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Abstract. The Nambu–Jona-Lasinio model has played an important conceptual and ped-

agogical role in hadronic physics to visualize the spontaneous chiral symmetry breaking,

the formation of the massive constituent quark and the behaviour of pion and sigma me-

son as a chiral rotation and vibration. I shall give a brief review of three new developments,

(i) some observables for pion, (ii)more consistent results in three-flavour systems after in-

troducing three-body and four-body interactions, and (iii) additional perspectives offered

by algebraic models, in particular the two-level quasispin model,

1 Introduction

The Nambu–Jona-Lasinio model (NJL) is still inspiring hadronic physicists to
gain a deeper qualitative or even semiquantitative understanding of the sponta-
neous chiral symmetry breaking, the formation of the massive constituent quark
and the properties of light mesons. Further encouragement is coming from the
progress how to derive NJL from QCD in a reasonable approximation, for exam-
ple the Bogolyubov compensation method which is presented by Boris Arbuzov
in these Proceedings.

On one hand, one is interested in further simplifications of NJL in order to
see the role of 1/N expansions, sum rules and the effective pion-pion interaction
(Sect. 4), as well as the bosonization in momentum space (Sect. 2). On the other
hand, the applicability of the model is largely extended by further “complica-
tions” such as the three-body and four-body forces (Sect. 3).

I apologize that the review of our work is much longer than that of our
friends, but you can find their presentation in these Proceedings.

2 Electromagnetic polarizabilities of pion

The Coimbra group [1] presented the calculation of pion electromagnetic dipole
and quadrupole polarizabilities. They obtain the sign and magnitude in agree-
ment with the respective experimental analysis based on the dispersion sum
rules. The result are consistent also with the chiral perturbation theory.



78 Mitja Rosina

For the neutral pion, the difference of the electric and magnetic dipole po-
larizabilities shows that the box contribution is largely canceled by the scalar
exchange. For the charged pion, however, the pion exchange diagram builds to-
gether with the box a gauge invariant amplitude which is an order of magnitude
smaller than the sigma-exchange diagram, and the pion loops are absent.

In the quadrupole polarizability difference of the neutral pion, the pion loop
is about twice the sigma-exchange and dominates. For the charged pion, the pion-
loop diagram has the same magnitude as the sigma-exchange term.

3 The effect of three-body and four-body interactions

The NJL model has been consistently extended to three-flavour systems, and re-
cently, electromagnetic and weak decays of scalar and vector mesons have been
calculated in leading orders of Feynman graphs [2,3]. For a good description of
vector mesons, a vector-vector and axial vector-axial vector interaction is needed
in addition to the usual scalar-scalar and pseudoscaar-pseudoscalar interaction.

Long ago, a three-body interaction (also called the “six-quark” t’Hooft inter-
action) was introduced in order to split the singlet and octet mesons – the U(1)
symmetry problem. However it destabilizes the vacuum. The introduction of the
four-body force (also called the “eight-quark interaction”) not only stabilizes the
vacuum, but also influences the phase transition in hot dense systems and in
strong magnetic fields [4]. This is a promising research topic for NJL.

4 The two-level quasispin model

In theMini-Workshop Bled 2006, 2007 and 2008 [5–8] Borut Oblak and I presented
a soluble two-level quasispin model of spontaneous chiral symmetry breaking,
inspired by the Nambu–Jona-Lasinio model. It is the hadronic analogue of the
Lipkin model in nuclear physics.

The model is characterized by a finite numberN of quarks occupying a finite
number N = NcNfVΛ3/3π2 of states in the Dirac sea as well as in the valence
space due to a sharp momentum cutoff Λ, and a periodic boundary condition
in a box V . We further simplify the one-flavour Nambu – Jona-Lasinio Hamilto-
nian (Nf = 1,Nc = 3) by taking all quark kinetic energies equal to 3

4
Λ and by

neglecting the interaction terms which change the individual quark momenta:

H =

N∑

k=1

(
γ5(k)h(k) 3

4
Λ+m0β(k)

)

−
2G

V

( N∑

k=1

β(k)

N∑

l=1

β(l) +

N∑

k=1

iβ(k)γ5(k)

N∑

l=1

iβ(l)γ5(l)

)
.

Here h = σ ·p/p is helicity and γ5 and β are Dirac matrices. In terms of quasispin
operators which obey spin commutation relations (α = x, y, z)

Rα =

N∑

k=1

1+ h(k)

2
jα(k) , Lα =

N∑

k=1

1− h(k)

2
jα(k) , Jα = Rα+Lα =

N∑

k=1

jα(k) ,
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the model Hamiltonian can be written as

H = 2P(Rz − Lz) + 2m0Jx − 2g(J2x + J2y) .

It commutes with R2 and L2 but not with Rz and Lz. Nevertheless, it is convenient
to work in the basis |R, L, Rz, Lz 〉 and diagonalize the Hamiltonian for fixed R and
L.

From the quasispin model of the Nambu–Jona-Lasinio type one can learn
several lessons:

(i) We show that the popular model parameters [9,10], Λ = 648 MeV, G = 40.6

MeV fm3, m0 = 4.58MeV, yield the phenomenological values of quark con-
stituent mass, quark condensate and pion mass both in the full Nambu –
Jona-Lasinio model as well as in our quasispin model (using in both cases the
Hartree-Fock + RPA approximations).

(ii) In the large N limit the exact results of our quasispin model approach the
HF+RPA values, thus giving credit to using HF+RPA in usual calculations.

(iii) In the quasispinmodel it is very instructive that the number of coloursNc and
the number of spatial states VΛ3/6π2 appear on equal footing in the product
N = 2NcVΛ3/6π2. The colour and the momentum quantum number together
are just the house number of the particle since the interaction does not depend
on them. Therefore it is the same limit N → ∞ whether we take the large Nc

limit or a large block V . This explains why even with 3 colours the quasispin
model behaves similarly as the theorems regarding large Nc limit suggest
(good HF approximation, suppression of off-diagonal terms and their effects,
etc.).

(iv) Most low-lying states in the excitation spectrum can be interpreted as multi-
pion states and one can deduce the effective pion-pion interaction and scat-
tering length. Also, some intruder states can be recognized as sigma-meson
excitations or their admixtures to multi-pion states.
Since we are working in a finite volume V with periodic boundary conditions
we cannot impose scattering boundary conditions. It is instructive that one
can nevertheless extract information on scattering from a discrete spectrum.
Energy levels of n-pion states can be interpreted to contain the average effec-
tive pion-pion potential V̄ : Enπ = nmπ + 1

2
n(n − 1)V̄.

We calculate the s-state scattering length in the first-order Born approxima-
tion (also derived by M.Lüscher [11] in a much more “sophisticated” way)

a =
mπ/2

2π

∫
V(r)d3r =

mπ

4π
V̄V .

In our example for N = 192 we have V̄ = −7.1MeV and V = π2N/Λ3 =

53 fm3 This gives amπ = (m2
π/4π)V̄V = −0.0836 not far from phenomeno-

logical value (see [5,8]).
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