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ABSTRACT 

As our body's envelope, the skin acts as a biosensor with the environment and reflects our personality. 
Skin ageing is therefore an important and interesting topic of study. It results from the combination of 
intrinsic ageing and photoageing, which is due to the environmental influence, such as reactive oxygen 
species (ROS). The more recent data are gathered here to remind current knowledge about skin ageing, 
from a molecular level to the clinical signs, wrinkles and spots mainly. Because knowledge of the prefer­
ential biological targets of ageing has recently been making progress, it is possible to delay the manifes­
tation of ageing, by acting on key biological processes. 

1. Introduction 
Humanity is ageing. The average life expectancy of 

people living in industrialized nations has doubled since 
1900. This will result in social, economic, and health­
care changes that will, in turn, drive pub lic policy worlcl­
wide. The cosmetic industry is moving to cater for the 
ageing population by cleveloping more innovative procl­
ucts. The skin provides a large interface with the envi­
ronment, and is thus of prime importance. The major 
changes in the skin that occur with age are a loss of 
elasticity and a reduction in its protective function. These 
changes do not just affect the elderly, as they begin when 
people are younger than thirty. The extent of change 
depends to a large degree on how much the skin is 
exposecl to sunlight ancl how stressful is a person's 
lifestyle. 

Por years, people have attempted to hicle, reverse 
or control changes in their skin, such as wrinkling, 
roughness, mottling, blotching and dryness. Skin of eld­
erly people is thin ancl fragile, clue to complex changes 
very often summarized to reduced dermal collagen ancl 
clecreasecl cell proliferation. Skin ageing is thought to 
result from two processes, intrinsic ageing and extrin­
sic, or photoageing (1, 2). Intrinsic ageing is believecl 
to be genetically programmed ancl is thus presentecl as 
independent of all external and envifonmental influ­
ences. Extrinsic ageing is due to UV racliation and other 
environmental insults; that accelerate the skin changes 
(3). Photoageing leacls to a rough/dry/leathery skin, a 
yellow/clull complexion, lentigines or actinic spots ancl 
wrinkles. The study of the biology of ageing has made 
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rapid progress recently, after decades of stagnation. This Table 1 . Reactive Oxygen species. 
paper reviews the most recent data on skin ageing, from 
the cell nucleus to tissue, and discusses their conse­
guences for the skin. 

2. Damage due to Reactive 
Oxygen Species (ROS) 

Most people agree that free radicals are most im­
portant agents of ageing. Organic molecules absorb light 
or UV irradiation and become excited because an elec­
tron is transferred to a higher orbita!. The excited mol­
ecule is a free radical which may cause secondary reac­
tions and damage to various constitutive molecule (4). 
The energy storage molecule, adenosine triphosphate 
(ATP) is produced by oxidative phosphorylation in the 
mitochondria. The energy is produced by the oxida­
tion of reducing eguivalents of nutrients via the respi­
rato1y chain. However, mitochondria also regulate the 
intracellular calcium concentration and apoptosis. 
Abnormaly increased membrane potential is linked to 
ROS (Reactive Oxygen Species) augmentation anc! mi­
tochonc!rial DNA (mtDNA) mutations, constitutive to 
skin ageing. 

ROS are normally proc!uced by mitochondria, but 
they can also be producec! following an external stress . 
Normal metabolism gives rise to most ROS, primarily 
via the mitochondrial respirato1y chain , in which ex­
cess electrons are donated to molecular oxygen (O) to 
generate a superoxide anion (02• -) . The superoxide 
anion is reduced by the enzyme superoxide dismutases 
(SOD) to hydrogen peroxide (H2O), which, in turn, is 
rec!uced to water by catalase, located in the primary 
peroxisomes, and by glutathione peroxidase (GPx) , 
located in the mitochondria and cytosol. There are three 
isoforms of SOD (SOD 1 in the cytosol, SOD 2 in the 
mitochondria anc! SOD 3 in the extracellular space). 
Hydrogen peroxide can be converted to the highly toxic 
hydroxyl radical (OH•) in the presence of transition 
metals, and all three of the ROS (OH•, O, • , H,O,) can 
damage macromolecules directly or indirectly -(5). 

ROS are responsible for structural anc! functional 
alterations of cellular membranes, polyunsaturated fatty 
acic!s, proteins and DNA (6). For example, recent stud­
ies have shown that mitochondrial aconitase, an enzyme 
of the citric acid cycle that is critical for controlling the 
rate of ageing, is a target of oxidative damage (7). Cells 
also contain antioxidant enzymes such as superoxide 
c!ismutase, glutathione peroxidase, anc! catalase, and 
reducing agents like vitamin E and glutathione (8-10). 
Ageing is associated with a decrease in the plasma con­
centration of antioxidants, such as glutathione, and with 
increases in markers of oxidation c!amage, such as lipid 
peroxidation products (11,12);. The total glutathione 
concentration in cultured skin fibroblasts decreases with 

Hydroxyl OH• 0.3 ns 
Superoxide o.-2 0.4 ns 
Nitric oxicle NO• Seconds 
Peroxynitrite ONOO(-) 50 ms - second 
Singlet oxygen 102 ]-1S 

Hydrogen peroxic!e H2O2 Stable 
Peroxicle LOOH Stable 

age, while glutathione rec!uctase activity is unaffected. 
The antioxic!ant defenses are less well developec! in the 
early stages of life than in postnatal life. (13). 

The first changes that occurs in the skin after chronic 
or acute UV irracliation is the generation of reactive 
oxygen species, leadiHg to the peroxic!ation ofunsatur­
ated lipids in the celi membrane. Low phototype indi­
viduals are more likely to produce large amounts ofROS 
after exposure to UVA, in particular singlet oxygen that 
can diffuse across the cell membrane. For example, the 
oxidation of catalase by singlet oxygen gives rise to more 
acidic conformers. The integrity of catalase may be a 
marker ofthe stress clue to exposure to UVA (14). Sin­
glet oxygen, due to its reactivity, appears more anc! more 
as a powerful free rac!ical able to c!amage numerous 
skin components. 

Mitochondria: an important target 

The mitochonclrial theory of ageing states that mi­
tochonc!ria are the main site for generating free radicals 
and reactive oxygen in the cel!. Thus, mitochondria are 
vulnerable to oxidative stress and damaged mitochon­
dria can cause an energy crisis in the cell, leading to 
senescence and tissue ageing. An accumulation of dam­
age decreases the cell 's ability to generate ATP, so that 
cells, tissues, and individuals function less well. There 
is now considerable evidence that mitochondria are al­
tered in the tissues of ageing individuals and that the 
clamage to mtDNA increases 1000-fold with age. The 
phagocytic lysosome system for removing mitochon­
dria is also considerably altered in the cells of ageing 
organisms. Thus, damaged mitochonclria play an ii.n­
portant role in apoptosis. The survival ofthe whole celi 
may depend on the release of caspase activators such 
as cytochrome C from the mitochonclria (15). The ex­
tent of this alteration during senescence is stili debated 
(16, 17). Oxidative stress increases the production of free 
radicals and the inner membrane ofthe mitochondrion 
is chemically and physically altered. ROS are normally 
produced in mitochondria because ofubiguinones and 
the cytochrome b family (Complex III). Complexes I 
and IV are less vulnerable, while complexes II, III and 
V are affected by oxidative stress, via damage to lipids 
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and proteins (18). The electron transport cbain is thus 
compromised, leading to energy supply failure and celi 
death (19). The mutation rate of mitochondrial DNA is 
ten-times higher than that of nuclear DNA. Indirect ob­
servations suggest there is transport of nucleic acids 
between mitochondria, which helps to repah- the dam­
aged mitochondrial genome (20). Damage to mtDNA 
will block mitochondrial turnover and replication, lead­
ing to decline in ATP production and protein synthesis. 
The accumulation of 8-hydroxydeoxy gi.ianine (8-oxo­
dG) in mitochonclria also inclicates great oxiclative dam­
age (21-23). Exposure ofthe human skin to solar raclia­
tion leacls to an accumulation of mtDNA mutations, 
caused partly by oxidative damage, and these mutations 
play an important role in photoageing (24). 

Genes and cellular pathways 

Alterations in oxiclative metabolism ancl the celi re­
dox state can affect many genes and cellular pathways. 
The influence of oxidation on mitogenic responses and 
signal transduction pathways, such as MAP kinase and 
NF-eB, are well documented (25). Human fibroblasts 
exposed to severa! oxidative stresses also develop mark­
ers of replicative senescence. Some genes, such as those 
encoding fibronectin , osteonectin, a.l(I)-procollagen, 
apolipoprotein, SM22 (putative Ca binding protein over­
expressecl in senescent fibroblasts), and GTP-a. bind­
ing protein are overexpressed. The mitogenic response 
to severa! growth stimuli (serum, PDGF, basic FGF and 
EGF) is !ost (26). The reduction in connective tissue 
growth factor by UV radiation may contribute to the 
reclucecl procollagen synthesis observecl in UV-irracli­
ated normal human skin (27). 

Peroxynitrite (ONOO·) is generated from the trans­
ducer molecule nitric oxide (NO) ancl superoxicle an­
ions (0

2 
•·) under pathological conditions. MMPs ancl 

pro MMPs have been shown recently to be activatecl by 
peroxynitrite in vitro (28). The activation of poly(ADP­
ribose) polymerase by peroxynitrite is also implicatecl 
in the pathogenesis of various inflammatory conclitions 
ancl injuries. Tyrosine nitration is mostly mecliatecl by 
peroxynitrite, a cytotoxic oxidant clerived from nitric 
oxide that can cause DNA breaks. Peroxynitrite inhibits 
celi proliferation ancl high concentrations are also cyto­
toxic. Peroxynitrite and poly(ADP-ribose) polymerase 
also seem to be involvecl in the regulation of keratino­
cyte function ancl cleath in contact hypersensivity (29). 
Nitrogen dioxide and carbonate radical anion must also 
be taken in consicleration. Nitrogen dioxide can be pro­
duced from excessive nitric oxicle autoxidation in hy­
drophobic environments such as celi membranes (ni­
tratecl lipids) and the interior of proteins (nitratecl pro­
teins); carbonate raclical anions are proclucecl in strong 
oxiclative conditions and can oxiclize nucleic acicl gua­
nine resiclues, GSH and proteins (30). 

Skin ageing 

J. Proteins O.xidation and its 
consequences 

Thin, wrinklecl skin is ve1y often attributecl to a Jack 
of collagen. The dermis and overlying epiclermis of 
ageing skin are profoundly altered (31). Slower protein 
synthesis is one of the most common events observecl 
cluring ageing. The synthesis of both structural proteins, 
such as collagen, ancl enzymes that repair and maintain 
the normal metabolic functions of the celi, is slowed 
down. This leacls to the inefficient removal of clamagecl 
molecules ancl clecreased intra-and intercellular signal­
ing pathways. The age-relatecl increase m oxidized pro­
tems may also be linkecl to modifications of proteins 
causecl by lipid peroxiclation proclucts (32- 35). Age­
related changes in fibroblasts due to the metal-catalyzecl 
oxiclation of proteins lead to an exponential increase in 
the concentration of protein carbonyl groups in tissue 
samples taken from people agecl 10 to 80 years. 

Oxidative clamage to proteins may be most impor­
tant in ageing, because oxiclized proteins become inac­
tive and can accumulate in the celi, thereby triggering 
programmecl cell cleath. ROS increase the carbonyl con­
tent of proteins by forming alclehydes and ketones from 
certain aminoacicl resiclues (36,37). The concentration 
of adenine nucleotide translocase, a protein in the in­
ner mitochondrial membrane that is tightly bouncl to 
six molecules of carcliolipin, which contains highly un­
saturated fatty acids, also clecreases witl1 age. This pro­
tein is the prima1y intracellular site for the generation 
of superoxicle anion and exhibits adducts of the lipid 
peroxidation product, 4-hyclroxynonenal, a powerful 
oxidative aldehycle . The concentration of carcliolipin 
may be a mark er of the real age of the celi, basecl on its 
energetic capacity (38). 

Proteasome involvement 

Protem oxiclation in vivo is a natura! consequence 
of aerobic life and the proteasome complex is respon­
sible for the selective clegradation of oxidizecl proteins. 
The age-related increase in the concentration of oxi­
dized proteins is partly clue to the cell 's decreasecl ca­
pacity to degrade them. Lysosomal proteases ancl the 
proteasome complex normally c;legrade oxidized pro­
teins . The 26S proteasome units selectively recognize 
and degrade oxidized proteins in tl1e cytoplasm, the 
nucleus and the encloplasmic reticulum. The 
proteasome activity (multicatalytic proteinase MCP) in­
volved in clegracling oxidized protems may be reduced 
(39). One ofthe lipid peroxiclation products, 4-hydroxy-
2-nonenal (HNE), can cross-lmk proteins via their lysine 
resiclues. The accumulation of oxiclizecl protein, lipo­
fuscin ancl/or ceroicl pigments during ageing may be 
due to the changes producecl in proteins by HNE and 
their subsequent inhibition of the proteasome unit 
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(proteasome 20S). This woulcl leacl to a vicious circle of 
cytotoxic protein oxiclation proclucts. (34). Oxygen 
stress (especially 4-hyclroxy-2-nonenal) may attack pro­
teins clirectly or through lipid peroxidation, to inhibit 
enzymatic activity. Oxiclative clamage to membrane 
transport proteins leacls to alteration ofthe intercellular 
concentrations of calcium and potassium. The activity 
of the cytosolic proteasomal system also cleclines dur­
ing the proliferative senescence of human fibroblasts 
(40). UVA and UVB irradiation both alter proteasome 
function in human keratinocytes (41, 42). While UV­
incluced skin clamage is amelioratecl by retino! and ali­
trans retinoic acid, UV irradiation blocks retinoid sig­
naling in human skin through the ubiquitin/proteasome­
mediated degradation of nuclear retinoid receptors ( 43, 
44) . In the future, it would be interesting to focus on 
the existence of preferential protein targets. 

Glycation 

Cross-links can also form between proteins by cou­
pling glucose carbonyl group to aminoacids such as 
lysine. These compounds called Advancecl Glycation 
End proclucl~ (AGEs) bincl covalently to other proteins, 
and can cause extensive clamage. The collagen lattice 
formecl by cross-linkecl type I collagen is uncleformable 
(unglycated collagen is fully compactible). Cross-link­
ing collagen fibrils also alters the physical ancl mechani­
cal properties of the extracellular matrix ancl changes 
the organization of the intracellular actin cytoskeleton 
(45). Glycatecl collagen may moclify normal celi aclhe­
sion (46). As aclhesion is a funclamental celi function, 
each alteration can damage celi behaviour (apoptosis, 
etc) ancl then change tissue homeostasis . The clermis 
ancl elastic fibre network become glycatecl in people 
over 35 years of age and solar irradiation appeared to 
enhance it (47). The fluorescence of epidermal tryp­
tophan moieties ancl collagen cross-links in the dermal 
matrix can also be considered to be good in vivo mark­
ers of photoageing ( 48). While there are ve1y high con­
centrations of antioxidant enzymes (catalase, SOD) in 
the epiclermis, the concentrations are much lower in 
the dermis. Protein glycation ancl advanced glycation 
may be inhibitecl by antioxidant components (49). 
Photoaged skin has significantly reclucecl concentrations 
of antioxidant enzymes in the stratum corneum and tl1e 
epidermis, while the concentration of oxidized proteins 
in the upper dermis is increasecl. ACllte exposure to UV 
irradiation depletes the catalase activity in the skin and 
increases protein oxidation (50). 

4. Dermal Matrix alteration 

Fibroblasts 

The importance of cytokines, ancl immune celi ho-
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meostasis for ageing and its clinical signs is stili not clear. 
Normal concentrations of cytokines seem to be required 
for skin celi homeostasis. A clisturbance leacls to de­
fects or wrinkle formation. Histological stuclies of 
chronically sun-exposed skin show that the clermis con­
tains inflammatory infiltrates (51), mostly perivascular 
ancl perifollicular. Mast cells are more abunclant in 
photodamagecl skin than in normal skin. They synthe­
size and release mediators that moclulate clirectly or in­
clirectly extracellular matrix production and degrada­
tion (including TNFcx, TGF~ ancl prostaglandin 2). They 
release proteases that can degrade the ECM or activate 
the proenzyme forms of metalloproteinases. Ultrastrnc­
tural studies have also shown infiltration of the epider­
mis by macrophage/denclritic-like cells. These studies 
have recently been confirmed, showing more epider­
mal dendritic cells, but fewer Langehans cells in sun­
exposecl skin (52). 

The balance of cytokines in the skin is alterecl dur­
ing ageing and fibroblasts become less responsive to 
growth factors or cytokines. Physiological ageing in 
human fibroblasts seems to be particularly associated 
with an altered response to interleukin-1- ~, a cytokine 
proclucecl by monocytes, macrophages ancl other tran­
sit01y cells involvecl in inflammation (53). 

Transforming growth factor (TGF)-~1 is a cytokine 
involvecl in the clifferentiation of fibroblasts to myo­
fibroblasts. These myofibroblasts are very important for 
clermal strength ancl may be responsible for the con­
traction of the clermis (54). It acts on fibroblast collagen, 
fibronectin, glycosaminoglycans, elastin procluction, all 
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Figure 1 . Cellular consequences of stress on 
proteins. 
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of which are important for the mechanical properties 
of the skin. The expression of the TGF-~l gene in epi­
dermal keratinocytes does not decline with increasing 
celi age. Hence, TGF-~l does not appear such as the 
message from epidermis to dermis affected by age (55). 

Altered cytoskeleton function may play a key role 
in the age-related changes in severa! cell types, because 
it is involved in a variety of functions that are altered 
with ageing (immunological , endocrine and neurologi­
cal changes) (56). The age-related changes in the cy­
toskeleton, due to its involvement in metabolic pro­
cesses and celi surface receptors expression, can indi­
cate defective signal transcluction. Aged fibroblasts, 
which very often contract collagen gels poorly and do 
not migrate well , have a clisorclerecl actin microfilament 
cytoskeleton ancl a reclucecl a.-2-~-integrin. (57). 

Postmitotic ancl mitotic cells age clifferently. Post­
mitotic cells never divicle , such as nerve, muscle and 
fat cells. Mitotic cells , such as keratinocytes ancl fibro­
blasts, clivide. Replicative senescence is the process that 
limits the number of celi clivisions. As senescent fibro­
blasts ancl keratinocytes accumulate w ith age in human 
skin, this could explain the cleterioration of the appear­
ance and properties ofthe skin. Senescent cells secrete 
degrading enzymes that modify the cytokine / inter­
leukin balance, causing the loss of functional integrity 
(58). 

Lipofuscin, or age pigment, accumulates in cells 
within the lysosomal vacuoles, especially in fibroblasts . 
Lipofuscin can also accelerate ageing ancl senescence 
under mild hyperoxia (59). The accumulation of lipo­
fuscin may also be involvecl in spot formation. A lack 
of glucose-6-phosphate dehyclrogenase (G6PD), an 
enzyme involvecl in the celi reclox balance, may also 
accelerate fibroblast senescence (60). It has been pro­
posecl that phospholipid hydroperoxicle glutathione 
peroxiclase (PHGP) helps to protect fibroblasts against 
UVA-induced lipid peroxiclation ancl the activation of 
metalloproteinase 1 (MMP l ) by UVA. 

Receptors 

The number, affinity ancl rate of internalization of 
epidermal growth factor (EGF) receptors are clifferent 
in young and olcl fibroblasts, explaining the loss of re­
sponsiveness to EGF with age and the impairecl wouncl 
healing in the elderly (61). Extracellular matrix is also 
climinishecl cluring ageing and the amount of collage­
nase in the skin increases with age. Collagenase pro­
cluction is controlled by protein kinase C via the mem­
bers of the APl transcription factor family and can be 
inhibited by a.-tocopherol (62). Down-regulation of 
ligand-activated receptors is important for normal celi 
functioning. Receptors bearing their ligancl move to 
specialized regions in the plasma membrane. The re-

sulting vesicles are transported through the cytoplasm 
by microtubules ancl fuse with enclosomes and lysos­
omes, where they are clegradecl. ROS can also alter re­
ceptor function. For example, oxiclase stress causecl by 
hyclrogen peroxicle rapidly inhibits the internalization 
of receptor-bouncl EGF in human fibroblasts, so that 
the breakclown of the EGF-receptor complex is inhib­
itecl. Hydrogen peroxide also alters negative feed-back 
within the celi, and attenuates growth factor-induced 
signal transduction, leading to altered celi metabolism 
(63). Photo-damage increases the tenascin in cells, 
which might cause competition for the c.<2~1-integrin 
receptor, reducing cell-collagen binding. a2~1-integrin 
is the major collagen receptor, but is also a receptor for 
tenascin (64) . Tenascin C is a large extracellular matrix 
glycoprotein whose production by keratinocytes is in­
creased in wound repair; it is also founcl in normal adult 
skin. It is often distributed discontinuously in the up­
per papilla1y dermis adjacent to the EDJ, close to capil­
lary basement membranes. The concentration of tena­
scin is increased in photoclamagecl skin and its distri­
bution is different from that of skin protected from the 
sun. Tenascin is found along the dermio-epidermal junc­
tion in a continuous pattern and extends further into 
the p apilla1y dermis. The pattern of gene expression in 
senescent fibroblasts is clifferent from that of their still­
clividing counterparts. Presenescent fibroblasts have low 
concentrations of metalloproteinases (MMPs) and high 
concentrations o MMP inhibitors (TIMP-1 and TIMP-3) . 
The concentration of MMPs increases as cells become 
senescent, while that ofTIMP clecreases. The MMP pro­
duction is stimulatecl by activation of the redox-regu­
latecl transcription factor NFKB and protein kinase C via 
activator protein 1 transcription factor (APl) (65). 
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MMP 

Some of the MMP, a family of at least 16 enzymes 
that digest matrix macromolecules, are activated by UV 
irradiation (66). Thus, metalloproteinases 1, 3 and 9 
(MMP-1, 3 and 9) in the epidermis are activated by UVB, 
while UVA stimulates MMP-1 in vivo and MMP-2 and 3 
in vitro. The MMPs in the skin are responsible for break­
ing down macromolecules of the skin ECM, which en­
sures the skin's three-dimensional integrity. The balance 
between MMPs and MMP inhibitors is perturbed by en­
vironmental factors, such as light. This leads to collapse 
ofthe EMC and the visible effects ofUV damage: wrin­
kling, loss of elasticity. Besides chronological ageing, 
actinic ageing, also called photodamage, causes prema­
ture skin ageing: thinning of the dermis, a loss of colla­
gen content and protein organization and a breakdown 
ofthe ECM (67, 68). 

Type 1 MMPs (interstitial collagenase) and type 9 
MMP (gelatinase) break down skin collagen fibers, par­
ticularly during photodamage (69, 70). MMP-2 (gela­
tinase) acts on collagen types I, IV, and VII. Gelatin, 
elastin and fibronectin are all substrates for MMP-2, 
whose activity increases with age (71 , 72). MMP-1 de­
grades collagen, which accounts for at least 70% of the 
dry weight of the dermis. Smoking increases the activ­
ity of MMP-1 in the skin in vivo. It leads to an imbal­
ance between MMP-1 and the tissue inhibitor of metallo­
proteinase 1 (TIMP-1), which could be important for 
ageing (73). The MMP-1 produced by epidermal 
keratinocytes and clermal fibroblasts in response to vari­
ous stimuli (7 4-78) appears to play a key role in clermal 
remodeling (79-81). Skin fibroblasts produce MMP-1 in 
response to UVB irradiation and keratinocytes play a 
major role through an indirect paracrine mechanism 
involving the release of epidermal cytokine after UVB­
irradiation (82) . MMP are produced in response to UVB 
irradiation in vivo, ancl are considered to be involved 
in the changes in connective tissue that occur in 
photoageing (83). They are associatecl with a variety of 
normal and pathological conditions that involve degra­
dation and remodeling of the matrix (84-87). Severa! 
MMPs are produced cluring wound healing, such as 
MMP-3 in epidermis repait· (88, 89). 

UV rays ancl ageing lead to excess proteolytic activ­
ity that clisturbs the skin's three-dimensional integrity. 
These proteinases are important for breaking down the 
extracellular matrix during chronic wound repair, in 
which there is re-epithelialization by keratinocyte mi­
gration (90). Thus, MMPs are continuously involved in 
the remodeling of the skin aft:er chronic aggression. 

Thrombospondin 2 (TSP2) , a secreted extracellular 
matrix glycoprotein, is an aclaptator and modulator of 
cell matrix interactions (91). It binds to heparan sulfate 
proteoglycan, low-density lipoprotein receptor-related 
protein (LRP), and the integrin av~3 (92, 93). Increased 
MMP-2 activity (gelatinase A) leacls to recluced fibro-
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blast adhesion which could contribute to abnormal col­
lagen fibril structure in the skin and the release of an­
giogenic factors. New data show that TSP2 binds to and 
inhibits MMP-2 indirectly and therefore plays a role in 
cell-matrix interactions (94). 

The age modulated hypoxia response causes an 
imbalance between MMP-1 and MMP-9 and TIMP. 
Hence, there may well be altered MMP and TIMP gene 
expression at wrinkle sites (95, 96). Photodamage also 
results in the accumulation of abnormal elastin in the 
superficial dermis, and severa! MMPs have been impli­
cated in this process. The quantities of matrilysin (MMP-
7) and human macrophage metalloelastase (MMP-12), 
which have broad substrate specificities, are two key 
parameters that can be used to evaluate long term 
antiageing treatments (97). They are increased in the 
abnormal elastic fibers of chronically photoaged skin 
and contribute to the remodeling of elastic areas in sun­
damaged skin. Human metalloelastase also aids mac­
rophage migration, in addition to degrading elastic tis­
sue, so amplifying the disturbance of the inflammatory 
homeostasis of the tissue. Ultrastructural and histopatho­
logically studies have demonstrated that sun-exposed 
skin contains accumulated insoluble material and the 
normal elastic fiber architecture is lost, resulting in a 
loss of skin resilience and elasticity and probably wrinkle 
formation. 

Fibrillin and Elastin 

Elastic fibers in the clermis form an amorphous ma­
trix of elastin and intertwining bundles of microfibrils, 
which measure 10-14 nm in diameter. The oxytalan fi­
bers are rich in microfibrils and are orientated perpen­
dicularly to the basal lamina of the epidermis. A study 
on photoaged skin has shown that UV irradiation in­
creases the tropoelastin mRNA in keratinocytes and fi­
broblasts (98). Selective inhibition of skin fibroblast 
elastase could be one way to fight wrinkle formation 
following cumulative ultraviolet B irradiation (99). 
Lysozyme may alter the elastic fibers in the surface, pre­
venting further degradation and the accumulation of 
altered elastic fibers . 

Photoaged skin contains elastic material in the re­
ticular dermis, and the fibrillin deposits in the reticular 
dermis are enlarged. Elastic fibe_rs have a central core 
of hydrophobic cross-linked elastin surrounded by 
fibrillin-rich microfibrils. The papillary dermal micro­
fibrillin-rich microfibril network is truncated and de­
pleted in photoaged skin. There are fewer fibrillin-rich 
microfibrils in wrinkled photoaged skin, probably due 
to inflammato1y cell proteinases (neutrophil elastase), 
or activation of matrix metalloproteinase (100). Cross­
linking causing decreasecl elasticity could also be in­
volvecl in wrinkle formation (101). 

The fluorescence of tryptophan ancl collagen cross­
links in the dermal matrix may serve as in vivo markers 
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Table 2. Main Matrix Metalloproteinases and their substrates. 

MMP-1 Matrix collagenase 
(fibroblast collagenase) 
Neutrophil collagenase 
Collagenase 3 
Collagenase 4 
Gelatinase A 

Collagens I, II, III, VII and X 

MMP-8 
MMP-13 
MMP-18 
MMP-2 

Collagens I, II , III , Link protein, Aggrecan 
Collagens I, II , III 
Collagens I 
Gelatins, Collagens I, IV, VII and XI, Fibronectin, Laminin, 
Elastin 

MMP-9 
MMP-3 

Gelatinase B 
Stromelysin 1 

Gelatins, Collagens IV, Vand XIV Aggrecan, Elastin 
Aggrecan, Gelatin, Fibronectin, Laminin, 
Collagens III, IV, IX and X 

MMP-10 
MMP-14 
MMP-7 
MMP-11 
MMP-12 

Stromelysin 2 
(membrane type) 
Matrilysin 
Stromelysin 3 

Aggrecan 
Collagens I, II ancl III, Laminin 
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of skin aging, pbotoaging, ancl as a way of assessing 
exposure to UVA radiation (48) . The morphology of 
elastic fibers changes significantly during life. The num­
ber of elastin microfibrils (mainly composed of fibrillin) 
graclually clecreases during ageing, ancl the clegenera­
tive process is accelerated by exposure to sunlight. 
Amyloicl P and lysozyme are cleposited in thickened 
fibers, while amyloid P alone is deposited in oxytalan 
vertically orientecl fibers in the papilla1y dermis. Deep 
wrinkles are linkecl to the clegeneration of collagen ancl 
the deposition of abnormal elastic material (102). 
Wrinkles are formed by major changes in the dermis 
matrix and at the dermio-epiclermal junction. The con­
tent of fibrillin, a component of the elastic fiber net­
work, is increased by prolonged clinical doses of topi­
ca! retinoic acid. This is why fibrillin-1 has been pro­
posecl as a "reporter" molecule for the efficacy of 
photoageing. 

Water and GAG 

The alterecl skin texture ancl structure of elderly 
people is caused by changes in proteins , lipicls and 
water, leading to alterecl mechanical properties , such 
as wrinkling, sagging, loss of elasticity and apparent 
d1yness. Water structure is important because water can 
bind to various proteins and is important for maintain­
ing the structural and mechanical properties of proteins. 
Their natura! interaction is climinishecl in photoaged 
skin, leacling to decreased collagen stability ancl the frag­
mentation of collagen fibrils (103). The clistribution of 
glycosaminoglycans (GAG) in the dermis seems to be 
moclified in sun-damagecl skin ancl coulcl be linkecl to 
alterations of deep protein. Studies using immuno­
peroxiclase staining of hyaluronic acicl ancl chonclroitin 
sulfate and confocal laser scanning microscopy have 

shown increased dermal GAGs in sun-clamaged skin. 
The GAGs are deposited on the elastic material of the 
superficial dermis and not between collagen ancl elas­
tic fibers, as in normal skin (104). Hyaluronan is a ma­
jor constituent of the skin extracellular matrix. Hya­
luronan polymers become more tissue-associated with 
aclvancing age (105). Together with changes in proteins, 
this contributes to the pronounced alteration of the skin 
mechanical properties in the elderly. 

Lipids and cell membrane 

The skin barrier is linkecl to the lipicls of the inter­
corneocyte space. Intercellular lipicls consist of an or­
ganizecl mixture of ceramicles, sterols and fatty acicls 
(106, 107). The lipids in intercellular membranes form 
short- ancl long-periodicity lamellar phases (108). Are­
cent X-ray cliffraction ancl electron macroscopy study 
showecl no correlation between clifferences in the or­
ganization of stratum corneum lipids ancl ageing, de­
spite the changes in skin properties often observecl in 
the elderly (109). 

Vitamin A (retino! ancl retinyl esters) is present in 
the epidermis as free ancl esterifiecl retino!. Acute ex­
posure to UVA completely depletes the epidermis of 
vitamin A and causes lipid peroxidation. In contrast, 
exposure to UVB results only in the loss of vitamin A 
(110). 

The human sebaceous gland unclergoes both ex­
trinsic ancl intrinsic ageing (morphological changes in 
the sebaceous glancl activity). The highly anclrogen-cle­
penclent sebum secretion in neonates reaches its maxi­
mum in young aclults. The number of sebaceous glands 
remains unchangecl throughout life, but sebum produc­
tion tends to decrease after menopause in women and 
after the eighth clecacle in men. The age-clepenclent 
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clecrease in anclrogen leacls to a slower celi turnover in 
the sebaceous glancls, resulting in hyperplasia of the 
facial sebaceous glands. UV may contribute to this pro­
cess. Molecular st:uclies have shown that overexpression 
of the ageing-associatecl gene Smad7 and parathor­
mone-relatecl protein are linked to hyperplasia of the 
sebaceous glancl, but overexpression of the c-myc gene 
is associated with enhanced sebum procluction (111). 
Decreased sebum production is also responsible for skin 
dryness in the elderly. 

5. DNA Damages and 
consequences 

The DNA of the skin is constantly submittecl to en­
vironmental damage and has developed mechanisms 
to repail· this darnage. The balance between damage 
and repair has a major impact on ageing. The most com­
mon cause of premature skin ageing is UV irradiation, 
which damages DNA through photoproducts. DNA re­
pair is essential for maintaining the functional integrity 
of DNA. Selective repair, such as the removal of pyrimi­
dine dimers, occurs in the transcribed strand. DNA is 
repaired by a variety of mechanisms, such as direct re­
versal DNA damage for thymin dimers, base excision 
and mismatch repair. Nucleotide excision repair is very 
important for damage causecl by UV. A repair complex 
binds the damaged DNA, then an enclonuclease cuts it 
on either side of the damaged nucleotide. The original 
DNA sequence is resynthesized by a DNA polymerase 
and a ligase. 

The most reactive oxygen free radical, OH•, reacts 
with DNA bases to give altered bases, such as 8-
hydrmrydeoxy guanine. These are eliminated by the 
DNA repait· enzyme complex, but some accumulate with 
ageing (112). Ageing may also result from the injury to 
mitochondrial DNA and peroxidation of the inner mi­
tochondrial membrane lipid. Many studies have sug­
gested that mtDNA suffers more from oxidative DNA 
damage than does nuclear DNA. 

Genomic and mitochondrial DNA are both intimately 
involved in the process of ageing. There is some de­
cline in DNA repafr capacity with age. Increased DNA 
fragility or DNA strand breaks, chromosomal aberra­
tions based on cytogenetic examination, decreased DNA 
methylation and changes in ploicly ali increase with age. 
Rearrangements, translocations, and sequence alter­
ations also increase with age (113). The main type of 
damage generated by apparently ali types of reactive 
oxygen species (ROS) is oxidative changes to guanine 
(114) . 

Free radicals produce a number of lesions in DNA, 
damaging bases, sugar lesions, DNA-protein cross-links, 
causing single-strand breaks, double-strand breaks, and 
abasic sites by different mechanisms (115). A recent 

80 

review relates the contributions of stress-induced dam­
age to cellular DNA: 

by damage to nuclear DNA and its repafr mediated 
by poly(ADP-ribose) polymerasel (PARP 1) 
damage to telomeric DNA ancl its contribution to 
telomere-driven celi senescence 
the accumulation of mutations in mitochondrial DNA 
(116). 
The effects of oxiclative stress can be dfrect or indi­

rect. For example, some celi constituents (flavins, 
phorphyrin) , many dyes (acridines, methylene blue, 
neutral red) and drugs can act as photosensitizers in­
side cells. The excited state of a photosensitizer can be 
thought of as genotoxic species similar to other free 
radicals, because they can directly or indirectly cause 
DNA modifications (4). Highly selective changes to 
guanine are also caused by photosensitizers that modify 
DNA via singlet oxygen (type II photoreaction), or one­
electron oxidation (type I photoreaction) (117-120). 
Endogenous and exogenous oxidative stress can cause 
serious damages to mitochondrial DNA. Deletions of 
mitochondrial DNA may be used as markers of skin 
ageing and exposure to UV irradiation (121-124). Di­
rect evidence for the increased presence of UV-induced 
damage in mt DNA was obtained recently. Ray et al 
(2000) used a PCR method to show that the number of 
mtDNA deletions in the epidermis is significantly asso­
ciated with increased exposure to UV radiation. UV ra­
diation may directly or indirectly act via free radicals to 
cause mutations at la bile sites in mtDNA, enhancing intra 
genome recombination, and increasing deletions. Mu­
tations of mt DNA accumulate during ageing and in 
photoaged skin; the most common mutation is a 4977 
base pair deletion (called common deletion). Chronic 
exposure of human skin to sunlight results in more 
mtDNA mutations than in un-exposecl skin. UVA-irra­
cliation procluces singlet oxygen that generates the com­
mon mutations of mitochondrial DNA that occur in 
photoageing (125). 

It is clifficult to precisely measure oxiclative DNA 
clamage, because extraction ancl sample treatment may 
cause oxidation. Various analytical techniques can be 
used to measure oxiclative clamage to DNA: gas chro­
matography (GC) ancl liquicl chromatography (LC) with 
mass spectromet1y (MS) provicle positive iclentification 
and accurate quantification. Modified nucleosicles have 
been measurecl recently by methods using LC/tanc!e'i·n 
MS (LC/MS/MS) ancl LC/MS (112). 

6. Telomerase involvement 

The closest thing to a cellular clock resides at tl1e 
tips of chromosomes. The chromosome ends, the te­
lomeres , do not contain genes that program hereclitary 
traits, but are functional complexes. The telomeres at 
the encls of eukaryote chromosomes protect them from 
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degradation or fusion. The telomeres shorten each tirne 
human cells divide. The celi may finally fall into a se­
nescent state . Telomerase is a ribonucleoprotein that 
synthesizes the repeated sequences at chromosome 
ends and helps DNA polymerases to complete the rep­
lication. New data indica te a new way to link telomeres 
to senescence. The telomere is a dynamic nucleopro­
tein complex that can switch stochastically between an 
uncapped sta te and a capped state, which preserves the 
physical integrity of the telomere and allows celi divi­
sion to proceed (126-130). 

It bas been suggested that celi senescence may be 
good because it is a defense against cancer, which is 
marked by uncontrolled celi division. Cells unable to 
regrow their telomeres stop dividing before they can 
cause too many mistakes. As there is no telomerase in 
many somatic tissues, telomere erosion may well be a 
major factor in celi ageing (131). Telomerase therapy 
might one day help generate a new supply of cells to 
treat age-related diseases. It bas been showed that there 
is a telomerase activity in the skin. 

It is possible to distinguish between ageing and lon­
gevity. Telomere shortening is probably more involved 
in regulating cell longevity than in ageing stricto sensu. 
Ageing is due to accumulation of molecular disorders 
and a lack of celi energy. This loss of energy is involved 
in the deterioration and a gradual loss of the functional 
integrity ofthe tissues. Nevertheless , telomere shorten­
ing (or more precisely telomerase dysfu nction) , oxida­
tive damage and hormones could all be signals involved 
in ageing. 

Skin ageing 

The regulation of telomerase in mammalian cells is 
multifactorial, involving telomerase gene expression, 
post-translational protein-protein interactions, and pro­
tein phosphorylation. Severa! proto-oncogenes and tu­
mor suppressor genes are involved in the regulation of 
telomerase activity (132). Severa! physiological factors, 
like EGF and/or amphiregulin, and growth factors , can 
also influence telomerase (133). Telomere length and 
telomerase activity may determine cell senescence. 
Hyperoxia accelerates telomere shortening by causing 
oxidative stress. A reduction of stress, for example by 
the action of free radical scavengers , delays replicative 
senescence. Telomere act as a "sentinel" for oxidative 
damage to the genome and replicative senescence may 
be triggered by telomeres as a consequence of DNA 
damage. It is thus ve1y important to ensure that cells 
have sufficient telomerase (134). Guanine of the telo­
merase 3' overhang (TTAGGG) can be considered asa 
target for reactive oxygen species or UV irradiation 
(135). Estrogen activates telomerase via direct and in­
clirect effects . There may be hormona! control of 
telomerase activity. Sex steroicls may thus influence cell 
senescence ancl ageing (136). The activity of telomerase 
may be also regulatecl by the tumor suppressor protein 
p53; a lack of this protein may lead to increase cl 
telomerase activity in cancer celi development (137). 
Mutations of the p53 gene and telomerase activity are 
linkecl, ancl these mutations are consiclerecl to be UV 
specific (138) . The transcription factor NF-KB may act 
at a specific site to influence the activity of the telomerase 
ca talytic subunit (hTERT) T (139). More recently, 
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telomerase and its catalytic subunit hTERT have been 
shown to be involved in oxidative stress, and lN irra­
diation disturbs the telomerase activity in human 
keratinocytes (140). 

The nuclear enzyme poly(ADP-ribose) polymerase 
1 (PARP 1) participates in the regulation of both DNA 
repah- and transcription. Moderation of PARP following 
DNA damage has also been proposed to protect skin 
cells from lN induced acute and chronic photodamage 
(141). The ageing and survival of endothelial cells are 
linked to molecular mechanisms that control celi pro­
liferation, quiescence, apoptosis and senescence. The 
activation of telomerase in human dermal microvascu­
lar endothelial cells also seems to affect their durability 
both in vitro and in vivo (142). 

Apoptosis 

Celi senescence could be, like apoptosis, a part of 
the body's defenses, a natura! mechanism to prevent 
cells from accumulating mutations with their physiologi­
cal consequence, malignancy (143). The differentiation, 
apoptosis and senescence of keratinocytes share some 
molecular pathways. Epidermal differentiation and 
apoptosis lead to cel! death and the removal of cells by 
transglutaminase activation and proteolysis. Regulators 
of apoptosis, such as Bcl-2 (suppressor) or Bax (pro­
motor), are also produced during differentiation. Se­
nescent cells are cells which can no longer replicate, 
but can still respond to growth factors. They have !ost 
their ability to perform correctly tissue homeostasis. 
Cells lose their ability to divide early in differentiation. 

Figure 4. Consequences of ageing on main 
biological targets. 
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Some authors think that senescence is not directly linked 
to epidermal differentiation, due to differences in the 
responses to celi cycle inhibitors (144). 

Apoptosis is a cellular end point of the stress re­
sponse. Apoptosis removes damaged cells from lN-ir­
radiated tissues. The genes that control apoptosis in the 
epidermis, such as the bcl-2 gene, are disregulated dur­
ing ageing. The decreased efficiency of apoptosis may 
contribute to chronological ageing and extrinsic skin 
ageing. Only epidermal stem cells escape cellular se­
nescence. It appears that epidermal terminal differen­
tiation, apoptosis and celi senescence are ali triggered 
by stimuli. Nevertheless, keratinocytes will undergo clas­
sical epidermal differentiation or will irreversibly enter 
into senescence or apoptosis, depending on their state 
and on the nature and strength of the stimuli. Oxidative 
damage is a cellular stress that can cause senescence 
like growth arrest, or even apoptosis. Ras-induced se­
nescence is also mediated by ROS, but is not clearly 
associated with telomere shortening. The tumor sup­
pressor P16 accumulates as fibroblasts approach senes­
cence, and by inhibiting its degradation, P19 indirectly 
mediates the growth arrest or apoptosis. P (145). 

7. Morphological Variations 

The skin becomes thicker until maturity and then 
becomes thinner in women over 50-60 years old. Mea­
surements of skin physical properties show that it be­
comes thinner, stiffer, less tense and elastic with ageing 
(146). 

Mechanical Properties 

Young's modules (elasticity modules) of the skin, a 
ratio between stress and deformation, increases linearly 
with age. This is in agreement with data indicating that 
skin becomes more rigid and less able to stretch in re­
sponse to stress with age. This has to be correlated with 
the increased crosslinking of collagen, the disorganiza­
tion of the fibril network and the large amount of free 
water in the dermis. Ageing decreases skin function and 
causes clinical changes such as wrinkling, color changes 
(yellowish, patches, pigmentation), and a loss of elas­
ticity (146). Sagging is one of the major age-related 
morphological changes in the face. While wrinkles and 
general changes in the face have been well studied, a 
recent method using photostandards and 3 D analysis 
of replicas shows that women's cheeks begin to sag­
ging when they reach 40 (147). Recently measurements 
of site-related and age-dependent variations in facial 
skin show that there is an overall increase of skin 
echogenicity and thickness with age. The skin on the 
upper and lower lips, on the chin and infraorbital re­
gions is thicker than that on the central forehead, lat­
eral forehead and cheeks. The facial skin thickness be-
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Figure 5. Clinical signs of ageing on a Caucasian 
woman of 75 years old: presence of wrinkles, 
spots and sagging. 

comes greater over the lateral regions of the forehead, 
lips and nose in elderly subjects, and becomes thinner 
over the infraorbital regions (148). Fine lines are due to 
the gradual breakdown of collagen and elastin fibers, 
and they are exacerbated by sun damage. Very deep 
wrinkles are associated with the muscle below the skin 
surface. Muscles contract more with age to compen­
sate for the loss of volume. Excessive exposure to sun­
light and smoking can cause major changes in the skin 
(73) . The skin may darken; develop very fine wrinkles, 
spots, and sag , all of w hich are symptoms of 
photoageing. This is a very serious concern for middle­
aged women, especially women in Asia. Studies using 
the two point gap discrimination method plus 
microneurographic recording in response to mechani­
cal stimuli have also revealed changes in tactile spatial 
discrimination in the elderly (149) . 

The subcutis is also concerned in ageing. Ageing 
results in larger fat cells in the subcutaneous tissue. Hor­
mone changes linked to ageing may also cause differ­
ence in body fat distribution (150). Energy metabolism 
is also regulated via leptin, a fat cells-derived hormone, 
in adults. The concentration of leptin in the blood var­
ies during the menstrual cycle. Leptin binding activity 

Skin ageing 

is low at birth and high in the pre-pubertal years, but it 
is stable during adult life and does not vary with ageing 
(151-153). The adipocytes also act as estradiol stores. 
The circulating concentration of this hormone varies 
with age, and is most important in mature skin. Meno­
pause, the physiological cessation of menstruation 
caused by decreased function of the ovaries, leads to 
thinning of the dermis, mainly due to a decrease in the 
collagen content, atrophy of subcutaneous tissues and 
increased skin dryness (154, 155). 

Wrinkles 

Wrinkles are modifications of the skin associated 
with cutaneous ageing and develop preferentially on 
sun-exposed skin. Clinicopathological features of 
wrinkles were studied among the different types of skin 
relief modifications. Four types of skin depressions can 
be defined according to their depth: folds, permanent 
wrinkles, reducible wrinkles and skin micro-relief. De­
velopment of wrinkles may be seconda1y to actinic elas­
tosis and to the disappearance of microfibrils and col­
lagen fibers at the dermoepidermal junction. Epider­
mis is involved with a decrease of the cel! renewal, an 
increase of involucrin, a decrease of integrin ~ 1, type 
VII collagen and fibrillin 1 (156). Wrinkles are one of 
the major concerns for women along with spots and 
freckles. Principal causes of wrinkling are ageing and 
excessive exposure to UV rays. Wrinkles are the expres­
sion of the accumulation of modifications at different 
levels of the skin . Development of so-called fine 
wrinkles begins to take place in the thilties, reaching a 
peak in the fifties, while deep wrinkles increase in the 
fifties. Little is known about the exact histological 
changes underlying wrinkle formation. Changes in col­
lagen type I, III, type IV and VII at the DEJ have been 
recorded (157-160). Collagen VI, concentrated in the 
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papillary dermis immediately below the dermal-epider­
mal junction is similar in photoprotected and photoaged 
skin (159). Some fibroblasts which are accumulating 
damages are less stimulated by surrounding ascorbic 
acid, resulting in a decrease of collagen and a loss of 
dermis density. Very recently, in aged fibroblasts from 
photoexposed zones, a decrease of the intracellular 
transport of pericellular ascorbic acid has been proposed 
in wrinkle formation and ellagic acid derivatives have 
been proposed to overturn the phenomenon (161; Marc 
Dumas, personal communication). 

The balance between the stress activated (SAPK) and 
mitogen activated (ERK) MAP kinase signaling pathways 
regulates celi growth and extracellular matrix produc­
tion (ECM). SAPK activity, measured by c-jun phospho­
rylation, is increased in the elderly and inhibits ECM 
production by activating collagenase and inhibiting 
collagen synthesis (162). Oxidative damage is central 
to skin ageing, and is particularly involved in wrinkle 
formation. The extracellular signal-regulated MAP Ki­
nase pathway (ERK), which mediates celi responses to 
growth factors, is less active in old human skin in vivo. 
At the same tirne, the activity of the stress-activated MAP 
Kinase pathway (c-jun, p38 MAP Kinase) increases in 
old human skin in vivo. The amounts of c-Jun mRNA 
and protein are increased in old skin, but the amounts 
of c-Fos mRNA and protein are not. It has also been 
demonstrated that retino! activates the ERK pathway in 
old skin but does not alter the stress-activated c-jun ki­
nase. (163). TGF ~-1 in the extracellular matrix and in 
keratinocyte may also be an important marker for mea­
suring the efficiency of an "anti-wrinkle" treatment (164). 

Spots / Freckles 

Melanocytes are specialized cells that are located in 
the basal layer of the epidermis. They synthesize and 
transfer melanin pigments to surrounding keratinocytes, 
thus protecting from UV carcinogenic effects (160, 165, 
166). Molecular mechanisms and celi cycle regulatory 
gene expression leading to melanocyte senescence and 
transformation differ significantly from fibroblasts. As 
found in other celi types , progressive telomere short­
ening appears to trigger replicative senescence in nor­
mal melanocytes. In melanocytes and not fibroblasts, 
there is a loss of p21 wat"1 and cyclin E expression. Mel­
anocytes and fibroblasts present common events as an 
increase in p16 INK4

a levels and down-regulation ofE2Fl , 
also shared by senescent keratinocytes. In fibroblasts, 
the senescent phenotype is linked to the repression of 
the gene c-fos, upregulation of p21 war- 1, and down-regu­
lation ofE2F transcription factors. p21 wa1' 1 may be a major 
regulator of fibroblast senescence. (167). 

Adult melanocytes are able to stop to proliferate and 
terminally differentiated melanocytes are stili metaboli­
cally active but postmitotic. The altered differentiated 
functions of senescent melanocyte are not well known. 

Alterations of melanosomes, melanin synthesizing en­
zyme in mitogen activated protein kinase (MAPK), and 
in celi cycle progression have been reported. Ali these 
altered functions may have a real impact in tissue (168). 
The knowledge of the mechanisms of human skin color 
is of prime importance to develop skin care increasing 
the skin radiance and fighting spot formation. The 
change of the absorbance spectrum from reflectance 
including the scattering effect has been found not to 
correspond to the molar absorption spectrum of mela­
nin and blood (169, 170). 

Disturbed keratinocytes-melanocytes interactions 
during melanosome transfer and skin melanosome dis­
tribution patterns could be related to spot formation. 
Melanocytes located in the basal layer of epidermis pro­
duce melanin-loaded melanosomes, which are distrib­
uted to neighboring keratinocytes. UV radiation lead to 
an accumulation of melanosomes in melanocytes and 
treatment with MSH induces exocytosis of melano­
somes. UV and MSH increase the phagocytose of mel­
anosomes by keratinocytes (171). 

Kinesin and kinectin are motor proteins that are in­
volved in some stage of melanosome transport (166; 
172-17 4). Melanosome transport along the dendrite is 
mediated in part by microtubule proteins and myosin 
V, which traps melanosomes at the actin-rich periphery 
of the dendrite SNARE protein (soluble N- ethyl­
maleimide-sensitive factor attachment protein receptors) 
and Rab-3a. Proteins involved in vesicle transport, dock­
ing (rab 3) and membrane fusion (SNARE) seem to be 
involved in the changed melanosome dynamics caused 
by UV irradiation. This can be thought of as an exocy­
tosis towards the keratinocytes Cl 75). Serine protease 
inhibitors that interfere w ith PAR 2 (protease-activated 
receptor 2) may cause depigmentation by affecting 
melanosome transfer and distribution (176). The for­
mation of skin spots on photoexposed areas is a ve1y 
complex problem, but may be viewed asa double prob­
lem. The direct and indirect processes stimulated by 
UV irradiation (endothelin-1 , thymin dimers, NO) in­
crease the melanin production Cl 77-179). Their local 
aggregation can also generate new reactive oxygen 
species (180). A disturbance of celi-celi signaling (cad­
herin E, P, etc) can cause melanin to be transferred to 
basal keratinocytes instead to suprabasal cells, result­
ing in pigment accumulation (181) . Accumulation of 
pigment in such cells coulcl also be due to local defect 
of keratinization and to oxidation products, like lipo­
fuscin. Changes due to UV irradiation and ageing could 
make these cells, pigment-loaded by error, less easy to 
eliminate. Furthermore, melanocytes getting the infor­
mation that their protective pigment distribution pat­
tem is abnormal will continue to oversynthesize pig­
ment, leading to more, uncontrolled accumulation. 

Other biochemical factors may be responsible for 
spot formation. Melanogenic stimulatory factors deri ved 
from epidermal cells in senile freckles include endo-
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thelin and stem celi factor (182). Abnormal sphingo­
myelin deacylase production leads to high concentra­
tions of sphingosylphosphorylcholine insteacl of 
ceramide in the epidermis of patients w ith atopic der­
matitis. The sphingosylphosphorylcholine is associated 
with the pigmentation defects frequently observed in 
atopic dermatitis (183). The question of a specific way 
of spot formation in mature skin linked to the hormona! 
balance modification is also stili open. UV-induced 
melanogenesis is mediated by nitric oxicle radicals. 
There is a clecrease in tyrosinase activity stimulated prior 
to NO-stimulation (184). Human melanocytes contain 
the mammalian melanin concentrating hormone (MCH), 
but human keratinocytes and fibroblasts do not. The 
MCH is coupled to a G protein receptor, SLCl; the inac­
tivatecl complex blocks the cyclic AMP second messen­
ger pathway and increases intracellular calcium. Dis­
turbance of this pathway by UV irradiation or other el­
ements can also favor spot formation (185). The hor­
mona! control of skin pigmentation via interaction of 
POMC peptides (eg a-MSH, ACTH) with other local and 
circulating hormones may influence melanocyte func­
tion, and thus coordinate the pigmenta1y response of 
the skin, especially after major changes in hormone 
con centra ti on (186). Metallothioneine, an intracellular 
free radical scavenger, could be induced in human mela­
nocytes. Suppression of melanogenesis is partly due to 
the induction of metallothioneine. 

Cutaneous microvasculature 

The ageing ancl survival of endothelial cells are 
linked to molecular mechanisms controlling celi prolif­
eration, quiescence, apoptosis and cellular senescence. 
The activation of telomerase in human dermal microvas­
cular enclotbelial cell s is linkecl to their clurability both 
in vitro and in vivo. Knowledge of telomerase activity 
and other markers of amplifying dermal perivascular 
cells may reveal more about the regenerative capacity 
of the skin microvasculature. Telomerase activity / 
length seems to be directly linkecl to the angiogenic 
potential (130; 142; 187-190). 

8. Spedjicity oj Asian Skin 

The formation of facial wrinkles is a sign of 
photoageing. A unique study of over 3000 people from 
five ethnic groups (Africa, American, East Asian, Cau­
casian, Indian Asian ancl Latina) of different ages bas 
revealecl age-clependent changes of the skin (wrinkles, 
hyperpigmentation and pores) . The mean fraction of 
the face area covered with wrinkles is significantly 
smaller in African Americans than in Caucasians, but 
East Asians have the smallest wrinkled area at any given 
age. The authors suggest that racial differences in other 
genetic factors besides skin pigmentation, such as DNA 
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repair, are important in determining the development 
of skin wrinkles. African Americans have more hyper­
pigmented spots ancl facial pores than other racial 
groups. Caucasians have significantly les well hyclratecl 
skin than African Americans, East Asians ancl Latinos 
(191). The relationship between skin phototype ancl 
deep and fine wrinkle scores on the faces of 230 Japa­
nese subjects shows that sunlight-sensitive subjects have 
deeper wrinkles.(192) . 

A recent study has compared the action of sun pro­
tection factor according to COLIPA recommenclations 
on Asian and Caucasian volunteers. The obse1vecl clif­
ference in SPF is not only due to skin color but also to 
interna! factors affecting response of the skin to UV 
(193). Asian skins are not ali the same. Differences in 
the minimal dose causing erythema in Chinese ancl 
Korean subjects were also linkecl to differences in skin 
chromopohores (194). A stucly of 230 Japanese incli­
vicluals classifiecl according to their skin phototype (type 
IV preclominant) suggests that cleep wrinkles are more 
severe in phototype I, and that there is no link between 
phototype ancl fine wrinkles. Skin phototype cloes not 
seem to be relatecl to hair or eye color. Some Japanese 
with dark hair ancl black eyes have sun sensitive low 
phototype (192). 

A stucly of the factors causing clark circles around 
the eyes in 60 healthy Japanese women indicates that 
the clark circles become darker as the bloocl mass in­
creases, showing the importance of hemoclynamics in 
the area (195). A comparison of the cheek skin color of 
Caucasian andJapanese women shows an increase in 
the yellow axis with age in Japanese women, whereas 
there was an increase in the reci axis in Caucasians, fol­
lowed by a decrease around 50 years (196) . East Asians 
living in Los Angeles andJapaneses living in Akita (Ja­
pan) hacl similar clegrees of skin wrinkling. East Asians 
have less facial hyperpigmentation than Latinos, Afri­
can Americans or Caucasians (191). The facial hyper­
pigmentation of 56 women (aged 22 to 67 years) and 
melanin spot distribution showed more melanin gran­
ules arouncl the nuclei in chloasma and senile pigmen­
tation (197). Age-relatecl alterations in the echogenicity 
ofthe skin inJapanese women (130 women aged 18-83 
years) were studiecl, with measurements on the fore­
head, eye corners, ancl cheeks. An increase in the lower 
layer of the dermis probably clue to the accumulation 
of degraded or disarranged collagen and a decrease in 
echogenicity in the upper dermal layer indicate a ten­
dency similar to that seen in Caucasians (198). Mea­
surements of the sebum excretion rate and skin surface 
contours of 662 healthy Korean volunteers revealed age­
related changes. The forehead/ cheek sebum excretion 
rates increased with age while there were changes in 
the skin pores and skin surface texture . The disappear­
ance of prima1y lines, seconda1y lines and increased 
pore size with age is probably linked more to exposure 
to sunlight (199). As demonstrated for the Japanese 
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volunteers, sunlight also modifies lipid peroxidation, 
and cholesterol 7-hydroperoxide is a good marker (200). 

According to JH Chung, the patterns of wrinkles in 
Asian people differ from those of Caucasians. Por ex­
ample, Korean people have cleeply w rinklecl foreheacl 
ancl perioral areas . Wrinkles ancl pigmentary moclifica­
tions are the two main characteristics of photoageing in 
Koreans (201). The skin of groups of 100 clifferent Asian 
women was compared . In Japanese the skin was in a 
better conclition compared to six other populations. 
Age-relatecl increase of sallowness was more promi­
nent in Chinese ancl Korean skin, while . in Philippines 
the highest tenclency of combinecl skin lesions pre­
vailecl (202). 

There are severa! inclepenclent risk factors of wrin­
kles, such as age, exposure to sunlight, menopause, skin 
color ancl smoking. Pregnancy is another factor of risk 
for facial wrinkling clue to the high levels of sex hor­
mone bouncl to globulin ancl low concentrations of free 
estradiol. Progesterone also acts as an antagonist to es­
trogen. Lactation delays the return of ovulation ancl 
clecreases the estracliol concentration. Hormone Re­
placement Therapy (HRT) clecreases the risks of wrin­
kling. The clecrease in skin collagen due to estrogen 
cleficiency in post-menopausal women may aggravate 
the severity of wrinkles. Men are also subject to pig­
mentation clamage, leacling to seborrheic keratosis ancl 
solar lentigo, ancl, as in women, it leads to depigmenta­
tion (lentigo, freckles, mottled pigmentation). In 189 
Korean women, a significant increase in the risk of 
wrinkles was found associatecl w ith an increasing num­
ber of full-term pregnancies ancl menopausal age (203). 

A multicentric stucly carried out on 3 000 Chinese 
women showecl no crow's feet area prevalence in North­
ern cities and a higher peri-oral ancl glabella wrinkle 
score in Southern cities. Only 203 women were con­
cernecl at 21-25 years of wrinkles in crow's feet area, 
butat 36 years 75 % ofwomen were concernecl (204). 
Comparing 160 French and Chinese women (20-65 
years) the onset of wrinkles delayecl by arouncl 10 years 
in Chinese women (205). From 26 to 60 years, 60% of 
the Chinese women exhibit pigmented spots on their 
face. Small facial pigmentecl spots characterize young 
population (18-40 years), spots of more than 6 mm di­
ameter increase after 30. Whatever the age group, pig­
mentecl spots are always more pronounced on the face 
than on the hancls. Climatic factors and chronic expo­
sure of UV are suggestecl asa main cause of pigmentecl 
spots (206). 
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Conclusion 

The skin acts as a biosensor because it forms a large 
interface with our environment. It is a dynamic living 
barrier which is of prime importance in our social life. 
The recent studies describecl in this paper clearly show 
the complex interconnections at all levels of the tissue 
and provide a more predse picture of the importance 
of the events involved in ageing and photo-damage. It 
may become possible to clelay the appearance of signs 
of skin ageing by acting on key mechanisms revealed 
by research into this fascinating topic 
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