fosile, leče roženca in žile kalcita, ki štrlijo iz sten. Površino, prepredeno z žilami kalcita, ki štrlijo iz sten v pravokotni mreži, poimenuje z angleškim izrazom boxvvork, če pa so kalcitne žile razvrščene vzporedno, jih imenuje francosko palletes. Boxwork je leta 1942 opisal Bretz. Pri njegovem nastanku je poudaril, poleg značilnosti liamnine, pomen selektivne korozije zaradi stoječe vode. Sweetingova (1972, 78) pravi, da so karbonatna zrna s polinomnimi kristali počasneje topljiva. Ek in Roques (1972, 71) pišeta, da se drobnozmat kalcit raztaplja hitreje kot tisti, kije sestavljen iz večjih kristalov. To je posledica večje odpornosti kristalnih ploskev in omrežne energije večjih kristalov. Tudi Trudgill (1985, 76) poudarja velik vpliv litoloških značilnosti kamnine pri razvoju jamskih sten. Različna topljivost posameznih delcev kamnine in ostankov fosilov povzroča lokalno vrtinčenje vodnega toka. Drobne različnosti v topljivosti kamnine določajo mikrotopografijo (Trudgill 1985, 20). Herman in White (1985) sta ugotovila, daje površina dolomita zaradi različno velikih kristalov hrapava. Ford in Williams (1989,286,287) sta opisala boxwork na drobno razpokanem dolomitu, v katerem so razpoke zapolnjene s kalcitom. Kasneje seje na kalcitne žile odložil nov kalcit in mreža zato štrli 100 cm iz sten in stropa rova. Couturaud (1989, 38) je ugotovil, da se fosili iz oolitnega apnenca lahko izluščijo, iz mikrokristalinskega pa ne. Zato v prvem nastanejo vdolbinice. Izpostavljen je tudi pomen dejavnikov in procesov, ki značilno oblikujejo skalno površino. Trudgill (1979,33) trdi, daje skalna površina gladka, če jo hitro razjeda tekoča agresivna voda, ki raztopino hitro tudi odnaša. Opiše (Trudgill 1985, 38) tudi glajenje površine zaradi skrajno kislih vod, ki delujejo na apnenec. Dognanja je dokazoval z laboratorijskimi poskusi. SI. 1. Fasete na paleogenskem apnencu v Beško ocizelski jami (merilo = 15 cm) Fig. 1. Current markings on the Paleogene limestone at Beško-Ocizelska jama (scale = 15 cm) ko jc uporabil kisline, in s posnetki skalne površine z elektronskim vrstičnim mikroskopom. Močna reakcija in počasno odnašanje raztopine povzroči gladko površje in obratno razmerje hrapavo. Gams (1963,10; 1971, 36) že prej ugotavlja, da voda, ki pronica skozi drobnozmato preperclino, ustvari gladke ploskve homogene kamnine. Kranjc (1985) je s površine prodnikov razbral zadnji proces njihovega oblikovanja. Gladki so zaradi mehanskega brušenja, hrapavi pa zaradi raztapljanja kamnine. Slednji so v Babji jami starejši. Površino, na kateri se poznajo udarci prodnikov - to so vdolbinice ali pa razbita površina, je opisal Mihcvc (1989). Zaradi kavitacije naj bi bila skalna površina luknjičasta (Cigna 1983, 485). Predlaga (Cigna 1983,485) mikroskopsko opazovanje izpostavljene skalne površine zaradi morebitno premaknjenih kristalov. Polzeča voda v subkritičnem turbolentnem režimu oblikuje navpične in gladke stene, saj ob ovirah nastanejo hidravlični skoki, ki pospešijo erozijo (White 1988, 168, 297). Agresivna voda, ki polzi po previsni kamnini, gladi njeno površino (Gams 1962/1963). Voda se namreč težnostno zbira na delcih, štrlečih iz kamnine, ki so zato podvrženi hitrejši koroziji. Skalno površino značilno členijo tudi biogeni dejavniki. Ti so kemični in fizikalni (Ollier 1984, 10). Epiliptični lišaji povzročijo nastanek gladke površine, endolitični pa se zajedajo SI. 2. PovrL,,^, y r dikem Hublju Fig. 2. The limestone surface in Veliki Hubelj V kamnino in ustvarjajo vdolbinice (Sweeting 1967). Lišaji lahi^o povzročijo destrukcijo mineralov (Ollier 1984, 53). Trudgill (1985) je z elektronskim vrstičnim mikroskopom ugotovil, da so se v romboidne kristale zajedle alge. Najbolj natančno je posledice lišajev na karbonatnih kamninah razčlenil Viles (1987). Glive povzročajo nastanek vdolbinie, nitasti deli alg pa kanalčkov. Tako mikrotopografijo je imenoval biokras (Viles 1987, 467, 468). Zajede nastanejo med kristali, izvrtine pa tudi v njih. Karbonate napadajo tudi kisline bakterij (Chorlev 1984). Pogosta so dela, ki poročajo o vplivu morske bioerozije na karbonatno kamnino. Ta ni predmet tokratnega proučevanja, le metoda, ki stajo uporabila Palmer in Plewes (1993, 139), bi lahko bila uporabna. Biogene zajede sta zalila s epoksidno smolo in SI. 3. Površina konglomerata sfasetami v Smoganici (merilo=15 cm) Fig. 3. The conglomerate with current markings surface in Smoganica (scale =15 cm) nato raztopila kalcit. Na ta način so lepo razvidne posledice na apnencu in razpoznati je moč njihove povzročitelje. Pri proučevanju jamskih skalnih oblik sem speleomorfogenetski pomen njihove skalne površine določeval tudi sam (Slabe 1987, 1988, 1989, 1990, 1992, 1993). OBLIKOVANJE SKALNE POVRŠINE ZARADI OBLI VAN JA KAMNINE Z VRTINČASTIM VODNIM TOKOM Skalni relief kraških votlin najbolj učinkovito oblikujejo vodni tokovi. Zaradi vrtinčenja vode ob hrapavi površini skale nastanejo fasete. Ob stropnih razpokah, zajedah in zaradi vrtinčenja vode ob zoženju ali razširitvi rovov se oblikujejo stropne kotlice, v skalnih strugah vodni tok dolbe draslje, med izrazitimi razpokami nastanejo skalni stebri in noži. Vodni tok raztaplja kamnino in jo mehansko brusi s trdnim tovorom, ki ga prenaša. Površino, ki je izpostavljena vodnemu toku, lahko razdelimo na gladko, razeno in obtolčeno. Fasete (Slabe 1993, 153) nastanejo predvsem na homogeni kamnini. Njihova površina, še zlasti manjših, je gladka. Iz površine pa lahko štrlijo sparitni kristali, kalcitne žilice, fosili in intraklasti v mikritni osnovi ali pa se vanjo zajedajo vdolbinice, ki so vezane na hitreje topljive dele kamnine ali na drobne razpoke (Slabe 1993, 157). To je posledica različne topljivosti posameznih delov kamnine. V Ocizeljski jami (Slabe 1993, 153), kjer SI. 4. Majhne fasete na apnecu iz katerega štrlijo gomolji roženca v Malih jamah Postojnske jame (merilo^ 15 cm) Fig. 4. Small current markings on the limestone, the chert nodules protruding, Male jame in Postojnska jama (scale = 15 cm) SO fasete na paleogenskem apnencu (sl.l), se alveoline, numuliti in orbitoline na površini faset ne odražajo veliko. Na nehomogeni kamnini, sestavljeni iz različno velikih in topnih delcev, majhne fasete ne nastanejo, večje pa so raznovrstnih oblik (Slabe 1993, 153). V Velikem Hublju je površina prekristaliziranega apnenca hrapava (si.2). Iz nje štrlijo 1-3 cm veliki sparitni kristali. Na občasno poplavljenem delu stene v Pivki jami so fasete dolge okoli 3 cm, kjer pa štrlijo 1,5 cm iz površine rudisti, faset ni. Tudi v Predjami v Ponomi jami Lokve iz stene štrlijo rudisti. Prek njih je vrezana drobno razčlenjena mreža večjih faset s hrapavo površino. V Križni jami in v Velikem Hublju iz dolomita štrlijo manjši in večji skupki kristalov sparitnega veziva, ki povečuje obstojnost kamnine v vodnem toku. Zato v Križni jami dolomit štrli iz sten. V njegovo površino so zajedene posamezne majhne vdolbinice. Majhne površine krojivega dolomita v Pucovem breznu pa so gladke. Krojivost povzroča, da se kamnina členi v stopničke. V Smoganici so v strugi iz karbonatnega konglomerata fasete (si.3) le na kosih apnenca, ki so nekajkrat večji od faset. Vezivo, v katerem so manjši kosi apnenca in peščenjaka, je grobo hrapavo in v razčljenjih konicah štrli iz skalne površine. V Podstrešju Male Boke intraformacijsko brečo sestavljajo manjši deli kamnine (1-3 cm premera), vmes paje trdno sparitno vezivo, ki štrli iz sten. Med sparitnim vezivom so oglate vdolbine, ki so SI. 5. Stropna kotlica v apnencu z roženci v Stari jami Predjame (10 cm = 2m) Fig. 5. Ceiling pocket in limestone with cherts in Stara jama ofPredjama (scale = 10 cm- 2 m) podolgovate ob razpokah, V bližnjem rovu z apnenčastim obodom, kjer so ob visokih vodah podobni hidrološki pogoji, nastanejo fasete. V Lepih jamah Postojnske jame štrlijo med fasetami do 2 cm iz stene podolgovate leče roženca (si.4), katerih površina je nazobčana z ravnimi ali le malo zaobljeni ploskvami. Od nastanka stropne kotlice zaradi vrtinca v vodnem toku ali povezave z zračnimi mehurji in od sestave ter razpokanosti kamnine je odvisna tudi zglajenost njene površine. Kotiice na homogeni kamnini, ki jo obliva hitrejši vodni tok, imajo gladke obode (Babjajama), na nehomogeni kamnini pa iz njihove površine štrlijo počasneje topni delci kamnine (Matijeva jama) in roženci (si.5). Njihova površina je razčlenjena tudi ob drobnih razpokah (si.6). V Rakovem rokavu v Planinski jami visoke vode stisnejo in osamijo zračne mehurje v stropne zajede. Površina plitkih, a dokaj širokih kotlic nima izrazitih znakov vrtinčenja vode in je hrapava. To bi bila lahko posledica kondenzne korozije, ki pa je kotlice verjetno le preoblikovala. Podobno hrapava so tudi dna kotlic v niši Križne jame. Mucke, Völker in Wadevitz (1983) poudarjajo pomen kondenzne korozije v stropnih zajedah, v katerih je ujet zrak. Kondenzacija je mogoča, če je voda toplejša od kamnine. Pogosto se pri razlagi nastanka kotlic omenja pomen plinov s CO,, ki se v vrtinčastem toku dvigujejo navzgor in pospešujejo raztapljanje. Tudi raztapljanje CO, iz zraka, kije pod velikim pritiskom ujet pod stropom, naj bi povečalo lokalno korozijsko stopnjo (Bögli 1978,158; Ford & Williams 1989, 298; Cser 1988, 132). Kotlice z ravnim dnom, ki nimajo izrazitih znakov vrtinčenja. SI. 6. Stropna kotlica v Ponornijami Lokve v Predjami (10 cm = 1,5 m) Fig. 6. Ceiling pocket in ponor cave of Lokva, Predjama (10 cm = 1.5 m) SO tudi V Vodni jami v Loži in v Divaški jami. V času obiska so bila dna kotlic prekrita z gosto mrežo svetlečih kapljic. Te bi lahko zaradi korozije pod njimi vplivale na preoblikovanje starih kotlic. Nastanek kotlie z ravnim dnom Cser in Szenthe (1986, 279) razlagata s premikanjem zračnih mehurjev pod stropom. Površina draselj je gladka ali pa so na njej tanke raze. Te so v globljih drasljah vodoravne, kar je posledica strujnic v vrtincu. 10-20 cm pas okoli draselj jc mehansko zglajen, fasetc segajo vse do njihovega roba (Slabe 1989, 86, 87), v Polhovem rovu v Mali Boki (si.7) pa je brečasta skala grobo hrapava. Obod draselj je v vseh primerih gladek. Takšna je tudi površina draselj, ki so nastale v kremenovem peščenjaku v Smoganici. Gladki so tudi prodniki, ki prekrivajo dna strug ali pa so v drasljah. Gladka (si.8) in obtolčena površina sta značilni za večino pritočnih delov strmih, skorajda pravokotno vodnemu toku izpostavljenih ovir v strugah. Skalne površine, ki jih gladijo hitrejši vodni tokovi, so izpostavljene koroziji in mehanskemu brušenju. Proučil sem jih z elektronskim vrstičnim mikroskopom. Zbruski kamnine nam omogočajo primerjavo njene sestave in izpostavljene površine. Pod večjimi povečavami elektronskega vrtičnega mikroskopa so jasno razvidne razlike v gladkosti skalne površine. Manjše fasete, ki so nastale na biomikritnem apnencu v Križni jami in na biomikrosparitnem apnencu v Škocjanskih jamah (Slabe 1993, 157), so najbolj „' v f? . • . U v? 'TOr , t ■sv-«-- -v,-,.- ii_ r _isLJdt_^m-^ SI 7. Draslje na breči v Polhovem rovu Male Boke Fig. 7. Rock-mills in breccia, Polhov rov of Mala Boka ■■:-J 'P m ./-'ip C gladke (si.9). Površina večjih draselj (si. 10) na biomikrosparitnem apnencu v Šumeči jami pa je enakomerno, drobno hrapava po vsem prečnem prerezu. Nekoliko bolj gladka je površina manjših, polkrogelnih talnih kotlic. Drobno hrapava je tudi površina prodnikov (paleogenski biomikrit) v Šumeči jami, zglajenih sten v Babji jami in strmega pritočnega dela izbokline v strugi Vzhodnega rova v Predjami (si.8). Na povečavah gladkih površin, na katere deluje vodni tok s prodom in peskom, so lepo razvidne raze (sl.l 1) in manjši kraterji (si. 12). V njih je kamnina zdrobljena. Najbolj izrazito je razčlenjena obtolčena površina, ki pa je razvidna že s prostim očesom (si. 13). Kraterji v njej so globji, kristali različno pretrti in ostro lomljeni. Sestava kamnine se na mehansko zglajenih površinah ne odraža veliko, nekoliko odstopa le rekristaliziran in pretrt biomikriten dolomit v Pucovem breznu. Ugotovimo lahko, daje oblikovanost skalne površine, ki jo nazorno razčlenimo šele pod večjimi povečavami, posledica različnih procesov, ki delujejo nanjo. Zglajena površina manjših faset in manjših kotlic je posledica prevladujočega, pretežno korozijskega delovanja hitrejšega vodnega toka. Vrtinčasto jedro se povsem približa steni in odnaša tudi počasneje topne delce kamnine, ki štrlijo iz nje. Za obe obliki je značilno, da sta v v zatišnih legah (si.8), odmaknjene od vlečenega vodnega tovora, torej na odtočni strani grbin, zgornjih ploskev skalnih blokov, ali pa višje na steni. Mehansko zglajene površine so pod velikimi SI. 8. Gladekpritočni del izbokline v strugi in odtočni s fasetami v Vzhodnem rovu Predjame Fig. 8. Smooth inflow part ofprotruding in the river bed and the outflow part with current markings, Vzhodni rov of Predjama povečavami drobno hrapave zaradi trenja prodnikov in peska ob skalno strugo. Najbolj izpostavljeni deli skalnih blokov in izboklin na dnu struge pa so pogosto obtolčeni. Takšen je tudi strop za ožino v Babji jami (si. 13), kjer hitre visoke vode vrtijo prod. Skratka, vodni tok praviloma gladi skalno površino bodisi zaradi raztapljanja ali mehanskega delovanja. Kamnina, ki je izpostavljena korozijskemu delovanju hitrega vodnega toka, pa je lahko tudi hrapava, še zlasti, ko jo sestavljajo večji fosili, sparitni kristali, je brečasta ali konglomeratna. Mehansko delovanje vodnega toka, ki prenaša prod in pesek, takšno površino zgladi. Na tako glajeni kamnini so skalni robovi zaobljeni. Ko pa so na skali fasete, ki imajo pogosto gladke površine, in njeni robovi ostri, pa prevladuje proces raztapljanja kamnine. Vsekakor je trditev, da gladko skalno površino oblikuje le mehansko delovanje vodnega toka (Cser 1988, 132), preveč poenostavljena, kar se izraža tudi na mikroskopskih posnetkih. Največkrat so skalne oblike, ki nastanejo v freatičnih razmerah, pretežno korozijske, delež erozije pa se povečuje s približevanjem k hitrim odprtim tokovom. Tudi onesnaženost voda lahko vpliva na skalno površino. Površina draselj na dnu struge v Škocjanskih jamah je bila prevlečena s tanko plastjo smolnate snovi (si. 14). Kakšna je, nismo uspeli ugotoviti. Težko jo je bilo odstraniti, čeprav smo poskušali z alkoholom in acetonom. Predvidevam, daje ostanek usedline iz onesnažene Reke. V njej so sprijete tudi prinesene diatomeje. V robnih delih struge te prevleke ni bilo. Usedala seje torej predvsem SI. 9. Površina majhne fasete v Križni jami Fig. 9. The surface of small scallop, Križna jama iz nižjih voda. Visoke vode so bolj razredčene in mehansko učinkovite. Lahko pa opazujemo, da v zadnjem času voda oblogo odstranjuje, saj struga ni več sluzasta in spolzka. POVRŠINA OBNAPLAVINSKEGA SKALNEGA RELIEFA Površina večine skalnih oblik, ki sestavljajo obnaplavinski jamski skalni relief (Slabe 1992), je, če je opazovana s prostim očesom, gladka. Takšna je površina skalnih oblik, ki so nastale zaradi korozije ob stiku z vlažno drobnozrnato naplavino (podnaplavinske in nadnaplavinske vdolbinice, zajede), ali pa nadnaplavinskih žlebov, ki so nastali zaradi pretakanja vode nad naplavino. Resda, tudi ti so bili pogosto zapolnjeni z naplavino. Na površini manj homogene kamnine pa se lahko odraža njena sestava. Drobne kalcitne žilice sestavljajo "boxwork" (Slabe 1992, 30). Iz kamnine štrlijo večji fosili, silikatni delci, še najbolj hrapava pa je praviloma površina dolomita, ki ga sestavljajo različno veliki kristali, prepredajo pa kalcitne žilice. Gams (1971, 37) je podobno ugotovil za podtalne skalne oblike, ki so nastale na apnencu s fosili in z gostimi žilami rekristaliziranega kalcita. Konveksni deli ostajajo ostri, konkavni pa se zaobljijo (Mowat 1962). Ostre robove imajo kalcitne žile, vdolbinice pa so zaobljene. Nadnaplavinske vdolbinice, katerih obliko narekuje sestava in razpokanost kamnine, lahko dosežejo več cm premera (Slabe 1992, 20). Lahko gladkost skalne površine povežemo z ugotovitvijo Trudgilla (1979, 3 8), da močna reakcija in slabo odnašanje razstopine gladita kamnino? Voda je verjetno agresivna tudi • 'Vt/.- it^ /ui-. -I »v SI. 10. Površina draslje v Škocjanskih jamah Fig. 10. Rock-inill surface, Škocjanske jame zaradi organskih snovi v naplavini (Slabe 1989, 212). Tudi Gams (1963, 10) ugotavlja, da voda, ki pronica skozi prst, ustvari gladko kamnine pod njo. Predvidevam, da ja gladka površina posledica enakomerne korozije, ki deluje na razmeroma homogeno kamnino. Najprej se raztopijo hitreje topni delci kamnine in tako se povečuje koroziji izpostavljena površina počasneje topnih delcev. Večje nehomogenosti se torej ne izravnajo. Skalna površina, kije (bila) prekrita z naplavino, je pogosto preperela. Na njej so netopni ali počasneje topni ostanki kamnine. Preperelost je posledica počasnega odplakovanja proizvodov raztapljanja kamnine. Pod velikimi povečavami elektronskega vrstičnega mikroskopa so površine obnaplavinskih skalnih oblik, ki so s prostim očesom gladke, drobno hi-apave (Slabe 1992, 29) (si. 15). Iz površine štrlijo posamezni večji kristali ali skupki manjših. Drobna hrapavost je posledica zrnate kamnine, kije podvržena enakomerni koroziji. Tudi manjši vodni tokovi v nadnaplavinskih žlebovih so prešibki, da bi s površine trgali štrleče kristale. POVRŠINA SKALNEGA RELIEFA, KI GA OBLIKUJE POLZEČA VODA Pri oblikovanju sten brezen je pomembna tudi sestava kamnine, po kateri polzi voda. Iz površine žlebičev v Bazinovi jami pri Podlaških topolih izstopajo kalcitne žilice. V Smoganici SI. 11. Raze na erozijsko zglajeni steni Fig. 11. Abrasion on erosionally polished wall se stik med grobozrnato in drobnozrnato apnenčasto brečo na oblikah skorajda ne odraža (si. 16), je pa površina prvega bolj hrapava. V jami R3 na Podgorski planoti iz majhnih žlebičev, ki so nastali na paleogenskem apnencu, štrlijo numuliti. Nekateri imajo le še šibka pritrdišča. V podobnih razmerah pa v Breznu pri Skrklovici skalno površino razčlenjujejo assiline. V breznu Morska lilija na Trnovskem gozdu iz stene tudi več cm daleč štrlijo fosili lilij (crinoide). Na stenah brezen v Veliki ledenici v Paradani, ki so ponekod dolomitne ali pa dolomitne in deloma apnenčaste, značilnih oblik, ki bi jih vrezala polzeča voda, ni. Iz dolomita štrlijo oglati kosi kamnine (si.17). Površina apnenca je bolj gladka in na njej so vdolbinice. Večji skupki kristalov rekristaliziranega dolomita so odpornejši. Tudi v Co meandru na Kaninu, kjer iz stene štrlijo veliki fosili (si. 18), značilnih sledov polzenja vode ni. V prelomnih conah so nastali ozki in drobnonazobčani roglji, ki štrlijo iz sten (Slabe 1990, 192). Njihovo površino oblikuje tudi krušenje pretrte kamnine. V Ledenici na Dolu je navpična površina skale, kije homogena in nerazpokana, gladka. To se ujema z Whitovo (1988, 168, 297) razlago nastanka navpičnih sten, kije povzeta v pregledu literature. Voda s površine tudi trga večje kristale. Pod brezni se pogosto nakopiči drobnozrnat pesek (Zupan &Mihevc 1988). Oblikovanje stropa s polzečo vodo sem si pomagal razložiti s poskusi na mavcu (Slabe 1990, 180). Skozi kanalčke v mavcu je prenikala voda. Ob ustju na stropu so se razlivale posamezne kaplje in nastala je vdolbinica. Tovrstne kotlice sem opisal pri proučevanju Volčje jame na Nanosu (Slabe 1990, 178). Izluščimo lahko tri značilne površine (Slabe 1990, 181), ki so koncentrično razporejene okrog dotočnega kanalčka. Notranja površina SI. 12. Krater z zdrobljemini zrni Fig. 12. Crater with broken grains kotlice Je gladka, saj je bila dokaj enakomerno oblita z vodo. Gladka površina je posledica težnostnega zbiranja vode na štrlečih delcih kamnine in ti so podvrženi hitrejši koroziji. Srednji kolobarje hrapav in koničast. Vodni film, ki gaje oblival, je bil tanjši. Enaka količina vode, kot v prvem primeru, seje razlila preko večje površine. V zunanjo površino so zajcdeni različno široki in plitki žlebiči, po katerih se je voda pretakala strnjeno. Oblikovanost površine je predvsem posledica različne količine vode, ki obliva kamnino različne sestave. Kot lahko opazimo v Volčji jami in Ledenici na Dolu, pav Kamnešci in Ciganski jami pri Predgrižah, so stropne konice trikotnega prečnega prereza in imajo zaobljene vrhove. Dolge in široke so do 1 cm. Pod vrstičnim mikroskopom (Slabe 1990, 178, 179) so vidne v vdolbinicah med konicami globlje zajede. Na konicah je kamnina manj razčlenjena. Nastanejo zaradi neenakomernega raztapljanja kamnine pod tankim filmom vode, ki se razliva po stropu. Voda se zbira na štrlečih delcih kamnine, kjer pa je že manj agresivna ali pa že odlaga raztopino. Zato se razlika med konicami ter vmesnimi vdolbinicami še povečuje. Kapljice, ki oblikujejo talne vdolbinice, padajo na njihovo dno in se razpršijo. Obod vdolbiniceje zato gladek, površina okoli nje pa zaradi pršenja vode, ki se odbija iz vdolbinice, drobno luknjičasta. To seje pokazalo tudi pri poskusu z mavcem. SI. 13. Obtolčena površina stropa za ožino v Babjijami Fig. 13. Bruised ceiling surface behind the narrowing, Babjajama POVRŠINA S KONDENZIRANO VLAGO OBLIKOVANE SKALE V votlinah, skozi katere kroži zrak, se na skalnem obodu pogosto kondenzira vlaga (Slabe 1988). Kondenzacija zračne vlage je posledica ohlajevanja toplejšega zraka na stiku z mrzlim ali pa oblivanja hladnih sten s toplejšim zrakom. Pri ohlajevanju toplejšega, razmeroma bolj vlažnega zraka, se izloči presežek vlage na skalni obod. Skalno površino, izpostavljeno koroziji, ki jo povzročo kondenzirana vlaga, s prostim očesom lahko razdelimo na gladko in hrapavo ter preperelo. Pod povečavo vrstičnega mikroskopa je v vseh primerih dokaj hrapava (si.19), (Slabe 1989, 216). Gladkost in hrapavost površine sta posledici razmerja med učinkovitostjo korozije in odnašanjem raztopine, ki sta pogojeni zlasti s količino vlage, izločene iz zraka, in nehomogenostjo ter razpokanostjo kamnine, na katero se vlaga izloča. Zaradi počasnega pretoka toplejšega zraka pod stropom rovov nastanejo žlebovi, kotlice in velike fasete. V vhodnem delu Trhlovee je v rovu, ki je že nekoliko odmaknjen pred neposrednimi zunanjimi vplivi, plitek, polkrožen stropni žleb. Njegova površina je bolj grobo hrapava kot okolna skala. Stropne kotlice v začetku vhodnih rovov, kjer je kondenzacija najbolj izrazita, pa imajo gladko površino. Kondenzirana vlaga pogosto le preoblikuje stari skalni relief. V Komarjevem rovu v Dimnicah smo ugotovili, da zaradi večje količine vlage s površine razmeroma homogenega biomikrosparita in dismikrita odpadajo večji sparitni kristali, ko se hitreje stopi mikritno vezivo (Slabe 1988, 90). Površina je zato gladka. Na delih oboda, kjer je vlage premalo, da 58?". - ■ " ■■■•■■..J' SI. 14. Smolnata plast na skali v strugi Škocjanskih jam Fig. 14. Layer on the rock in the river bed, Škocjanske jame bi raztopila in razločila tesneje povezane skupke sparitnih zrn, nastajajo med njimi drobno razjedenc luknjice. Podolgovate vdolbinice so pogoste tudi na drobno razpokanih stenah ali natanko plastoviti kamnini (Slabe 1989,214). Na delih kamnine, kjer je bilo kondenznc vlage v Komarjevem rovu še manj, iz mikritne osnove štrlijo zrna sparita. V Medvedjem rovu v Križni jami zaradi šibke kondenzne korozije iz stene štlijo žilice kalcita (boxwork) (Slabe 1989, 214), ki so počasneje topne od okolne mikritne kamnine. Iz stene v vhodnem delu Zadlaške jame štrlijo posamezne večje debelozrnate kalcitne žile. Ob drobnih razpokah gosto pretrtega apnenca v Golobji jami na primorskem kraškem robu in v Križni jami (Slabe 1989,214) so nastale nekaj mm globoke, podolgovate vdolbinice, prepletene v pravokotno mrežo. Vlage se kondenzira precej, zato hitro odnaša raztopino. Skalo v Golobji jami spira tudi voda, ki občasno prenika skozi tanek strop. Manjše in plitke vdolbine ter drobne razjede na breči Zadlaške jame so vezane na hitreje topne dele kamnine (si.20). Na stropu so štrline, ki so dolge do 10 cm in nazobčano razčlenjene. So ostanki rekristalizirane, le deloma topne naplavine, ki seje sprijela s karbonatno kamnino in jo zaščitila pred razjedanjem. Pogosto so površine, ki so izpostavljene kondenzirani vlagi, preperele. Skalo prekriva mehka plast neraztopljene kamnine, ki se ob dotiku razmaže. Takšni primeri so v vhodnem rovu Volčje jame na Nanosu, v Veliki Kozinski, Križni in Ciganski jami. V slednji je preperela plast kamnine debela 3 mm. Iz podpisov in datumov na steni, v katero so bili vrezani s trdim SI. 15. Podnaplavinska površina pod elektronskim vrstičnim mikroskopom Fig. 15. Below-sediment surface seen by the ectronic microscope predmetom V mehko površino leta 1890, sklepam, da je v stotih letih preperel 1 mm skale. Preperela skalna površina ovira dostop vlagi in onemogoča hitrejše razjedanje stene. Apnenec v Volčji Jami Jc 1,5 mm debelo preperel in razčlenjen z luknjičastimi razjedami (Slabe 1990, 181). Dolomitna kamnina v bližini ima le nekaj desetink mm debelo, manj izrazito preperelo površino. Tudi v Veliki Kozinski jami je strop na prehodu v spodnji del Jame 3-5 mm debelo preperel. Kondenzacija je šibka. Določili smo količino CaC03 v kamnini in v prepereli plasti, ki jo prekriva. V kamnini gaje bilo 95,7 % v prepereli plasti pa 2 % več. Vlage Je premalo, da bi raztopino sprala. V sušnejšem obdobju voda iz raztopine izhlapeva SI. 16. Žlebiči na stiku grobozrnatega in drobnozrantega apnenca v Sinoganici (merilo= 15 cm) Fig. 16. Runnels at the contact of coarse-grained and fine-grained limestone, Smoganica (scale = 15 cm) in na površju se zato izločajo kristali kalcita. Preperela plast je bila v jami vlažna in se jc ob dotiku razmazala. V suhem laboratorijskem zraku pa se je posušila in postala trdnejša. Kalcit je rekristaliziral. Podobnemu procesu sem lahko sledil v Komarjevem rovu v Dimnicah (Slabe 1988, 90). Največ prevleke je bilo na delih stene, kjer seje vlaga kondenzirala redko in je izhlapevanje zato bolj učinkovito. SI. 17. Stena brezna v Veliki ledenici v Paradani, stik apnenca in dolomita (merilo^-- 15 cm) Fig. 17. Pothole wall, contact of limestone and dolomite, Velika Ledenica in Paradana (scale = 15 cm) POVRŠINA PODLEDNEGA SKALNEGA RELIEFA Vdori mrzlega zraka s površja v jamo ohladijo površinsko plast stene in voda, ki polzi po njej, zmrzuje. Ledena obloga se najprej stopi na stiku s steno in jo kratek čas vlaži. V vhodnem delu Velike ledenice v Paradani, kije skorajda celo leto obdan z ledom, so stene zaobljene in dokaj gladke. Spodnji del rova, kjer je led najdlje, je nekoliko razširjen in stene ob njem so previsne. Podiedne zajede (si. 21) so posledica enakomerne korozije ob stiku z ledom. Manjše štrline imajo večjo površino izpostavljeno koroziji. Skalaje nekoliko vboklo razčlenjena le ob razpokah. Okolna skala, kije dokaj gosto pretrta, ni pa obdana z ledenimi oblogami, razpada in obod sestavljajo manjše in večje, dokaj ravne ploskve. Pogosto se pod ledom, kije najbolj debel prav na tleh rovov, preoblikujejo skalni bloki iz oglatih v zaobljene in gladke (Volčja jama). Na stropu vhodnega dela Velike ledenice v Paradani so vdolbinice (sl.22). Predvidevam, da so nastale ob taljenju tanke ledene obloge, ki obda strop rova. Kratkotrajno vlaženje kamnine z manjšo količino vlage je povzročilo raztapljanje najhitreje topnih delcev kamnine. SI. 18. Površina brezna v Čo meandru na Kaninu Fig. 18. Pothole surface, Čo meander, Kanin BIOGENO RAZJEDENA SKALNA POVRŠINA Deli stene v vhodnih metrih Voičjejame so poraščeni z Hšaji. Skozi vliod prodira svetloba v jamo vzporedno s steno. Skalna površina pod lišaji Je razčlenjena v luskinasto se prekrivajoče štrline, ki so usmerjene proti izhodu. V razjedah med štrlinami so lišaji. Predpostavljam, da raztapljanje skale pospešuje tekočina, ki sc v kapljieah zadržuje v lišajih na prisojni strani (Slabe 1990, 182). Lišaje, zajedene v apnenec, sem opazoval tudi pod povečavo elektronskega vrtičnega mikroskopa (si.23) (Slabe 1990, 183). Skozi štrline so nitasti deli lišajev zajedli kanalčke. Pod tanko plastjo lišajev so na stenah vhodnega dela Velikega Hublja nastale vdolbinice (si.24). Svetloba sije naravnost na steno. Lišaj i so verjetno prekrili vso skalno površino in hitreje razjedli bolj topne dele kamnine. Sedaj so ohranjeni v vdolbinicah ter v zajedah ob drobnih razpokah. Kaže, daje to tudi posledica občasnega oblivanja stene z vodnim tokom, ki spira izpostavljene dele kamnine. Koristne bi bile natančnejše analize neposrednega vpliva lišajev na razjedanje kamnine. V rovu za vhodom v Veliki Hubelj so preoblikovana tudi skalna tla in podorni bloki. Razčlembe, to so posamezne ali sestavljene vdolbinice (si.25) s površino 1 do 10 em' ter globoke do 3 cm, so zapolnjene z iztrebki jamskih netopirjev. Tudi površina med vdolbinicami je drobno hrapava. Pod iztrebki se raztopijo najprej hitreje topni deli kamnine. SI. 19. Površina razjedena j kondenzno vlago Fig. 19. The surface etched by condense humidity ki se polkrožno poglobijo. Voda, ki jamo občasno zalije, spere izpostavljene dele kamnine, v vboklih pa namoči iztrebke. To povzroči hitrejše raztapljanje kamnine. Razčlembe se poglabljajo in širijo. Ali razjedanje skale povzročajo iztrebki sami, ali pa le večja količina vode, ki se zadrži v njih, ko presahne vodni tok, še nisem ugotovil. Predvidevam, da so podobnega nastanka kot podnaplavinske vdolbinice (Slabe 1992, 24). V Križni jami v Medvedjem rovu je medvedji obrus (Slabe 1989, 214). To je zglajen del iz stene štrleče kamnine. Okolna skala je razjedena zaradi kondenzirane vlage. SKLEP Raznovrstno zrnata sestava karbonatnih kamnin pogojuje oblikovanost njihove površine. Enak dejavnik, ki deluje na različno kamnino ali pa različni dejavniki, ki delujejo na isto kamnino, lahko povzročijo, daje njena površina bolj gladka ali hrapava. Povezave hitrosti procesov in hitrosti odnašanja njihovih proizvodov z gJadkostjo površine (Trudgill J 979, 33) je težko posplošiti. Izluščimo pa lahko značilnosti vplivov posameznih dejavnikov na različno kamnino. Na izrazito nehomogeni kamnini pogosto ne nastanejo skalne oblike. Značilnosti kamnine torej prevladujejo nad učinkovitostjo dejavnikov in površina kamnine je predvsem posledica njene sestave in razpokanosti. Izjema je mehansko brušenje kamnine z vodnim tokom, ki S/. 20. Površina s kondezno vlago razjedene hreče v Zadlaški jami Fig. 20. The surface of breccia etched by condense humidity, Zadlaska jama prenaša tovor, s katerim gladi kamnino.. Sestava kamnine narekuje tudi površino odlomov, le na premaknjenih blokih apnenca so pogosto tektonske drse. Na razmeroma homogeni kamnini se oblikuje značilni skalni relief. Njegova površina je odraz različnih dejavnikov, ki ga oblikujejo. Dejavniki povzročajo procese in odnašajo njihove proizvode. Hitri vodni tokovi, ki ne prenašajo tovora, zaradi izrazite vrtinčaste difuzije povzročajo hitrejše raztapljanje kamnine in odnašanje raztopine. Počasneje topne delce vodni tok tudi odtrga s površine in odnese neraztopljene. Površina majhnih faset in stropnih kotlic na homogeni kamnini je zato gladka bodisi, dajo opazujemo s prostim očesom bodisi pod veliki povečavami. Počasnejši vodni tok lahko na enaki kamnini zapusti bolj hrapavo površino. Značilno oblikuje skalo vodni tok z mehanskim delovanjem tovora, ki ga vključuje v vrtinčenje. Skalna površina je zglajena, razena ali obtolčena. Toda pod velikimi povečavami so tudi na gladkih površinah, ki so dokaj ravne, jasno razvidne raze in majlmi kraterji. Pogosto je gladka površina obnaplavinskih skalnih oblik. Korozija, ki deluje enakomerno na vso površino, jo gladi, seveda če to dopušča sestava kamnine. Če pa takšno gladko površino proučujemo s pomočjo velikih povečav elektronskega vrstičnega mikroskopa, ugotovimo, daje v drobnem izrazito hrapava. To je posledica razjedanja različno topnih delcev kamnine. SI. 21. Površina podledne zajede (Icm = 10 cm) Fig. 21. The surface of notch below ice (1 cm = 10 cm) Podobno lahko oblikuje skalo večja količina kondenzirane vlage. Manjša količina takšne vlage pa površino kamnine razčleni v hrapavo. Pod velikimi povečavami elektronskega vrstičnega mikroskopa je površina v vseh primerih drobno hrapava. Za oba dejavnika tako vlago v drobnozrnati naplavini kot korozijo zaradi kondenzirane vlage je značilno večinoma manj hitro raztapljanje kamnine in počasno odnašanje raztopine. Večja količina polzeče vode, še zlasti, če polzi po stropu, gladi homogeno kamnino. Na izrazito nehomogeno in razpokano kamnino pa nima večjega vpliva. Svojevrstno je biogeno razjedanje skalne površine. Lišaji povzročijo nastanek luknjičaste in luskinaste površine, ko se zajedajo med kristale. Pod iztrebki netopirjev nastanejo vdolbiniee. Poseben tip je preperela površina. Na takšni površini ostane tanka plast neraztopljene kamnine. Je posledica raztapljanja kamnine zaradi kondenzirane vlaga ali vlage v drobnozrnati naplavini. Skalna površina je skladna s skalnim reliefom, torej s procesi, ki ga oblikujejo ali pa je posledica njegovega kasnejšega, manj učinkovitega preoblikovanja. Namreč stare skalne oblike, ki jih je vrezal hiter vodni tok in za katere je značilna gladka površina, so bile zaradi spremenjenih hidroloških razmer pogosto obdane z drobnozrnato naplavino ali pa preoblikovane s kondenzno korozijo in biokorozijo. Njihova površina je zato hrapava. Iz skalne površine lahko razberemo zadnje dejavnike in procese oblikovanja kamnine. SI. 22. Podledne vdolbiniee v Veliki ledenici v Paradani Fig. 22. Below ice pockets, Velika Ledenica in Paradana Dopolni nam dognanja, ki ga nudi poznavanje jamskega skalnega reliefa in je torej lahko pomebna sled razvoja kraških votlin. LITERATURA Bögli, A., 1978: Karsthydrographie und physische Speläologie.- Berlin, Heidelberg, New York. Bretz, J.H., 1942: Vadose and phreatic features of limestone caverns.- The journal of geology, V.l, N. 6/1, 675-811, Chicago. Cigna, A. A., 1983: Alcune considerazioni preiiminari sull'erosione per cavitazione.- Le grotte d'ltalia, 479-486. Chorley, J.R. & A.S. Schümm & E.D. Sugden, 1984: Geomorphology. - Methuen, 1-605, London & New York. Couturaud, A., 1989: Le delicat travail de corrosion des eaux karstiques.- Spelunca 33, 35-42. Cser, F., I. Szenthe, 1986: The way of cave formation by mixing corrosion.- 9° Congreso International de Espeleologia, 276-280, Barcelona. SI. 23. Lišaji v vhodnem delu Volčje jame na Nanosu Fig. 23. The lichens in the entrance part of Volčja jama, Nanos Cser, F., 1988: Role and morphological traces of mixing corrosion in caves.- International Symposium on Physical, Chemical and Ilydrological Research of Karst, 132-145. Ek, C. and H. Roques, 1972: Dissolution experimental de ealcaires dans une solution de gaz carbonique - note preliminaire.- Trans. Cave Research Group of Great Britain, Vol 14, N 2, 67-72. Ford, D., R Williams, 1989: Karst geomorphology and Hidrology.- London. U. Hyman, 601 p. Forti, R, 1989: The role of sulfide-sulfate reaction in speleogenesis.- Proceedings of 10'^ Int. Conres of Speleology, Budapest-Hungary, 71-73. Gams, 1., 1962/63: Kako nastanejo korozijske kotlice?.- Proteus 25/1, 26-28, Ljubljana. Gams, I., 1963: Meritve korozijske intenzitete v Sloveniji in njihov pomen za geomorfologijo.- Geografski vestnik 34 (1962), 3-18, Ljubljana, Gams, I., 1971: Podtalne kraške oblike.- Geografski vestnik 43, 27-45, Ljubljana. Habič, R & M. Knez & J. Kogovšek & A. Kranjc & A. Mihevc & T. Slabe & S. Šebela & N. Zupan, 1989: Škocjanske jame spieoiogicai revue.- Int. L Speieoi. 18/1-2, !-42. Herman, J.S., W.B. White, 1985: Dissolutin kinetics of dolomite: Efifects of lithology and fluid flow velocity.- Geochimica et Cosmochimica Acta, Vol. 49, 2017-2026. Kranje, A., 1985: Une exemple de corrosion sur les galets carbonates.- Spelunca Memoires 14, 80. SI. 24. Lisaji v vhodnem delu Velikega Hublja Fig. 24. The lichens in the entrance part of Veliki Hubelj Mihevc, A., 1989: Kontaktni kras pri Kačičah in ponor Mejame,-Acta carsologica 18, 171-195, Ljubljana. Mowat, G.D., 1962: Progressive changes of shapes by solution in laboratory. Cave notes 4/ 6, 45-49. Mucke, B., R. Völker, S. Wadewitz, 1983: Cupola formation in occasionally inundated cave roofs.- European regional conference on speleology, Sofia - Bulgaria 22.-28. 9. 1980, 133-137, Sofia. Oilier, C., 1984: Weathering. VII, 270 str., London. Palmer, T. & C. Plewes, 1993: Boring and bioerosion in fossils. - Geology Today Vol 9, No 4, 138-142. Renault, Ph., 1958: Elements de speleologie karstique.- Annales de Speleologie 13, 21 -48. Slabe, T., 1987: Jamske anastomoze v Dimnicah.-Acta carsologica 16, 167-179, Ljubljana. Slabe, T., 1988: Kondenzna korozija na skalnem obodu Komarjevega rova v Dimnicah.-Acta carsologica 17, 79-92, Ljubljana. Slabe, T., 1989, MN: Skalne oblike v kraških jamah in njihov pomen pri proučevanju Dimnic, Križne in Volčje jame ter Ledenice na Dolu,- Magistrska naloga. Univerza Edvarda Kardelja v Ljubljani. SI. 25. Vdolbinice pod iztrebki netopirjev Fig. 25. Solution niche below the guano Slabe, T., 1989: Skalne oblike v Križni jami in njihov speleogenetski pomen,- Acta carsologogica 18, 197-220, Ljubljana. Slabe, T., 1990: Skalne oblike v dveh poligenetskih jamah visokega krasa,- Acta carsologica 19, 165-196, Ljubljana, Slabe T,, 1992: Jamski skalni relief kot odsev speleogenetskih dogajanj v izbranih predelih slovenskega krasa, - Doktorsko delo, Univerza v Ljubljani, Slabe, T,, 1992: Naravni in poskusni obnaplavinski jamski skalni relief,- Acta carsologica 21, 7-34, Ljubljana. Slabe, T., 1993: Fasete - pomembna sled oblikovanja in razvoja kraških votlin.- Acta carsologica 22, 139-177, Ljubljana. Sweeting, M.M., 1967: The Weathering of Limestones with particular reference to the Carboniferous Limestones of Northern England.- Essays in Geomorphology /Ed. G. LLDury, Heinemann, 177-210, London. Sweeting, M.M., 1972: Karst Landforms.- Macmillan, London. Trudgill, S.T., 1979: Chemical polish of limestone and interaction between calcium and organic matter in peat drainage waters.- Trans. British Cave Research Assoc. 6/1, 30-35. Trudgill, S,, 1985: Limestone geomorfology.- London and New York, Vilcs, LL, 1987: A quantitative scanning electron microscope study of evidence for lichen weathering of limestone, Mendip Hills, Somerset,- Earth surface processes and landforms 12,467-473, White, W.B., 1988: Geomorphoplogy and Hydrology of Karst Terrains.- New York. Zupan, N., A. Mihevc, 1988: Izvor in mineraloška analiza sedimentov v Veliki ledenici v Paradani.- Speleobih, 10. kongres speleologa Jugoslavije, Sarajevo 27.-30.10. 1988, 17-24. THE FACTORS INFLUENCING ON THE FORMATION OF THE CAVE ROCKY SURFACE Summary While studying the cave rocky features a special attention is given to their surface. The surface of the rocky forms may be described as smooth or rough, observed either with the naked eye or magnified. By strong magnification by electron microscopy almost all rocky surfaces are at least partly rough. This is the effect of granular, partly homogeneous composition of carbonate rocks. The rocky surface is washed as the factors, influencing to it, transport the products of the processes or it is weathered. It is such when covered by soft layer of partly dissolved rock. Granular and heterogeneous composition of the carbonate rocks is controlled by different formation of their surface. The same factor acting upon various rocks or various factors acting upon the same rock may cause, that its surface is more smooth or more rough. The connection of the processes velocity and the velocity of the products transport with the smoothness of the surface (Trudgil! 1979, 33) may hardly be generalised. Yet the properties of particular effects to various rocks may be distinguished. Frequently the rocky features do not appear on remarkably unliomogeneous rock. The properties of the rock thus predominate over the efFieiency of the factors and the rock surface is mostly controlled by its lithology and joint frequency. The exception is the mechanical rock polish by the water flow transporting a load. The lithology dictates the surface of the fragments, on displaced limestone blocks only the tectonic sliding planes maybe seen. On relatively homogeneous rock the characteristic smoothness of rock surface occurs. Its surface is controlled by various factors, shaping it and causing the transport controlled processes. The water flow with load mechanic action included into eddies, shapes the rock in the characteristic way. The rock surface is frequently polished, abrased or bruised. By great magnification even on smooth surfaces having rather flat basic plane small abrasions and craters are clearly seen. The surface of the along-sediment rocky features is smooth too. Corrosion, acting equally over the entire surface polishes it, if, of course, the lithology permits. But studying such smooth surface by great magnification of electron microsope we may infer that it is rough in details. This is the result of weathering of better soluble rock particles. Quick water streams without load transport due to eddy diffusion cause more quick dissolution of the rock and transport of the solution. Less soluble particles may be torn from the surface and they are transported unsolved. The surface of small scallops and ceiling pockets on the homogeneus rock is thus smooth either with a naked eye of by great magnification. Slower water flow on equal rock leaves rough surface. Similar effect to the rock may be left by great quantity of condense humidity. Smaller quantity of such moisture makes the rock's surface rough. By great magnifications of the electron microscope the surface is in all cases thinnly rough. For both factors, i.e. finegrained sediments moisture level and corrosion due to condense humidity is characteristical mostly less efficient dissolution and slower transport of the solution. Bigger quantity of trickling water, in particular if it trickles over the ceiling, polishes the homogeneous rock. It does not have any bigger effect to unhomogeneous or fissured rock. Unique is biogenic surface weathering. The lichens cause the porous and scaly surface when penetrating among the crystals. Weathered surface results by rock dissolution due to condensed humidity or the finegrained sediment moisture level. The rocky surface is concordant to the rocky relief, it means to the processes in control or else, it is the result of its later, less effective transformation. Old rocky features which had been incised by a quick water flow and had smooth surface may, due to changed hydro-logic conditions, be encircled by the fine-grained sediment or transformed by the condense corrosion and bio-corrosion. Their surface is then rough. The rocky surface tells us which factors and processes the last influenced on the rock formation. It completes the knowledge offered by the cave rocky relief and thus may be an important trace for the karst caverns genesis. ACTA CARSOLOGICA KRASOSLOVNl ZBORNIK XXm (1994) Izdala Slovenska akademija znanosti in umetnosti v Ljubljani Tehnična ureditev in realizacija preloma Milojka Žalik Huzjan Tisk Tiskarna Lotos Naklada 1000 izvodov SI. 14: Perinivalni gruščponika v sredino vrtače Renčelicapri Sežani (jesen 1987). Foto F. Sušteršič Fig. 14 Perinival material sinking into the center of the doline Renčelica near Sežana (autumn 1987). Photo F. Sušteršič SI. 2: Sedanje stanje Cvijičeve "vrtače" (SI. 1). Foto F. Sušteršič Fig. 2: Present State of the Cvijic's "doline" section (Fig. I). Photo F. Sušteršič SI. 13: Prehod "sklede" vrtače v osrednji jašek, (kamnolom Verd, pomlad 1974). Foto F. SnSteršič Fig. 13 Transition of the "bowl" into the central shaft (Verd quarry, spring 1974). Photo F. Šusteršič SI. 12: Središčni prerez ene izmed vrtač v čelu kamnoloma Verd (jesen 1972). Foto F Šušteršič Fig. 12 Central section of a doline at Verd qu airy (autumn 1972). Photo F. Šušteršič