Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies Series Historia Naturalis, 32, 2022, 2 UDK 5 Annales, Ser. hist. nat., 32, 2022, 2, pp. 267-479, Koper 2022 ISSN 1408-533X KOPER 2022 Anali za istrske in mediteranske študije Annali di Studi istriani e mediterranei Annals for Istrian and Mediterranean Studies Series Historia Naturalis, 32, 2022, 2 UDK 5 ISSN 1408-533X e-ISSN 2591-1783 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies ISSN 1408-533X UDK 5 Letnik 32, leto 2022, številka 2 e-ISSN 2591-1783 UREDNIŠKI ODBOR/ COMITATO DI REDAZIONE/ BOARD OF EDITORS: Alessandro Acquavita (IT), Nicola Bettoso (IT), Christian Capapé (FR), Darko Darovec, Dušan Devetak, Jakov Dulčić (HR), Serena Fonda Umani (IT), Andrej Gogala, Daniel Golani (IL), Danijel Ivajnšič, Mitja Kaligarič, Marcelo Kovačič (HR), Andrej Kranjc, Lovrenc Lipej, Vesna Mačić (ME), Alenka Malej, Patricija Mozetič, Martina Orlando- Bonaca, Michael Stachowitsch (AT), Tom Turk, Al Vrezec Glavni urednik/Redattore capo/ Editor in chief: Darko Darovec Odgovorni urednik naravoslovja/ Redattore responsabile per le scienze naturali/Natural Science Editor: Lovrenc Lipej Urednica/Redattrice/Editor: Martina Orlando-Bonaca Prevajalci/Traduttori/Translators: Martina Orlando-Bonaca (sl./it.) Oblikovalec/Progetto grafico/ Graphic design: Dušan Podgornik, Lovrenc Lipej Tisk/Stampa/Print: Založništvo PADRE d.o.o. Izdajatelja/Editori/Published by: Zgodovinsko društvo za južno Primorsko - Koper / Società storica del Litorale - Capodistria© Inštitut IRRIS za raziskave, razvoj in strategije družbe, kulture in okolja / Institute IRRIS for Research, Development and Strategies of Society, Culture and Environment / Istituto IRRIS di ricerca, sviluppo e strategie della società, cultura e ambiente© Sedež uredništva/Sede della redazione/ Address of Editorial Board: Nacionalni inštitut za biologijo, Morska biološka postaja Piran / Istituto nazionale di biologia, Stazione di biologia marina di Pirano / National Institute of Biology, Marine Biology Station Piran SI-6330 Piran /Pirano, Fornače/Fornace 41, tel.: +386 5 671 2900, fax +386 5 671 2901; e-mail: annales@mbss.org, internet: www.zdjp.si Redakcija te številke je bila zaključena 23. 12. 2022. Sofinancirajo/Supporto finanziario/ Financially supported by: Javna agencija za raziskovalno dejavnost Republike Slovenije (ARRS) in Mestna občina Koper Annales - Series Historia Naturalis izhaja dvakrat letno. Naklada/Tiratura/Circulation: 300 izvodov/copie/copies Revija Annales, Series Historia Naturalis je vključena v naslednje podatkovne baze / La rivista Annales, series Historia Naturalis è inserita nei seguenti data base / Articles appearing in this journal are abstracted and indexed in: BIOSIS-Zoological Record (UK); Aquatic Sciences and Fisheries Abstracts (ASFA); Elsevier B.V.: SCOPUS (NL); Directory of Open Access Journals (DOAJ). To delo je objavljeno pod licenco / Quest’opera è distribuita con Licenza / This work is licensed under a Creative Commons BY-NC 4.0. Navodila avtorjem in vse znanstvene revije in članki so brezplačno dostopni na spletni strani https://zdjp.si/en/p/annalesshn/ The submission guidelines and all scientific journals and articles are available free of charge on the website https://zdjp.si/en/p/annalesshn/ Le norme redazionali e tutti le riviste scientifiche e gli articoli sono disponibili gratuitamente sul sito https://zdjp.si/en/p/annalesshn/ ANNALES · Ser. hist. nat. · 32 · 2022 · 2 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies UDK 5 Letnik 32, Koper 2022, številka 2 ISSN 1408-53 3X e-ISSN 2591-1783 VSEBINA / INDICE GENERALE / CONTENTS BIOTSKA GLOBALIZACIJA GLOBALIZZAZIONE BIOTICA BIOTIC GLOBALIZATION Murat BILECENOĞLU & M. Baki YOKEŞ New Data on the Occurrence of Two Lessepsian Marine Heterobranchs, Plocamopherus ocellatus (Nudibranchia: Polyceridae) and Lamprohaminoea ovalis (Cephalaspidea: Haminoeidae), from the Aegean Sea ................... Novi podatki o pojavljanju dveh lesepskih morskih polžev zaškrgarjev, Plocamopherus ocellatus (Nudibranchia: Polyceridae) in Lamprohaminoea ovalis (Cephalaspidea: Haminoeidae), iz Egejskega morja Gianni INSACCO, Aniello AMATO, Bruno ZAVA & Maria CORSINI-FOKA Additional Capture of Halosaurus ovenii (Actinopterygii: Notacanthiformes: Halosauridae) in Italian Waters ........................... Novi ulov vrste Halosaurus ovenii (Actinopterygii: Notacanthiformes: Halosauridae) v italijanskih vodah Christian CAPAPÉ, Christian REYNAUD & Farid HEMIDA First Record of Marbled Stingray, Dasyatis marmorata (Chondrichthyes: Dasyatidae) from the Algerian Coast (Southwestern Mediterranean Sea) ....................... Prvi zapis o pojavljanju marmoriranega morskega biča, Dasyatis marmorata (Chondrichthyes: Dasyatidae) iz alžirske obale (jugozahodno Sredozemsko morje) Maria CORSINI-FOKA & Bruno ZAVA Second Occurrence of Siganus javus (Siganidae) in the Mediterranean Waters ............................... Drugi zapis o pojavljanju progastega morskega kunca, Siganus javus (Siganidae), v sredozemskih vodah Daniel GOLANI, Haim SHOHAT & Brenda APPELBAUM-GOLANI Colonisation of Exotic Fish Species of the Genera Pseudotropheus and Aulonocara (Perciformes: Cichlidae) and the Decline of Native Ichthyofauna in Nahal Amal, Israel ........................................... Naseljevanje eksotičnih vrst rib iz rodov Pseudotropheus in Aulonocara (Perciformes: Cichlidae) in upad domorodne ribje favne v reki Nahal Amal, Izrael Panayotis OVALIS & Maria CORSINI-FOKA On the Occurrence of Velolambrus expansus (Brachyura, Parthenopidae) in Hellenic Waters ....... O pojavljanju rakovice vrste Velolambrus expansus (Brachyura, Parthenopidae) v grških vodah Saul CIRIACO, Marco SEGARICH, Vera CIRINÀ & Lovrenc LIPEJ First Record of the Long-Jawed Squirrelfish Holocentrus adscensionis (Osbeck, 1765) in the Adriatic Sea ....................... Prvi zapis o pojavljanju vrste veveričjaka Holocentrus adscensionis (Osbeck, 1765) v Jadranskem morju Christian CAPAPÉ, Vienna HAMMOUD, Aola FANDI & Malek ALI First Record of Moontail Bullseye Priacanthus hamrur (Osteichthyes, Priacanthidae) from the Syrian Coast (Eastern Mediterranean Sea) ............ Prvi zapis o pojavljanju lunastorepega velikookega ostriža Priacanthus hamrur (Osteichthyes, Priacanthidae) s sirske obale (vzhodno Sredozemsko morje) SREDOZEMSKI MORSKI PSI SQUALI MEDITERRANEI MEDITERRANEAN SHARKS Hakan KABASAKAL, Erdi BAYRI & Görkem ALKAN Distribution and Status of the Great White Shark, Carcharodon carcharias, in Turkish Waters: a Review and New Records ................................. Status in razširjenost belega morskega volka (Carcharodon carcharias) v turških vodah: pregled in novi zapisi o pojavljanju Alen SOLDO 200 Years of Records of the Basking Shark, Cetorhinus maximus, in the Eastern Adriatic ..... Dvesto let opazovanj morskega psa orjaka, Cetor- hinus maximus, v vzhodnem Jadranskem morju Hakan KABASAKAL, Ayşe ORUÇ, Cansu LKILINÇ, Efe SEVİM, Ebrucan KALECİK & Nilüfer ARAÇ Morphometrics of an Incidentally Captured Little Gulper Shark, Centrophorus uyato (Squaliformes: Centrophoridae), from the Gulf of Antalya, with Notes on Its Biology .................................................. Morfometrija naključno ujetega globinskega trneža, Centrophorus uyato (Squaliformes: Centrophoridae), iz Antalijskega zaliva z zapiski o njegovi biologiji 273 267 281 287 293 309 301 317 325 343 351 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 Christian CAPAPÉ, Almamy DIABY, Youssouph DIATTA, Sihem RAFRAFI-NOUIRA & Christian REYNAUD Atypical Claspers in Smoothhound, Mustelus mustelus (Chondrichthyes: Triakidae) from the Coast of Senegal (Eastern Tropical Atlantic) .............................................................. Netipična klasperja navadnega morskega psa, Mustelus mustelus (Chondrichthyes: Triakidae) iz senegalske obale (vzhodni tropski Atlantik) Hakan KABASAKAL, AyŞe ORUÇ, Ebrucan KALE- CIK, Efe SEVIM, Nilüfer ARAÇ & Cansu ILKILINÇ Notes on a Newborn Kitefin Shark, Dalatias licha: New Evidence on the Nursery of a Rare Deep-Sea Shark in Northeastern Levant (Turkey) ............................... Zapis o najdbi skotenega klinoplavutega morskega psa, Dalatias licha: novi dokaz o jaslicah redkega globokomorskega morskega psa v severovzhodnem levantu (Turčija) IHTIOLOGIJA ITTIOLOGIA ICHTHYOLOGY Nadia BOUZZAMMIT, Hammou EL HABOUZ, El hassan AIT-TALBORJT, Zahra OKBA & Hassan EL OUIZGANI Diet Composition and Feeding Strategy of Atlantic Chub Mackerel Scomber colias in the Atlantic Coast of Morocco ................................... Prehrana in prehranjevalna strategija lokarde (Scomber colias) ob atlantski obali Maroka FLORA FLORA FLORA Amelio PEZZETTA Le Orchidaceae di Albona (Labin, Croazia) ......... Kukavičevke Labina (Hrvaška) FAVNA FAVNA FAVNA Murat BILECENOĞLU & Melih Ertan ÇINAR The Mauve Stinger, Pelagia noctiluca, Has Ex- panded Its Range to the Sea of Marmara .............. Mesečinka (Pelagia noctiluca) je razširila svoj areal do Marmarskega morja Marijana HURE, Davor LUČIĆ, Barbara GANGAI ZOVKO & Ivona ONOFRI Dynamics of Mesozooplankton Along the Eastern Coast of the South Adriatic Sea ................ Dinamika mezozooplanktona vzdolž vzhodne obale južnega Jadrana Abdelkarim DERBALI, Kandeel E. KANDEEL, Aymen HADJ TAIEB & Othman JARBOUI Population Dynamics of the Cockle Cerastoderma glaucum (Mollusca: Bivalvia) in the Gulf of Gabes (Tunisia) ............... Populacijska dinamika navadne srčanke Cerastoderma glaucum (Mollusca: Bivalvia) v Gabeškem zalivu (Tunizija) Vasiliki K. SOKOU, Joan GONZALVO, Ioannis GIOVOS, Cristina BRITO & Dimitrios K. MOUTOPOULOS Tracing Dolphin-Fishery Interaction in Early Greek Fisheries ........................................... Sledenje interakcij med delfini in ribiči v zgodnjih grških ribiških dejavnostih Pavel JAMNIK, Matija KRIŽNAR & Bruno BLAŽINA Novi najdišči pleistocenske favne pod Kraškim robom. Smo končno našli tudi jamo Grotta dellʼOrso? ................................. Two New Sites of Pleistocene Fauna under Karst Edge. Has a Grotta dellʼOrso Cave Been Finally Found? OCENE IN POROČILA RECENSIONI E RELAZIONI REVIEWS AND REPORTS Andreja PALATINUS Book Review: Plastic Pollution and Marine Conservation. Approaches to Protect Biodiversity and Marine Life ................................ Kazalo k slikam na ovitku ................................... Index to images on the cover .............................. 367 359 377 393 405 411 431 443 451 471 473 473 ANNALES · Ser. hist. nat. · 30 · 2020 · 1 6 Ahmet ÖKTENER & Sezginer TUNCER: OCCURRENCE OF GNATHIA LARVAE (CRUSTACEA, ISOPODA, GNATHIIDAE) IN THREE LESSEPSIAN FISH SPECIES ..., 87–98 BIOTSKA GLOBALIZACIJA GLOBALIZZAZIONE BIOTICA BIOTIC GLOBALIZATION ANNALES · Ser. hist. nat. · 30 · 2020 · 1 7 Ahmet ÖKTENER & Sezginer TUNCER: OCCURRENCE OF GNATHIA LARVAE (CRUSTACEA, ISOPODA, GNATHIIDAE) IN THREE LESSEPSIAN FISH SPECIES ..., 87–98 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 267 received: 2022-04-19 DOI 10.19233/ASHN.2022.26 NEW DATA ON THE OCCURRENCE OF TWO LESSEPSIAN MARINE HETEROBRANCHS, PLOCAMOPHERUS OCELLATUS (NUDIBRANCHIA: POLYCERIDAE) AND LAMPROHAMINOEA OVALIS (CEPHALASPIDEA: HAMINOEIDAE), FROM THE AEGEAN SEA Murat BILECENOĞLU Department of Biology, Faculty of Science, Aydin Adnan Menderes University, 09010 Aydin, Turkey e-mail: mbilecenoglu@adu.edu.tr M. Baki YOKEŞ AMBRD Laboratories, Hanımefendi Sokak, No: 160/9, 34384, Şişli, Istanbul, Turkey ABSTRACT The authors have recently collected two Lessepsian heterobranchs from Turkey, namely Plocamopherus ocellatus Rüppell & Leuckart, 1828 and Lamprohaminoea ovalis (Pease, 1868), both of which were found signi- ficantly out of their known distribution ranges. The single individual of P. ocellatus collected at Akbük Cove is a new addition to the Aegean Sea malacofauna, while several individuals of L. ovalis observed from the Ayvalık Islands Nature Park and Saros Bay represent the northernmost occurrence limit of the species. Present findings suggest that P. ocellatus is currently a casual alien species in the region, while L. ovalis has established a breeding population in the northern Aegean Sea. Key words: Aegean Sea, Lessepsian species, Heterobranchia NUOVI DATI SULLA PRESENZA DI DUE ETEROBRANCHI MARINI LESSEPSIANI, PLOCAMOPHERUS OCELLATUS (NUDIBRANCHIA: POLYCERIDAE) E LAMPROHAMINOEA OVALIS (CEPHALASPIDEA: HAMINOEIDAE) NEL MAR EGEO SINTESI Gli autori hanno recentemente raccolto in Turchia due eterobranchi lessepsiani, ovvero Plocamopherus ocel- latus Rüppell & Leuckart, 1828 e Lamprohaminoea ovalis (Pease, 1868), entrambi trovati significativamente al di fuori dei loro areali di distribuzione noti. Il singolo individuo di P. ocellatus trovato ad Akbük Cove è una nuova aggiunta alla malacofauna dell’Egeo, mentre diversi individui di L. ovalis osservati nel Parco Naturale delle Isole Ayvalık e nella Baia di Saros rappresentano il limite più settentrionale di presenza della specie. I risultati attuali suggeriscono che P. ocellatus sia una specie aliena attualmente casuale nella regione, mentre L. ovalis abbia stabilito una popolazione riproduttiva nell’Egeo settentrionale. Parole chiave: Egeo, specie lessepsiane, Heterobranchia ANNALES · Ser. hist. nat. · 32 · 2022 · 2 268 Murat BİLECENOĞLU & M. Baki YOKEŞ: NEW DATA ON THE OCCURRENCE OF TWO LESSEPSIAN MARINE HETEROBRANCHS, ..., 267–272 INTRODUCTION Considering the quantitative occurrence of alien species in the Mediterranean Sea, Turkey can be placed in the centre of marine bioinvasions. Alien species diversity has increased almost twofold since 2005, currently reaching well over 500 species, which represents an immense biodiversity change (Çinar et al., 2005; 2021). The Levantine shores of Turkey are typically liable to a heavier invasion impact due to the proximity to the Suez Canal, but a considerable number of thermophilic alien species have also pen- etrated the Aegean Sea, primarily as a result of the fast warming of surface waters (Katsanevakis et al., 2020). While the number of documented occurrences of alien taxa has increased by 25.2% in the north- ern Levant over the past decade, the corresponding diversity in the Aegean Sea denotes a drastic rise of 53.3% (from 165 to 253 species) (Çinar et al., 2011; 2021). The prominent evolution of Aegean Sea biota certainly requires an in-depth analysis of the impact of biological invasions and greater research effort, in which close monitoring of new species introductions is of utmost importance. In this paper, we present novel information on the distribution of two Lessepsian marine heterobranchs from the Aegean coasts of Turkey. One of them, Plo- camopherus ocellatus Rüppell & Leuckart, 1828, is a nudibranch native to the Red Sea and the Arabian Gulf, which penetrated the Mediterranean Sea by way of the Suez Canal during the late 1970s (Rothman & Galil, 2015). Almost two decades after its first record Fig. 1. Capture and observation localities of the two Lessepsian heterobranchs from the Aegean Sea. 1) Plocamopherus ocellatus (Akbük Cove), 2) Lamprohaminoea ovalis (Ayvalık Islands Nature Park), 3) L. ovalis (Saros Bay). Sl. 1: Lokalitete, kjer sta bili lesepski vrsti ujeti in opazovani v Egejskem morju. 1) Plocamopherus ocellatus (zaliv Akbük), 2) Lamprohaminoea ovalis (naravni park v okviru otočja Ayvalık), 3) L. ovalis (zaliv Saros). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 269 Murat BİLECENOĞLU & M. Baki YOKEŞ: NEW DATA ON THE OCCURRENCE OF TWO LESSEPSIAN MARINE HETEROBRANCHS, ..., 267–272 from the Israeli coast (Barash & Danin, 1982), in 1998, the species was encountered by underwater photog- raphers at Kaş (Antalya Bay, Turkey) (Rudman, 2002; Yokeş & Rudman, 2004), with further reports following from Lebanon and Cyprus (Valdés & Templado, 2002; Crocetta et al., 2013; Hoeksema & Yonov, 2021) and hereby for the first time from the Aegean Sea. The other species, Lamprohaminoea ovalis (Pease, 1868), is a cephalaspid of Indo-West Pacific origin. Its occurrence records from the Mediterranean Sea, dating to the early 2000s (as Haminoea cyanomarginata), are based on underwater photographs taken almost synchronously in the Gulf of Corinth (Greece), and in the Çeşme Pen- insula and Antalya Bay (Turkey) (Rudman, 2003; Yokeş & Rudman, 2004). During the last two decades, the species has been reported from Cyprus, Croatia, Italy, Malta, Libya, and Spain (Lombardo & Marletta, 2021), and can be currently observed in Ayvalık Islands Na- ture Park and Saros Bay, showing a significant northern range expansion. MATERIAL AND METHODS On 24 October 2021, a single individual of P. ocellatus (80 mm in length) was collected from Akbük Cove (37.413782°N, 27.411052°E, Fig. 1, site 1) lo- cated along the southern Aegean Sea coast of Turkey. The specimen was found on a small rock over a sandy/ muddy bottom, amid patches of Cymodocea nodosa (Ucria) Asch. just below the water surface (about 30 cm in depth). It was collected by hand, fixed later in 70% alcohol and preserved in AMBRD Laboratories for further analysis. Identification of the species was made according to descriptions given by Rudman (2002), Zenetos et al. (2004) and Rothman & Galil (2015). During field excursions carried out at the Ayvalık Islands Nature Park (consisting of 19 islands of dif- ferent dimensions), we were able to collect a total of eight L. ovalis during daytime scuba dives from Gunes Island (39.325855°N, 26.543048°E; 3 indi- viduals; 8 April 2021; 4‒5 m depth range), Alibey Island (39.386142°N, 26.646606°E; 3 individuals; 9 September 2021; 25‒30 m depth range) and Ciplak Island (39.276091°N, 26.581306°E; 2 individuals; 9 December 2021; 5‒10 m depth range) (Fig. 1, site 2). Lamprohaminoea ovalis was sampled exclusively at rocky substrates mostly covered by filamentous algae. In addition, several underwater photographs of six different L. ovalis individuals were taken on 27 Oc- tober 2019 by a scuba diver in the vicinity of Kömür Harbor located in Saros Bay, northeastern Aegean Sea (40.458241°N, 26.511067°E; Fig. 1, site 3). The photographs were taken at a very shallow depth (1 to 2 m) over algae-covered rocks. Identification of the species was made according to Zenetos et al. (2004) and Oskars & Malaquias (2020). RESULTS AND DISCUSSION The sampled P. ocellatus individual (Fig. 2) had an elongated body, convex dorsum, branched appendages on the oral veil, small and ramified papillae along the mantle edge, lamellate rhinophores, a prominent keel in the posterior dorsal midline, and three pairs of latero- dorsal processes, which are characteristic features of the species (Rudman, 2002; Zenetos et al., 2004). Body colour was brownish mauve with unevenly spread yel- low spots of different sizes and shapes (some bearing dark-coloured flecks in the centre), in accordance with the description by Rothman & Galil (2015). Although previously believed to be a rare species, a total of 23 observations are available from 16 different localities throughout the eastern Levant, with Kaş shores off the Turkish coastline representing the westernmost occur- rence limit (Hoeksema & Yonov, 2021). Until now, P. ocellatus has not been documented from the Aegean Sea and we report herein a significant northward range expansion of the species by more than 200 nautical miles from Kaş. The source and introduced popula- tion of P. ocellatus have been reported from a variety of depths (1.5–50 m) and habitat types (shipwrecks, rocks, mud, cave, marina wall, rock pool, etc.) (Hoek- sema & Yonov, 2021). The present observation fits well with previous habitat descriptions, whereas the depth appears to be the shallowest hitherto recorded. The sampling site was examined thoroughly but neither an additional individual nor an egg capsule attached to hard substrates was found, so the recent observa- tion indicates P. ocellatus to be a casual species in the Aegean Sea. The Aegean Sea individuals of Lamprohaminoea ovalis were characterized by the combination of purple or dark blue-bordered mantle, white body, a large bluish spot separating the narrowly spaced eyes, and deeply bifurcated cephalic shield (Fig. 3), in accordance with Zenetos et al. (2004). The observed coloration fits the purple morph definition of Oskars & Malaquias (2020) and some individuals also bear vivid yellow round blotches along the body. In the Mediterranean Sea, the species has been observed both in the daytime and at night, from very shallow depths of 30 cm to as deep as 30 m on rocky surfaces covered by algae (Rudman, 2003; Zenetos et al., 2004; Rizgalla et al., 2018), which is consistent with our observations. The species is widely recorded in Mediterranean coastal ecosystems as one of the most invasive molluscans known (Lombardo & Mar- letta, 2021). In Turkey, L. ovalis has been intensively col- lected from all Levantine shores (except Iskenderun Bay) and the whole southern Aegean Sea from Gökova Bay to the Çeşme Peninsula (Yokeş & Rudman, 2004; Yokeş et al., 2012). The recent findings from the Ayvalık Islands and Saros Bay considerably extend the distribution of L. ovalis northwards, by 50 and 100 nautical miles, respec- tively. This region was subjected to intense marine bio- ANNALES · Ser. hist. nat. · 32 · 2022 · 2 270 Murat BİLECENOĞLU & M. Baki YOKEŞ: NEW DATA ON THE OCCURRENCE OF TWO LESSEPSIAN MARINE HETEROBRANCHS, ..., 267–272 diversity research a decade ago (Yokeş et al., 2013) and L. ovalis was almost certainly absent at the time, thus we may assume that the northern Aegean Sea occurrence of the species is a recent event. Lamprohaminoea ovalis displays a common mating ceremony involving unique trailing behaviour (M.B. Yokeş in Rudman, 2003) that we were able to observe both in the Ayvalık Islands and Saros Bay (Fig. 3). Based on this finding, we assume that the recently observed L. ovalis has established a breeding population in the northern Aegean Sea, but to determine whether an invasion process is underway at the moment or not, further focused underwater research is required. ACKNOWLEDGEMENTS We are indebted to Osman Temizel for giving per- mission of use of the L. ovalis photographs. This research has partially been financed by “Addressing Invasive Alien Species Threats at Key Marine Biodiversity Areas GEF VI Project” implemented by the Republic of Tür- kiye, Ministry of Agriculture and Forestry, the General Directorate of Nature Conservation and National Parks in cooperation with the United Nations Development Programme (UNDP) funded by the Global Environment Facility (GEF). Fig. 2. The sampled individual of Plocamopherus ocellatus from Akbük Cove, Aegean Sea. (Photo: M. Bilecenoğlu). Sl. 2: Vzorčeni primerek vrste Plocamopherus ocellatus iz zaliva Akbük, Egejsko morje (Foto: M. Bilecenoğlu). Fig. 3. Lamprohaminoea ovalis individuals observed at a depth of 2 m in Saros Bay, northern Aegean Sea, displaying trailing behaviour. (Photo: O. Temizel). Sl. 3: Sprevod primerkov vrste Lamprohaminoea ovalis, opazovanih na globini 2 m v zalivu Saros, severno Egej- sko morje (Foto: O. Temizel). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 271 Murat BİLECENOĞLU & M. Baki YOKEŞ: NEW DATA ON THE OCCURRENCE OF TWO LESSEPSIAN MARINE HETEROBRANCHS, ..., 267–272 NOVI PODATKI O POJAVLJANJU DVEH LESEPSKIH MORSKIH POLŽEV ZAŠKRGARJEV, PLOCAMOPHERUS OCELLATUS (NUDIBRANCHIA: POLYCERIDAE) IN LAMPROHAMINOEA OVALIS (CEPHALASPIDEA: HAMINOEIDAE), IZ EGEJSKEGA MORJA Murat BILECENOĞLU Department of Biology, Faculty of Science, Aydin Adnan Menderes University, 09010 Aydin, Turkey e-mail: mbilecenoglu@adu.edu.tr M. Baki YOKEŞ AMBRD Laboratories, Hanımefendi Sokak, No: 160/9, 34384, Şişli, Istanbul, Turkey POVZETEK Avtorja sta pred kratkim v Turčiji našla dva lesepska polža zaškrgarja, in sicer vrsti Plocamopherus ocellatus Rüppell & Leuckart, 1828 in Lamprohaminoea ovalis (Pease, 1868). Vrsti sta bili najdeni povsem izven njunega znanega areala. Primerek vrste P. ocellatus, nabran v zalivu Akbük, predstavlja prvo najdbo za malakofavno Egejskega morja, medtem ko številni primerki vrste L. ovalis iz naravnega parka v okviru otočja Ayvalık in v zalivu Saros, predstavljajo najsevernejšo mejo razširjenosti vrste. Na podlagi najdb lahko sklepamo, da je P. ocellatus v regiji naključna tujerodna vrsta, medtem ko se vrsta L. ovalis v severnem Egejskem morju razmnožuje. Ključne besede: Egejsko morje, lesepske selivke, Heterobranchia ANNALES · Ser. hist. nat. · 32 · 2022 · 2 272 Murat BİLECENOĞLU & M. Baki YOKEŞ: NEW DATA ON THE OCCURRENCE OF TWO LESSEPSIAN MARINE HETEROBRANCHS, ..., 267–272 REFERENCES Barash, A. & Z. Danin (1982): Mediterranean Mol- lusca of Israel and Sinai; composition and distribution. Isr. J. Zool., 31, 86-118. Crocetta, F., H. Zibrowius, G. Bitar, J. Templado, & M. Oliverio (2013): Biogeographical homogeneity in the eastern Mediterranean Sea - I: the opisthobranchs (Mollusca: Gastropoda) from Lebanon. Med. Mar. Sci., 14, 403-408. Çinar, M.E., M. Bilecenoğlu, B. Öztürk, T. Katağan, M.B. Yokeş, V. Aysel, E. Dağlı, Ş. Açık, T. Özcan & H. Erdoğan (2011): An updated review of alien species on the coasts of Turkey. Med. Mar. Sci., 12, 257-315. Çinar, M.E., M. Bilecenoğlu, B. Öztürk, T. Katağan & V. Aysel (2005): Alien species on the coasts of Turkey. Med. Mar. Sci., 6, 119-146. Çinar, M.E., M. Bilecenoğlu, M.B. Yokeş, B. Öztürk, E. Taşkin, K. Bakir, A. Doğan & Ş. Açik (2021): Current status (as of end of 2020) of marine alien species in Turkey. PLoS ONE, 16, e0251086. Hoeksema, B.W. & N. Yonow (2021): Rarity in the native range of the Lessepsian migrant Plocamopherus ocellatus (Nudibranchia): fact or artifact? Ecology, 102, e03481. Katsanevakis, S., A. Zenetos, M. Corsini-Foka & K. Tsiamis (2020): Biological invasions in the Aegean Sea: temporal trends, pathways, and impacts. In: Anagnostou, C.L., A.G. Kostianoy, I.D. Mariolakos, P. Panayotidis, M. Soilemezidou & G. Tsaltas (eds.): The Aegean Sea Envi- ronment, The Natural System, Springer, Berlin, pp. 1-34. Lombardo, A. & G. Marletta (2021): Seasonal- ity of the alien Lamprohaminoea ovalis (Pease, 1868) (Gastropoda: Cephalaspidea) along the Central-eastern Coasts of Sicily, Central Mediterranean Sea. Acta Zool. Bulg., 73, 621-628. Oskars, T.R. & M.A.E. Malaquias (2020): Systematic revision of the Indo-West Pacific colourful bubble- snails of the genus Lamprohaminoea Habe, 1952 (Cephalaspidea: Haminoeidae). Invertebr. Syst., 34, 727-756. Rizgalla, J., S. Fridman, A. Ben Abdallah, J.E. Bron, & A.P. Shinn (2018): First record of the non-native sea snail Haminoea cyanomarginata Heller & Thompson, 1983 (Gastropoda: Haminoeidae) in the Southern Mediterranean Sea. Bioinvasions Rec., 7, 411-414. Rothman, S.B.S. & B.S. Galil (2015): Not so rare: Plocamopherus ocellatus (Nudibranchia, Polyceridae) in the Eastern Mediterranean. Mar. Biodiv. Rec., 8, e144. Rudman, W.B. (2002): Plocamopherus ocellatus Rueppell & Leuckart, 1828. In: Sea Slug Forum. Aus- tralian Museum, Sydney. Available from http://www. seaslugforum.net/factsheet/plococel Rudman, W.B. (2003): Haminoea cyanomarginata Heller & Thompson, 1983. In: Sea Slug Forum. Aus- tralian Museum, Sydney. Available from http://www. seaslugforum.net/find/hamicyan Valdés, A. & J. Templado (2002): Indo-Pacific dorid nudibranchs collected in Lebanon (eastern Mediter- ranean). Iberus, 20, 23-30. Yokeş, M.B. & V. Demir (2013): Determination work on marine biodiversity at Ayvalık Islands Nature Park. Strengthening the System of Marine and Coastal Protected Areas of Turkey, Technical Report Series No: 20, 104 pp. Yokeş, M.B. & W.B. Rudman (2004): Lessepsian opisthobranchs from southwestern coast of Turkey; five new records for Mediterranean. Rapp. Comm. Int. Mer Médit., 37, 557. Yokeş, M.B., C. Dalyan, S.Ü. Karhan, V. Demir, U. Tural & E. Kalkan (2012): Alien opisthobranchs from Turkish coasts: first record of Plocamopherus tilesii Bergh, 1877 from the Mediterranean. Triton, 25, 1-9. Zenetos, A., S. Gofas, G. Russo, & J. Templado (2004): CIESM atlas of exotic species in the Mediter- ranean. Vol.3. Molluscs. CIESM Publishers, Monaco, 376 pp. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 273 received: 2022-05-19 DOI 10.19233/ASHN.2022.27 ADDITIONAL CAPTURE OF HALOSAURUS OVENII (ACTINOPTERYGII: NOTACANTHIFORMES: HALOSAURIDAE) IN ITALIAN WATERS Gianni INSACCO Museo Civico di Storia Naturale, Via degli Studi 9, 97013 Comiso (Ragusa), Italy e-mail: g.insacco@comune.comiso.rg.it Aniello AMATO Veterinary Office, Local Sanitary Company (ASL) Salerno, U.O. S.D. VET. 3, Via Sichelmanno 79, 84100 Salerno, Italy e-mail: aniamato@alice.it Bruno ZAVA Museo Civico di Storia Naturale, Via degli Studi 9, 97013 Comiso (Ragusa), Italy Wilderness Studi Ambientali. Via Cruillas, 27, 90146 Palermo, Italy e-mail: wildernessbz@hotmail.com Maria CORSINI-FOKA Hellenic Centre for Marine Research, Institute of Oceanography. Hydrobiological Station of Rhodes, Cos Street, 85100 Rhodes, Greece e-mail: mcorsini@hcmr.gr ABSTRACT A single specimen of Halosaurus ovenii Johnson, 1864 was collected in 2013 in the Tyrrhenian Sea, western Mediterranean. The finding contributes to the knowledge on the geographical distribution of this rare species in the whole basin. The occurrence of H. ovenii is reported for the fifth time in the Mediterranean and for the third in the Italian waters. Key words: Halosauridae, rare species, deep waters, Mediterranean Sea NUOVA CATTURA DI HALOSAURUS OVENII (ACTINOPTERYGII: NOTACANTHIFORMES: HALOSAURIDAE) IN ACQUE ITALIANE SINTESI Viene segnalato il ritrovamento nel 2013 di un esemplare di Halosaurus ovenii Johnson, 1864 nelle acque del mar Tirreno, Mediterraneo occidentale, contribuendo alla conoscenza della distribuzione geografica di questa specie rara in tutto il bacino. Si tratta della quinta segnalazione di H. ovenii per il Mediterraneo e della terza per le acque italiane. Parole chiave: Halosauridae, specie rara, acque profonde, mar Mediterraneo ANNALES · Ser. hist. nat. · 32 · 2022 · 2 274 Gianni INSACCO et al.: ADDITIONAL CAPTURE OF HALOSAURUS OVENII (ACTINOPTERYGII: NOTACANTHIFORMES: HALOSAURIDAE) IN ITALIAN WATERS, 273–280 INTRODUCTION The family Halosauridae contains 16 species worldwide divided in three genera, Halosaurus John- son, 1863; Halosauropsis Collett, 1896 and Aldrovan- dia Goode & Bean, 1896 (Bañón et al., 2016; Froese & Pauly, 2020). Four species in the genus Halosaurus occur in the eastern Atlantic: Halosaurus ovenii Johnson, 1864, H. johnsonianus Vaillant, 1888, H. guentheri Goode and Bean, 1896 and H. attenuatus Garman, 1899 (Sulak, 1990; Smith, 2016). Oven’s Halosaur (H. ovenii) is benthopelagic at depths ranging from 200 to 2800 m, but usually less than 800 m (D’Onghia et al., 2004; Pais et al., 2009; Bañón et al., 2016), and feeds on poly- chaetes, sipunculids, crustaceans and fish (Froese & Pauly, 2020). This fish occurs on both sides of the Atlantic and in the Mediterranean Sea. In the eastern Atlantic it occurs in the south of Ireland, Gulf of Biscay, Spain, Portugal, Madeira, Azores, and Canary Islands and the western African coast from Morocco to South Africa; in the western Atlantic it is present from New York to Colombia, including the Gulf of Mexico, the Caribbean Sea and the Antilles (Bañón et al., 2016). The Oven’s Halosaur was recorded in the ich- thyofauna of the deep Mediterranean waters in 1960, when the first specimen was reported off the Habibas Islands (Algeria) (Dieuzeide, 1963; Tortonese, 1964; Fredj & Maurin, 1987). Successively, other three specimens of H. ovenii have been collected, all in the western part of the basin: off Capo Teulada (Sardinia, Italy), in March 1980 (Cau & Deiana, 1979), off the Balearic Islands (Spain), in June 2001 (D’Onghia et al., 2004) and 1.5 miles off the port of Arbatax (Sar- dinia, Italy), in April 2007 (Pais et al., 2009), in the north Tyrrhenian Sea, following the subdivisions of the Italian seas proposed by Bianchi (2004). Fig. 1: Records of Halosaurus ovenii in the Mediterranean Sea (● Previous records. 1: Dieuzeide (1963); 2: Cau & Deiana (1979); 3: D’Onghia et al. (2004); 4: Pais et al. (2009); ▲ Present study). Sl. 1: Zapisi o pojavljanju vrste Halosaurus ovenii v Sredozemskem morju (● prejšnji zapisi. 1: Dieuzeide (1963); 2: Cau & Deiana (1979); 3: D’Onghia et al. (2004); 4: Pais et al. (2009); ▲ Pričujoča raziskava). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 275 Gianni INSACCO et al.: ADDITIONAL CAPTURE OF HALOSAURUS OVENII (ACTINOPTERYGII: NOTACANTHIFORMES: HALOSAURIDAE) IN ITALIAN WATERS, 273–280 Fig. 2: Holosaurus ovenii from Punta Licosa, Castellabate (Salerno, Italy), 475 mm total length (A), and detail of head (B: lateral view, C: ventral view). (Photo: Aniello Amato). Sl. 2: Primerek vrste Halosaurus ovenii iz lokalitete Punta Licosa, Castellabate (Salerno, Italija), 475 mm celotne dolžine (A), in detajl glave (B: pogled z boka, C: spodnja stran). (Foto: Aniello Amato). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 276 Gianni INSACCO et al.: ADDITIONAL CAPTURE OF HALOSAURUS OVENII (ACTINOPTERYGII: NOTACANTHIFORMES: HALOSAURIDAE) IN ITALIAN WATERS, 273–280 In the present study, the finding of a specimen from the south Tyrrhenian Sea is described, contributing to improve knowledge on the geographical distribution of this deepwater fish rarely captured in the Mediter- ranean. MATERIAL AND METHODS A specimen of H. ovenii was caught on 7 June 2013 with a bottom trawler off Punta Licosa, Castel- labate (Salerno, Italy), southeast Tyrrhenian Sea (40°13’54.04”N, 14°32’40.15”E), at 600 m of depth (Fig. 1). It is preserved in liquid at the Museo Civico di Storia Naturale di Comiso, Ragusa (Italy) with the Catalogue number MSNC 4874. Meristic characters were counted and the main biometric measurements were taken according to McDowell (1973) and Paulin & Moreland (1979), using a caliper (accuracy 0.1 mm). RESULTS AND DISCUSSION The specimen was identified as H. ovenii follow- ing McDowell (1973), Sulak (1986), Smith (2016) and Bañón et al. (2016). The specimen which measured 475 mm in total length and weighed 142 g, presented the following features (Fig. 2): body elongate and attenuated to the caudal peduncle; tail slender and attenuate, anus slightly before mid length. Cycloid scales covering all the body, including top and sides of head anterior to tip of lower jaw and opercle (Fig. 2A, B). Lateral line well developed, runs along lower side of body. Snout extending in front of mouth, over the lower jaw, and provided by a large and thin rostrum-like (Fig. 2). Snout contained 2.7 times in head length. Head elongate, its length contained 3.8 times in preanal length. Mouth inferior, overhung by snout; teeth small (Fig. 2C). Dorsal fin short-based, on midtrunk, slightly closer to anus than to tip of snout, all rays segmented, anal-fin base long, extending from just behind anus to tip of tail; pectoral fin above lateral midline; pelvic fins located abdominally just in front of dorsal fin; caudal fin absent. Color: silvery rose, darker dorsally; mouth dark on the roof and in front of the tongue, pale in the remaining areas; gill cavity dark (Fig. 2C); lateral line scales unpig- mented. The proportions of main measurements and meristic counts (Tab. 1) were in agreement with Pais et al. (2009) and Bañón et al. (2016). The species H. ovenii reaches 600 mm in total length and 260 mm in preanal length (Froese & Pauly, 2020). Our sample from the southeastern Tyr- rhenian Sea was an adult similarly to the specimens collected in the southern and the eastern Sardinian waters (Cau & Deiana, 1979; Pais et al., 2009). It was caught at a depth included in the range reported for the species (Froese & Pauly, 2020) and similar to the depth of 550 m observed for the capture in Algerian waters (Dieuzeide, 1963) and of 620 m reported from the south of Sardinia, Italy (Cau & Deiana, 1979), while the shallowest and deepest records for this fish were respectively 200 m from the Sardinian waters (Pais et al., 2009) and 2800 m from off the Balearic Islands (D’Onghia et al., 2004). Up to date, the finding described in the present study represents the easternmost record of the species in the Mediterranean Sea (Fig. 1). The Oven’s Halosaur H. ovenii has been previ- ously considered by some authors a non-indigenous species of Atlantic origin that reached the Mediterra- nean basin via the Gibraltar Strait (Relini & Lantieri, Tab. 1: Measurements (mm), main proportions (as % of gnathoproctal length, GPL), meristics and weight (g) of the Halosaurus ovenii specimen from the south Tyrrhenian Sea. Tab. 1: Meritve (mm), glavna razmerja (kot % gna- toproktalne dolžine, GPL), meristika in teža (g) pri- merka vrste Halosaurus ovenii iz južnega Tirenskega morja. Morphometric measurements mm % GPL Total length 475 Gnathoproctal length 234.3 Body height 37.7 16.1 Head length 63.9 27.3 Snout length 23.7 10.1 Predorsal length 156 66.6 Preanal length 245.8 Eye diameter length 10.1 4.3 Eye diameter height 7.1-7.5 Interorbital width 5.7 2.4 Meristic counts Dorsal fin rays I+10 Anal fin rays >140 Pectoral fin rays I+12 Ventral fin rays I+8 Scales above lateral line 14 Gill rakers 1st arch 12 (9+3) Total weight (g) 142 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 277 Gianni INSACCO et al.: ADDITIONAL CAPTURE OF HALOSAURUS OVENII (ACTINOPTERYGII: NOTACANTHIFORMES: HALOSAURIDAE) IN ITALIAN WATERS, 273–280 2010; Zenetos et al., 2010; Occhipinti-Ambrogi et al., 2011; Psomadakis et al., 2012; Golani et al., 2013; Grimes et al., 2018). Nevertheless, a number of species having displayed a natural range expan- sion from the Atlantic toward the Mediterranean through the Strait of Gibraltar were removed by many authors from the inventories of non-indige- nous species, including H. ovenii (Zenetos et al., 2012; Servello et al., 2019). Taking into account that it is a species widely distributed in the eastern Atlantic, it has been recently suggested to consider H. ovenii as a cryptogenic species for the Mediter- ranean (Evans et al., 2020). Undoubtedly, being a deepwater fish recorded few times in the basin, it could be defined a “very rare” species, following Bello et al. (2014). Probably, a fraction of the deep-sea Mediterra- nean biodiversity is still unknown, although intensi- fication of research investigations and the use of new technologies are enriching its knowledge (Danovaro et al. 2010; IUCN, 2019; Lombarte et al., 2021). The finding of H. ovenii here reported is the second for the Tyrrhenian Sea after the record described by Pais et al. (2009), and the first for its southern sector, a basin that revealed a high fish diversity of 447 spe- cies, 65.4 % of the whole Mediterranean ichthyo- fauna (Psomadakis et al., 2012). ACKNOWLEDGEMENTS The authors warmly thank the Captain and the crew of the fishing vessel Nuova Incoronata for pro- viding the fish specimen of Halosaurus ovenii and information on its capture. The authors wish to thank furthermore two anonymous reviewers for their help- ful suggestions on the first version of the manuscript. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 278 Gianni INSACCO et al.: ADDITIONAL CAPTURE OF HALOSAURUS OVENII (ACTINOPTERYGII: NOTACANTHIFORMES: HALOSAURIDAE) IN ITALIAN WATERS, 273–280 NOVI ULOV VRSTE HALOSAURUS OVENII (ACTINOPTERYGII: NOTACANTHIFORMES: HALOSAURIDAE) V ITALIJANSKIH VODAH Gianni INSACCO Museo Civico di Storia Naturale, Via degli Studi 9, 97013 Comiso (Ragusa), Italy e-mail: g.insacco@comune.comiso.rg.it Aniello AMATO Veterinary Office, Local Sanitary Company (ASL) Salerno, U.O. S.D. VET. 3, Via Sichelmanno 79, 84100 Salerno, Italy e-mail: aniamato@alice.it Bruno ZAVA Museo Civico di Storia Naturale, Via degli Studi 9, 97013 Comiso (Ragusa), Italy Wilderness Studi Ambientali. Via Cruillas, 27, 90146 Palermo, Italy e-mail: wildernessbz@hotmail.com Maria CORSINI-FOKA Hellenic Centre for Marine Research, Institute of Oceanography. Hydrobiological Station of Rhodes, Cos Street, 85100 Rhodes, Greece e-mail: mcorsini@hcmr.gr POVZETEK V Tirenskem morju (zahodno Sredozemsko morje) so leta 2013 ujeli primerek vrste Halosaurus ovenii Johnson, 1864. Najdba je obogatila poznavanje razširjenosti te redke vrste v celotnem bazenu. To je peti primer pojavljanja vrste H. ovenii v Sredozemskem morju in tretji za italijanske vode. Ključne besede: Halosauridae, redke vrste, globoko morje, Sredozemsko morje ANNALES · Ser. hist. nat. · 32 · 2022 · 2 279 Gianni INSACCO et al.: ADDITIONAL CAPTURE OF HALOSAURUS OVENII (ACTINOPTERYGII: NOTACANTHIFORMES: HALOSAURIDAE) IN ITALIAN WATERS, 273–280 REFERENCES Bañón, R., J.C. Arronte, Á. Armesto, D. Barros- García & A. De Carlos (2016): Halosaur fishes (Notacan- thiformes: Halosauridae) from Atlantic Spanish waters according to integrative taxonomy. Zootaxa, 4184 (3), 471-490. http://doi.org/10.11646/zootaxa.4184.3.3. Bello, G., R. Causse, L. Lipej & J. Dulčić (2014): A proposed best practice approach to overcome unverified and unverifiable “first records” in ichthyol- ogy. Cybium, 38(1), 9-14. https://doi.org/10.26028/ cybium/2014-381-002. Bianchi, C.N. (2004): Proposta di suddivisione dei mari italiani in settori biogeografici. Notiziario SIBM, 46, 57-59. Cau, A. & A.M. Deiana (1979): Prima segnalazione di Halosaurus ovenii Johnson, 1863 nei mari italiani. Quad. Civ. Staz. Idrobiol. Milano, 7, 127-130. Danovaro, R., J.B. Company, C. Corinaldesi, G. D’Onghia, B. Galil, C. Gambi, A.J. Gooday, N. Lampa- dariou, G.M. Luna, C. Morigi, K. Olu, P. Polymenakou, E. Ramirez-Llodra, A. Sabbatini, F. Sardà, M. Sibuet & A. Tselepides (2010): Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable. PLoS ONE, 5 (8), e11832. http://doi. org/10.1371/journal.pone.0011832. Dieuzeide, R. (1963): Halosaurus oweni Johnson rencontré pour la première fois en Méditerranée. Re- cueil des Travaux de la Station Marine d’Endoume, 28, 117-119. D’Onghia, G., D. Lloris, C.-Y. Politou, L. Sion & L. Dokos (2004): New records of deep-water teleost fish in the Balearic Sea and Ionian Sea (Mediterra- nean Sea). Sci. Mar., 68 (Suppl 3), 171-183. http://doi. org/10.3989/scimar.2004.68s3171. Evans, J., E. Arndt & P.J. Schembri (2020): Atlantic fishes in the Mediterranean: using biological traits to assess the origin of newcomer fishes. Mar. Ecol. Prog. Ser., 643, 133-143. https://doi.org/10.3354/ meps13353. Fredj, G. & C. Maurin (1987): Les poissons dans la banque de données Médifaune. Application à l’étude des caractéristiques de la faune ichthyologique médi- terranéenne. Cybium, 11(3), 215-342. Froese, R. & D. Pauly (Eds) (2020): FishBase. World Wide Web electronic publication. www.fishbase.org (12/2020) (accessed on 03/2021). Golani, D., L. Orsi-Relini, E. Massuti, J.-P. Quignard, J. Dulčić & E. Azzurro (2013): CIESM atlas of exotic fishes in the Mediterranean. Check list of exotic species. Avail- able at: https://www.ciesm.org/atlas/appendix1.html. Grimes, S., M. Benabdi, N. Babali, W. Refes, N. Boudjellal-Kaidi & H. Seridi (2018): Biodiversity changes along the Algerian coast (Southwest Mediter- ranean basin) from 1834 to 2017: A first assessment of introduced species. Mediterr. Mar. Sci., 19(1), 156-179. https://doi.org/10.12681/mms.13824. IUCN (2019): Thematic Report – Conservation Overview of Mediterranean Deep-Sea Biodiversity: A Strategic Assessment. M. Otero (ed.), IUCN Gland, Switzerland and Malaga, Spain, 122 pp. Lombarte, A., M. Balcells, C. Barría & E. Azzurro (2021): First record of the rendezvous fish, Polymetme corythaeola (Alcock, 1898), in the Mediterranean Sea. J. Appl. Ichthyol. https://doi.org/10.1111/jai.14282. McDowell, S.B. (1973): Family Halosauridae. In: Cohen, D.M., A.W. Ebeling, T. Iwamoto, S.B. McDow- ell, N.B. Marshall, D.E. Rosen, P. Sonoda, W.H. Weed III & L.P. Woods (eds.), Fishes of the Western North Atlantic. Part 6, Memoir 1, Sears Foundation of Marine Research, pp. 32-123. Occhipinti-Ambrogi, A., A. Marchini, G. Cantone, A. Castelli, C. Chimenz, M. Cormaci, C. Froglia, G. Furnari, M.C. Gambi, G. Giaccone, A. Giangrande, C. Gravili, F. Mastrototaro, C. Mazziotti, L. Orsi-Relini & S. Piraino (2011): Alien species along the Italian coasts: an overview. Biol. Invasions, 13, 215-237. https://doi. org/10.1007/s10530-010-9803-y. Pais, A., P. Merella, M.C. Follesa & H. Motomura (2009): North-easternmost record of Halosaurus ovenii (Actinopterygii: Notacanthiformes: Halosauridae) in the Mediterranean Sea, with notes on its biology. Acta Ichthyol. Piscat., 39(1), 33-37. https://doi.org/10.3750/ AIP2009.39.1.06. Paulin, C.D. & I.M. Moreland (1979): Halosauridae of the south-west Pacific (Pisces: Teleostei: Notacanthi- formes). New Zeal. J. Zool., 6, 267-271. https://doi.org /10.1080/03014223.1979.10428363. Relini, G. & L. Lanteri (2010): Osteichthyes. Biol. Mar. Mediterr., 17 (suppl. 1), 649-674. Psomadakis, P.N., S. Giustino & M. Vacchi (2012): Mediterranean fish biodiversity: an updated inventory with focus on the Ligurian and Tyrrhenian seas. Zootaxa, 3263, 1-46. https://doi.org/10.11646/ zootaxa.3263.1.1. Servello, G., F. Andaloro, E. Azzurro, L. Castriota, M. Catra, A. Chiarore, F. Crocetta, M. D’Alessandro, F. Denitto, C. Froglia, C. Gravili, M. Langer, S. Lo Brutto, F. Mastrototaro, A. Petrocelli, C. Pipitone, S. Piraino, G. Relini, D. Serio, N. Xentidis & A. Zenetos (2019): Marine alien species in Italy: A contribution to the implementation of descriptor D2 of the marine strategy framework directive. Mediterr. Mar. Sci., 20 (1), 1-48. https://doi.org/10.12681/mms.18711. Smith, D.G. (2016): Halosauridae. In: Carpenter, K.E. & N. De Angelis (eds.), Species Identification Guide for Fishery Purposes. The living marine resources of the Eastern Central Atlantic. Vol. 3. Bony fishes, Part 1 (Elopi- formes to Scorpaeniformes). FAO, Rome, pp. 1594-1600. Sulak, K.J. (1986): Halosauridae. In: Smith, M.M. & P.C. Heemstra (eds.), Smith’s sea fishes. Macmillan South Africa, Johannesburg, pp. 196-197. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 280 Gianni INSACCO et al.: ADDITIONAL CAPTURE OF HALOSAURUS OVENII (ACTINOPTERYGII: NOTACANTHIFORMES: HALOSAURIDAE) IN ITALIAN WATERS, 273–280 Sulak, K.J. (1990): Halosauridae. In: Quero J.C., J.-C. Hureau, C. Karrer, A. Post & L. Saldanha (eds.), Checklist of the Fishes of the Eastern Tropical Atlantic (CLOFETA). Vol. 1. JNICT, Lisbon, SEI, Paris, UNESCO, Paris, pp. 126-132. Tortonese, E. (1964): The main biogeographical features and problems of the Mediterranean Fish fauna. Copeia, 1, 98-107. https://doi.org/10.2307/1440837. Zenetos, A., S. Gofas, M. Verlaque, M.E. Çinar, J.E. Garcia Raso, C.N. Bianchi, C. Morri, E. Azzurro, M. Bilecenoglu, C. Froglia, I. Siokou, D. Violanti, A. Sfriso, G. San Martin, A. Giangrande, T. Katağan, E. Ballesteros, A. Ramos-Esplà, F. Mastrototaro, O. Oc- aña, A. Zingone, M.C. Gambi & N. Streftaris (2010): Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I, Spatial distribution. Mediterr. Mar. Sci., 11(2), 381- 493. https://doi.org/10.12681/mms.87. Zenetos, Α., S. Gofas, C. Morri, A. Rosso, D. Vio- lanti, J.E. García Raso, M.E. Çinar, A. Almogi-Labin, A.S. Ates, E. Azzurro, E. Ballesteros, C.N. Bianchi, M. Bilecenoglu, M.C. Gambi, A. Giangrande, C. Gravili, O. Hyams-Kaphzan, P.E. Karachle, S. Kat- sanevakis, L. Lipej, F. Mastrototaro, F. Mineur, M.A. Pancucci-Papadopoulou, A. Ramos Esplα, C. Salas, G. San Martín, A. Sfriso, N. Streftaris & M. Verlaque (2012): Alien species in the Mediterranean Sea by 2012. A contribution to the application of Euro- pean Union’s Marine Strategy Framework Directive (MSFD). Part 2. Introduction trends and pathways. Mediterr. Mar. Sci., 13(2), 328-352. https://doi. org/10.12681/mms.327. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 281 received: 2022-06-20 DOI 10.19233/ASHN.2022.28 FIRST RECORD OF MARBLED STINGRAY, DASYATIS MARMORATA (CHONDRICHTHYES: DASYATIDAE) FROM THE ALGERIAN COAST (SOUTHWESTERN MEDITERRANEAN SEA) Christian CAPAPÉ Laboratoire d’Ichtyologie, Université de Montpellier, 34095 Montpellier cedex 5, France e-mail: christian.capape@umontpellier.fr Christian REYNAUD Laboratoire Interdisciplinaire en Didactique, Education et Formation, Université de Montpellier, 2 place Marcel Godechot, B.P. 4152, 34092 Montpellier cedex 5, France Farid HEMIDA École Nationale Supérieure des Sciences de la Mer et de l’Aménagement du Littoral (ENSSMAL), BP 19, Bois des Cars, 16320 Dely Ibrahim, Algiers, Algeria ABSTRACT The authors report for the first time the capture of a specimen of marbled stingray Dasyatis marmorata (Stein- dachner, 1892) from the coast of Algeria. The specimen was an adult male measuring 340 mm in disc width, 310 mm in disc length, 450 mm in total length, and probably weighing 3 kg. Its occurrence in the region was probably due to migration from other southern areas such as the Tunisian coast, where the species is captured in relative abundance. These migrations are mainly due to the warming of the Mediterranean waters but also to competi- tion pressure between members of the Dasyatidae inhabiting the same area. Additionally, the present capture constitutes the southwesternnmost limit of the species’ extension range in the Mediterranean Sea. Key words: Dasyatidae, first record, migration, extension range, distribution, Algerian coast PRIMA SEGNALAZIONE DI DASYATIS MARMORATA (CHONDRICHTHYES: DASYATIDAE) LUNGO LA COSTA ALGERINA (MEDITERRANEO SUDOCCIDENTALE) SINTESI Gli autori riportano la prima cattura di un esemplare di Dasyatis marmorata (Steindachner, 1892) lungo le coste dell’Algeria. L’esemplare era un maschio adulto che misurava 340 mm di larghezza del disco, 310 mm di lunghezza del disco, 450 mm di lunghezza totale e pesava circa 3 kg. La sua presenza nella regione è probabilmente dovuta alla migrazione da altre aree meridionali, come la costa tunisina, dove la specie viene catturata in relativa abbondanza. Queste migrazioni sono dovute principalmente al riscaldamento delle acque del Mediterraneo, ma anche alla pres- sione competitiva tra i membri dei Dasyatidae che condividono la stessa area. L’attuale cattura costituisce inoltre il limite sud-occidentale dell’areale di estensione della specie nel Mediterraneo. Parole chiave: Dasyatidae, prima segnalazione, migrazione, estensione dell’areale, distribuzione, costa algerina ANNALES · Ser. hist. nat. · 32 · 2022 · 2 282 Christian CAPAPÉ et al.: FIRST RECORD OF MARBLED STINGRAY, DASYATIS MARMORATA (CHONDRICHTHYES: DASYATIDAE) FROM THE ..., 281–286 INTRODUCTION The marbled stingray, Dasyatis marmorata (Stein- dachner, 1982) is a species known off the eastern Atlantic coast south of the Strait of Gibraltar (Ca- papé, 1989). It has been recorded in the Mauritanian coast, where it appears to be abundantly captured and from where some traits of its reproductive biol- ogy were reported by Valadou et al. (2006). Capapé et al. (1995) provided biological observations, and Diaby et al. (2022) studied the food and feeding habits of the specimens from the area. Southwards, D. marmorata is reported from the Gulf of Guinea (Fowler, 1936) to Angola (Krefft, 1968) and southern African waters (Cowley & Compagno, 1993). In the Mediterranean Sea, D. marmorata was pre- viously only reported from southern Tunisian waters, the Gulf of Gabès, and a close brackish area, the Bahiret el Bibane (Maurin & Bonnet, 1970; Capapé, 1989; Capapé et al., 2004). Captures of specimens from these areas have allowed us to study the diet and feeding habits and the reproductive biology of the species (Capapé & Zaouali, 1992, 1995). After migrating to northern Tunisian areas the species was caught in the brackish Lagoon of Bizerte (El Kamel et al., 2009). However, records of the species are not restricted to Tunisian waters, D. marmorata also occurred east- ward of the Turkish coast (Ergüden et al., 2014; Özgür Özbek et al., 2015; Yeldan & Gündogdu, 2018) and in Greece, in the central Aegean Sea (Chatzispyrou et al., 2020). The species was additionally reported from the Levant Basin by Golani & Capapé (2004) and Bariche & Fricke (2020). Routine monitoring conducted throughout the Algerian coast for two decades at least, together with the assistance of experienced fishermen, have allowed us to locate in the fish market of Algiers a specimen of D. marmorata captured in the area. The present paper provides a short description of the specimen, including main morphometric char- acters and some comments about the real status of the species in this area and in the wider Mediter- ranean Sea. MATERIAL AND METHODS A specimen of D. marmorata was captured on 16 March 2016, off Annaba, 37°10’ N, 7°15’ E, on sandy-rocky bottoms partially covered by seagrass at a depth of 100‒150 m (Fig. 1). Carefully observed, identified and photographed, it was then sold as part of a catch of bony fishes and other elasmobranch species. RESULTS AND DISCUSSION The present specimen was identified as D. marmorata via the combination of the following morphological characters: disc rhomboid with an- terior margins slightly convex at level of eyes while the posterior margins straight anteriorly and convex posteriorly, snout pointed, pelvic fins quadrangular and with rounded outer corner, dorsal and ventral surface of the tail with fold posterior to the sting but not extending to the end of the tail, dorsal surface brownish along the margin of the pectoral fin and toward the snout, pelvic fins also brownish, slightly darker between along the centre of the body and the length of the tail, grey to slate blue blotches, irregularly shaped, some interconnected, bordered by a thin dark, flint grey margin that spreads along the central part of the back, from between the eyes to just before the beginning of the tail, ventral surface uniformly whitish to beige with margin grey to slightly brownish at tip of snout (Fig. 2). The description of the specimen was in agreement with Cowley & Compagno (1993), Golani & Capapé Fig. 1: Map the Algerian coast indicating the capture site of Dasyatis marmorata, off Annaba (black star). Sl. 1: Zemljevid alžirske obale z označeno lokaliteto v bližini Annabe (črna zvezdica), kjer je bil ujet primerek vrste Dasyatis marmorata. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 283 Christian CAPAPÉ et al.: FIRST RECORD OF MARBLED STINGRAY, DASYATIS MARMORATA (CHONDRICHTHYES: DASYATIDAE) FROM THE ..., 281–286 (2004), El Kamel et al. (2009) and Ergüden et al. (2014) and allowed the inclusion of D. marmorata, with this first record, in the list of Algerian ich- thyofauna. Additionally, this capture constitutes the southwesternmost limit of the species’ extension range in the Mediterranean Sea. The specimen measured 340 mm in disc width (DW), 310 mm in disc length, and 450 mm in total length, and according to the fishermen it weighed 3 kg. It was an adult, exhibiting well-developed, stout, rigid and calcified claspers, larger than pelvic fins. These parameters confirm previous observations made by Capapé and Zaouali (1995), who noted that size at first sexual maturity in males occurred at 300 mm DW. The Algerian specimen was smaller than those collected from the Tunisian coast, which measured 400 mm and 440 mm DW, as maximal size for males and females, respectively (Capapé and Zaouali, 1995). Conversely, it was larger than the specimens observed in some other marine areas, such as Mauritania (Valadou et al., 2006) and the Levant Basin (Ergüden et al., 2014). Fig. 2: The Dasyatis marmorata captured from the Algerian coast, scale bar = 100 mm. Sl. 2: Primerek vrste Dasyatis marmorata, ujet ob alžirski obali, merilo = 100 mm. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 284 Christian CAPAPÉ et al.: FIRST RECORD OF MARBLED STINGRAY, DASYATIS MARMORATA (CHONDRICHTHYES: DASYATIDAE) FROM THE ..., 281–286 When first reported from the Mediterranean Sea by Maurin & Bonnet (1970), from the Gulf of Gabès, southern Tunisia, D. marmorata was confused with its close relative species, the common stingray D. pastinaca (Linneaus, 1758) and misidentified as D. pastinaca var. marmorata. The two species differ in the DW vs. disc length ratio, and in the snout to vent length vs. DW (Cowley & Compagno, 1993; Ergüden et al., 2014). According to Golani & Ca- papé (2004), the dorsal fold of tail is higher than the ventral fold in D. marmorata and lower in D. pastinaca. Additionally, the dorsal surfaces display different colorations and patterns, yellowish to slate blue blotches in D. marmorata and solid dark brown to olive in D. pastinaca. Such patterns explained why the species was not already recorded in the study area. But information recorded from Algerian fishermen shows that the latter are unable to distinguish among the differ- ent sting ray species landed in local fish markets. These are globally included among skates and rays in fishery statistics (Hemida, 2005). However, taxonomical papers have shown that the two spe- cies can in fact be differentiated by morphological characters. Chatzispyrou et al. (2020) noted that DNA barcoding was used to confirm D. marmorata as a valid species, adding that the combination of these two methods allowed a confirmation of the species’ occurrence in Greek waters. D. marmorata used to be considered rather abundant in southern Tunisian waters (Capapé & Zaouali, 2005), but lately it has been under fishing pressure and interspecific competition pressure from other sympatric species (Capapé, 1989). This could explain why the species first took refuge in Bahiret el Bibane (Capapé et al., 2004) and then migrated toward northern areas as far as the Lagoon of Bizerte (El Kamel et al., 2009). Such migration is spurred by global warming, which has been affecting Mediter- ranean waters for several decades (Francour et al., 1994) and could explain this new occurrence of D. marmorata in Algerian waters as possible migration from Tunisian waters. Are Tunisian waters the core of D. marmorata in the Mediterranean Sea? Migrations from this region towards western and eastern areas of the Mediterranean remain a suitable hypothesis that does require further investigation but cannot be totally ruled out either. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 285 Christian CAPAPÉ et al.: FIRST RECORD OF MARBLED STINGRAY, DASYATIS MARMORATA (CHONDRICHTHYES: DASYATIDAE) FROM THE ..., 281–286 PRVI ZAPIS O POJAVLJANJU MARMORIRANEGA MORSKEGA BIČA, DASYATIS MARMORATA (CHONDRICHTHYES: DASYATIDAE) IZ ALŽIRSKE OBALE (JUGOZAHODNO SREDOZEMSKO MORJE) Christian CAPAPÉ Laboratoire d’Ichtyologie, Université de Montpellier, 34095 Montpellier cedex 5, France e-mail: christian.capape@umontpellier.fr Christian REYNAUD Laboratoire Interdisciplinaire en Didactique, Education et Formation, Université de Montpellier, 2 place Marcel Godechot, B.P. 4152, 34092 Montpellier cedex 5, France Farid HEMIDA École Nationale Supérieure des Sciences de la Mer et de l’Aménagement du Littoral (ENSSMAL), BP 19, Bois des Cars, 16320 Dely Ibrahim, Algiers, Algeria POVZETEK Avtorji poročajo o prvem ulovu marmoriranega morskega biča Dasyatis marmorata (Steindachner, 1892) ob obali Alžirije. Bil je odrasel samec, ki je meril 340 mm v premeru diska in 450 mm celotne dolžine, tehtal pa naj bi 3 kg. Pojavljanje te vrste na obravnavanem območju je potrebno verjetno povezati s selitvijo iz drugih južnih predelov kot je na primer tunizijska obala, kjer ga lovijo v zmernem številu. Te selitve pripisujejo segrevanju Sredozemskega morja in kompeticiji med vrstami iz družine Dasyatidae, ki s to vrsto sobivajo. Pričujoči ulov predstavlja skrajno jugozahodno mejo razširjenosti te vrste v Sredozemskem morju. Ključne besede: Dasyatidae, prvi zapis o pojavljanju, selitev, širjenje areala, razširjenost, alžirska obala ANNALES · Ser. hist. nat. · 32 · 2022 · 2 286 Christian CAPAPÉ et al.: FIRST RECORD OF MARBLED STINGRAY, DASYATIS MARMORATA (CHONDRICHTHYES: DASYATIDAE) FROM THE ..., 281–286 REFERENCES Bariche, M. & R. Fricke (2020): The marine ich- thyofauna of Lebanon: an annotated checklist, his- tory, biogeograpphy, and conservation status. Zootaxa, 4775(1), 1-157. Capapé, C. (1989): Les Sélaciens des côtes mé- diterranéennes: aspects généraux de leur écologie et exemples de peuplements. Océanis, 15(3), 309-331. Capapé, C., M. N’Dao & M. Diop (1995): Don- nées sur la biologie de la reproduction de quatorze espèces de Sélaciens batoïdes capturés dans la région marine de Dakar-Ouakam (Sénégal, Atlantique oriental tropical). Bull. Inst. fond. Afr. noire Cheikh Anta Diop, Dakar, sér. A, 48, 89-102. Capapé, C. & J. Zaouali (1992): Le régime alimen- taire de la pastenague marbrée, Dasyatis marmorata (Steindachner, 1892) (Pisces, Rajiformes, Dasyatidæ) des eaux tunisiennes. Vie Milieu, 42(3-4), 269-276. Capapé, C. & J. Zaouali (1995): Reproductive biology of the marbled stingray, Dasyatis marmorata (Steindachner, 1892) (Pisces: Dasyatidæ) in the Tuni- sian waters. J. Aquaricult. Aquatic Sci., 7, 108-119. Capapé, C., O. Guélorget, J.-P. Quignard, A. El Abed, J. Zaouali & J. Ben Souissi (2004): The Elas- mobranch species from the Bahiret El Biban (southern Tunisia, sentral Mediterranean): a survey. Annales, Ser. Hist. Nat., 14(1), 19-28. Chatzispyrou, A., C. Gubili, M. Laiaki, D. Manto- poulou-Palouka & S. Kavadas (2020): First record of the marbled ray, Dasyatis marmorata (Elasmobranchii: Dasyatidae), from Greece (central Aegean Sea). Biodiv. Data J., 8, e51100. Cowley, P.D. & L.V.J. Compagno (1993): A taxo- nomic re-evaluation of the blue stingray from southern Africa (Myliobatiformes: Dasyatidae). S. Afr. mar. Sci., 13, 135-149. Diaby, A., Y. Diatta, L.B. Badji, K. Diouf, S. Rafrafi-Nouira & C. Capapé (2022): Étude du régime alimentaire de Dasyatis marmorata (Chondrichthyes: Dasyatidae) dans les sites de débarquements de pêche artisanale au large de Dakar, Sénégal. Bull. Inst. fond. Afr. noire Cheikh Anta Diop, Dakar, sér. A, 55(1-2), 119-137. El Kamel, O., N. Mnasri, J. Ben Souissi, M. Bou- maïza, M.M. Ben Amor & C. Capapé (2009): Inven- tory of elasmobranch species caught in the Lagoon of Bizerte (north-eastern Tunisia, central Mediterranean). Pan-Amer. J. Aquat. Sci., 4(4), 383-412. Ergüden, D., C. Türan, M. Gürlek, A. Uyan & A.N. Reyhaniye (2014): First record of marbled stingray, Dasyatis marmorata (Elasmobranchii: Myliobatiformes: Dasyatidae), on the coast of Turkey, north-eastern Mediterranean Sea. Acta Ichthyol. Piscat., 44(2), 159- 161. Fowler, H.W. (1936): The marine fishes of West Af- rica, based on the collection of the American museum Congo expedition 1909-15. Bull. Amer. Mus. Nat. Hist., 70, 1-606. Francour, P., C.F. Boudouresque, J.G. Harmelin, M.L. Harmelin-Vivien & J.-P. Quignard 1994. Are the Mediterranean waters becoming warmer? Mar. Poll. Bull., 28(4), 523-526. Golani, D. & C. Capapé (2004): First records of the blue stingray, Dasyatis chrysonota (Smith, 1828) (Chondrichthyes: Dasaytidae), off the coast of Israel. Acta Adriat., 45(1), 107-112. Hemida, F. (2005): Les Sélaciens de la côte algé- rienne : biosystématique des Requins et des Raies; écologie, reproduction et exploitation de quelques populations capturées. Thesis, Université des Sciences et de la Technologie Houari Boumédiene, Algiers, Algeria, 272 pp. Krefft, G. (1968): Knorpelfische (Chondrichthye) aus der tropischen Ostatlantic. Atlantide rep., 10, 33- 76. Maurin, C. & M. Bonnet (1970): Poissons des côtes nord-ouest africaines (campagnes de la Thalassa), (1962 et 1968). Rev. Trav. Inst. scient. Tech. Pêch. marit., 34, 125-170. Özgür Özbek, E., M. Mine Çardak & T. Kebapçioglu (2015): Spatio-temporal patterns of abundance, bio- mass and length-weight relationships of Dasyatis spe- cies (Pisces: Dasyatidae of the Gulf of Antalya, Turkey (Levantine Sea). J. Black Sea /Medit. Environ., 21(2), 169-190. Valadou, B., J.-C. Brêthes & C.A. Ould In- ejh (2006): Observations biologiques sur cinq espèces d’Élasmobranches du Parc national du Banc d’Arguin (Mauritanie). Cybium, 30(4), 313-322. Yeldan, H. & S. Gündogdu (2018): Morphometric relationships anf growth of common stingray, Dasya- tis pastinaca (Linnaeus, 1758) and marbled stingray Dasyatis marmorata (Steindachner, 1892) in the north- eastern Levantine Basin. J. Black Sea /Medit. Environ., 24(1), 10-27. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 287 received: 2022-09-20 DOI 10.19233/ASHN.2022.29 SECOND OCCURRENCE OF SIGANUS JAVUS (SIGANIDAE) IN THE MEDITERRANEAN WATERS Maria CORSINI-FOKA Hellenic Centre for Marine Research, Institute of Oceanography, Hydrobiological Station of Rhodes. Cos Street, 85100 Rhodes, Greece e-mail: mcorsini@hcmr.gr Bruno ZAVA Museo Civico di Storia Naturale, via degli Studi 9, 97013 Comiso (RG), Italy. Wilderness studi ambientali, via Cruillas 27, 90146 Palermo, Italy e-mail: wildernessbz@hotmail.com ABSTRACT A single specimen of Siganus javus (Linnaeus, 1766) was captured in December 2021 in the waters off Alexandria, Egypt. This Indo-Pacific species is reported for the second time in the Mediterranean Sea and its occurrence in the basin is briefly discussed. Key words: Non-Indigenous species, Siganidae, Mediterranean Egyptian waters, introduction pathway, citizen science SECONDA SEGNALAZIONE DI SIGANUS JAVUS (SIGANIDAE) NEL MEDITERRANEO SINTESI Un esemplare di Siganus javus (Linnaeus, 1766) è stato catturato nelle acque al largo di Alessandria, Egitto, nel dicembre 2021. Si tratta della seconda segnalazione di questa specie di origine Indo-Pacifica nel mar Mediterraneo e la sua presenza nel bacino viene brevemente discussa. Parole chiave: Specie non-indigene, Siganidae, acque egiziane del Mediterraneo, percorso di introduzione, citizen science ANNALES · Ser. hist. nat. · 32 · 2022 · 2 288 Maria CORSINI-FOKA & Bruno ZAVA: SECOND OCCURRENCE OF SIGANUS JAVUS (SIGANIDAE) IN THE MEDITERRANEAN WATERS, 287–292 INTRODUCTION Six non-indigenous species (NIS) belonging to the Indo-Pacific family Siganidae have been recorded in the Mediterranean Sea: Siganus rivulatus Forsskål & Nie- buhr, 1775 and Siganus luridus (Rüppel, 1829) (Golani et al., 2021), Siganus javus (Linnaeus, 1766) (Ibrahim et al., 2010), Siganus virgatus (Valenciennes, 1835) (Ahnelt, 2016), Siganus fuscescens (Houttuyn, 1782) (Azzurro & Tiralongo, 2020) and Siganus argenteus (Quoy & Gaimard, 1825) (Abdelghani et al., 2021). The rabbitfish S. rivulatus and S. luridus are well established in the basin for a long time, while to date the occurrence of the remaining species is still based on single records. The records of S. javus and S. virgatus are considered questionable, the first because it was reported in a not peer reviewed abstract of a CIESM Congress (Zenetos et al., 2011, 2022) and also it does not occur in the Red Sea (Golani et al., 2021), the second because it occurs only off eastern India and the labelling of the specimen from the Adriatic Sea deposited at the National History Mu- seum of Vienna may be incorrect (Golani et al., 2021). Considering the above listed Siganus NIS, the Red Sea is currently included in the native range of S. rivulatus, S. luridus, S. argenteus (Woodland, 2001; Golani & Fricke, 2018), and S. javus (Debelius, 2011). The first occurrence of the Streaked spinefoot S. ja- vus in the Mediterranean waters of Egypt is hereby do- cumented, adding a third siganid species to S. luridus and S. rivulatus previously recorded in the same area (Halim & Rizkalla, 2011; Akel & Karachle, 2017) and a second record of the species for the whole basin, after its first finding in Syrian waters (Ibrahim et al., 2010). MATERIAL AND METHODS On 5 December 2021 a fisherman caught a fish not familiar to him, at Miami Beach, Alexandria, Egypt (31.27234° N, 29.99065° E), with a fishing rod (shrimp as bait), at around 12 m of depth on a rocky area. Video and photo of the freshly captured sample were soon po- sted to a Facebook group https://m.facebook.com/gro- ups/AlexandrianFisherman/permalink/445710968440 7264/?paipv=0&eav=AfYgASY0_i967sRjLs_B1dnj03c- No0S3Vz-MSIDWRqxg7xHf2cj8IxctV_6rBPZIFlg&_ rdr. The fisherman identified the fish by its known local generic name (قلاخلا ناحبس ناجيسلا وأ اطاطبلا ةكمس, “batata”, in English potato fish), but he underlined that he had never seen such a “batata” fish, in particular for the shape of the body and the strange wavy lines on the body sides. The sample was not retained. RESULTS AND DISCUSSION The fish was identified as S. javus following Woo- dland (2001), on the basis of the characters observed in Fig. 1 and the available video: body deep and compres- sed; dorsal fin with XIII strong spines and 10 soft rays, anal fin with VII strong spines and 9 soft rays; mouth small, terminal; dorsal profile of head slightly concave above orbit; snout short and blunt; preopercular angle approximately 80°; caudal fin emarginate; scales minute. Colour: bronze on back and sides to paler below; bluish spots on head and upper sides, smaller and regular on head, larger and irregular in the upper back, extending to the upper caudal peduncle; silvery bluish undulating lines on mid- and lower sides, vanishing on ventral side; spines and rays of dorsal, anal, and pelvic fins golden, membranes golden (particularly in the inner part of anal fin), dusky distally; pectoral fins hyaline in the distal portion, dusky in the proximal; caudal fin dusky; cheek shiny golden greenish. The main measurements of the specimen, obtained from Fig. 1 (the sides of squares in the newspaper having a known length of 4.5 mm), were approximately: total length 260 mm, standard length 201 mm, head length 45 mm, body depth 91 mm (2.2 times in SL), and caudal peduncle depth 15 mm. The diameter of bony orbit is approximately two times the shortest distance between bony orbit and upper lip. Following the identification keys of Woodland (2001), there are more than 29 scale rows between lateral line and base of second to fourth dorsal-fin spines. This count was not possible from the available photos and video. Nevertheless, the comparison of body morpholo- gy and colour of our freshly caught fish (Fig. 1) with all the Siganus species described and showed in Woodland (2001), Burhanuddin et al. (2014), Woodland & Ander- son (2014) and Froese & Pauly (2022) led to ascertain its identification as S. javus, excluding eventual confusion with other siganid species. The Streaked spinefoot S. javus has a wide range of distribution from the Persian Gulf through the Indo- -Malayan Archipelago to Vanuatu and New Caledonia (Froese & Pauly, 2022). This rabbitfish, commonly up to 30 cm in total length, dwells in shallow coastal waters, rocky or coral reefs, brackish lagoons, in mangroves, estuaries and estuarine lakes, feeding primarily on algae attached to the substrate and on floating algal fragments (Woodland, 2001; Borsa et al., 2007; Perpetua et al., 2013), but also on zooplankton (Okamoto et al., 2016). The first occurrence of this Indo-Pacific herbivorous fish in the Mediterranean Sea was observed near the port of Lattakia, Syria, in 2009 (Ibrahim et al., 2010). The second finding of S. javus described hereby for the Mediterranean, confirms the presence of this NIS fish in the basin, after twelve years since its first sighting in Syrian waters. While there is no certainties regarding the pathway of introduction of S. javus in the Mediterranean, the geographical position of our finding off Alexandria, suggests arrival via the Suez Canal (Lessepsian migra- tion) as the most probable pathway (Ibrahim et al., 2010). On the other hand, a ship-mediated introduction cannot be excluded, considering the intense maritime traffic of the large port of Alexandria (cf. Azzurro & ANNALES · Ser. hist. nat. · 32 · 2022 · 2 289 Maria CORSINI-FOKA & Bruno ZAVA: SECOND OCCURRENCE OF SIGANUS JAVUS (SIGANIDAE) IN THE MEDITERRANEAN WATERS, 287–292 Tiralongo, 2020). It is possible that S. javus was able to adapt and establish in the new ecosystem and expanded an apparently limited population along the Levantine coasts, escaping nevertheless further intermediate detections since its first sighting. Competition with the native herbivorous fishes as well as with the established Lessepsian migrants S. luridus and S. rivulatus may have prevented the diffusion and increase in abundance of S. javus. The Marbled spinefoot S. rivulatus is, for example, one of the most important commercial species in the artisanal coastal fishery of the understudied area, aro- und Alexandria (Bakhoum, 2018; Rizkalla & Heneish, 2021). It is also plausible that the species has failed the first attempts of adaptation presenting a new and more recent introduction. The streaked spinefoot S. javus enjoys swimming and therefore it is suitable for large aquarium displays, but not for home aquariums (https://reefapp.net/en/ encyclopedia/siganus-javus). Some species of siganids are used in aquaculture, while others, including S. javus, are promising candidates for this purpose (Duray, 1998). The Mediterranean Sea, in particular its eastern basin, is one of the regions of the world most affected by biological invasions (Katsanevakis et al., 2020; Occhipinti-Ambrogi, 2021). The Mediterranean Egyp- tian waters are heavily impacted by NIS, in particular fish of Indo-Pacific/Red Sea origin that migrate into the basin via the Suez Canal corridor (Halim & Rizkalla, 2011). The finding of S. javus, although casual for the moment, increases to at least 72 the number of fish species of Indo-Pacific origin recorded in the Mediter- ranean waters of Egypt (Adel et al., 2021; Al Mabruk et al., 2021; Mehanna & Osman, 2022; Nour et al., 2022a, b). Further field research may substantiate an eventual successful establishment of this NIS in this eastern Mediterranean region. The finding of S. javus from Egypt undoubtedly substantiate the significant support of citizen sci- entists and sensitized fishers in increasing data on occurrence and spreading of NIS, through the use of new technologies and platforms, particularly in areas where scientific research and monitoring projects are limited, as in the North African countries (Al Mabruk et al., 2021a; Nour et al., 2022a). Among the above mentioned 72 NIS fishes of Indo-Pacific/Red Sea ori- gin reported from the Mediterranean Egyptian waters, at least ten species have been recently recorded due to the input of citizen science and social media (Al Mabruk et al., 2020, 2021b, c; Adel et al., 2022; Nour et al., 2022a). ACKNOWLEDGEMENTS Maria Corsini-Foka and Bruno Zava are grateful to Dr. Ola Mohamed Nour and to the fisherman Yassine Mahmoud Gaber (Egypt) for sharing pictures, video and data of the Siganus javus capture described in the present work. They are also grateful to anonymous reviewers for providing constructive suggestions on the first version of the manuscript. Fig. 1: The specimen of Siganus javus (approximate total length 260 mm) caught off Alexandria, Egypt (photo credit: Yassine Mahmoud Gaber). Sl. 1: Primerek vrste Siganus javus (približna dolžina 260 mm), ujet blizu Aleksandrije, Egipt (Foto: Yassine Mahmoud Gaber). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 290 Maria CORSINI-FOKA & Bruno ZAVA: SECOND OCCURRENCE OF SIGANUS JAVUS (SIGANIDAE) IN THE MEDITERRANEAN WATERS, 287–292 DRUGI ZAPIS O POJAVLJANJU PROGASTEGA MORSKEGA KUNCA, SIGANUS JAVUS (SIGANIDAE), V SREDOZEMSKIH VODAH Maria CORSINI-FOKA Hellenic Centre for Marine Research, Institute of Oceanography, Hydrobiological Station of Rhodes. Cos Street, 85100 Rhodes, Greece e-mail: mcorsini@hcmr.gr Bruno ZAVA Museo Civico di Storia Naturale, via degli Studi 9, 97013 Comiso (RG), Italy. Wilderness studi ambientali, via Cruillas 27, 90146 Palermo, Italy e-mail: wildernessbz@hotmail.com POVZETEK Avtorji poročajo o primerku progastega morskega kunca, Siganus javus (Linnaeus, 1766), ujetega v decembru 2021 v vodah blizu Aleksandrije v Egiptu. To je drugi zapis o tej indo-pacifiški vrsti v Sredozem- skem morju. Avtorji razpravljajo na kratko o njenem pojavljanju v bazenu. Ključne besede: tujerodne vrste, Siganidae, Sredozemlje, egiptovske vode, način vnosa, ljubiteljska znanost ANNALES · Ser. hist. nat. · 32 · 2022 · 2 291 Maria CORSINI-FOKA & Bruno ZAVA: SECOND OCCURRENCE OF SIGANUS JAVUS (SIGANIDAE) IN THE MEDITERRANEAN WATERS, 287–292 REFERENCES Abdelghani, A., S.A.A. Al Mabruk, F. Crocetta & D. Golani (2021): The Streamlined Rabbitfish Siganus argenteus (Quoy & Gaimard, 1825) in the Mediterranean Sea. Thalassas, 37, 287-290. https:// doi.org/10.1007/s41208-020-00259-z. Adel, M., O.M. Nour, S.A.A. Al Mabruk, B. Zava, A. Deidun & M. Corsini-Foka (2022): The yellowfin surgeonfish Acanthurus xanthopterus Valenciennes, 1835 (Actinopterygii: Perciformes: Acanthuridae) from Mediterranean Egyptian waters. Medit. Mar. Sci., 23(1), 134-139. http://doi.org/10.12681/ mms.28131. Ahnelt, H. (2016): Translocation of tropical and subtropical marine fish species into the Mediterrane- an. A case study based on Siganus virgatus (Teleostei: Siganidae). Biologia, 71(8), 952-959. https://doi. org/10.1515/biolog-2016-0106. Akel, E.H.Kh. & P.K. Karachle (2017): The Marine Ichthyofauna of Egypt. Egyptian J. Aquatic Biol. Fis- heries, 21(3), 81-116. Al Mabruk, S.A.A., J. Rizgalla, I. Giovos & M. Bariche (2020): Social media reveals the first records of the invasive lionfish Pterois miles (Bennett, 1828) and parrotfish Scarus ghobban Forsskål, 1775 from Egypt (Mediterranean Sea). BioInvasions Rec., 9(3), 574-579. https://doi. org/10.3391/bir.2020.9.3.13. Al Mabruk, S.A.A, B. Zava, A. Abdulghani, M. Corsini-Foka & A. Deidun (2021a): The first record of the Pharaoh cardinal fish Apogonichthyoides pharaonis (Actinopterygii: Perciformes: Apogonidae) from Libyan waters. Acta Ichthyol. Piscat., 51(1), 113-118. https://doi.org/10.3897/aiep.51.63504. Al Mabruk, S.A.A., A. Abdulghani, O.M. Nour, M. Adel, F. Crocetta, N. Doumpas, P. Kleitou & F. Tiralongo (2021b): The role of social media in com- pensating for the lack of field studies: Five new fish species for Mediterranean Egypt. J. Fish Biol., 99(2), 673-678. https://doi.org/10.1111/jfb.14721. Al Mabruk, S.A.A, B. Zava, O.M. Nour, M. Cor- sini-Foka & A. Deidun (2021c): Record of Terapon jarbua (Forsskål, 1775) (Terapontidae) and Acantho- pagrus bifasciatus (Forsskål, 1775) (Sparidae) in the Egyptian Mediterranean waters. BioInvasions Rec., 10(3), 710-720. https://doi.org/10.3391/ bir.2021.10.3.21. Azzurro, E. & F. Tiralongo (2020): First record of the mottled spinefoot Siganus fuscescens (Houttuyn, 1782) in Mediterranean waters: a Facebook based detection. Medit. Mar. Sci., 21(2), 448-451. https:// doi.org/10.12681/mms.22853. Bakhoum, S. (2018): Fish Assemblages in Surf Zone of the Egyptian Mediterranean Coast off Alexandria. Turk. J. Fish. & Aquat. Sci., 19(4), 351- 362. http://doi.org/10.4194/1303-2712-v19_4_09. Borsa, P., S. Lemer & D. Aurelle (2007): Patterns of lineage diversification in rabbitfishes. Mol. Phylo- genet. Evol., 44, 427-435. http://doi.org/10.1016/j. ympev.2007.01.015. Burhanuddin, A.I., Budimawan & Sahabuddin (2014): The Rabbit-Fishes (Family Siganidae) from the coast of Sulawesi, Indonesia. Int. J. Plant Animal Env. Sci., 4(4), 95-102. Debelius, H. (2011): Red Sea reef guide. IKAN-un- terwasserarchiv, Frankfurt, Germany, 321 pp. Duray, M.N. (1998): Biology and culture of siganids. Aquaculture Department, Southeast Asian Fisheries Development Center (SEAFDEC). Tigbauan, Iloilo, Philippines, 53 pp. Froese, R. & D. Pauly (Editors) (2022): FishBase. World Wide Web electronic publication. www.fishba- se.org (06/2022) (Accessed on 31/8/2022). Golani, D. & R. Fricke (2018): Checklist of the Red Sea fishes with delineation of the Gulf of Suez, Gulf of Aqaba, endemism and Lessepsian migrants. Zootaxa, 4509(1), 1-215. https://doi.org/10.11646/ zootaxa.4509.1.1. Golani, D., E. Azzurro, J. Dulčić, E. Massutí & L. Orsi-Relini (2021): Atlas of exotic fishes in the Me- diterranean Sea. Briand, F. (Ed.), 2nd Edition. CIESM Publishers, Paris, Monaco, 365 pp. Halim, Y. & S. Rizkalla (2011): Aliens in Egyptian Mediterranean waters. A check-list of Erythrean fish with new records. Medit. Mar. Sci., 12(2), 479-490. https://doi.org/10.12681/mms.46. Ibrahim, A., M. Lahlah, M.Y. Kassab, W. Ghanem & S. Ogaily (2010): Siganus javus, a new record from the Syrian waters, with a reference to growth and feeding of two lessepsian fish. Rapp. Comm. int. Mer Médit., 39, 544. Katsanevakis, S., A. Zenetos, M. Corsini-Foka & K. Tsiamis (2020): Biological Invasions in the Aegean Sea: Temporal Trends, Pathways, and Impacts. In: Anagnostou C.L., A.G. Kostianoy, I.D. Mariolakos, P. Panayotidis, M. Soilemezidou & G. Tsaltas (eds.), The Aegean Sea environment: the natural system. Hdb. Env. Chem., 24 pp. http://doi-org-443.webvpn.fjmu. edu.cn/10.1007/698_2020_642. Mehanna, S.F. & Y.A. Osman (2022): First record of the Lessepsian Sammara Squirrelfish, Neoniphon sam- mara (Forsskål, 1775), in the Egyptian Mediterranean waters. Medit. Mar. Sci., 23(3), 664-667. https://doi. org/10.12681/mms.28204. Nour, O.M., S.A.A. Al Mabruk, B. Zava, P. Gian- guzza, M. Corsini-Foka & A. Deidun (2022a): New entry of Naso annulatus (Quoy & Gaimard, 1825) and further records of Scatophagus argus (Linnaeus, 1766) and Charybdis (Charybdis) natator (Herbst, 1794) in the Mediterranean Sea. BioInvasions Rec., 11(3), 785- 795. https://doi.org/10.3391/bir.2022.11.3.20. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 292 Maria CORSINI-FOKA & Bruno ZAVA: SECOND OCCURRENCE OF SIGANUS JAVUS (SIGANIDAE) IN THE MEDITERRANEAN WATERS, 287–292 Nour, O.M., S.A.A. Al Mabruk, Z. Khodary, B. Zava, A. Deidun & M. Corsini-Foka (2022b): Acanthurus sohal (Forsskål, 1775) (Actinopterygii, Acanthuridae) and Carupa tenuipes Dana, 1852 (Decapoda, Brachyura, Portunidae) from North African waters. BioInvasions Rec., 11(4), 1067- 1077. https://doi.org/10.3391/bir.2022.11.4.24. Occhipinti-Ambrogi, A. (2021): Biopollution by invasive marine Non-Indigenous Species: A review of potential adverse ecological effects in a changing climate. Int. J. Environ. Res. Public Health, 18, 4268. https://doi.org/10.3390/ijerph18084268. Okamoto, Y., N. Muto, K. Kon, K. Watanabe, T. Yoshikawa, J. Salaenoi & S. Ishikawa (2016): Stable isotope analysis suggests the existence of multiple populations of streaked spinefoot (Siganus javus L.) in Bandon Bay, Southern Thailand. Int. Aquat. Res., 8, 169-178. https://doi.org/10.1007/s40071-016- 0132-3. Perpetua, M.D., J.G. Gorospe, M.A.J. Torres & C.G. Demayo (2013): Diet composition based on stomach content of the Streaked spinefoot (Siganus javus) from three coastal bays in Mindanao, Phili- ppines. AES Bioflux, 5(1), 49-61. Rizkalla, S.I. & R.A. Heneish (2021): The update of immigrant Red Sea fish of Egyptian Mediterrane- an waters during (2013-2021). Egyptian J. Aquatic Biol. Fisheries, 25(5), 739-53. Woodland, D.J. (2001): Siganidae. Rabbitfishes (spi- nefoots). In: Carpenter, K.E. & V. Niem (eds.), FAO spe- cies identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Vol. 6: Bony fishes part 4 (Labridae to Latimeriidae), estuarine crocodiles, sea turtles, sea snakes and marine mammals. FAO, Rome. pp. 3627-3650. Woodland, D.J. & R.C. Anderson (2014): Description of a new species of rabbitfish (Perciformes: Siganidae) from southern India, Sri Lanka and the Maldives. Zo- otaxa, 3811(1), 129-136. http://dx.doi.org/10.11646/ zootaxa.3811.1.8. Zenetos, A., S. Gofas, M. Verlaque, M.E. Cinar, J.E Garcia Raso, C.N. Bianchi, C. Morri, E. Azzurro, M. Bilecenoglu, C. Froglia, I. Siokou, D. Violanti, A. Sfriso, G. San Martin, A. Giangrande, T. Katagan, E. Ballesteros, A.A. Ramos-Espla, F. Mastrototaro, Ο. Ocana, Α. Zingone, M.C. Gambi & N. Streftaris (2011): Errata to the Review Article (Medit. Mar. Sci. 11/2, 2010, 381-493): Alien species in the Mediter- ranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution. Medit. Mar. Sci., 12(2), 509-514. https://doi.org/10.12681/mms.49. Zenetos, A., P.G. Albano, E. López Garcia, N. Stern, K. Tsiamis & M. Galanidi (2022): Established non-indige- nous species increased by 40% in 11 years in the Medi- terranean Sea. Medit. Mar. Sci., 23(1), 196-212. https:// doi.org/10.12681/mms.29106. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 293 received: 2022-07-04 DOI 10.19233/ASHN.2022.30 COLONISATION OF EXOTIC FISH SPECIES OF THE GENERA PSEUDOTROPHEUS AND AULONOCARA (PERCIFORMES: CICHLIDAE) AND THE DECLINE OF NATIVE ICHTHYOFAUNA IN NAHAL AMAL, ISRAEL Daniel GOLANI National Natural History Collections and Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel e-mail: dani.golani@mail.huji.ac.il Haim SHOHAT Phoenix Fish Farm, Ramat haNegev, Israel Brenda APPELBAUM-GOLANI The Hebrew University of Jerusalem ABSTRACT In the present study, the ichthyofauna of Nahal Amal, a small river in Israel, was sampled annually from 1998 to 2021. The local ichthyofauna was found to have 27 taxa of which ten are native species and 17 are exotic. Until 2010 the dominant species was the indigenous cichlid Astatotilapia flaviijosephi (Lortet, 1883) which was first replaced for two years by cichlid specimens belonging to the genus Pseudotropheus. These were later replaced by specimens of another cichlid genus Aulonocara which presently dominates the site. It is suggested that the exotic species entered the site as escapees or following release from the hatchery located on the river’s bank or by aquarium hobbyists. Key words: colonisation, cichlids, freshwater, Nahal Amal, Israel COLONIZZAZIONE DI SPECIE ITTICHE ESOTICHE DEI GENERI PSEUDOTROPHEUS E AULONOCARA (PERCIFORMES: CICHLIDAE) E DECLINO DELL’ITTIOFAUNA AUTOCTONA A NAHAL AMAL, ISRAELE SINTESI Nel presente studio l’ittiofauna del Nahal Amal, un piccolo fiume in Israele, è stata campionata annual- mente dal 1998 al 2021. L’ittiofauna locale è risultata composta da 27 taxa, di cui dieci specie autoctone e 17 esotiche. Fino al 2010 la specie dominante era il ciclide indigeno Astatotilapia flaviijosephi (Lortet, 1883), sostituito per due anni da esemplari appartenenti al genere Pseudotropheus. Questi ultimi sono stati poi sostituiti da esemplari di un altro genere di ciclidi, Aulonocara, che attualmente domina il sito. Si ipotizza che le specie esotiche siano entrate nel sito in seguito a fughe o al rilascio dall’incubatoio situato sulla riva del fiume, o da parte di acquariofili. Parole chiave: colonizzazione, ciclidi, acqua dolce, Nahal Amal, Israele ANNALES · Ser. hist. nat. · 32 · 2022 · 2 294 Daniel GOLANI et al.: COLONISATION OF EXOTIC FISH SPECIES OF THE GENERA PSEUDOTROPHEUS AND AULONOCARA (PERCIFORMES: ..., 293–300 INTRODUCTION The invasion and establishment of exotic species in new environments is a major global issue. In aquatic environments, they are a significant cause of biodiversity loss. The main concern is that non- -native species will outcompete native species and alter the ecosystem, damaging the habitat, hybri- dizing with local species and/or introducing new parasites and diseases. They may adversely affect the local commercial fishery as well as tourism. In freshwater habitats, the colonisation of non-indi- genous fish presents an even greater potential risk than in marine environments, since freshwater fish often have small and isolated populations with a high rate of endemism which renders them particu- larly prone to extinction (Moyel & García-Berthou, 2011). In the present paper, a long-term study of the ichthyofauna of a small river, Nahal Amal, in the Beit-She’an Valley (Emek Hama’ayanot), Israel, was carried out. The stream was sampled annually in order to study the long-term dynamics and changes caused by anthropogenic activity. MATERIAL AND METHODS Study site The study site, Nahal Amal, locally known as Na- hal Assi, is a small river located at 32030ʹ0.5.82˝N 35027ʹ38.97˝E, 1650 m downstream from its source at Ein Amal. At the study site the width of Nahal Amal is 30 m. (Fig. 1). Its discharge ranges from 1700 to 2700 m2/hour with an average of 1800 m2/hour. The water temperature is consistently high, 24-26 ˚C, throughout the year, with a salinity of ca. 1100 mg/liter (~ 2 psu) (Rozenberg & Men- del, 1977; Nir, 1989; Kabara-Leykin & Romem, 2020). The northern bank is covered with thick continuous vegetation, mainly Bulrush reed, (Typha domingensis (Persoon, 1807)) while the southern bank has spaces between vegetation, allowing access to the stream (Fig. 1). The water depth is 50-70 cm. Until 2010-2011 the substrate was covered with Soft Hornwort (Ceratophyl- lum submersum L., 1763) which was later removed (Y. Lahav, pers. comm.), leaving only some debris of large branches on a very deep muddy substrate. Fig. 1: Maps and photo of study site Nahal Amal. Sl. 1: Zemljevid in fotografija obravnavanega območja Nahal Amal. Fig. 1 Map and photo of the study site ANNALES · Ser. hist. nat. · 32 · 2022 · 2 295 Daniel GOLANI et al.: COLONISATION OF EXOTIC FISH SPECIES OF THE GENERA PSEUDOTROPHEUS AND AULONOCARA (PERCIFORMES: ..., 293–300 Sampling The samples were collected with a 30 m long beach seine net, with decreasing mesh size from 40 mm, knot to knot, to 2 mm at the center (Fig. 2). Each sampling consisted of three sequential hauls, covering ca. 2,000 m2. Fish from all three hauls were combined. Species were identified to the lowest possible taxa and counted. Due to taxonomic complexity and a high rate of hybridization (Joyce et al., 2011; Genner & Turner, 2012) all specimens of the genera Pseudotropheus (Regan, 1922) and Aulonocara (Regan, 1922) were identified only to the generic level. We distinguished between these two genera by the following characteristics: Pseudo- tropheus have numerous small, deeply embedded scales on the breast region (Schraml, 1998) while Aulonocara are characterized by an enlargement of the sensory canal on the head (Snoeks, 2004) and very large sensory pores in the enlarged infraorbital bones (Konings, 2016). During the years 1998- 2010 and 2018-2019, sampling was conducted an- nually during the months April-June, while during 2011-2017 two samples were collected each year during the same months. Several specimens from each species were saved and deposited in the Fish Collection of the Hebrew University (HUJ). RESULTS A total of 27 fish taxa were collected in the pre- sent study, in addition to two species, the Black Carp (Mylopharyngodon piceus, (Richardson, 1846)) and the Red Drum (Sciaenops ocellatus, (Linnaeus, 1766)), that were observed and photographed but were not collected (Tab. 1). Of the species that were collected, ten are in- digenous species and 17 are exotic, of which one was the hybrid of the Striped Bass (Morone saxatilis (Walbaum, 1792)) and the White Bass (M. chrysops (Rafinesque, 1820)), a likely aquaculture escapee. Another such species was the golden strain of the Blue Tilapia (Oreochromis aureus). Five additional species were found: The common carp - Cyprinus carpio, Blue Tilapia - Oreochromis aureus, Nile tilapia - O. niloticus, Thinlip grey mullet - Chelon ramada and the Flathead grey mullet - Mugil cepha- lus; these are non-native species that are known to be cultured in local aquaculture and are thus likely escapees. An additional species, the Mosquito fish (Gambusia affinis), was introduced to Israel in the 1920’s for the purpose of malaria control and is currently present in almost all freshwater bodies in Israel (Goren & Ortal, 1999; Golani & Mires, 2000). Six of the collected species are popular in the aqua- rium trade in Israel: Vermiculated sailfin catfish - Pterygopichthys dijunctivus, Amazon sailfin catfish - P. pardalis, Yucatan molly - Poecilia velifera, Green swordtail - Xiphophorus helleri, Convict cichlid - Amatitilapia nigrofasciata and the Malawi eyebiter Dimidichromis comptessiceceps and the genera Aulonocara and Pseudotropheus. Figure 3 reveals a clear shift of the river’s ichthyofauna composition; until 2009 the indigenous cichlid Astatotilapia flavi- ijosephi was the dominant species, but then in 2010 began to decline sharply. During the following two years (2011-2012), specimens of the exotic geneus Pseudotropheus displayed an increase and were most common, but by 2013 specimens of another exotic genus, Aulonocara increased and since has dominated the stream fish assemblage until the end of this study. Fig. 2: Experimental beach seine used in the present study. Sl. 2: Poskusna povlečna mreža, uporabljena v pričujoči študiji. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 296 Daniel GOLANI et al.: COLONISATION OF EXOTIC FISH SPECIES OF THE GENERA PSEUDOTROPHEUS AND AULONOCARA (PERCIFORMES: ..., 293–300 Tab: 1: List of species sampled in Nahal Amal in the present study. I - indigenous spp., E – exotic spp., O – species observed, photographed, but not collected. Tab: 1: Seznam vrst rib v reki Nahal Amal v pričujoči raziskavi. I – domorodne vrste, E – eksotične vrste, O – vrste, ki so bile opažene in fotografirane, vendar niso bile ulovljene. Family Species CYPRINIDAE Acanthobrama lissneri Tortonese, 1952 I Barbus longiceps Valenciennes, 1842 I Caracobarbus canis (Valenciennes, 1842) I Cyprinus carpio Linnaeus, 1758 E Hemigrammocapoeta nana (Heckel, 1843) I Garra rufa (Heckel, 1843) I CLARIDAE Clarias gariepinus (Burchell, 1822) I LORICARIIDEA Pterygoplichthys disjunctivus (Weber, 1991) E Pterygoplichthys pardalis (Castelnau, 1855) E CYPRINODONTIDAE Aphanius mento (Heckel, 1843) I POECILIDAE Gambusia affinis (Baird & Girard, 1853) E Poecilia velifera (Regan, 1914) E Xiphophorus helleri Heckel, 1848 E MORONEIDAE Morone saxatilis X Morone chrysops E CICHLIDAE Amatitilapia nigrofasciata (Günther, 1867) E Astatotilapia flaviijosephi (Lortet, 1883) I Aulonocara sp. Regan 1922 E Coptodon, zillii (Gervais, 1848) I Dimidichromis compressiceceps (Boulenger, 1908) E Labidochromis caeruleus Fryer, 1956 E Oreochromis aureus (Steidachner, 1864) E Oreochromis aureus- orange morph E Oreochromis niloticus (Linnaeus, 1758) E Pseudotropheus spp. Regan, 1922 E Sarotherodon galilaeus (Linnaeus, 1758) I MUGILIDAE Chelon ramada (Risso, 1827) E Mugil cephalus Linnaeus, 1758 E CYPRINIDAE Mylopharyngodon piceus (Richardson, 1846) O SCIAENIDAE Sciaenops ocellatus (Linnaeus, 1766) O ANNALES · Ser. hist. nat. · 32 · 2022 · 2 297 Daniel GOLANI et al.: COLONISATION OF EXOTIC FISH SPECIES OF THE GENERA PSEUDOTROPHEUS AND AULONOCARA (PERCIFORMES: ..., 293–300 DISCUSSION Fish introduction to the freshwater system of Israel has been studied by several ichthyologists (Ben-Tuvia, 1981; Goren & Ortal, 1999; Golani & Mires, 2000). The families and lower taxa that were excluded from these studies were Loriacarridae with Pterygoplychthys disjunctivus and P. pardalis which were included in a later study (Golani & Snovsky, 2013) and Cichlidae with Amatitilapia nigrofasciata, Dimidichromis compressiceceps, La- bidochromis caeruleus and the genera Aulonocara and Pseudotropheus. The main finding of this study is a clear shift in the ichthyofauna of Nahal Amal. Until the year 2009 Nahal Amal ichthyofauna was heavily dominated by the native cichlid Astatotilapia flaviijosephi (171-1340 specimens per sample), followed by a sharp decrease of 35-85 specimens per sample during 2010. In the following years 2011-2020, this species was represented by only a few individuals (1-10 individuals per sample). During the years 2011-2012 specimens belonging to the exotic genus Pseudotropheus were the most abundant in sampling and a few specimens of another exotic genus, Aulonocara, first appeared in the samples. From 2013 until the end of the study, Aulonocara gradually became the dominant species in Nahal Amal, reaching 1060 specimens per sample in 2021. Two scenarios are possible regarding the observed ichthyofauna changes. One scenario is that the removal of the Soft Hornwort in 2010- 2011 led to a rapid decline of the indigenous Astatotilapia flaviijosephi population, leaving the ecosystem vacant or underutilised, thus enabling exotic species to exploit and dominate the Nahal Amal ecosystem. Alternatively, it is possible that individuals of the exotic species were already present in the river in 2010 and 2011 but were overlooked in sampling and they succeeded to outcompete native species. Golani & Snovsky (2013) assumed that the probable origin of the exotic fish in Nahal Amal was due to escapees from a fish hatchery that was located on the bank of Nahal Amal. According to E. Lahav (pers. comm.), this hatchery ceased operating in 2006 but when active, it was concerned only with amelioration and husbandry of aquaculture species, mainly of the family of Cichlidae (Oreo- chromis niloticus, O. mossambicus (Peters, 1852), and O. urolepis (Norman, 1922), known also as O. hornorum). However, it is highly likely that during the hatchery’s operation prior to its demolition, additional species were held in the facility, inclu- ding the Malawi cichlids (pers. obs.). Therefore, the origin of Pseudotropheus and Aulonocara in Nahal Amal could have resulted from spillover from the hatchery, as well as release or escapees from aqua- rium hobbyists. Fig. 3: Number of specimens of the three main taxa in each sample in Nahal Amal. Green – Astatotilapia flaviijosephi, Purple – Pseudotropheus spp., Red – Aulonocara spp. Sl. 3: Število primerkov treh glavnih taksonov v posameznem vzorcu v reki Nahal. Zeleno – Astatotilapia flaviijosephi, vijolično – Pseudotropheus spp., rdeče – Aulonocara spp. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 298 Daniel GOLANI et al.: COLONISATION OF EXOTIC FISH SPECIES OF THE GENERA PSEUDOTROPHEUS AND AULONOCARA (PERCIFORMES: ..., 293–300 Both genera Pseudotropheus and Aulonocara are endemic to Lake Malawi. Species belonging to these genera are thermophilic, omnivorous, maternal mouth brooders and inhabit habitats similar to that of Nahal Amal. According to Bar- low (2002), maternal mouth brooders have an advantage in colonising new habitats. Member of the genus Pseudotropheus have been recorded as exotic species in the United States, in Nevada and Hawaii (Nico, 2019). Indeed, Malawi cichlids are popular worldwide in the aquarium trade, inclu- ding in Israel. It is interesting to note that five indigenous species (Lissner ’s bleak - Acanthobrama lissneri, Longhead barbel - Barbus longiceps, Hemi- grammocapoeta nana, Garra rufa and Aphanius mento) were not collected in this study site after the removal of the Soft Hornwort in 2010-2011. Three indigenous species, Carasobarbus canis, Coptodon zillii and Sarotherodon galilaeus, were sampled in similar numbers (2-26 per sample) throughout the study, both as juveniles and adults, thus indicating that they are spawning in Nahal Amal. The probability that the exotic fishes of Nahal Amal will unintentionally spread to other locations of the freshwater ecosystem of Israel is highly unli- kely. The winter temperature in regional fish ponds plummets to 100C, which is below the tolerance limit of these thermophilic exotic Lake Malawi-originated fish. Indeed, about 200 m east of the study site, Nahal Amal water is collected and used following dilution with water from other near-by springs, for irrigation and filing aquaculture fish pond. CONCLUSIONS The present study of colonisation of exotic species in Nahal Amal is a long term case study demonstrating the phenomenon which may re- present grave risk to native fish species and their competitive exclusion by exotic species, a risk that is particularly keen in freshwater systems. It is in- cumbent upon fresh water management to monitor, control, and as much as possible, prevent the entry of invasive species, to preserve the wellbeing of native species and ensure the conservation of the local ecosystems. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 299 Daniel GOLANI et al.: COLONISATION OF EXOTIC FISH SPECIES OF THE GENERA PSEUDOTROPHEUS AND AULONOCARA (PERCIFORMES: ..., 293–300 NASELJEVANJE EKSOTIČNIH VRST RIB IZ RODOV PSEUDOTROPHEUS IN AULONOCARA (PERCIFORMES: CICHLIDAE) IN UPAD DOMORODNE RIBJE FAVNE V REKI NAHAL AMAL, IZRAEL Daniel GOLANI National Natural History Collections and Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel e-mail: dani.golani@mail.huji.ac.il Haim SHOHAT Phoenix Fish Farm, Ramat haNegev, Israel Brenda APPELBAUM-GOLANI The Hebrew University of Jerusalem POVZETEK Avtorji so v pričujoči raziskavi vzorčili ihtiofavno v Nahal Amalu, manjši reki v Izraelu v letih od 1998 do 2021. Lokalno ihtiofavno tvori 27 taksonov, od katerih je 10 domorodnih vrst in 17 eksotičnih vrst. Do leta 2010 je prevladovala domorodna vrsta ostrižnika Astatotilapia flaviijosephi (Lortet, 1883), ki sta jo najprej nadomestili dve drugi vrsti ostrižnikov iz rodu Pseudotropheus. Te pa so kasneje zamenjale vrste iz še enega rodu ostrižnikov Aulonocara, ki danes prevladujejo na lokaliteti. Najverjetneje so se tujerodne vrste na lokaliteti pojavile zaradi pobega ali namernega izpusta iz vzrejnega centra na rečnem bregu ali zaradi akvaristov. Ključne besede: naseljevanje, ostrižniki, sladke vode, Nahal Amal, Izrael ANNALES · Ser. hist. nat. · 32 · 2022 · 2 300 Daniel GOLANI et al.: COLONISATION OF EXOTIC FISH SPECIES OF THE GENERA PSEUDOTROPHEUS AND AULONOCARA (PERCIFORMES: ..., 293–300 REFERENCES Barlow, G.W. (2002): The Cichlid Fishes, Nature’s Grand Experiment in Evolution. Basic Books, New York, USA, 335 pp. Ben-Tuvia, A. (1981): Man-induced changes in the freshwater fish fauna of Israel. Fisher. Manag., 12, 15- 20. Genner, M.J.& G.F. Turner (2012): Ancient hybri- dization and phenotypic novelty within Lake Malawi’s cichlid fish radiation. Mol. Biol. Evol., 29(1), 195-206. doi: 10.1093/molbev/msr183. Golani, D & D. Mires (2000): Introduction of fishes to the freshwater system of Israel. Isr.J. Aquac. – Bamid- geh, 52, 47-60. Golani, D. & G. Snovsky (2013): Occurrence of suckermouth armored catfish (Siluriformes, Loricariidae, Pterygoplichthys) in inland waters of Israel. Bio. Inv. Rec., 2(3), 253-256. doi: 10.3391/ bir.2013.2.3.13. Goren, M. & R. Ortal, (1999): Biogeography, diversity and conservation of the inland water fish communities in Israel. Biol. Conser., 89, 1-9. Joyce, D.A., D.H. Lunt, M.J. Genner, G.F. Turner, R. Bills, & O. Seehausen (2011): Repeated coloniza- tion and hybridization in Lake Malawi cichlids. Curr. Biol. 21(3), R-108-R-109. https://doi.org/10.1016/j. cub.2010.11.029. Kabara-Leykin, L. & A. Romem, A. (2020): Harod Valley and the Southern Beit-She’an Valley. Deshe Institute, Tel- Aviv University. 259 pp. (in Hebrew). Konings, A. (2016): Malaŵi Cichlids in Their Na- tural Habitat. 5th edition. Cichlid Press. El Paso, Texas, USA. Moyel, P.B. & E. García-Berthou (2011): Fishes. In: D. Simberloff, & Rejmánek, M. (eds.): Encyclope- dia of Biological Invasions. University of California Press, Berkeley and Los Angeles, California. pp. 229-234. Nico, L. (2019): Melanochromis johannii (Eccles, 1973). Gainesville, Florida: U.S. Geological Survey, Nonindigenous Aquatic Species Database. https://nas. er.usgs.gov/queries/FactSheet.aspx?SpeciesID=461. Accessed: February 10, 2022. Nir, D. (1989): Beit-She’an Valley, The Region and its Challenges on the Fringe of the Desert. Hakibbutz Hameuched Publishing House Ltd. 188 pp. (in He- brew). Rozenberg, E. & S. Mendel (1977): The springs of Beit-She’an Valley, the factors influencing their dischar- ge and salinity. The Hebrew University of Jerusalem, 31 pp. (in Hebrew). Schraml, E. (1998): African Cichlids I Malawi- -Mbuna. AQUALOG Reference Books. Verlag A.C.S.: Mörfelden-Walldorf, Germany. Snoeks, J. (Ed.) (2004): The Cichlid Diversity of Lake Malawi/Nyasa/Niassa: Identification, Distribu- tion and Taxonomy. Cichlid Press. El Paso, Texas, USA. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 301 received: 2022-08-05 DOI 10.19233/ASHN.2022.31 ON THE OCCURRENCE OF VELOLAMBRUS EXPANSUS (BRACHYURA, PARTHENOPIDAE) IN HELLENIC WATERS Panayotis OVALIS Agisilaou Street 37-39, 17674 Tzitzifies, Kallithea, Athens, Greece e-mail: ovalis66@windowslive.com Maria CORSINI-FOKA Institute of Oceanography, Hellenic Centre for Marine Research. Hydrobiological Station of Rhodes, Cos Street, 85100 Rhodes, Greece e-mail: mcorsini@hcmr.gr ABSTRACT The finding in 2022 of the parthenopid Velolambrus expansus (Miers, 1879) in the Hellenic waters of the Aegean Sea is reported. This crab is considered rare in the Mediterranean Sea and the distribution of its records in the basin is updated and briefly discussed. Key words: Crustacea Decapoda, rare species, Mediterranean Sea, distribution SULLA PRESENZA DI VELOLAMBRUS EXPANSUS (BRACHYURA, PARTHENOPIDAE) IN ACQUE ELLENICHE SINTESI Viene segnalato il ritrovamento nel 2022 del partenopide Velolambrus expansus (Miers, 1879) nelle acque elleniche del mar Egeo. Questo granchio è considerato raro nel Mediterraneo e la distribuzione delle sue segnalazioni nel bacino viene aggiornata e brevemente discussa. Parole chiave: Crostacei Decapodi, specie rare, Mar Mediterraneo, distribuzione ANNALES · Ser. hist. nat. · 32 · 2022 · 2 302 Panayotis OVALIS & Maria CORSINI-FOKA: ON THE OCCURRENCE OF VELOLAMBRUS EXPANSUS (BRACHYURA, PARTHENOPIDAE) IN HELLENIC WATERS, 301–308 INTRODUCTION The crab Velolambrus expansus (Miers, 1879) is an Atlanto-Mediterranean species (Manning & Holthuis 1981) rarely collected in the Mediterranean Sea (García-Raso, 1989; Christodoulou et al., 2009). The species was described for the first time by Miers (1879) as Lambrus (Parthenopoides) expansus. This parthe- nopid lives between 30 m and 190 m of depth on a variety of substrates such as gravel, sand, broken shell, coral, mixed rocky-sandy bottoms, calcareous algae (e.g., maërl), volcanic detritus (Pastore, 1975; Man- ning & Holthuis, 1981; García-Raso, 1989; d’Udekem d’Acoz, 1999; Spanò, 2002). In the Mediterranean Sea, V. expansus was first recorded in 1893 at northwest of Crete Island, Greece (Adensamer, 1898). In the Hellenic waters, after this old record, the species was collected only a second time, in the Aegean Sea (Koukouras et al., 1992, 1993). The recent finding of two specimens of V. expansus in the Saronikos Gulf, Greece, is described, ascertain- ing its current occurrence in the Aegean Sea after more than 65 years and updating knowledge on its distribu- tion in the whole Mediterranean basin. MATERIAL AND METHODS On 19 June 2022 two crabs of similar features were collected off the island of Fleves, Saronikos Gulf, south- western Aegean Sea (37.7344°N, 23.7692°E) (Fig. 1), as by-catch of trammel net at 120 m of depth on a muddy sand and maërl bottom. The above fishing gear, named μπαρμπουνοδίχτια (barbounodichtia) is commonly used in the Hellenic small scale fishery and targets prevalently red mullet Mullus spp. but also other species (Adamidou, 2007). The discarded crab specimens, currently stored by one of the authors (P.O.), were identified following Manning & Holthuis (1981), Falciai & Minervini (1992) and Tan & Ng (2007). Measurements (CW, carapace width, CL, carapace length) of both specimens were taken with a caliper to the nearest 0.1 mm. RESULTS AND DISCUSSION The specimens (Fig. 2) were identified as V. expan- sus, according to the above mentioned literature. Both crabs were males, the largest, specimen A, with CW 5.43 mm and CL 4.22 mm, the smallest, specimen B, with CW 3.0 mm and CL 2.98 mm. The following main characteristics were observed (Fig. 2): carapace triangular in outline, slightly broader than long in specimen A, same CW and CL in specimen B. Front prominent forming a straight line with sides of carapace; in specimen A, the front terminates with five tubercles, the central more pronounced; in speci- men B, the front appears rounded, slightly sunken in the center. In the posterior half of both specimens the lateral margin is slightly widened, showing 3 shallow teeth just before posterolateral angle. Posterior margin of carapace slightly convex, with inconspicuous tuber- Fig. 1: Distribution of records of Velolambrus expansus in the Mediterranean Sea. Black circles: published records with specified or approximate coordinates; blue circles, published records with unspecified site of collection (south Tyrrhenian Sea and Aegean Sea); red star, present record. Detail in Tab. 1. Sl. 1: Razširjenost vrste Velolambrus expansus v Sredozemskem morju na podlagi zapisov o pojavljanju. Črni krogci: objavljeni zapisi z natančnimi ali približnimi koordinatami; modri krogci, objavljeni zapisi z neoznačeno lokaliteto najdbe (južno Tirensko morje in Egejsko morje); rdeča zvezdica, pričujoči zapis o pojavljanju. Detajli v Tab. 1. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 303 Panayotis OVALIS & Maria CORSINI-FOKA: ON THE OCCURRENCE OF VELOLAMBRUS EXPANSUS (BRACHYURA, PARTHENOPIDAE) IN HELLENIC WATERS, 301–308 cles. The expanded lateral margins and the posterior margin of carapace partially cover the ambulatory legs. Carapace grossly smooth but evenly minutely pitted. Gastric region with three prominences. Posterior part of carapace bearing one median and two submedian elevations, median with a tubercle. Oblique, smooth ridge present over each branchial region ending in posterolateral angle and running parallel to lateral margin of carapace. Chelipeds different, heaviest the right in specimen A, the left in specimen B. Upper surface of palm slightly smooth; outer margin bearing ridge with three large blunt teeth, more pronounced in smaller than in larger cheliped. Inner margin of the upper surface of palm bearing about five blunt teeth, middle largest. Merus short and wide, inner margin bearing distinct larger and smaller teeth, on outer margin teeth less conspicuous. Lower margin of merus with longitudinal row of large tubercles, inner surface bearing some scattered tubercles, outer surface almost smooth. In specimen A, antennal article IV same length of antennal article III; in specimen B, antennae were damaged. Telson triangular, broader than long. Color. Specimen A: front and lateral margins of carapace rose, all the remaining surface of carapace and legs whitish; specimen B: uniformly whitish (Fig. 2). The size of specimen B was small and not included in the known size range of carapace, CW 5-12 mm and CL 4-10 mm, reported by Manning & Holthuis (1981); it was also smaller than the size of specimens collected in the last forty years in the Mediterranean and listed in Tab. 1. Comparing our specimens with those reported Fig. 2: Dorsal and ventral view of the two male specimens of Velolambrus expansus from the Saronikos Gulf, Greece. Scale bars: 1 mm (photo: P. Ovalis). Sl. 2: Pogled s hrbtne in trebušne strani na dva samca vrste Velolambrus expansus iz zaliva Saronikos v Grčiji. Merilo: 1 mm (foto: P. Ovalis). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 304 Panayotis OVALIS & Maria CORSINI-FOKA: ON THE OCCURRENCE OF VELOLAMBRUS EXPANSUS (BRACHYURA, PARTHENOPIDAE) IN HELLENIC WATERS, 301–308 in the literature (Pastore, 1975; García-Raso, 1989; Tan & Ng, 2007; Christodoulou et al., 2009), some morphological characters appear variable, such as the expansions of the lateral margins in the posterior half of carapace and the presence or absence of tubercles in the front and in the lateral ridges. Color polymorphism is observed in this small species: uniform white-grey (Pastore, 1975) as in specimen B, creamy with reddish brown irregular spots as in specimens observed in Madeira (Wirtz, 2020, citing Araújo & Wirtz, 2015), whitish with reddish lateral and frontal margins as the specimen of V. cf expansus photographed within the Tagoro Volcano complex, Canary Islands, Spain (Sotomayor-García et al., 2019), this last similar to the color of our specimen A. In the Eastern Atlantic, V. expansus has been re- corded from Madeira, the Azores, the Canary Islands, and West Africa from Mauritania to the islands of Cape Verde to São Tomé and Annobon islands in the Gulf of Guinea (d’Udekem d’Acoz, 1999). Although the occurrence of this crab is documented from all across the Mediterranean, to date the records of this species in the basin appear scattered, prevalently concentrated in the Alboran Sea and around Sicily (Tab. 1 and Fig. 1). Tab. 1: References and detail of the records of Velolambrus expansus in the Mediterranean Sea (n: number of specimens; CW: carapace width, mm; CL: carapace length, mm). Tab. 1: Objavljeni zapisi in detajli o pojavljanju vrste Velolambrus expansus v Sredozemskem morju (n: število primerkov; CW: širina karapaksa, mm; CL: dolžina karapaksa, mm). Country Date Location Depth (m) Coordinates Bottom n Sex CW CL References Greece 1893 Aegean Sea, NW Crete 160 36.05°N, 23.1°E Nullipores & coarse sand 1 ♂ Adensamer (1896); Holthuis & Gottlieb (1958); Manning & Holthuis (1981) 1955 Aegean Sea Koukouras et al. (1992, 1993); d’Udekem d’Acoz (1999) 2022 Aegean Sea, Saronikos Gulf 120 37.7344°N, 23.7692°E Maërl & muddy sand 2 ♂ 5.4 4.2 Present study ♂ 3.0 3.0 Italy 1972 West Ionian Sea, north to the Gulf of Catania 50-60 37.55°N, 15.1667°E Detritus & organic remains 2 ♂ Pastore (1975) 1983 Ustica Isl. 50-200 ~38.6880°N, 13.2025°E 2 Covazzi Harriague et al. (2008) Panarea Isl. 50-100 ~38.6522°N, 15.0982°E 1 Levanzo Isl. 50-100 ~37.9812°N, 12.3671°E 1 1995 Strait of Messina 47 38.2322°N, 15.5831°E Coralligenous 4 ♂ 9.9 8.7 Spanò (1998a, 2002); Pipitone & Arculeo (2003); Froglia (2010); Spanò & De Domenico (2017) 55 38.2353°N, 15.585°E Coralligenous ♂ 10.4 9.5 60 38.2317°N, 15.5839°E Coralligenous ♂ 8.4 7.3 190 38.2281°N, 15.5942°E Hard ♀ ovig. 11.9 9.8 1992- 1996 South Tyrrhenian Sea Spanò (1998b); Pipitone & Arculeo (2003); Froglia (2010) Cyprus 2004 68 35.0307°N, 34.1106°E Maërl 1 ♂ 9.7 Christodoulou et al. (2009) Malta 1996 Off Qawra,Ghallis 60-100 35.9822°N, 14.4578°E Maërl 1 Sciberras et al. (2009); Mifsud (2017); Hall-Spencer et al. (2018)Off St Paul’s Islands 36.0015°N, 14.4307°E 1 Spain 1985 Alboran Sea 70-100 36.5267°N, 2.8433°W Red coral 1 ♂ 10.4 7.8 García-Raso (1989); Marco- Herrero et al. (2015) 2011- 2012 40-150 ~35.9372°N, 3.03648°W Gravel García-Raso (2012); García- Raso et al. (2014) Morocco 1984 Alboran Sea 170 35.4283°N, 4.3133°W Shell remains 6 ♂ Largest 10 García-Raso (1996) ♀ Largest 7.5 Smallest ovig. 6.8 Algeria Western Algeria (Mostaganem- Ghazaouet ~ 36.2369°N, 0.2301°W Larvae Seridji R., 1989; Grimes et al. (2016); Bakalem A. pers. comm. (2022) ANNALES · Ser. hist. nat. · 32 · 2022 · 2 305 Panayotis OVALIS & Maria CORSINI-FOKA: ON THE OCCURRENCE OF VELOLAMBRUS EXPANSUS (BRACHYURA, PARTHENOPIDAE) IN HELLENIC WATERS, 301–308 It is rarely detected likely for its small size and no com- mercial value and consequent discard during fishing operations, but also for the relatively high depths where it lives and for the mimetic color patterns, as happens in other marine crabs (Tan & Richer de Forges, 1993; Bedini, 2002; Stevens, 2016; Price et al., 2019), which render difficult its observation. The species V. expansus may be more abundant than expected and palatable for other organisms like fishes. In fact, Chartosia et al. (2021) recently documented that the species is a com- ponent of the diet of the non-indigenous tetraodontid Torquigener flavimaculosus Hardy and Randall, 1983, in Cyprus. ACKNOWLEDGEMENTS Authors are grateful to Dr. Carlo Froglia (C.N.R., Institute for the Biological Resources and Marine Biotechnologies, Ancona, Italy) for kindly confirming the identification of Velolambrus expansus specimens reported in this study. They express many thanks also to Prof. A. Bakalem for kindly providing information on the occurrence of V. expansus in Algeria. Authors are grateful to anonymous reviewers for providing useful and constructive suggestions on the first version of the manuscript. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 306 Panayotis OVALIS & Maria CORSINI-FOKA: ON THE OCCURRENCE OF VELOLAMBRUS EXPANSUS (BRACHYURA, PARTHENOPIDAE) IN HELLENIC WATERS, 301–308 O POJAVLJANJU RAKOVICE VRSTE VELOLAMBRUS EXPANSUS (BRACHYURA, PARTHENOPIDAE) V GRŠKIH VODAH Panayotis OVALIS Agisilaou Street 37-39, 17674 Tzitzifies, Kallithea, Athens, Greece e-mail: ovalis66@windowslive.com Maria CORSINI-FOKA Institute of Oceanography, Hellenic Centre for Marine Research. Hydrobiological Station of Rhodes, Cos Street, 85100 Rhodes, Greece e-mail: mcorsini@hcmr.gr POVZETEK Avtorja poročata o najdbi vrste rakovice Velolambrus expansus (Miers, 1879) iz družine Parthenopidae v grških vodah Egejskega morja. Gre za redko vrsto v Sredozemskem morju. Avtorja na kratko razpravljata o razširjenosti in podajata listo do zdaj objavljenih zapisov o pojavljanju. Ključne besede: Crustacea Decapoda, redke vrste, Sredozemsko morje, razširjenost ANNALES · Ser. hist. nat. · 32 · 2022 · 2 307 Panayotis OVALIS & Maria CORSINI-FOKA: ON THE OCCURRENCE OF VELOLAMBRUS EXPANSUS (BRACHYURA, PARTHENOPIDAE) IN HELLENIC WATERS, 301–308 REFERENCES Adamidou, A. (2007): Commercial fishing gears and methods used in Hellas. In: Papaconstantinou, C., A. Zenetos, V. Vassilopoulou & G. Tserpes (eds.), State of Hellenic Fisheries (SoHelFi). Hel- lenic Centre for Marine Research, Athens, pp. 118-131. Adensamer, T. (1898): Berichte der Commission für Erforschung des östlichen Mittelmeers. XXII. Zo- ologische Ergebnisse. XI. Decapoden gesammelt auf S.M. Schiff Pola in den Jahren 1890-1894. Denkschr. Kaiserl. Akad. Wiss. Wien, 65, 597-628. Araújo, R. & P. Wirtz (2015): The decapod crus- taceans of Madeira Island – an annotated checklist (Crustacea, Decapoda). Spixiana, 38(2), 205-218. Bedini, R. (2002): Colour change and mimicry from juvenile to adult: Xantho por- essa (Olivi, 1792) (Brachyura, Xanthidae) and Carcinus maenas (Linnaeus, 1758) (Brachyura, Portunidae). Crustaceana, 75, 703-710. https://doi. org/10.1163/156854002760202688. Chartosia, N., N. Michailidis, A. Constantinou & P.K. Karachle (2021): Shedding light on the diet of the Lessepsian yellowspotted puffer Torquigener flavimaculosus Hardy and Randall, 1983 in the Eastern Mediterranean. Acta Adriatica, 62(2), 199- 208. Christodoulou, M., Th. Tzomos, N. Chartosia & M.-S. Kitsos (2009): Decapod crustaceans new to the fauna of Cyprus. Mar. Biodivers. Rec., 2, e168. https://doi.org/10.1017/S1755267209990911. Covazzi Harriague, A., H. Panciroli, N. Drago, M. Mori & G. Albertelli (2008): Crustacean as- semblages of the south Tyrrhenian archipelagos and Ustica Island (Italy, NW Mediterranean). Atti dell’Associazione Italiana di Oceanologia e Limno- logia, 19, 167-176. d’Udekem d’Acoz, C. (1999): Inventaire et dis- tribution des crustacés décapodes de l’Atlantique nord-oriental, de la Méditerranée et des eaux con- tinentales adjacentes au nord de 25°N. Mus. Natl. Hist. Nat./Serv. Patrim. Nat., 40, 383 pp. Falciai, L. & R. Minervini (1992): Guida dei crostacei decapodi d’Europa. Franco Muzzio Edi- tore, Padova, 282 pp. Froglia, C. (2010): Crustacea, Malacostraca, De- capoda. Biol. Mar. Mediterr., 17(suppl. 1), 519-534. García-Raso, J.E. (1989): Resultados de la se- gunda campaña del I.E.O. para la exploración de los fondos de Coral Rojo en el Mar de Alborán. Crustáceos Decápodos. Bol. Inst. Esp. Oceanogr., 5(2), 27-36. García-Raso, J.E. (1996): Crustacea Decapoda (excl. Sergestidae) from Ibero-Moroccan waters. Results of Balgim-84 expedition. Bull. Mar. Sci., 58(3), 730-752. García-Raso, J.E. (2012): Crustacea Decapoda. In: Gofas S., Goutayer J., Luque Α.A., Salas C. (Coordina- tors) and research team INDEMARES-ALBORΑN, 2012. Informe final del área de estudio Alborán. Proyecto LIFE+ INDEMARES. Informe remitido a la Fundación Biodiversidad, Madrid, 151 pp. García-Raso, J.E., M. Orellana, M.J. Ruiz & M.L. Montiel (2014): Decapod crustacean assemblages of maërl and bioclastic gravel beds from Alboran Island (western Mediterranean Sea). XVIII Simposio Ibérico de Estudios de Biología Marina (SIEBM), Gijón, Spain, 2-5 September 2014, Abstract. Grimes, S., A. Bakalem & J.C. Dauvin (2016): Annotated checklist of marine Algerian Crustacean Decapods. Mediterr. Mar. Sci., 17(2), 384-395. https:// doi.org/10.12681/mms.1420. Hall-Spencer, J., J. Grall, V. Gerovasileiou, D. Ma- vraki, P. Paranou, N. Baily & S. Nikolopoulou (2018): BIOMAERL. Maerl Biodiversity, Functional Structure and Antropogenic Impacts (1996-1998). Hellenic Center for Marine Research. https://doi.org/10.25607/ zp0vwl accessed via GBIF.org on 2022-06-23. https:// www.gbif.org/occurrence/1931770464. Holthuis, L.B. & E. Gottlieb (1958): An annotated list of the decapod Crustacea of the Mediterranean coast of Israel, with an appendix listing the Decapoda of the Eastern Mediterranean. B. Res. Counc. Israel, Section B, Zoology, 7, 1-126. Koukouras, A., C. Dounas, M. Türkay & E. Voultsi- adou-Koukoura (1992): Decapod crustacean fauna of the Aegean Sea: new information, check list, affinities. Senckenberg. Marit., 22, 217-244. Koukouras, A., C. Dounas & A. Eleftheriou (1993): Crustacea Decapoda from the cruises of “Calypso” 1955, 1960, in the Greek waters. In: Proceedings of the Fourth Colloquium Crustacea Decapoda Mediterranea, Thessa- loniki, April 25th-28th, 1989. BIOS (Macedonia, Greece), Scientific Annals of the School of Biology, 1(1), 193-200. Manning, R.B. & L.B. Holthuis (1981): West African brachyuran crabs (Crustacea: Decapoda). Smithson. Contrib. Zool., 306, 1-379. Marco-Herrero, E., P. Abelló, P. Drake, J.E. García- Raso, J.I. González-Gordillo, G. Guerao, F. Palero & J.A. Cuesta (2015): Annotated checklist of brachyuran crabs (Crustacea: Decapoda) of the Iberian Peninsula (SW Europe). Sci. Mar., 79(2), 243-256. http://dx.doi. org/10.3989/scimar.04161.27A. Miers, E.J. (1879): Descriptions of new or little- known species of maioid Crustacea (Oxyrhyncha) in the Collection of the British Museum. Ann. Mag. Nat. Hist., ser. 5, 4(19), 1-28. Mifsud, C. (2017): Annotated checklist of the marine Crustacea (Branchiopoda: Ostracoda: Hexanauplia: Malacostraca) of the Maltese Islands. Sunland Printers Limited, 85 pp. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 308 Panayotis OVALIS & Maria CORSINI-FOKA: ON THE OCCURRENCE OF VELOLAMBRUS EXPANSUS (BRACHYURA, PARTHENOPIDAE) IN HELLENIC WATERS, 301–308 Pastore, M. (1975): Riscoperta di Parthenope expansus Miers in Mediterraneo. Memorie di Biologia Marina e di Oceanografia, (N.S.) 5(6), 145-154. Pipitone, C. & M. Arculeo (2003): The marine Crustacea Decapoda of Sicily (central Mediter- ranean Sea): a checklist with remarks on their distribution. Ital. J. Zool., 70, 69-78. https://doi. org/10.1080/11250000309356498 Price, N., S. Green, J. Troscianko, T. Tregenza & M. Stevens (2019): Background matching and disruptive coloration as habitat-specific strategies for camouflage. Sci. Rep., 9, 7840. https://doi.org/10.1038/s41598- 019-44349-2. Sciberras, M., M. Rizzo, J.R. Mifsud, K. Camilleri, J.A. Borg, E. Lanfranco & P.J. Schembri (2009): Habitat structure and biological characteristics of a maerl bed off the northeastern coast of the Maltese Islands (central Mediterranean). Mar. Biodivers., 39, 251-264. https:// doi.org/10.1007/s12526-009-0017-4. Seridji, R. (1989): Etude des larves de Crustacés Décapodes: aspects taxonomique, écologique et biogéographique. PhD Thesis. Université des Sci- ences et de la Technologie Houari Boumediene, Algeria, 619 pp. Sotomayor-García, A., J.L. Rueda, O. Sánchez- Guillamón, J. Urra, J.T. Vázquez, D. Palomino, L.M. Fernández-Salas, N. López-González, M. González- Porto, J.M. Santana-Casiano, M. González-Dávila, C. Presas-Navarro & E. Fraile-Nuez (2019): First macro- colonizers and survivors around Tagoro Submarine Volcano, Canary Islands, Spain. Geosciences, 9(1), 52. https://doi.org/10.3390/geosciences9010052. Spanò, N. (1998a): Distribution of Crustacea Decapoda (Anomura and Brachyura) in the Straits of Messina. J. Nat. Hist., 32, 1697-1705. Spanò, N. (1998b): Decapoda crustacea in the Southern Tyrrhenian Sea - five years of research. Rapp. Comm. Int. Mer Médit., 35, 488. Spanò, N. (2002): Presenza di Parthenope expansa (Miers, 1879) (Decapoda: Parthenopidae) nello stretto di Messina. Biol. Mar. Medit., 9(1), 645-646. Spanò, N. & E. De Domenico (2017): Biodiver- sity in Central Mediterranean Sea. In: Fuerst-Bjeliš B. (ed.), Mediterranean Identities-Environment, Soci- ety, Culture. IntechOpen, pp. 129-148. http://dx.doi. org/10.5772/intechopen.68942. Stevens, M. (2016): Color Change, Phenotypic Plasticity, and Camouflage. Front. Ecol. Evol., 4, 51. https://doi.org/10.3389/fevo.2016.0005. Tan, C.G.S. & B. Richer de Forges (1993): On the systematics and ecology of two species of mimetic crabs belonging to the Family Leucosiidae (Crustacea: Decapoda: Brachyura). Raffles Bull. Zool., 41(1), 119- 132. Tan, S.H. & P.K.L. Ng (2007): Descriptions of new genera of the sub-family Parthenopinae (Crustacea: Decapoda: Brachyura: Parthenopidae). Raffles Bull. Zool., Suppl. 16, 95-119. Available at http://decapoda. nhm.org/pdfs/27781/27781.pdf. Wirtz, P. (2020): Revised pictorial catalogue of the shallow water Calappidae, Eriphiidae, and Parthenopi- dae (Crustacea, Brachyura) of Madeira. Researchgate, 10.13140/RG.2.2.34272.30726 (downloaded on 6-7- 2022). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 309 received: 2022-09-20 DOI 10.19233/ASHN.2022.32 FIRST RECORD OF THE LONG-JAWED SQUIRRELFISH HOLOCENTRUS ADSCENSIONIS (OSBECK, 1765) IN THE ADRIATIC SEA Saul CIRIACO, Marco SEGARICH, Vera CIRINÀ WWF Miramare MPA, via Beirut 2/4, Trieste, Italy e-mail: saul.ciriaco@shoreline.it Lovrenc LIPEJ Marine Biology Station Piran, National Institute of Biology, Fornače 41, Slovenia e-mail: Lovrenc.Lipej@nib.si ABSTRACT A specimen of Holocentrus adscensionis (Osbeck, 1765) was observed, photographed and filmed for several days in August 2022 in the shallow rocky zone of the WWF Miramare marine protected area near Trieste (Gulf of Trieste, northern Adriatic). This is the first record of this species in the Gulf of Trieste and in the Adriatic Sea, and the second in the Mediterranean Sea. Key words: Holocentrus adscensionis, Holocentridae, Atlantic influx, Gulf of Trieste, Mediterranean Sea PRIMA SEGNALAZIONE DEL PESCE SCOIATTOLO HOLOCENTRUS ADSCENSIONIS NEL MARE ADRIATICO SINTESI Un esemplare di Holocentrus adscensionis (Osbeck, 1765) è stato osservato, fotografato e filmato per diversi giorni nell’agosto del 2022 nella zona rocciosa poco profonda dell’area marina protetta WWF Miramare, vicino a Trieste (Golfo di Trieste, Adriatico settentrionale). Si tratta del primo avvistamento di questa specie nel Golfo di Trieste e nell’Adriatico, e del secondo nel Mediterraneo. Parole chiave: Holocentrus adscensionis, Holocentridae, afflusso atlantico, Golfo di Trieste, Mediterraneo ANNALES · Ser. hist. nat. · 32 · 2022 · 2 310 Saul Ciriaco et al.: FIRST RECORD OF THE LONG-JAWED SQUIRRELFISH HOLOCENTRUS ADSCENSIONIS (OSBECK, 1765) IN THE ADRIATIC SEA, 309–316 INTRODUCTION The ongoing process of biotic globalisation evidenced by the arrival of new species to the Mediterranean Sea is affecting its marine biodiver- sity at an alarmingly high rate. The number of alien fish species in the Mediterranean has substantially increased after year 2000 with approximately 40% of the total number of fish species arrivals reported after the beginning of the 21st century (Zenetos et al., 2017). Many fish species came to the Mediter- ranean Sea through the Suez Canal, some through the Strait of Gibraltar, some unaided by human activities (Zenetos et al., 2012), others by following towed oil platforms (Dragičević et al., 2012; Pai- uelo et al., 2016). The northernmost portion of the Adriatic Sea is also affected by the invasion of alien fish species from the Red Sea, known as Lessepsian migration (Lipej & Dulčić, 2004). This paper presents the first record of Holocen- trus adscensionis (Osbeck, 1765) in Italian and Adriatic waters and proffers a possible explanation for it. MATERIAL AND METHODS The shoreline of the Miramare Marine Protected Area (MPA) near Trieste is mainly characterised by structured rocky limestone bottom with many dif- ferent habitat types, and sediment-bottom areas. On August 14, during a night dive, one of the divers visiting the Miramare MPA (Gulf of Trieste, northern Adriatic Sea), spotted a fish with a distinctive red liv- ery. Alerted at the end of the dive, MPA researchers began an immediate search for the individual, and after two days and more than 300 minutes of diving, on August 16, the team located the specimen hiding among the rocks below the south wall of Miramare Castle at a depth of about 3.5 m (Fig. 1). The sighting area appears to be a rocky landslide composed of medium-sized limestone boulders covered by turf and colonised mainly by organ pipe sponges (Aplysina aerophoba) and black sponges of the genus Sarcotragus. The area is characterised by a high density of fish fauna. During the first day of sighting, the researchers focused on taking photo- graphs and video material suitable for identifica- Fig. 1: Map of the study area indicating the locality where the specimen of Holocentrus adscensionis was photographed and filmed. Sl. 1: Zemljevid obravnavanega območja z lokaliteto, kjer je bil fotografiran in posnet primerek vrste Holocentrus adscensionis. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 311 Saul Ciriaco et al.: FIRST RECORD OF THE LONG-JAWED SQUIRRELFISH HOLOCENTRUS ADSCENSIONIS (OSBECK, 1765) IN THE ADRIATIC SEA, 309–316 tion. On the following day, they tried to capture the specimen with a hand net. Unfortunately, the specimen eluded capture and the next day, despite intense effort, the researchers were no longer able to spot it. RESULTS AND DISCUSSION Based on direct observations, digital photo- graphs and videos, the specimen was identified as a Holocentrus adscensionis (Osbeck, 1765) (Fig. 2). The main distinguishing features were the two rather long spines on the head, with the preopercular spine distinctly larger than the opercular one (Fig. 3) (Fis- cher et al., 1981). In addition, the posterior margin of upper jaw reached the posterior margin of pupil (Uyeno et al., 1983). The anterior part of the dorsal fin with 11 spines was, as usual in this species, yel- lowish. The anterior part of the soft dorsal fin rays and the upper caudal lobe were distinctly elongate. The dorsal fin was without the evident white spots behind the tip of each spine (Greenfield, 2003) that are typical of a related species, H. rufus. The specimen was characterised by a long and oblong body with slender caudal peduncle. The body had a faint pattern of alternating red and white transverse stripes. The breast and belly were white. The front part of the head was dark red with the white streak on the cheek clearly visible. The specimen was hiding in a small cavity, mak- ing rare excursions out of its shelter. During the few exits outside its shelter in the rock crevices it was immediately attacked by different seabream species (genus Diplodus). The long-jawed squirrelfish inhabits the waters of the western Atlantic coast from North Carolina (USA) to Brazil, including the Gulf of Mexico and the Caribbean (Woods & Greenfield, 1978), and of the eastern Atlantic coast from Gabon to Ascension Island (Ben-Tuvia, 1990). The long-jawed squir- relfish feeds on meroplankton, including crab and shrimp larvae, as well as juvenile fish, and mainly during the night (Beets, 1997). During the day it generally hides in the crevices within coral colo- nies (Greenfield, 1981). The long-jawed squirrelfish prefers structurally more complex habitats, as they offer more shelter place (Ferreira et al., 2004). This was also the case in the Miramare MPA. Since H. Fig. 2: A specimen of long-jawed squirrelfish Holocen- trus adscensionis, photographed in the marine protected area of WWF Miramare near Trieste on August 16, 2022. Sl. 2: Primerek vrste veveričjaka Holocentrus adscen- sionis, fotografiran 16. avgusta 2022 v zavarovanem območju WWF Miramare. Fig. 3: Head detail of the specimen of Holocentrus ad- scensionis showing opercular and preopercular spines. Sl. 3: Detajl glave primerka vrste Holocentrus adscensionis, na katerem sta vidna operkularni in preoperkularni trn. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 312 Saul Ciriaco et al.: FIRST RECORD OF THE LONG-JAWED SQUIRRELFISH HOLOCENTRUS ADSCENSIONIS (OSBECK, 1765) IN THE ADRIATIC SEA, 309–316 adscensionis is a nocturnal species, it may have been previously overlooked in Mediterranean wa- ters, as already pointed by Vella et al. (2016). According to Kovačić et al. (2020), 444 fish species were confirmed in the Adriatic Sea through an evidence based approach. Their checklist did not include the squirrelfish, so the finding of H. adscensionis in the Gulf of Trieste represents an additional species to be added to the Adriatic checklist and the first record in Italian seas. It also represents the second record of this squirrelfish species in the Mediterranean after it was recorded by Vella et al. (2016) in Maltese waters. The family Holocentridae comprises about 83 species, which are mostly found in waters below 100 m of depth (Nelson et al., 2016). Some of them are important in commercial and recreational fisheries. Until recently, the redcoat squirrelfish, Sargo- centron rubrum (Forsskal, 1775) was the only squir- relfish species reported in the Mediterranean basin. It was recorded as early as 1947 by Haas & Steinitz (1947) in Israeli waters and later on the north African coast in Libya (Štirn, 1970). Nowadays, this species is reported to be established (Golani & Ben Tuvia, 1985) and relatively common along the Mediterranean coast of Egypt (sensu Farrag et al., 2018). The second reported species, as previ- ously mentioned, was the H. adscensionis recorded in the Maltese waters of the Mediterranean Sea by Vella et al. (2016). Over the past two years another three squirrelfish species have been discovered in Mediterranean for the very first time. In 2021, Sargocentron spinosissimum (Temminck & Schlegel, 1843) and Sargocentron tiereoides (Bleeker, 1853) were found in the Mediterranean waters of Egypt (Deef, 2021), while in 2022 the first Mediterranean record of silverspot squirrelfish Sargocentron cau- dimaculatum (Rüppell, 1838) was reported from Tunisian waters (Ghanem et al., 2022). Despite their northernmost position, the Gulf of Trieste and the adjacent northern Adriatic Sea have witnessed many alien fish species. Their in- troductions are well documented, but their number is much lower compared to other Mediterranean areas. The very first alien species documented in the northern Adriatic was the silver pomfret Pampus argenteus, which was caught in the waters off Rijeka (Fiume) in 1896 (Dulčić et al., 2004). Further new arrivals to the study area (Gulf of Trieste) were not reported until 1993, when a specimen of rubberlip grunt Plectorchinchus mediterraneus (Guichenot, 1850) was caught in the waters off Miramare and another in the Bay of Piran (Lipej et al., 1996), and in 1998, when an orange-spotted grouper (Epinephelus coioides) was captured alive and kept in the Trieste aquarium (Parenti & Bressi, 1998). Tab. 1: Non-native fish species recorded in the Gulf of Trieste. Legend: AT – species arrived through the Gibraltar Strait (Atlantic influx), AQ – released aquarium fish, LM – Lessepsian migration, M – month, n - number of specimens, I –introduction, Y – year, IT – Italy, and SI – Slovenia. Tab. 1: Tujerodne in druge vrste, opažene v Tržaškem zalivu. Legenda: AT – vrste, ki so prišle skozi gibraltarsko ožino (atlantski vtok), AQ – ribe, izpuščene iz akvarija, LM – lesepska selitev, M – mesec, n – število primerkov, I – vnos ali prihod, Y – leto, IT – Italija, in SI – Slovenija. species locus Y M n I source Plectorhinchus mediterraneus Miramare (IT) 1993 Aug 1 AT Lipej et al., 1996 Plectorhinchus mediterraneus Piran (SI) 1993 Dec 1 AT Lipej et al., 1996 Epinephelus coioides Gulf of Trieste (IT) 1998 May 1 LM Parenti & Bressi, 1998 Terapon theraps Gulf of Piran (SI) 2007 Aug 1 LM Lipej et al., 2007 Siganus luridus Miramare (IT) 2010 Aug 1 LM Poloniato et al., 2010 Stephanolepis diaspros Gulf of Piran (SI) 2013 Sep 1 LM Lipej et al., 2014a Chrysiptera cyanea Portorož (SI) 2014 Aug 3 AR Lipej et al., 2014b Oplegnathus fasciatus Trieste (IT) 2015 Sep 1 AT Ciriaco & Lipej, 2015 Abudefduf saxatilis Muggia (SI) 2021 Aug 1 AT Lipej et al., 2021 Holocentrus adscensionis Miramare (IT) 2022 Aug 1 AT This work ANNALES · Ser. hist. nat. · 32 · 2022 · 2 313 Saul Ciriaco et al.: FIRST RECORD OF THE LONG-JAWED SQUIRRELFISH HOLOCENTRUS ADSCENSIONIS (OSBECK, 1765) IN THE ADRIATIC SEA, 309–316 Later other alien fish species were reported as well, such as the large-scaled terapon Terapon theraps Cuvier, 1829 in the waters off Piran in 2007 (Slo- venia) (Lipej et al., 2008), Siganus luridus (Rüppell, 1829) at Miramare (Trieste) (Poloniato et al., 2010), the reticulated leatherjacket Stephanolepis diaspros (Fraser-Brunner, 1940) in the Bay of Piran (Lipej et al., 2014a), the barred knifejaw Oplegnathus fascia- tus (Temminck & Schlegel, 1843) in the waters off Muggia (Ciriaco & Lipej, 2015), and the sergeant major Abudefduf saxatilis (Linaneus, 1758) at Punta Sottile, Muggia (Lipej et al., 2020). There was also a case of an intentional release of three specimens of blue devil Chrysiptera cyanea (Quoy & Gaimard, 1825) from aquaria in the waters off Piran (Lipej et al., 2014b). One of these, which was collected by divers, was kept in the aquarium tank of the Marine Biology Station Piran for many months until it died. Since the majority of alien species were sighted or caught only as single specimens, it is rather difficult to speculate about the means of their arrival to the Gulf of Trieste. After the first record of S. luridus in the Adriatic Sea, obtained through observations, photographs, and videos of a single specimen at Bagno Ducale (Mira- mare MPA, Trieste) (Poloniato et al., 2010), the species was subsequently also recorded in other parts of the Adriatic Sea (Dulčić et al., 2011). The same occurred with some other mentioned aliens: T. theraps was later confirmed in Greek waters, O. fasciatus was captured some months after the first record in the waters off Rijeka (Dulčić et al., 2016), and A. cf. saxatilis/vai- giensis/troschelii was confirmed in the Adriatic, also by Dragičević et al. (2021). Although a captured specimen that was properly prepared, and stored in a registered museum collection, thus enabling the acquisition of basic biometric and mer- istic data as well as material for genetic research, would be more appreciated by ichthyologists, high-quality evi- dence testifying to the occurrence of the species, such as photographs and film recordings, is sufficient to confirm the presence of a species in a certain environment (sensu Kovačić et al., 2020). This is especially true with regard to tropical species, which often stand out for their colourful patterns. The photographed records of rare or endangered species are very important and may even constitute the only evidence of the presence of certain species (Lipej et al., 2005). Regular monitoring of alien fish species in the Gulf of Trieste and elsewhere in the Adriatic Sea and in the Mediterranean is an important prerequisite for understanding the impact of newcomers on the native biota. This is also important in the case of squirrelfish species, since some of them (such as S. rubrum) have already established viable populations in the eastern Mediterranean Sea. According to some authors, H. adscensionis, the long-jawed squirrelfish, is a potentially successful invader since it demonstrates great resilience, being able to survive for many days inside traps and in polluted areas (Wyatt, 1983). This record of the long-jawed squirrelfish is further evidence of how effective a tool citizen science can be in the monitoring of alien species in the Mediterranean Sea (Crocetta et al., 2017; Tiralongo et al., 2019). ACKNOWLEDGEMENTS Special thanks for the report go to the Diving Nordè divers who have been visiting Miramare with curios- ity for years and in particular Livio Poloni, Marika Colombera, Cesare Venere and Gianni Balliana who first noticed the strange fish during the night. Appre- ciation also for the photographer Davide Lombroso who supported us in finding the individual and taking some of the photographs used for the identification. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 314 Saul Ciriaco et al.: FIRST RECORD OF THE LONG-JAWED SQUIRRELFISH HOLOCENTRUS ADSCENSIONIS (OSBECK, 1765) IN THE ADRIATIC SEA, 309–316 PRVI ZAPIS O POJAVLJANJU VRSTE VEVERIČJAKA HOLOCENTRUS ADSCENSIONIS (OSBECK, 1765) V JADRANSKEM MORJU Saul CIRIACO, Marco SEGARICH, Vera CIRINÀ WWF Miramare MPA, via Beirut 2/4, Trieste, Italy e-mail: saul.ciriaco@shoreline.it Lovrenc LIPEJ Marine Biology Station Piran, National Institute of Biology, Fornače 41, Slovenia e-mail: Lovrenc.Lipej@nib.si POVZETEK Na plitvi skalnati brežini znotraj zavarovanega območja WWF Miramare pri Trstu (Tržaški zaliv, severni jadran) so v več avgustovskih dneh opazovali, fotografirali in posneli primerek vrste Holocentrus adscensionis (Osbeck, 1765). Gre za prvi primer opazovanja te vrste v Tržaškem zalivu in Jadranskem morju ter drugi v Sredozemskem morju. Ključne besede: Holocentrus adscensionis, Holocentridae, atlantski vtok, Tržaški zaliv, Sredozemsko morje ANNALES · Ser. hist. nat. · 32 · 2022 · 2 315 Saul Ciriaco et al.: FIRST RECORD OF THE LONG-JAWED SQUIRRELFISH HOLOCENTRUS ADSCENSIONIS (OSBECK, 1765) IN THE ADRIATIC SEA, 309–316 REFERENCES Beets, J. (1997): Effects of a predatory fish on the re- cruitment and abundance of Caribbean coral reef fishes. Marine Ecology Progress Series, 148, 11-21. Ben-Tuvia, A. (1990): Holocentridae. In: J.C. Quéro, J.C. Hureau, C. Karrer, A. Post and L. Saldanha (eds.), Check-list of the fishes of the eastern tropical Atlantic (CLOFETA), Vol. 2: pp. 627- 628. JNICT, Lisbon; SEI and UNESCO, Paris. Ciriaco, S. & L. Lipej (2015): First record of Opleg- nathus fasciatus from Italy and the Adriatic Sea. In: New Mediterranean Biodiversity Records (October 2015) (Crocetta et al., eds). Mediterranean Marine Science, 16(3), 682-702. Crocetta, F., S. Gofas, C. Salas, L.P. Tringali & A. Zenetos (2017): Local ecological knowledge versus published literature: a review of non-indig- enous Mollusca in Greek marine waters. Aquatic Invasions, 12, 415-434. https://doi.org/10.3391/ ai.2017.12.4.01. Deef, L.E.M. (2021): First Record of Two Squirrelf- ishes, Sargocentron spinosissimum and Sargocentron tiereoides (Actinopterygii, Beryciformes, Holocentridae) From the Egyptian Mediterranean Coast. Acta Ich- thyologica et Piscatoria, 51(1), 107-112. doi: 10.3897/ aiep.51.63216. Dragičević, B., R. Fricke, J. Ben Soussi, P. Ugarković, J. Dulčić & E. Azzurro (2021): On the occurrence of Abudefduf spp. (Pisces: Pomacentridae) in the Mediter- ranean Sea: a critical review with new records. BioInva- sions Records, 10(1), 188-199. Dulčić, J., I. Jardas, A. Pallaoro & L. Lipej (2004): On the validity of the record of silver pomfret Pampus argenteus (Stromateidae) from the Adriatic Sea. Cybium, 28(1), 69-71. Dulčić, J., B. Dragičević, R. Grgičević & L. Lipej (2011): First substantiated record of a Lessepsian migrant—the dusky spinefoot, Siganus luridus (Actinop- terygii: Perciformes: Siganidae), in the Adriatic Sea. Acta Ichthyologica et Piscatoria, 41(2), 141-143. Dulčić J. & B. Dragičević (2013): Holacanthus ciliaris (Linnaeus, 1758) (Teleostei: Pomacanthidae), first record from the Mediterranean Sea. Journal of Applied Ichthyology, 29(2), 465-467. DOI: 10.1111/ jai.12096. Dulčić, J., B. Dragičević, N. Vrgoč, I. Isajlović, Ž. Đođo & N. Antolović (2016): A new record of the barred knifejaw Oplegnathus fasciatus (Perciformes, Oplegnathidae), a Pacific fish, in the Adriatic Sea (Urinj, Croatia). Cybium, 40(3), 261-262. Farrag, M.S., K.Y. AbouelFadl, A.N. Alabssawy, M.M. Toutou, A.E. El-Haweet (2018): Fishery biol- ogy of lessepsian immigrant squirrelfishes Sargocentron rubrum (Forsskål, 1775), Eastern Mediterranean Sea, Egypt. Egyptian Journal of Aquatic Research, 44, 307- 313. Ferreira, C.E.L., S.R. Floeter, J.L. Gasparini, B.P. Ferreira & J.C. Joyeux (2004): Trophic structure pat- terns of Brazilian reef fishes: a latitudinal comparison. Journal of Biogeography, 31, 1093-1106. https://doi. org/10.1111/j.1365-2699.2004.01044.x. Fischer, W., G. Bianchi & W.B. Scott (eds.) (1981): FAO species identification sheets for fishery purpsoes. Eastern Central Atlantic; fishing areas 34, 47 (in part). Canada Funds-in-Trust. Ottawa. Department of Fisheries and Oceans Canada. FAO. Ghanem, R., W. Bahri, A. Chaffai, J. Zaouali, B. Hassen, S. Karray, M. Bour, J. Ben Souissi & E. Azzurro (2022): First Record of the Silverspot Squirrelfish Sar- gocentron caudimaculatum (Rüppell, 1838) in Mediter- ranean Waters. Frontiers in Marine Science, 9, 10.3389/ fmars.2022.869138. Golani, D. & A. Ben-Tuvia (1985): The biology of the Indo-Pacific squirrelfish, Sargocentron rubrum (Forsskål), a Suez Canal migrant to the eastern Mediter- ranean. Journal of Fish Biology, 27, 249-258. Greenfield, D.W. (1981): Holocentridae. In: W. Fischer, G. Bianchiand W.B. Scott (eds.) FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas, Vol. 2:34, 47 (in part). Depart- ment of Fisheries and Oceans Canada and FAO. Greenfield, D.W. (2003): Holocentridae. Squir- relfishes (soldierfishes). p. 1192-1196. In K.E. Carpenter (ed.) FAO species identification guide for fishery purpos- es. The living marine resources of the Western Central Atlantic. Vol. 2: Bony fishes part 1 (Acipenseridae to Grammatidae). Haas, G. & H. Steinitz (1947): Erythrean fishes on the Mediterranean coast of Palestine. Nature, 160, 28. Kovačić, M., L. Lipej & J. Dulčić (2020): Evidence approach to checklists: critical revision of the checklist of the Adriatic Sea fishes. Zootaxa, 4767(1), 1-55. https:// doi.org/10.11646/zootaxa.4767.1.1. Lipej, L., M. Spoto & J. Dulčić (1996): Plectorhinchus mediterraneus from off north east Italy and Slovenia–the first records of fish of the family Haemulidae from the Adriatic Sea. Journal of Fish Biology, 48, 805-806. doi: 10.1111/j.1095-8649.1996.tb01476.x. Lipej, L. & J. Dulčić (2004): The current status of Adriatic fish biodiversity. In Balkan Biodiversity: Pat- tern and Process in the European Hotspot; In: Griffiths, H.I., Kryštufek, B., Reed, J.M., Eds.; Kluwer Academic: Dordrecht, The Netherlands; London, UK, 2004; pp. 291-306. Lipej, L., M. Orlando-Bonaca & M. Richter (2005): New contributions to the marine coastal fish fauna of Slovenia. Annales, Ser. Hist. Nat., 15(2), 165-172. Lipej, L., B. Mavrič, V. Žiža & J. Dulčić (2008): The largescaled terapon Terapon theraps: a new Indo- Pacificfish in the Mediterranean Sea. Journal of Fish Biology, 73, 1819-1822. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 316 Saul Ciriaco et al.: FIRST RECORD OF THE LONG-JAWED SQUIRRELFISH HOLOCENTRUS ADSCENSIONIS (OSBECK, 1765) IN THE ADRIATIC SEA, 309–316 Lipej, L., B. Mavrič & J. Dulčić (2014a): Northernmost record of the reticulated leatherjacket Stephanolepis diaspros Fraser-Brunner, 1940 in the Mediterranean Sea. In: Kapiris et al. (Eds.). Mediterranean Marine Science, 15(1), 198-212. Lipej, L., B. Mavrič & J. Dulčić (2014b): First record of Chrysiptera cyanea (Quoy and Gaimard, 1825) (Perciformes: Pomacentridae) in the Mediterranean Sea. Journal of Applied Ichthyology, 30, 1053-1055. Lipej, L., D. Trkov, D. Stanič, S. Cernich & S. Ciriaco (2020): First Record of Sergeant Major, Abudefduf saxa- tilis (Linnaeus, 1758) in the Adriatic Sea. Annales, Ser. Hist. Nat., 29, 159-166. Pajuelo, J.G., J.A. González, R. Triay-Portella, J.A.Martín, R. Ruiz-Díaz, J.M. Lorenzo & Á. Luque (2016): Introduction of non-native marine fish species to the Canary Islands waters through oil platforms as vectors. Journal of Marine systems, 163, 23-30. Parenti, P. & N. Bressi (1998): First record of theorange-spotted grouper, Epinephelus coioides (Perciformes: Serranidae) in the northern Adriatic Sea. Cybium, 25(3), 281-284. Poloniato, D., S. Ciriaco, R. Odorico, J. Dulčić & L. Lipej (2010): First record of the dusky spinefoot Siganus luridus (Rüppell, 1828) in the Adriatic Sea. Annales, Ser. Hist. Nat., 20(2), 161-166. Nelson, J.S., T.C. Grande & M.V.H. Wilson (2016): Fishes of the World; Wiley: Hoboken, NJ, USA, 2016; ISBN 9781119220824. Štirn, J. (1970): Some notes on western trends of Lessepsian migration. In: Journées Ichthyologiques, Rome, CIESM, Monaco, 187-190. Tiralongo F., A.O. Lillo, D. Tibullo, E. Tondo, C.L. Martire, R. D’Agnese, A. Macali, E. Mancini, I. Giovos, S. Coco & E. Azzurro (2019): Monitoring uncommon and non-indigenous fishes in Italian waters: One year of results for the AlienFish project. Regional Studies in Marine Science, 28, 100606, https://doi.org/10.1016/j. rsma.2019.100606. Uyeno, T., K. Matsuura & E. Fujii (eds.) (1983): Fishes trawled off Suriname and French Guiana. Japan Marine Fishery Resource Research Center, Tokyo, Japan. 519 pp. Vella, A., N. Vella & S.A. Darmanin (2016): The first record of the longjaw squirrelfish, Holocentrus adscen- sionis (Osbeck, 1765) (Holocentriformes: Holocentri- dae), in the Mediterranean Sea. Natural and engineering Science, 1(3), 78-85. Woods, L.P. & D.W. Greenfield (1978): Holocen- tridae. In: W. Fischer (ed.) FAO species identification sheets for fishery purposes. Western Central Atlantic (Fishing Area 31). Vol. 3. FAO, Rome. Wyatt, J.R. (1983): The biology, ecology and bionomics of the squirrelfishes, Holocentridae. In: J.L. Munro (ed.) Caribbean coral reef fishery resources, pp. 50-58. ICLARM Stud. Rev. 7. Zenetos, A., S. Gofas, C. Morri, A. Rosso, D. Vio- lanti, J.E. Garcia Raso, M.E. Çinar, A. Almogi-Labin, A.S. Ates, E. Azzurro, E. Ballesteros, C.N. Bianchi, M.Bilecenoglu, M.C. Gambi, A. Giangrande, C. Gravili,O. Hyams-Kaphzan, P.K. Karachle, S. Kat- sanevakis, L.Lipej, F. Mastrototaro, F. Mineur, M.A. Pancucci-Papadopoulou, A. Ramos Espla, C. Salas, G. San Martin, A. Sfriso, N. Streftaris & M. Verlaque (2012): Alien species in the Mediterranean Sea by 2012. A contribution to theapplication of Euro- pean Union’s Marine Strategy Framework Directive (MSFD). Part 2. Introduction trends and pathways. Mediterranean Marine Science, 13, 328-352. Zenetos A., M.E. Çinar, F. Crocetta, D. Golani, A. Rosso, G. Servello, N. Shenkar, X. Turoni & M. Verlaque (2017): Uncertainties and validation of alien species catalogues: The Mediterranean as an example. Estuarine, Coastal and Shelf Science, 191, 171-187. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 317 received: 2022-07-12 DOI 10.19233/ASHN.2022.33 FIRST RECORD OF MOONTAIL BULLSEYE PRIACANTHUS HAMRUR (OSTEICHTHYES, PRIACANTHIDAE) FROM THE SYRIAN COAST (EASTERN MEDITERRANEAN SEA) Christian CAPAPÉ Laboratoire d’Ichtyologie, Université de Montpellier, 34 095 Montpellier cedex 5, France e-mail: christian.capape@umontpellier.fr Vienna HAMMOUD Biology Department, Faculty of Sciences, Tartous University, Lattakia, Syria Aola FANDI Environmental Prevention Department, Higher Institute for Environmental Research, Tishreen University, Lattakia, Syria Malek ALI Marine Sciences Laboratory, Production Animals Department, Faculty of Agriculture, Tishreen University, Lattakia, Syria e-mail: malekfaresali@gmail.com ABSTRACT On 18 February 2022, a specimen of moontail bullseye Priacanthus hamrur (Forsskål, 1775) was caught in a demersal fixed net, at a depth of about 120 m, on muddy bottom. The capture site was at Albassiiah, south of the city of Baniyas, 2 km offshore. This paper reports the first record of P. hamrur from the Syrian coast and probably the second record from the Mediterranean Sea. Key words: Priacanthus hamrur, Priacanthidae, measurements, counts, Levant Basin PRIMO RITROVAMENTO DEL PESCE OCCHIO GROSSO PRIACANTHUS HAMRUR (OSTEICHTHYES, PRIACANTHIDAE) LUNGO LA COSTA SIRIANA (MEDITERRANEO ORIENTALE) SINTESI Il 18 febbraio 2022, un esemplare di Priacanthus hamrur (Forsskål, 1775) è stato catturato in una rete demersale fissa, a una profondità di circa 120 m, su un fondo fangoso. Il luogo di cattura era Albassiiah, a sud della città di Baniyas, 2 km al largo. Questo lavoro riporta il primo ritrovamento di P. hamrur lungo la costa siriana e probabilmente il secondo per il Mediterraneo. Parole chiave: Priacanthus hamrur, Priacanthidae, misure, conteggi, Bacino del Levante ANNALES · Ser. hist. nat. · 32 · 2022 · 2 318 Christian CAPAPÉ et al.: FIRST RECORD OF MOONTAIL BULLSEYE PRIACANTHUS HAMRUR (OSTEICHTHYES, PRIACANTHIDAE) FROM THE SYRIAN COAST ..., 317–322 INTRODUCTION Four priacanthid species have been recorded to date in the Mediterranean Sea, all belonging to the genus Pri- acanthus Oken, 1817: Priacantus arenatus Cuvier, 1829, P. hamrur (Forsskål, 1775), P. prolixus Starnes, 1988 and P. sagittarius Starnes, 1988 (Golani et al., 2021). Among these species, P. hamrur displays the widest distribution range. It has been reported from the Pacific, i.e., from French Polynesia to southern Australia and Japan (Fricke, 1999), from the Indian Ocean, specifically, the Red Sea (Golani et al., 2021), and from the Mediterranean Sea. The first specimen in the Mediterranean Sea to be identified as P. hamrur was collected off Mahdia, cen- tral Tunisian coast (Abdelmoleh, 1981), and a second one from Turkish waters (Ergüden et al., 2018). This study aims to report the first occurrence of P. hamrur in the Syrian coast and a new record for the Mediterranean Sea. Fig. 1: Map of the Syrian coast with black star indicating the capture site of Priacanthus hamrur. Sl. 1: Zemljevid sirske obale z označeno lokaliteto ulova (črna zvezdica) primerka vrste Priacanthus hamrur. Tab. 1: Morphometric measurements in mm and as percentages of total length (%TL), meristic counts and weight in gram recorded in the specimen of Priacanthus hamrur captured off the Syrian coast. Tab. 1: Morfometrične meritve izražene v mm in kot delež celotne dolžine (%TL), meristična štetja ter teža v gramih primerka vrste Priacanthus hamrur, ujetega ob sirski obali. Reference 32-2022 Morphometric measurements mm %TL Total length 198 100.0 Standard length 164 82.8 Body depth 60 30.3 Head length 62 31.3 Eye diameter 22 11.1 Snout length 13 6.6 Upper jaw length 23 11.6 Lower jaw length 25 12.6 Dorsal fin length 92 46.5 Pectoral fin length 34 17.2 Pelvic fin length 56 28.3 Anal fin length 64 32.3 Caudal fin length 42 21.2 Pre-dorsal length 54 27.3 Pre-pectoral length 56 28.3 Pre-pelvic length 45 22.7 Pre-anal length 89 44.9 Meristic counts Dorsal fin X + 14 Pectoral fin 17 Pelvic fin I + 5 Anal fin III + 15 Caudal fin 19 Scales on the lateral line 80 Vertical scale rows 48 Gill rakers on the first gill arch 25 Total body weight (gram) 137 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 319 Christian CAPAPÉ et al.: FIRST RECORD OF MOONTAIL BULLSEYE PRIACANTHUS HAMRUR (OSTEICHTHYES, PRIACANTHIDAE) FROM THE SYRIAN COAST ..., 317–322 MATERIAL AND METHODS On 18 February 2022 a specimen of moontail bullseye, P. hamrur, (Forsskål, 1775) was caught by a professional fisherman using a demersal gill net, at a depth of about 120 m, on muddy bottom. The capture site was located at Albassiiah, south of the city of Baniyas, 2 km offshore: 35°09¢ N; 35°53¢ E (Fig. 1). Morphometric measurements were recorded to the nearest millimetre and presented as percent- ages of total length (% TL), and included in Table 1 together with meristic counts. The specimen was preserved in 10% buffered formalin, and deposited in the Ichthyological Collection of Environmental Research Higher Institute, Tishreen University, un- der catalogue number 32-2022. RESULTS AND DISCUSSION The specimen of moontail bullseye, P. hamrur, measured 198 mm in total length (TL) and weighed 137 g (Fig. 2). It was a mature female and its stomach contained several unidentifiable remains of squid. The specimen was identified via the following features (see Ergüden et al., 2018): body ovate, its depth 2.7 times in standard length, mouth oblique with projecting lower jaw, its extremity above level of midline of body, scale rows between dorsal fin and lateral line at highest point 11, pelvic fins less than head length, soft dorsal fin moderately long, Fig. 2: P. hamrur captured in the Syrian coast, scale bar = 20 mm. Sl. 2: Primerek vrste P. hamrur, ujet ob obali Sirije (merilo = 20 mm). Tab. 2: Number of gill rakers recorded in P. hamrur and P. sagittarius specimens captured in different areas, inclu- ding the Syrian specimen. Tab. 2: Število škržnih listov pri primerkih vrst P. hamrur in P. sagittarius, ujetih v različnih predelih, upoštevaje tudi sirski primerek. Species Number of gill rakers Ocean of region Authors Priacanthus hamrur (?) 18 Tunisia Abdelmoleh (1981) P. hamrur 24-26 Indo-Pacific Starnes (1988) P. hamrur 24-26 Indian Ocean Philipp (1994) P. hamrur 26 Levant Basin Ergüden et al. (2018) P. hamrur 25 Levant Basin This study P. sagittarius 19-22 Indo-Pacific Starnes (1988) P. sagittarius 19-21 Indian Ocean Ramachandran & Varghese (2009) P. sagittarius 18 Levant Basin Goren et al. (2010) P. sagittarius 18 Levant Basin Golani et al. (2011) P. sagittarius 22 Egypt Farrag et al. (2016) P. sagittarius 19 Levant Basin Gürlek et al. (2021) ANNALES · Ser. hist. nat. · 32 · 2022 · 2 320 Christian CAPAPÉ et al.: FIRST RECORD OF MOONTAIL BULLSEYE PRIACANTHUS HAMRUR (OSTEICHTHYES, PRIACANTHIDAE) FROM THE SYRIAN COAST ..., 317–322 pelvic fin membranes with single dark basal blotch, caudal fin margin concave or lunate, outer rays slightly longer than remainder of rays; body pink to reddish with some red bands and some small dark spots along the lateral line, fins red to light pink, pelvic fins red with a black spot at the fin base. The morphology, morphometric measurements, meristic counts and colour are in total accord- ance with previous descriptions of P. hamrur by Starnes (1988), Ramachandran & Varghese (2009), Ergüden et al. (2018) and Golani et al. (2021). Therefore, this is the first substantiated record of P. hamrur from the Syrian coast, warranting the inclusion of the species in the list of local ich- thyofauna. P. hamrur was first considered to be a casual species (Zenetos et al., 2005), but its status was later amended to questionable in the central and eastern Mediterranean (Zenetos et al., 2010). The change was related to a specimen originally identified as P. hamrur collected off Mahdia, Tuni- sia (Abdelmoleh, 1981). Starnes (1988) and Golani (2002) noted that the description and the photo- graph provided by Abdelmoleh (1981) were not sufficient to conclusively establish the identity of the specimen, which should have been confirmed through agreement with Goren et al. (2010). Starnes (1988) noted that the number of gill rakers on the first gill arch plays a major role in distinguishing between the species of the genus Priacanthus. As evi- denced by Table 2, the number of gill rakers is higher in P. hamrur than in P. sagittarius. Based on these results, Abdelmoleh’s finding (1981) was not a specimen of P. hamrur and should be reassigned to P. sagittarius. It follows that the first Mediterranean record of P. hamrur was reported by Ergüden et al. (2018), and the second one in this note. Nevertheless, Abdelmoleh’s finding still constitutes the first confirmed report of an alien member of the Priacanthidae from the Mediterranean Sea. Such hypothesis is further corroborated by the fact that P. sagittarius was described by Starnes (1988) posteriorly to Abdelmoleh’s finding (1981). All Priacanthid species inhabit similar biotopes at similar depths and do not differ much in their food and feeding habits (Starnes, 1988). Interspecific competi- tion pressure among them cannot be totally ruled out, and it appears that nowadays P. sagittarius is the spe- cies most successfully established in the area of the Mediterranean. The occurrence of P. hamrur is based on two specimens only, and the status of the species in the Mediterranean Sea pending possible captures of other specimens incoming from the Red Sea through the Suez Canal remains obscure. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 321 Christian CAPAPÉ et al.: FIRST RECORD OF MOONTAIL BULLSEYE PRIACANTHUS HAMRUR (OSTEICHTHYES, PRIACANTHIDAE) FROM THE SYRIAN COAST ..., 317–322 PRVI ZAPIS O POJAVLJANJU LUNASTOREPEGA VELIKOOKEGA OSTRIŽA PRIACANTHUS HAMRUR (OSTEICHTHYES, PRIACANTHIDAE) S SIRSKE OBALE (VZHODNO SREDOZEMSKO MORJE) Christian CAPAPÉ Laboratoire d’Ichtyologie, Université de Montpellier, 34 095 Montpellier cedex 5, France e-mail: christian.capape@umontpellier.fr Vienna HAMMOUD Biology Department, Faculty of Sciences, Tartous University, Lattakia, Syria Aola FANDI Environmental Prevention Department, Higher Institute for Environmental Research, Tishreen University, Lattakia, Syria Malek ALI Marine Sciences Laboratory, Production Animals Department, Faculty of Agriculture, Tishreen University, Lattakia, Syria e-mail: malekfaresali@gmail.com POVZETEK Osemnajstega februarja 2022 so v pridneno ribiško mrežo ujeli primerek lunastorepega velikookega ostri- ža Priacanthus hamrur (Forsskål, 1775) na globini okoli 120 m na muljastem dnu. Ulovili so ga blizu lokalitete Albassiiah, južno od mesta Baniyas, 2 km od obale. Ta prispevek poroča o prvem zapisu za vrsto P. hamrur s sirske obale in verjetno o šele drugem primeru najdbe te vrste v Sredozemskem morju. Ključne besede: Priacanthus hamrur, Priacanthidae, meritve, štetja, levantski bazen ANNALES · Ser. hist. nat. · 32 · 2022 · 2 322 Christian CAPAPÉ et al.: FIRST RECORD OF MOONTAIL BULLSEYE PRIACANTHUS HAMRUR (OSTEICHTHYES, PRIACANTHIDAE) FROM THE SYRIAN COAST ..., 317–322 REFERENCES Abdelmoleh, A. (1981): Capture d’un priacanthe: Priacanthus hamrur (Forskl, 1775), poisson Indo- Paci- fique, dans Ies eaux Tunisiennes. Bull. Inst. Nat. Scient. Tech. Océanogr. de Pêche, Salammbô, 8, 111-114. Ali, M. (2018): An updated Checklist of the Marine fishes from Syria with emphasis on alien species. Medit. Mar. Sci., 19(2), 388-393. Ergüden, D., M. Gurlek & C. Turan (2018): Con- firmed occurrence of moontail bullseye, Priacanthus hamrur (Actinopterygii: Perciformes: Priacanthidae), in the Mediterranean sea with first record off the coast of Turkey. Acta Ichthyol. Piscat., 48(4), 387-391. Farrag, M.M.S., L.A. Jawad & A.E.A.K. Elhaweet (2016): Occurrence of the arrow Bulleye Priacanthus sagittarius (Teleostei: Priacanthidae) in the Egyptian coast of the Mediterranean Sea. Mar. Biodiv. Rec., 9(6), 1-4. Fricke, R. (1999): Fishes of the Mascarene Islands (Réunion, Mauritius, Rodriguez): An annotated check- list, with descriptions of new species. Theses Zoo- logicae. Vol. 31. Koeltz Scientific Books, Königstein, Germany. Golani, D., L. Orsi-Relini., E. Massuti & J.P. Quig- nard (2002): CIESM Atlas of exotic species in the Mediterranean. Vol. 1. Fishes. (F. Briand editor). CIESM Publications, Monaco, 256 pp. Golani D., O. Sonin & D. Edelist (2011): Second records of the Lessepsian fish migrants Priacanthus sagittarius and Platax teira and distribution extension of Tylerius spinosissimus in the Mediterranean. Aquat. Invas., 6, suppl. 1, S7-S11. Goren, M., B. Gallil, N. Stern & A. Diamant (2010): First record of the Indo-Pacific arrow bulleye Priacan- thus sagittarius Starnes, 1988 in the Mediterranean Sea. Aquat. Invas., 5, suppl. 1, S45-S47. Golani, D., E. Azzurro , J. Dulčić, E. Massuti & L. Orsi-Relini (2021): Atlas of Exotic Fishes in the Mediterranean Sea. 2nd edition. [F. Briand, Ed.]. CIESM Publishers, Paris, Monaco, 365 pp. Gürlek, M., D. Ergüden, C. Turan (2021): Range extension of Priacanthus sagittarius Starnes, 1988 southeastern Mediterranean coast of Turkey. COMU J. Mar. Sci. Fish, 4(2), 235-239. Philip, K.P. (1994): Studies on the biology and fishery of the fishes of the family Priacanthidae (Pisces: Perciformes) of Indian waters. Doctor of Philosophy Thesis, Cochin University of Science and Technology, Cochin, India, 169 pp. Ramachandran, S. & B.C. Varghese (2009): New re- cord of arrowfin bigeye Priacanthus sagittarius Starnes, 1988 (Pisces: Priacanthidae) from Indian waters with taxonomic account. J. Mar. Biol., Assoc. India, 51(2), 217-222. Saad, A. (2005): Check-list of bony fish collected from the coast of Syria. Turk. J. Fish. Aquat. Sci., 5(2), 99-106. Starnes, W.C. (1988): Revision, phylogeny and biogeographic comments on the circumtropical marine percoid fish family Priacanthidae. Bull. Mar. Sci., 43, 117-203. Zenetos, A., M.E. Inar, M.A. Pancucci-Papadoppou- lou, J.G. Harmelin, G. Furnari, F. Andaloro, N. Bellou, N. Sreftaris & H. Zibrowius (2005): Annotated list of marine alien species in the Mediterranean with records of the worst invasive species. Medit. Mar. Sci., 6(2), 63-118. Zenetos, A., S. Gofas, M. Verlaque, M.E. Cinar, J.E.G. Raso, C.N. Bianchi, C. Morri, E. Azzurro, M. Bilecenoglu, C. Froglia, I. Siokou, S. Violanti, A. Sfriso, G. San Martin, A. Giangrande, T. Katagan, E. Balles- teros, A. Ramos-Espla, F. Mastrototaro, O. Ocaña, A. Zingone, M.C. Gambi & N. Streftaris (2010): Alien species in the Mediterranean Sea by 2010. A contribu- tion to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution. Medit. Mar. Sci., 11(2), 381-493. ANNALES · Ser. hist. nat. · 30 · 2020 · 1 323 Claudio BATTELLI & Neža GREGORIČ: FIRST REPORT OF AN AEGAGROPILOUS FORM OF RYTIPHLAEA TINCTORIA FROM THE LAGOON OF STRUNJAN ..., 61–68 SREDOZEMSKI MORSKI PSI SQUALI MEDITERRANEI MEDITERRANEAN SHARKS ANNALES · Ser. hist. nat. · 30 · 2020 · 1 324 Claudio BATTELLI & Neža GREGORIČ: FIRST REPORT OF AN AEGAGROPILOUS FORM OF RYTIPHLAEA TINCTORIA FROM THE LAGOON OF STRUNJAN ..., 61–68 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 325 received: 2022-09-05 DOI 10.19233/ASHN.2022.34 DISTRIBUTION AND STATUS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS, IN TURKISH WATERS: A REVIEW AND NEW RECORDS Hakan KABASAKAL, Erdi BAYRI & Görkem ALKAN Ichthyological Research Society, Tantavi mahallesi, Menteşoğlu caddesi, İdil apartmanı, No: 30, D: 4, Ümraniye, TR-34764, İstanbul, Turkey e-mail: kabasakal.hakan@gmail.com ABSTRACT The occurrence of Carcharodon carcharias in Turkish waters has been reported since the end of the 19th century. A total of 77 records of great white shark have been compiled from 1881 to 2020. The available data suggest that the species occurs in Turkish waters throughout the year. The occurrences of adult specimens have shown a remarkable decrease during this period, nevertheless, the species has not been extirpated from the region. The present study demonstrates that the distribution of C. carcharias in Turkish waters has seen a significant regional shift over time, with the current distribution of young-of-the-year and juveniles extending from the central to northern Aegean Sea and concentrating in the Bay of Edremit. C. carcharias has been recently declared as a species under protection in Turkish waters, but the next steps towards providing better protection for the species in the region are urgently required. Key words: nursery, management, conservation, eastern Mediterranean, Lamnidae, coastal fishery DISTRIBUZIONE E STATUS DEL GRANDE SQUALO BIANCO, CARCHARODON CARCHARIAS, NELLE ACQUE TURCHE: RASSEGNA E NUOVE SEGNALAZIONI SINTESI La presenza di Carcharodon carcharias nelle acque turche è stata segnalata dalla fine del XIX secolo. Dal 1881 al 2020 sono state raccolte 77 registrazioni di squali bianchi. I dati disponibili suggeriscono che la specie è presente nelle acque turche durante tutto l’anno. La presenza di esemplari adulti ha mostrato una notevole diminuzione durante questo periodo, tuttavia la specie non è stata estirpata dalla regione. Il presente studio dimostra che la distribuzione di C. carcharias nelle acque turche ha subito un significativo spostamento regionale nel corso del tempo, con l’attuale distribuzione dei giovani dell’anno e del novella- me che si estende dall’Egeo centrale a quello settentrionale e si concentra nella Baia di Edremit. Lo squalo bianco è stato recentemente dichiarato specie sotto protezione nelle acque turche, ma i prossimi passi per fornire una migliore protezione alla specie nella regione sono urgenti. Parole chiave: nursery, gestione, conservazione, Mediterraneo orientale, Lamnidae, pesca costiera ANNALES · Ser. hist. nat. · 32 · 2022 · 2 326 Hakan KABASAKAL et al.: DISTRIBUTION AND STATUS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS, IN TURKISH WATERS: ..., 325–342 INTRODUCTION The great white shark, Carcharodon carcharias (Linnaeus, 1758) (Lamniformes: Lamnidae), has been the focus of both naturalists and scientists since the Middle Ages (De Maddalena & Heim, 2012). For example, in the book entitled De aqua- tilibus, the 16th century French naturalist Petrus Bellonius gave brief information about the great white shark (referred to as Canis carcharias), which is considered one of the earliest descriptions of C. carcharias (Bellonius, 1553). Another 16th century French naturalist, Guillaume Rondelet, narrated of the discovery of an armoured knight following the evisceration of an enormous great white shark caught off the coast of Marseilles and noted one of the earliest observations on the predatory behavio- ur of C. carcharias (Steel, 1985). Due to significant popular and scientific intrest that it arouses, C. carcharias is today considered a “flagship species” in all aspects of shark research and conservation efforts, and in public perception it has changed from a sea monster into a charismatic member of marine megafauna (Mazzoldi et al., 2019). According to Compagno (2002), C. carcharias is a huge and formidable shark, inhabiting both coa- stal and offshore waters over continental and insular shelves in temperate seas. It is circumglobal, com- monly occurring in most temperate seas, including the Mediterranean Sea, and less common in tropical regions (Ebert & Stehmann, 2013). C. carcharias is a very active, nomadic and social lamnid shark, whose regional occurrence is remarkably effected by migration (e.g., bluefin tuna, Thunnus thynnus) or coastal communities (e.g. pinnipeds) of its prey species. Although the seasonal occurrence of the great white shark in coastal or insular waters in cer- tain localities worldwide is clearly associated with the presence of coastal populations of pinnipeds (e.g., South African [Cape] fur seal, Arctocephalus pusillus pusillus, or California sea lion, Zalophus californianus; Kelly & Klimley, 2003; Martin et al., 2005; Johnson et al., 2009), its occurrence in the Mediterranean Sea is closely associated with the migrations of T. thynnus (De Maddalena, 2000; Kabasakal, 2016; Barrull & Mate, 2001; Soldo & Jardas, 2002; Galaz & De Maddalena, 2004; De Maddalena & Heim, 2012; Morey et al., 2003). Publications on several aspects of the life history of the great white shark in the Mediterranean Sea, where currently 779 confirmed cases have been recorded (Moro et al., 2020; Jambura et al., 2021), include regional occurrence records of single or few individuals (e.g, Celona, 2002; Galaz & De Maddalena, 2004; Soldo & Dulčić, 2005; Celona et al., 2001; Maliet et al., 2013; Tiralongo et al., 2020; Jambura et al., 2021), reviews of regional abun- dance and distribution (e.g,. De Maddalena, 2000; Barrull & Mate, 2001; Soldo & Jardas, 2002; Morey et al., 2003; Maliet et al., 2013), and assessments of Mediterranean population as a whole (e.g, Fer- gusson, 1996; Gubili et al., 2010; De Maddalena & Heim, 2012; Boldrocchi et al., 2017; Moro et al., 2020). Although the first records of C. carcharias in Tur- kish waters were reported from the Bosphorus Stra- it, the far northern extension of the Mediterranean ecosystem, as early as the end of the 19th century (Fergusson, 1996), the occurrence of the great white shark in the region has been mentioned in only a few 20th century ichtyhological inventories (Deveciyan, 1926; Ayaşlı, 1937; Akyüz, 1957; Akşıray, 1987). Apart from occasional reports on the capture of this megashark in the urban waters of Istanbul city, whi- ch is also known as Bosphorus, accompanied with catchy photograps, appearing in newspapers up to the early 1970s (Kabasakal, 2003), an inexplicable paucity of C. carcharias specific studies charac- terised the entire 20th century. However, with the beginning of the 2000s this situation changed and the number of studies and publications specifically devoted to great white sharks occurring in Turkish waters has steadily increased (Kabasakal 2003, 2008, 2011, 2014, 2016, 2020a,b,c,d; Kabasakal & Gedikoğlu, 2008; Kabasakal & Bayrı, 2020, 2021; Kabasakal et al., 2009, 2018). The present article provides a review of the existing literature and new records on the occurrence, distribution, and status of the great white shark in Turkish waters. More spe- cifically, this article reviews (1) spatial and seasonal distribution of C. carcharias in Turkish waters, (2) seasonal and spatial distribution of length groups, (3) potential nursery areas, and (4) fishery and hu- man interaction in the study region. MATERIAL AND METHODS Study area Turkey is a peninsular country, surrounded by the Black, Aegean and Levantine Seas and the Turkish Straits system, which stretches along the Dardanelles Strait, the Sea of Marmara and the Bo- sphorus Strait (Fig. 1). Generally speaking, the most prominent oceanographical pecularities of the seas around Turkey are as follows: the high hydrogen sulphide concentration prevailing below 150 to 200 m in the Black Sea is an important factor preventing the dispersal of fishes in the deep zones. The TSS plays a significant if not decisive ecological role in the dispersal of living organisms between the Mediterranean and Black Seas, since it constitutes a barrier, a corridor, or an acclimatisation zone for marine species. The Aegean Sea is topographically ANNALES · Ser. hist. nat. · 32 · 2022 · 2 327 Hakan KABASAKAL et al.: DISTRIBUTION AND STATUS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS, IN TURKISH WATERS: ..., 325–342 divided by (approximately) the 38° parallel into two basins, i.e., the North and South Aegean, where the North Aegean Sea is an area characterised by cold-water fauna, and the South Aegean Sea by warm-water fauna, including Lessepsian migrants. Finally, with the opening of the Suez Canal in 1869 and the general warming of the world oceans, the Mediterranean Sea has been impacted by the phe- nomenon known as “tropicalisation”, which causes the retreating of temperate species towards colder areas of the basin. Recent studies have revealed the occurrence of 38 shark species in Turkish waters (Kabasakal, 2021; Turan et al., 2021). Data sources and collection Data on the great white sharks were collected from the following sources: (a) articles published in peer-reviewed journals, (b) specimens recorded in old historical inventories (Deveciyan, 1926; Ayaşlı, 1937; Akyüz, 1957; Akşıray, 1987), (c) news reports on the capture of great white sharks in Turkish waters published in old newspapers between the late 19th and the late 20th centuries, (d) social media posts re- porting on the capture of great white sharks shared on Facebook, Instagram, and YouTube, collated as digital sources, and (e) unpublished records, which mostly consist of observations by citizen scientists. For each of the records, the following data were collected, if available: date, locality of capture, total length (TL), total weight (TW), sex, type of data source (scientific reference, old ichthyologi- cal record, old newspaper record, online source or citizen science observation data), and remarks (e.g. stomach contents, presence of human remains, type of fishing gear, presence of birth mark, and the outcome after landing the shark). Unless otherwise stated, all sizes are TL, in the measurement of which the shark is held belly down with its dorsal caudal- -fin lobe depressed into line with its body axis and the TL is measured as a point to point distance (not over the curve of the body) from the snout tip to the tip of the dorsal caudal-fin lobe (Compagno, 2002). Collated data are presented in the Turkish Great White Shark Data Archive (TGWSDA, Appendix 1). To allow the identification and mapping of the approximate locality of a possible nursery ground of Carcharodon carcharias in Turkish waters, data on the pregnant females, newborns and juveniles were treated as high priority. A newborn shark is defined as a specimen with an open or healing birth mark (or umbilical scar) between the pectoral fins on the belly (De Maddalena & Heim, 2012). To provide a visual guideline for a quick crosscheck, historical and contemporary photographs of the re- spective great white shark were shown side by side, as proposed by Kabasakal & Bayrı (2021). The age classification of great white sharks was based on the following four length categories (Boldrocchi et al., 2017): young-of-the-year (YOY) (<175 cm TL), juveniles (>175-300 cm TL), subadults (>300–360 cm TL, males; >300–450 cm TL, fema- les), and adults (>360 cm TL, males; >450 cm TL, females). When sex was not recorded, a threshold of maturity was set at >450 cm TL, which would include adult males and most maturing females (Boldrocchi et al., 2017). Data analysis The great white shark records listed in the TGWSDA (Appendix 1) were analysed for spatial and temporal distribution in Turkish waters and by shark size to identify possible spatial patterns in the subregions of Turkish seas. The subregional and temporal distribution of C. carcharias in Turki- sh waters by shark size was investigated using the Wilcoxon test (α=0.05). An ANOVA test was used to investigate the seasonal occurrence of great white sharks across subregions and the influence of type of fishing gear on the TL of captured fish (p=0.05). The chi-square test was used to investigate the differences between subregions (p=0.05). Statistical analyses were performed using the Analysis ToolPak Excel software. RESULTS Spatial distribution of the great white shark in Turkish waters Between 1881 and 2020, 77 records of Car- charodon carcharias were collected. Most of them originated from the Aegean Sea (n=32, 41.5%), followed by the Sea of Marmara (n=23, 29.8%) and the Bosphorus Strait (n=20, 25.9%). The Dar- danelles Strait and the Bay of İskenderun are each represented by 1 record (1.3%). All records of C. carcharias from the Bosphorus Strait and the Sea of Marmara consisted of historical or old captures of the great white shark, while the majority of the Aegean Sea records were recent captures dating from the early 2000s (n=28, 36.3% of all records). Related data and remarks concerning these records are listed in the TGWSDA (Appendix 1). Records of C. carcharias from both the Bosphorus Strait and the Bay of Edremit are of special impor- tance due to their proximity to urban areas (Fig. 1). The Bosphorus Strait records in particular contain reports of very large great white sharks which were in some cases caught just a few hundred meters off the coast of a metropolitan centre (Istanbul). A similar metropolitan affinity can be observed in records of C. carcharias in the Sea of Marmara, where most of ANNALES · Ser. hist. nat. · 32 · 2022 · 2 328 Hakan KABASAKAL et al.: DISTRIBUTION AND STATUS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS, IN TURKISH WATERS: ..., 325–342 Fig. 1: Spatial distribution of great white sharks (n=77) in Turkish waters. On the map of the Mediterranean Sea, the sign (♦) indicates the specimen reported by Akyüz (1957; sp. no. 21 in Appendix 1); on the map below, the solid red circles indicate localities of historical records of C. carcharias in the waters of the Bosphorus Strait (total n=20) and the Prince Islands (total n=22), and the single specimen sighted off Kapıdağ Peninsula in 1985 (sp. no. 44 in Appendix 1); the (▲), (■) and (●) symbols indicate YOY, juvenile, and adult specimens of Carcharodon carcharias recorded in Turkish Aegean waters, respectively. Sl. 1: Razširjenost belega morskega volka (n=77) v turških vodah. Na zemljevidu Sredozemskega morja diamant (♦) označuje primerek, o katerem poroča Akyüz (1957; primerek št. 21 v Prilogi 1); polni rdeči krogci na spodnji mapi Bosporske ožine in Prinčevih otokov označujejo lokalitete, kjer so v preteklosti poročali o belih morskih volkovih (skupno število = 22) in o primerku, opaženem ob polotoku Kapıdağ Peninsula leta 1985 (primerek št. 44 v Prilogi 1). Ostali znaki: enoletni (▲), mladostni (■) in odrasli primerki (●) belega morskega volka v turških egejskih vodah. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 329 Hakan KABASAKAL et al.: DISTRIBUTION AND STATUS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS, IN TURKISH WATERS: ..., 325–342 the captures occurred in the Prince Islands region, characterised by dense human population. Records of C. carcharias from the Bay of Edremit (northeastern Aegean Sea), a popular tourist destination in summer with resultant hundred thousands of seasonal visitors, consist of YOY and juveniles (n=12, 15.5% of all Turkish records and 37.5% of all Aegean records). Length distribution A total of 58 records included information on the shark length. The sizes of the recorded great white sharks (TL) ranged from 80 cm (YOY) to an estimated 800 cm (mean 377.08+202.63 cm, Fig. 2), including all size classes, from YOY to very large adults. The TL ranges of males (n=5) and females (n=16) exami- ned in the present study were 125.5-500 cm (mean 234.1+152.28 cm) and 85-700 cm (419.31+201.4 cm), respectively. The study identified a significant correlation betwe- en year of capture and TL (W=0, p=0.05). The majority of the very large great white sharks (>500 cm TL) were specimens captured between the 1880s and the 1970s. After that, the occurrence of very large sharks remarka- Fig. 2: Length-frequency distribution of the great white shark in Turkish waters for both sexes combi- ned (n=58). Sl. 2: Velikostna porazdelitev dolžin belega morskega volka v turških vodah za oba spola (n=58). Fig. 3: Distribution of age classes of the great white shark in Turkish waters from 1881 to 2022 (n=70). YOY: young-of-the-year; JVN: juvenile; SA: subadult; A: Adult. Sl. 3: Porazdelitev starostnih skupin belega morskega volka v turških vodah v obdobju 1881-2022 (n=70). YOY: eno- letni; JVN: mladostni; SA: pododrasli; A: odrasli primerki. Fig. 4: Subregional distribution of the great white shark in Turkish waters by age class (n=58). YOY: yo- ung-of-the-year; JVN: juvenile; SA: subadult; A: Adult. Sl. 4: Subregionalna porazdelitev belega morskega volka v turških vodah glede na starostne razrede (n=58). YOY: enoletni; JVN: mladostni; SA: pododra- sli; A: odrasli primerki. Fig. 5: Monthly distribution of the great white shark in Turkish waters by age class (n=39). YOY: young-of-the- -year; JVN: juvenile; SA: subadult; A: Adult. Sl. 5: Mesečna porazdelitev belega morskega volka v turških vodah glede na starostne razrede (n=39). YOY: enoletni; JVN: mladostni; SA: pododrasli; A: odrasli primerki. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 330 Hakan KABASAKAL et al.: DISTRIBUTION AND STATUS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS, IN TURKISH WATERS: ..., 325–342 bly decreased, while the numbers of YOY and juveniles increased (Fig. 3). With regard to regional distribution of length groups, adult great white sharks mostly occur- red in the Sea of Marmara and the Bosphorus Strait. Aegean Sea records of C. carcharias were dominated by YOY and juveniles, with very few records of adult specimens collected from this region (Fig. 4). Although a difference was identified in the regional distribution of length groups, it was not statistically significant (W=3, p=0.05; ANOVA, F=3.58, p=0.904). Seasonality of occurrences The study revealed a significant influence of se- asonality on the distribution of length groups (W=9, p=0.05). In Turkish waters, subadults and adults of Carcharodon carcharias were mostly observed between early autumn and early summer, the YOY mostly during summer. The occurrence of juveniles was more prominent in early autumn, and from early winter to early summer. All size groups were present from January to June, except for the YOY, which were only recorded from July to early August (Fig. 5). Fisheries interactions and size groups Data on the type of fishing gear and shark length were available for 45 individuals (Fig. 6). The analysis showed a significant difference be- tween the type of fishing gear and length of the great white shark (ANOVA, F=4.121, p<0.05). Almost half of the great white shark bycatch occurred during artisanal coastal gill-net fishery (46.67%), followed by handlining for bluefin tuna (40%), purse seining (8.89%) and harpooning for sword fish (4.44%). The majority of the YOY and juveniles were recorded as bycatch in artisanal gill-net fishery (n=21, 91.3%); however, adults of Carcharodon carcharias were mostly captured by bluefin tuna handliners (n=17, 77.27%). Reproduction and a potential nursery ground in the Bay of Edremit With regard to length groups, 32.47% (n=25) of Carcharodon carcharias records were related to YOY and juveniles (Fig. 2), of which 11 specimens were YOY (44%) and 14 were juveniles (56%). The distribution of records of YOY and juveniles in Tur- kish waters extends from central to northern Aegean Sea and is concentrated in the Bay of Edremit (Fig. 1). A Bay of Edremit specific chi-square test showed a significant difference between the distribution of the YOY and other length groups (X2, p<0.05, p=0.0001). No pregnant females were recorded in Turkish waters. Fig. 6: Distribution of the fishing gear used in capturing the great white sharks in Turkish waters and age classes of the captured specimens (n=45). HL: hand-line; GLN: gill-net; HRP: harpoon; PS: purse-seine. Sl. 6: Porazdelitev uporabljenega ribolovnega orodja za ulov belega morskega volka v turških vodah in starostni razredi ujetih primerkov (n=45). HL: trnek; GLN: zabodna mreža; HRP: harpuna; PS: zaporna plavarica. Fig. 7: Distribution of data sources: (SR) scientific refe- rence, (OIR) old ichthyological reports or inventories, (CSO) citizen scientist observations, (OS) online or di- gital sources, and (ONR) old newspaper reports (n=77). Sl. 7: Porazdelitev podatkovnih virov: strokovna literatura (SR), stara ihtiološka poročila ali in- ventarizacije (OIR), podatki dobljeni s pomočjo ljubiteljske znanosti (CSO), spletni in digitalni viri (OS) in starejši podatki, objavljeni v časopisih (ONR) (n=77). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 331 Hakan KABASAKAL et al.: DISTRIBUTION AND STATUS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS, IN TURKISH WATERS: ..., 325–342 Stomach contents and human interactions The stomach contents of 8 great white sharks are presented in Appendix 1. The prey of adult great white sharks (n=3, TL range 400-800 cm) included remains or whole specimens of large bony fishes, such as T. thynnus, Sarda sarda and Xiphias gladius; teleosteans Lophius sp., Belone belone and Merluccius merlucci- us were found in the stomach contents of one juvenile (TL 180 cm). Human clothing - 3 pairs of boots and a fez, traditional Ottoman men’s headwear - was found in the stomach contents of an adult great white shark with a reported length of 500 cm, caught on 2 Fe- bruary 1926 (sp. no. 9 in Appendix 1), but no human remains. C. carcharias was the prime suspect in 80 % of shark attacks on boats and swimmers occurring between 1931 and 1983 (Kabasakal & Gedikoğlu, 2015). There was another fatal shark attack, occurring on 7 June 1967 in the northeastern Sea of Marmara (Kabasakal & Gedikoğlu, 2015), in which the suspec- ted species was also C. carcharias, but the incident is not included in the TGWSDA due to the lack of reliable evidence. Overview of data sources Citizen scientist observations were the major source of data (CSO, 34% of total records) forming the TGWSDA, followed by old newspaper reports (ONR, 31%), scientific references (SR, 21%), old ichthyological inventories (OIR, 9%), and online references (OR, 5%) (Fig. 7). The analysis indicated a significant difference in the temporal distribution of types of data sources (X2, p<0.05, p=0.003). New records Eleven out of the 77 great white sharks in the TGWSDA included unpublished records of Carcha- rodon carcharias (Appendix 1). One in these 11 unpublished records reported on a historical catch of C. carcharias in the Sea of Marmara in 1936 (sp. no. 13 in Appendix 1; Fig. 8), and the remaining 10 records (90.9% sp. nos. 51, 52, 58, 62, 63, 66, 67, 69, 70, and 74 in Appendix 1) referred to inci- dental captures of the great whites in the Aegean Sea since 2009 (Appendix 1). DISCUSSION The first assessment of the distribution and status of Carcharodon carcharias in Turkish waters included 46 great white sharks recorded between 1881 and 2011 (Kabasakal, 2014). In this second assessment almost ten years afterwards, the number of individu- als available nearly doubled, despite relying heavily on opportunistic data collection. Due to the nature of the data collection method not all of the basic in- formation (e.g, TL, TW, type of fishing gear, locality of capture, biological remarks) are always available for each specimen. Therefore, the interpretation of results based on opportunistic research findings presents more limitations when compared to the results of research programs employing systematic, long-term and conventional scientific methods. Also, opportunistic research may often include limited in- formation and inaccurate measurements (McPherson & Myers, 2009). For example, the size of very large great white sharks, reported at 800 cm in historical records, especially in old newspaper reports, is mostly regarded with suspicion by great white shark experts. However, in the absence of quantifiable sci- entific data, opportunistic data have the potential to provide valuable insights into several aspects of the life history of C. carcharias (De Maddalena & Heim, 2012; Boldrocchi et al., 2017; Moro et al., 2020). Our study demonstrates that the distribution of C. carcharias in Turkish waters underwent a significant regional shift over time. While the presence of C. carcharias in Turkish waters had been doubted or even denied in the past, the historical presence of the species in the region has been demonstrated by ever-growing evidence (Fergusson, 1996; Kabasakal, 2003, 2011, 2020; Kabasakal & Bayrı, 2021) and its contemporary occurrence in Turkish Aegean waters supported by new evidence (Kabasakal & Kabasakal, 2004, 2015; Kabasakal & Gedikoğlu, 2008; Kabasa- kal et al., 2009, 2018). It is therefore time to end the skepticism and even stubborn denial of the existence of C. carcharias in Turkish waters in the face of all evidence, and instead take the necessary steps to ensure the survival, occurrence, and reproduction of this valuable population in the Aegean Sea. The maximum length and weight of C. carcharias have always been subject of debates among great white shark experts (Randall, 1973; Mollet et al., 1996; De Maddalena et al., 2001). Randall (1973) stated that TL size of the great white shark can re- ach up to 750 or even 800 cm; Mollett et al. (1996), on the other hand, emphasised that the reported TL for specimens exceeding 600 cm can be rough esti- mations at best or mere speculation. Nevertheless, based on a detailed morphometric analysis of two very large great white sharks caught in Maltese and Australian waters, Mollet et al. (1996) also stated that a C. carcharias can attain 700 cm in TL. The ma- jor problem with very old photographs, newspapers or ichthyological records depicting C. carcharias specimens is that they contain no appropriate visual reference that could be used for obtaining accurate data on the length of the specimens through visual analysis (De Maddalena & Heim, 2012; De Mad- dalena et al., 2001). Based on a visual analysis of several old photographs of C. carcharias specimens ANNALES · Ser. hist. nat. · 32 · 2022 · 2 332 Hakan KABASAKAL et al.: DISTRIBUTION AND STATUS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS, IN TURKISH WATERS: ..., 325–342 caught in the Mediterranean Sea, De Maddalena et al. (2001) stated that the maximum TL of the great white shark can exceed 660 cm. In a recent analysis of Mediterranean great white sharks, Boldrocchi et al. (2017) reported the maximum TL for C. car- charias to be 675 cm. Information on the length of very large great white sharks (>600 cm) listed in the TGWSDA were collected from the relevant referen- ces or historical data sources (Appendix 1). Among these, the historical record of the great white shark (ca. 800 cm TL, sp. no. 8, Appendix 1) reported by Ayaşlı (1937) can be considered an exception beca- use it is based on scientific reference, which howe- ver, includes no information on the measurement method of the TL of the specimen. The results of the present study show that the TL of C. carcharias occurring in Turkish waters ranges between 80 cm (YOY) and >600 cm (large adults). However, for the sake of measurement accurracy and the currently accepted definition of measuring TL (Compagno, 2002), the size of the largest great white shark to be recorded in Turkish waters and measured accurately is 550 cm (Kabasakal & Kabasakal, 2004; sp. No. 46, Appendix 1). This size coincides with the maximum TL reported for Mediterranean great white sharks (De Maddalena & Heim, 2012; De Maddalena et al., 2001; Boldrocchi et al., 2017). The majority of adult specimens (>450 cm TL) of C. carcharias were caught off the Prince Islands (northeastern Sea of Marmara) and in the Bosphorus Strait between September and May (Fig. 5). The captures of adult great white sharks in the mentio- ned regions took place from 1881 to 1985, with the number of captured specimens reaching its peak in the 1950-1970 period (Figs. 3, 4, and 5). The main reason for that was the bluefin tuna (T. thynnus) fis- hery, conducted intensively in these regions during the same time intervals (Karakulak & Oray, 2009). There is strong evidence that pinniped colonies (Le Boeuf, 2004; Martin et al., 2005) or migrations of teleosteans (Domeier & Nasby-Lucas, 2008; Weng et al., 2007), such as scombrid tuna and swordfish, are associated with recorded concentrations of great white sharks in certain regions around the world and at certain times of the year. The absence or paucity of pinnipeds in the stomach contents of great whites occurring in the Mediterranean is well-documented (Fergusson, 1996; De Maddalena & Heim, 2012). On the other hand, in the Mediterranean Sea, the bluefin tuna is the major prey of this apex predator, and therefore, seasonal migration and occurrence of C. carcharias in the mentioned region are clo- sely associated with the dynamics of T. thynnus (De Maddalena, 2000; Kabasakal, 2016; Barrul & Mate, 2001; Soldo & Jardas, 2002; De Maddalena & Heim, 2012; Morey et al., 2003). The majority of the Mediterranean records of C. carcharias have been reported in bluefin tuna fisheries (e.g,. North Adriatic Sea, De Maddalena, 2000; Sea of Marma- ra, Kabasakal, 2016; Catalan Sea, Barrull & Mate, 2001; eastern Adriatic Sea, Soldo & Jardas, 2002; Balearic Islands, Morey et al., 2003). Therefore, as a result of decline or collapse of bluefin tuna fishery in several subregions of the Mediterranean Sea, in- cidental captures of great white sharks in the same subregions also decreased (De Maddalena & Heim, 2012). This situation, indicating a predator/prey species relationship throughout the Mediterranean, is also valid for Turkish waters. The distribution of adult (TL >450 cm) great white sharks in Turkish waters is also significantly diversified in relation to fishing gear, with the occurrence of adult specimens significantly asso- ciated with handlining (Fig. 6). Almost all of the mentioned great white sharks were incidentally captured by bluefin tuna handliners. Until the last quarter of the 20th century, those Hemingway-like bluefin tuna handliners who used very strong han- dlines with large hooks baited with bonito, S. sarda, in the Sea of Marmara (around the Prince Islands) and in the Bosphorus Strait, were familiar images of the fishing season, lasting from early September to early May. Following the drastic decline of blu- efin tuna populations in the Sea of Marmara, the artisanal handlining in the region disappeared in the early 1980s (Karakulak & Oray, 1991). The year 1985, marking the last sighting of adult great whites in the Sea of Marmara, coincides with the period when the bluefin tuna fishery in the same region collapsed. Since then, adult great white sharks in Turkish waters have only been caught in small num- bers in the Aegean Sea by commercial purse seiners (Figs. 4 and 6). Incidental captures of YOY and juvenile great white sharks in coastal artisanal gill-net fishery re- present another dimension of the relation between the type of fishing gear and the occurrence of C. carcharias in Turkish waters (Fig. 6). Coastal artisanal gill-net fishery is reported as the major threat to the survival of the YOY and juveniles (Santana-Morales et al., 2012; Lyons et al., 2013; White et al., 2019). According to Santana-Morales et al. (2012) and Lyons et al. (2013), 75 to 85 % of bycatch of YOY and juveniles are recorded in demersal gill-net fis- heries. In Turkish waters, particularly in the Bay of Edremit, there is a significant relationship between the bycatch of YOY and juvenile great whites and demersal gill-net fisheries (Fig. 6). Since the Bay of Edremit is currently recognised as a potential nursery ground for C. carcharias (Kabasakal, 2020b; (Boldrocchi et al., 2017; Kabasakal, 2020b)), gill-net fishing, which in this region is conducted year round and without any limitations, can also be considered a threat to the overall survival of C. carcharias in the ANNALES · Ser. hist. nat. · 32 · 2022 · 2 333 Hakan KABASAKAL et al.: DISTRIBUTION AND STATUS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS, IN TURKISH WATERS: ..., 325–342 entire Mediterranean Sea. Very few localities in the Mediterranean Sea are regarded as potential breeding and nursery grounds for C. carcharias (Fergusson, 1996; De Maddalena & Heim, 2012; Bradaï et al., 2012; Boldrocchi et al., 2017). Until the early 20th century, a habitat that enhanced the growth and survival of juvenile C. car- charias was Croatian waters (northeastern Adriatic Sea) (De Maddalena & Heim, 2012). Based on the spatial and temporal distribution of juvenile great whites (<185 cm TL), Fergusson (1996) indicated the marine area between the island of Sicily and the Tunisian coast as a possible breeding and nursery ground for C. carcharias in the central Mediterranean Sea. The suggested location off the Tunisian coast was further supported by evidence provided by Bradaï et al. (2012), and the capture of a pregnant great white shark (587 cm TL) in the Gulf of Gabès in 2004, which was carrying 4 developing embryons (mean TL 133.6+1.2 cm), also supports the hypothesis of a breeding and nursery ground in Tunisian waters (Saïdi et al. 2005; Bradaï et al., 2012). Boldrocchi et al. (2017) reported the average TL of pregnant females in the Mediterranean Sea to be 504+81.1 cm. In the Mediterranean Sea, most YOY C. carcha- rias (n=29) were recorded in Italian waters (n=11, 37.9%; Boldrocchi et al., 2017). Current evidence suggests that the nursery ground in the northeastern Adriatic is no longer used and that the area between Sicily and Tunisia may be the only remaining nursery Fig. 8: Adult male great white shark (a and c) caught on 17 May 1936 off Büyükada Island (north-eastern Sea of Marmara; sp. no. 13 in Appendix 1); comparison specimen (b) published in Kabasakal & Gedikoğlu (2008). In photographs (a) and (b), (←) and (↑), respectively, indicate the characteristic black blotch on the ventral surface of the pectoral fin of C. carcharias and (↑↑) indicates the claspers of the male, which are extending well behind the pelvic fins; in photograph (c), (→) indicates the triangular teeth of the specimen. Sl. 8: Odrasli samec belega morskega volka (a in c), ujet 17. maja 1936 blizu otoka Büyükada (severovzhodni del Marmarskega morja; primerek št. 13 v Prilogi 1); primerek (b), objavljen v viru Kabasakal & Gedikoğlu (2008). Na fotografijah (a) in (b), z znakoma (←) in (↑) je označena značilna črna zajeda na trebušni strani prsne plavuti belega morskega volka in z znakom (↑↑) samčev klasper, ki sega veliko čez trebušno plavut. Na fotografiji c je z znakom (→) označen trikotni zob primerka. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 334 Hakan KABASAKAL et al.: DISTRIBUTION AND STATUS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS, IN TURKISH WATERS: ..., 325–342 ground for this species in the central Mediterranean. Therefore, the Bay of Edremit, where the YOY are regularly observed in summer, is of great importance for ensuring the reproduction of the Mediterranean population of C. carcharias. The first documented YOY of C. carcharias in Turkish waters were recorded in the Bay of Edremit in 2008 (n=2; Kabasakal & Gedikoğlu, 2008), and according to the results of a systematic survey of published and unpublished data, 23 more YOY and juveniles were recorded in Turkish Aegean waters in the following 12 years (Kabasakal, 2020a; Appendix 1). Repetitive occurrences of YOY and juveniles in the region justifies the necessity of declaring the same as seasonal or year-round marine protected area. YOY and juvenile great white sharks have also been recorded in the central and northern parts of the Turkish Aegean region (Kabasakal, 2020b). In the northern Aegean Sea, juveniles of C. carcharias had been previously reported off the Thasos Island and Coast of Kavala (Greece waters of the Aegean Sea), in the 1940s or earlier (Fergusson, 1996). The TL of Thasos and Kavala specimens were 180 and 230 cm, respectively (Fergusson, 1996). One of two YOY recorded just outside the Bay of Edremit was captured off the coast of Izmir (unpublished data; central Aegean Sea; sp. no. 63, Appendix 1) and the other one in the Dardanelles Strait (Kabasakal & Bayrı, 2020; northern Aegean Sea; sp. no. 76, Appendix 1). Therefore, it can be assumed that the nursery ground for C. carcharias may extend over a wider area exceeding the limits of the Bay of Edre- mit. As it is clearly seen from the map (Fig. 1), the coastal topography of Turkey’s Aegean seaboard, which is characterised by the presence of numerous bays and nearshore islands, provides a habitat for the YOY and juveniles to gain experience of move- ment between offshore and nearshore islands before departing for long-distance migrations. According to Hoyos-Padilla et al. (2016), tagged juvenile sharks stay at least 1 year in areas that allow them to travel short distances between the coast and an island (in that case, the Guadaloupe island), before moving to more remote areas. Moreover, according to Weng et al. (2007), YOY great whites can travel 700 km in just 2 months. In another study inve- stigating the movements of juvenile great whites, Bruce et al. (2019) reported that a juvenile tagged with a satellite tracking device travelled 1800 km in 190 days. The largest juvenile recorded in this study (TL 300 cm; sp. no 54; Appendix 1) was cau- ght at the western border of the nursery ground in the Bay of Edremit (Fig. 1). On the other hand, the coastal line between the locality of capture of the juvenile recorded in Hisarönü Bay (TL 200 cm; sp. no. 70; Appendix 1; Fig. 1) and the Bay of Edremit is roughly 500 km long. Cailliet et al. (1985) reported of juvenile great whites measuring 200 and 300 cm in TL, respectively, which he concluded to be aged 2 and 6 years. In the light of these findings, specifically the Bay of Edremit and, on a larger scale, the insular waters of the eastern Aegean Sea can be considered as an area of development and gaining experience, where the great white shark usually spends its first 6 years of life. Considering the seasonality of the YOY and juveniles (Fig. 5), it can be deduced that birth occurs between June and August, and juveniles could be sighted in the study area from January to September. The two YOY caught in January and April may have been be individuals born in the previous summer that had not yet left the nursery area. It is rare, though not unusual, to encounter YOY in winter; for example, Curtis et al. (2014) reported that in winter, the inci- dence of YOY great whites in northwestern Atlantic waters is 2% and the rate of juveniles 75%. To sum up, in the eastern Aegean Sea, although the YOY prefer inhabiting a restricted area in their first year, the distance of juveniles’ home ranges increases with growth, which is consistent with the literature (Fergusson, 1996; Boldrocchi et al., 2017; Weng et al., 2007; Bruce et al., 2019). To summarize the status of C. carcharias in the study region based on records between 1881 and 2020: the great white shark occurs in Turkish waters throughout the year. Although the occurrences of adult specimens have shown a remarkable decrease during this period, the species has not been extirpa- ted from the region. The main reason for this decrease is assumed to be the drastic decline of bluefin tuna populations in Turkish waters, particularly in the Sea of Marmara and the Bosphorus Strait. Following the decline of bluefin tuna populations, handlining fishery, which is selectively targeting very large fish, disappeared from the Bosphorus Strait and Sea of Marmara (Kabasakal, 2016). On the other hand, since the 1990s, the number of adult great white sharks to be incidentally captured in commercial purse seinig in Turkish Aegean waters has declined. In the central Mediterranean, over 70 % of great white shark bycatch was reported by purse seiners (Serena, 2021), in Turkish waters, nearly 9%. All contemporary records of adult great white sharks are related to either captures or sightings around the periphery of the nursery ground in the Bay of Edremit. The status and distribution of C. carcharias in Turkish waters has been investigated in a species- -specific effort since the early 2000s (Kabasakal, 2003, 2020). Although we are still at the beginning level compared to regions with abundant great white shark research (Pacific and Atlantic coasts of North America, South Africa, Australia-New Zealand, western and central Mediterranean; Huveneers et ANNALES · Ser. hist. nat. · 32 · 2022 · 2 335 Hakan KABASAKAL et al.: DISTRIBUTION AND STATUS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS, IN TURKISH WATERS: ..., 325–342 al., 2018), the past 20 years of research in Turkey (Kabasakal, 2020) provide a reliable background for future research of the biology, ecology, socioecono- mics, management, and conservation of C. carchari- as in Turkish waters. Besides generally accepted sy- stematic scientific research methods, opportunistic study techniques, such as systematic review of old newspaper reports and citizen science observation data, have significantly contributed to an ever inc- reasing collection of C. carcharias records over the last 20 years. Although the first scientifically valida- ted evidence on the occurrence of YOY and juvenile great whites in the Bay of Edremit was obtained in 2008 (Kabasakal & Gedikoğlu, 2008), testimonials of some local fishermen now aged 80 to 90 years revealed that the young generations of C. carcharias may have regularly occurred in the region for at least the last 50 years (H. Kabasakal pers. data). In the most recent assessment of the distribution and abundance of great white sharks in the Medi- terranean, Moro et al. (2020) reported 773 records between 1860 and 2016, but six new records from Libyan waters dating between 2017 and 2020 have been added to the existing inventory through the effort of citizen scientists (Jambura et al., 2021). In the matter of great white shark, fantasy and reality are often confused, and especially nowadays a re- markable number of imprecise or incorrect sighting records are available online (Bargnesi et al., 2020). If data collected by citizen scientists were properly standardised (Giovos et al., 2021; Bargnesi et al., 2022), they would provide cost-effective and useful information on the status and conservation of great white sharks and other shark species in Turkish wa- ters; in fact, such standardised data stream would be a significant contribution to conservation efforts across the Mediterranean. Compared to eastern Mediterranean records of C. carcharias (total n=12; Ben-Tuvia, 1971; Fergusson, 1996; Damalas & Megalofonou, 2012), records of species from the Turkish waters (n=77) provide a significant regional contribution to the knowledge of the entire Mediterranean population. For the moment, the total number of eastern Mediterranean records of C. carcharias is 89, which represents 11.4 % of all Mediterranean records (n=779; Moro et al., 2020; Jambura et al., 2021). Today, one of the main subjects of discussions on shark conservation is the eternal Noah’s Ark problem - which species should be given priority (Cachera & Le Loc’h, 2017). C. carcharias is a K-selected apex predator, currently classified as “vulnerable” on the IUCN Red List (Rigby et al., 2019) and “critically endangered” in the Mediterranean Sea (Serena et al., 2020). Due to site fidelity and natal philopatry of C. carcharias (De Maddalene & Heim, 2012; Jorgensen et al., 2010), seasonal migrations of pregnant females to nursery grounds (in case of the Mediterranean, either the Sicily-Tunisia region or the Bay of Edremit) to give birth can be predicted. As a first step to ensuring the survival of C. carcharias, the great white shark has been recently declared as a species under protection in Turkish waters (Offici- al Gazette, 10 September 2022), but the next steps towards providing better protection for the species in the region are urgently required: measures for the management of artisanal coastal gill-net fishery in the Bay of Edremit and the designation of the latter as a marine protected area. ACKNOWLEDGMENTS The authors thank to fishermen and divers who shared observations, stories and old photographs of great white sharks captured or sighted in Turkish waters. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 336 Hakan KABASAKAL et al.: DISTRIBUTION AND STATUS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS, IN TURKISH WATERS: ..., 325–342 Appendix 1: Inventory of specimens in the Turkish Great White Shark Data Archive. Abbreviations in the “type of record” column indicate the type of original source on which the respective record of the great white shark is based. SR: Scientific reference; OIR: Old ichthyological record; ONR: Old newspaper report; OS: Online source; CSO: Citizen science observation data. Priloga 1: Popis primerkov belega morskega volka iz arhiva podatkov turških belih morskih volkov. Okrajšave v stolpcu “vrsta zapisa” označujejo tip izvornega podatka, na katerem temelji zapis o belem morskem volku. Podatek iz strokovne literature - SR); stari ihtiološki zapis - OIR; stari časopisni prispevek - ONR; spletni vir – OS in podatki, pridobljeni na podlagi ljubiteljske znanosti - CSO. No Date Location TL (cm) W (kg) Sex Remarks Type of record Reference 1 Feb. 1881 Bosphorus Strait 391 ? ? Stranded near Beylerbeyi coast. SR Fergusson (1996) 2 17 Nov. 1881 Bosphorus Strait 470 1500 ♀ Type of fishing gear unknown. SR Fergusson (1996) 3 1916 Sea of Marmara ca. 700 ? ? Entrapped in Salistra fish trap; shot by fishermen with 3 bullets in its head. OIR Deveciyan (1945) 4 1920 Sea of Marmara ~500 ? ? Caught off Prince Islands and displayed to public in Taksim Square, İstanbul city. OS Kabasakal (2014) 5 May 1920 Sea of Marmara 465 ca. 1200 ? Caught off Sedef island; a bluefin tuna, weighing ca. 200 kg, remains of a swordfish, a few bonitos, and a small stone found in its stomach. OIR Deveciyan (1945) 6 1923 Sea of Marmara ? ? ? N/A ONR Kabasakal (2020a) 7 before 1926 Sea of Marmara ca. 400 ? ? Displayed in İstanbul Fish Market; eight large bonitos found in its stomach. OIR Deveciyan (1926) 8 before 1926 Bosphorus Strait ca. 800 ca. 4500 ? Two large tunas per weighing 200 kg, and one large dolphin found in the stomach. OIR Ayaşlı (1937) 9 2 Feb. 1926 Sea of Marmara 500 2000 ? Incidentally caught by tuna hand-liners off Prince Islands. Three pairs of boots, and a fez – traditional Ottoman men’s headwear - having been found in the stomach of the shark ONR Kabasakal & Bayrı (2021) 10 20 Feb. 1926 Sea of Marmara 450 over 1500 ? Caught off Büyükada island. ONR Kabasakal (2003) 11 1930 Sea of Marmara ? ? ? Attacked to a fishing boat off San Stefano (Yeşilköy). ONR Kabasakal (2014) 12 1936 Sea of Marmara 500 3000 ? Incidentally caught by tuna hand-liners off Büyükada ONR Kabasakal & Bayrı (2021) 13 17 May 1936 Sea of Marmara ca. 500 ? ♂ Incidentally caught off Büyükada. ONR Unpublished data 14 21 Mar. 1937 Sea of Marmara ? 1700 ? Harpooned by fishermen set sail for catching swordfish off Büyükada. Landed at the fishmarket for public display. ONR Kabasakal (2016) 15 1939 Sea of Marmara ? ca. 3000 ? Caught by the tuna handliner Karnilyas and delivered to the fishmarket. ONR Kabasakal (2016) 16 1950s Sea of Marmara ca. 400 ? ? Caught by a tuna handliner off Burgazada coast. OS Kabasakal (2020c) 17 30 Mar. 1954 Sea of Marmara 450 1500 ? Caught off Tuzla island. ONR Kabasakal (2003) 18 1 Feb. 1955 Sea of Marmara ? 1500 ? Caught by the fisherman Mr. Hayri Kuloğlu, after struggling nearly 4 and half hours. Almost 50 kg of bonito, Sarda sarda found in the stomach contents. ONR Kabasakal (2016) 19 15 Apr. 1956 Sea of Marmara ? 2500 ? Caught by the handliner Mr. Necdet Şarcı off Ahırkapı. According to newspaper report, fisherman struggled the shark nearly 8 hours before harpooned it. ONR Kabasakal (2016) 20 15 Apr. 1956 Sea of Marmara 618 ca. 3000 ♀ Caught off Prince Islands; its mass surely incorrectly estimated. ONR Kabasakal (2003) 21 1957 Mediterranean Sea ? ? ? Caught in İskenderun Bay. SR Akyüz (1957) 22 1958 Bosphorus Strait ca. 700 ? ? Caught off Ahırkapı, but escaped from the hook and attacked to a fishing boat. ONR Kabasakal (2014) 23 5 Mar. 1958 Sea of Marmara 500 2500 ♀ Caught off Prince Islands. Delivered to fishmarket for public display and auction. ONR Kabasakal (2016) 24 25 Dec. 1958 Sea of Marmara ca. 700 ca. 2000 ♀ Caught off Prince Islands by fishermen Niyazi Dalgın, Cemil Unalır and Şadan Şalvarlı, then landed at Ahırkapı coast. ONR Kabasakal (2020a) 25 28 Dec. 1958 Bosphorus Strait ca. 800 ? ? Caught off Ahırkapı coast by fishermen Yunus Potur and Ali Durmaz. Great white shark attacked the boat and caused damage. ONR Kabasakal (2020a) 26- 33 Between 1958-1960 Bosphorus Strait 500 to 700 ca. 1500 to 4000 ? Seven great white sharks captured in bosphoric and prebosphoric area by the same fisherman, “Samatyalı” İrfan Yürür. Voice record of an interview with Mr. Yürür is available on the following link (in Turkish): https://youtu.be/OZYzJaCpzN0 CSO Kabasakal (2014) 34 Feb. 1962 Bosphorus Strait 500+ 3750 ♀ Mass surely incorrectly estimated. SR Fergusson (1996) 35 19 Mar. 1962 Bosphorus Strait ? 3000 ♀ Caught by the fishermen Mr. Hayri Kuloğlu and Mr. Ziya Zeki Zayni off Ortaköy. ONR Kabasakal (2016) 36 28 Dec. 1965 Bosphorus Strait 500 ca. 4000 ♀ Caught off Dolmabahçe coast; mass surely incorrectly estimated. ONR Kabasakal (2003) 37 28 Dec. 1965 Bosphorus Strait 700 ca. 3000 ♀ Caught near Maiden’s Tower. ONR Kabasakal (2003) 38 13 Jan. 1966 Sea of Marmara ? ? ? Incidentally caught by tuna handliners and harpooned off Kumkapı. Auctioned at the fishmarket for its liver oil. ONR Kabasakal (2016) 39 13 Jan. 1966 Bosphorus Strait ca. 400 ca. 2000 ? Harpooned off Kabataş coast. ONR Kabasakal (2003) 40 13 Jan. 1966 Bosphorus Strait ca. 400 ca. 2000 ? Harpooned off Kabataş coast; belly of the second specimen shown overturned on the left of the photograph presented in Kabasakal (2003) ONR Kabasakal (2003) ANNALES · Ser. hist. nat. · 32 · 2022 · 2 337 Hakan KABASAKAL et al.: DISTRIBUTION AND STATUS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS, IN TURKISH WATERS: ..., 325–342 41 1967 Sea of Marmara ? ? ? Caught off Büyükada coast by a tuna hand-liner. OIR Kabasakal (2008) 42 Mar. 1968 Bosphorus Strait 551 ? ♀ Caught by a tuna hand-liner. ONR Kabasakal (2011) 43 before 1974 Sea of Marmara ? ca. 2000 ? Caught off Prince Islands. OIR Güney (1974) 44 May 1985 Sea of Marmara ca. 500 ? ? Sighted off Kapıdağ peninsula. CSO Kabasakal (2003) 45 18 Mar. 1991 Aegean Sea ca. 500 3500 ♀ Caught off Foça coast by a commercial purse-seiner; transported to İstanbul Fish Market and displayed to public. ONR Kabasakal (2008) 46 Mar. 1996 Aegean Sea 550 ? ♀ Caught off Bozcaada island by a commercial purse-seiner. OIR Kabasakal & Kabasakal (2004) 47 Apr. 1998 Aegean Sea ca. 450 ? ? Sighted by a gill-netter. CSO Kabasakal & Kabasakal (2004) 48 May 1999 Aegean Sea ca. 500 ? ? Sighted by a diver off Büyükkemikli cape. CSO Kabasakal & Kabasakal (2004) 49 1 Jul. 2008 Aegean Sea 125.5 30 ♂ Caught in Bay of Edremit, off Altınoluk coast by a commercial gill-netter; unhealed birth mark was visible on the belly. SR Kabasakal & Gedikoğlu (2008) 50 4 Jul. 2008 Aegean Sea 145 ? ♂ Caught in Bay of Edremit, off Altınoluk coast by a commercial gill-netter; unhealed birth mark was visible on the belly. SR Kabasakal & Gedikoğlu (2008) 51 2009 Aegean Sea 160 ? ? Captured by commercial artisanal fisherman off Babakale. OS Unpublished data 52 2009 Aegean Sea ca. 200 ? ? Captured in Bay of Edremit. OS Unpublished data 53 21 Feb. 2009 Aegean Sea 180 47.5 ♀ Caught off Gökçeada island; two angler fish (Lophius sp.), one gar fish (Belone belone) and one hake (Merluccius merluccius) were found in the stomach. SR Kabasakal et al. (2009) 54 15 Apr. 2009 Aegean Sea 300 102 ♀ Caught off Çanakkale coast by a commercial purse-seiner; transported to İstanbul and displayed to public. SR Kabasakal et al. (2009) 55 2010; late Jun., early Jul. Aegean Sea 80 ? ? Captured by coastal gill-netters in Bay of Edremit, off Altınoluk. SR Kabasakal (2014) 56 2010; late Jun., early Jul. Aegean Sea 100 ? ? Captured by coastal gill-netters in Bay of Edremit, off Altınoluk. SR Kabasakal (2014) 57 2010; late Jun., early Jul. Aegean Sea ? ? ? Captured by coastal gill-netters in Bay of Edremit, off Altınoluk. SR Kabasakal (2014) 58 21 Jun. 2010 Aegean Sea 230 60 ? Captured off Bozcaada island. CSO Unpublished data 59 14 Jul. 2010 Aegean Sea 150 30 The great white shark, which was entangled in unspecified nets deployed by local fisherman in Bay of Edremit CSO Kabasakal & Bayrı (2021) 60 6 Jul. 2011 Aegean Sea 85 12 ♀ Caught in Bay of Edremit, off Altınoluk by a trammel-netter in inshore waters. After landing, the specimen transferred to seawater tank but upon observing stress signs, it was released after a couple of hours of captivity. A video of this specimen is available on the following link: http://vimeo. com/46296179 CSO Kabasakal (2014) 61 28 Sep. 2011 Aegean Sea ~500 ? ? Sighted by a diver at a depth of 15 m, while he was spearfishing off Marmaris coast. According to interview with the diver, great white shark approached to him, but no attack occurred. CSO Kabasakal (2014) 62 7 May 2013 Aegean Sea ca. 200 50 ? Captured off Çanakkale. CSO Unpublished data 63 21 Aug. 2014 Aegean Sea ca. 150 40 ? Captured off İzmir. CSO Unpublished data 64 19 Sep. 2014 Aegean Sea 200 40 ♂ It was incidentally caught by a stationary net off Yeni Foça, which was deployed for lobster fishing. CSO Kabasakal & Kabasakal (2015) 65 2 Jan. 2016 Aegean Sea 175 ? ♀ Entangled in a coastal stationary net in the Bay of Edremit. The dried head, jaws and caudal fin of the specimen are preserved by local fishermen in Altınoluk province. CSO Kabasakal et al. (2018) 66 2017 Aegean Sea ca. 180 35 ? Captured off Altınoluk. CSO Unpublished data 67 2017 Aegean Sea ca. 180 40 ? Captured in Saroz Bay by means of gill-net. Released alive CSO Unpublished data 68 Jan. 2017 Aegean Sea 180 ? ? Entangled in coastal stationary net off Gökçeada coast. CSO Kabasakal (2020a) 69 4 Jan. 2017 Aegean Sea 160 ? ? Juvenile specimen incidentally captured in unspecified artisanal fishery off Burhaniye coast. CSO Unpublished data 70 27 Feb. 2017 Aegean Sea ca. 200 ? ♀ Incidentally captured in unspecified artisanal net in Bay of Hisarönü, Muğla. A video of the specimen is available in the archive of first author. CSO Unpublished data 71 Apr. 2017 Aegean Sea 160 ? ? Entangled in coastal stationary net in the Bay of Edremit. SR Kabasakal (2020a) 72 4 Jun. 2017 Aegean Sea 200 60 ♂ Captured by a commercial purse-seiner off the Didim coast. SR Kabasakal et al. (2018) 73 14 Apr. 2018 Aegean Sea 180 ? ♀ Captured by a coastal stationary-netter, off the İzmir coast. SR Kabasakal et al. (2018) 74 28 Jul. 2018 Aegean Sea ? ? ? Captured off İzmir coast. CSO Unpublished data 75 Spring 2019 Aegean Sea ca. 500 ? ? Sighted by a commercial fisherman off northern coast of Gökçeada. SR Kesici et al. (2021) 76 8 Jun. 2020 Dardanelles Strait 155 ? ? Captured by means of a stationary-netter, off Kumkale coast (southern entrance of Dardanelles Strait). SR Kabasakal & Bayrı (2020) 77 14 Jun. 2020 Aegean Sea ca. 200 ? ? Sighted by the amateur fishermen in waters of Saroz Bay, off Enez coast. First documented case of leucism in C. carcharias. CSO Kabasakal (2020d) ANNALES · Ser. hist. nat. · 32 · 2022 · 2 338 Hakan KABASAKAL et al.: DISTRIBUTION AND STATUS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS, IN TURKISH WATERS: ..., 325–342 STATUS IN RAZŠIRJENOST BELEGA MORSKEGA VOLKA (CARCHARODON CARCHARIAS) V TURŠKIH VODAH: PREGLED IN NOVI ZAPISI O POJAVLJANJU Hakan KABASAKAL, Erdi BAYRI & Görkem ALKAN Ichthyological Research Society, Tantavi mahallesi, Menteşoğlu caddesi, İdil apartmanı, No: 30, D: 4, Ümraniye, TR-34764, İstanbul, Turkey e-mail: kabasakal.hakan@gmail.com POVZETEK O pojavljanju vrste Carcharodon carcharias v turških vodah poročajo že od konca 19. stoletja. Od leta 1881 do 2020 je bilo zbranih skupno 77 zapisov o pojavljanju belega morskega volka. Razpoložljivi podatki kažejo, da se ta vrsta v turških vodah pojavlja skozi vse leto. Število odraslih osebkov se je v tem obdobju znatno zmanjšalo, kljub temu pa vrste v regiji niso iztrebili. Ta študija dokazuje, da se je razširjenost vrste C. carcharias v turških vodah sčasoma znatno regionalno spremenila, pri čemer trenutna razširjenost mladičev in nedoraslih osebkov sega od osrednjega do severnega Egejskega morja in je skoncentrirana v zalivu Edremit. C. carcharias je bil nedavno razglašen za zaščiteno vrsto v turških vodah, vendar so naslednji koraki k zagotavljanju boljšega varovanja te vrste v regiji nujno potrebni. Ključne besede: status, upravljanje, ohranjanje, vzhodno Sredozemlje, Lamnidae, obalni ribolov ANNALES · Ser. hist. nat. · 32 · 2022 · 2 339 Hakan KABASAKAL et al.: DISTRIBUTION AND STATUS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS, IN TURKISH WATERS: ..., 325–342 REFERENCES Akşıray, F. (1987): Türkiye Deniz Balıkları Ve Tayin Anahtarı (Marine Fishes of Turkey and Identification Key). Istanbul University Publications, Istanbul. Akyüz, E. (1957): Observations on the Iskenderun red mullet (Mullus barbatus) and its environment. GFCM Proc. Tech. Pap., 4, 305-326. Ayaşlı, S. (1937): Boğaziçi Balıkları (Fishes of Bosphorus Strait). Cumhuriyet Matbaası, Istanbul. Bargnesi, F., S. Lucrezi & F. Ferretti (2020): Opportunities from citizen science for shark conser- vation, with a focus on the Mediterranean Sea. Eur. zool., 87, 20-34. Bargnesi, F., S. Moro, A. Leone, I. Giovos & F. Ferretti (2022): New technologies can support data collection on endangered shark species in the Medi- terranean Sea. Mar. Ecol. Prog. Ser., 689, 57-76. Barrull, J. & I. Mate (2001): Presence of the great white shark, Carcharodon carcharias (Linnaeus, 1758) in the Catalonian Sea (NW Mediterranean): review and discussion of records, and notes about its ecolo- gy. Annale, Ser. Hist. Nat., 1, 3-12. Bellonius, P. (1553): De aquatilibus, Libri duo, Cum eiconibus ad viuam ipforum effigiem, quoad eius fieri potuit, expreffis. Cum priuilegio Regis, Paris. Ben-Tuvia, A. (1971): Revised list of the Mediterra- nean fishes of Israel. Isr. J. Zool., 20, 1-39. Boldrocchi, G., J. Kiszka, S. Purkis, T. Storai, L. Zinzula & D. Burkholder (2017): Distribution, ecology, and status of the white shark, Carcharodon carcharias, in the Mediterranean Sea. Rev. Fish. Biol. Fisheries, DOI 10.1007/s11160-017-9470-5. Bradaï, MN., B. Saidï & S. Enajjar (2012): Elasmo- branchs of the Mediterranean and Black Sea: Status, Ecology and Biology. Bibliographic Analysis. Studies and Reviews. General Fisheries Commision for the Mediterranean. FAO, Rome. No. 91. 103 pp. Bruce, BD., D. Harasti, K. Lee, C. Gallen & R. Brad- ford (2019): Broad-scale movements of juvenile white sharks from acoustic and satellite telemetry. Mar. Ecol. Prog. Ser., 619, 1-15. Cachera, M. & F. Le Loc’h (2017): Assessing the relationships between phylogenetic and functional singularities in sharks (Chondrichthyes). Ecol. Evol., 7, 6292-6303. Cailliet, G.M., L.J. Natanson, B.A. Welden & D.A. Ebert (1985): Preliminary studies on the age and growth of the white shark, Carcharodon carcharias, using vertebral bands. Mem. South Calif. Acad. Sci., 9, 49-60. Celona, A. (2002): Due catture di squalo bianco, Carcharodon carcharias (Linnaeus, 1758) avvenute nelle acque di Marzamemi (Sicilia) negli anni 1937 e 1964 (Two captures of a great white shark, Carcharodon carcharias (Linnaeus, 1758) in the Marzamemi waters (Sicily)). Annales, Ser. Hist. Nat., 12, 207-210. Celona, A., N. Donato & A. De Maddalena (2001): In relation to the captures of a great white shark Carcharodon carcharias (Linnaeus, 1758) and a shortfin mako, Isurus oxyrinchus Rafinesque, 1809 in the Messina Strait. Annales, Ser. Hist. Nat., 11, 13-16. Compagno, L.J.V. (2002): Sharks of the world: an annotated and illustrated catalogue of shark species known to date. Volume 2: Bullhead, mackerel and carpet sharks (Heterodontiformes, Lamniformes, Orectolobiformes). FAO, Rome, 269 pp. Curtis, T.H., C.T. McCandless, J.K. Carlson, G.B. Skomal, N.E. Kohler, L.J. Natanson, G.H. Burgess, J.J. Hoey & H.L. Pratt Jr. (2014): Seasonal distri- bution and historic trends in abundance of white sharks, Carcharodon carcharias, in the western north Atlantic Ocean. PLos ONE: doi:10.1371/journal. pone.0099240. Damalas, D. & P. Megalofonou (2012): Occurren- ces of large sharks in the open waters of the southe- astern Mediterranean Sea. J. Nat. Hist., 46(43-44), 2701-2723. De Maddalena, A. (2000): Historical and contem- porary presence of the great white shark, Carcharodon carcharias (Linnaeus, 1758), in the northern and cen- tral Adriatic Sea. Annales, Ser. Hist. Nat., 10, 3-18. De Maddalena, A. & W. Heim (2012): Mediter- ranean Great White Sharks. A Comprehensive Study Including All Recorded Sightings. McFarland and Company, Inc., Jefferson, North Carolina and London, 256 pp. Deveciyan, K., (1926): Pêche et Pécheries en Turquie. Imprimerie de l’Administration de la Dette Publique Ottomane, Istanbul, 480 pp. Deveciyan, K. (1945): Köpekbalıkları. Balıkcı, 11/12, 10-12. Domeier, M.L. & N. Nasby-Lucas (2008): Migra- tion patterns of white sharks Carcharodon carcharias tagged at Guadalupe Island, Mexico, and identificati- on of an eastern Pacific shared offshore foraging area. Mar. Ecol. Prog. Ser., 370, 221-237. doi: 10.3354/ meps07628. Ebert, D.A, & M.F. W. Stehmann (2013): Sharks, batoids, and chimaeras of the North Atlantic. FAO, Rome, No. 7, 523 pp. Fergusson, I.K. (1996): Distribution and autoeco- logy of the white shark in the Eastern North Atlantic and the Mediterranean Sea. In: Klimley, A. P. & D. G. Ainley, eds. Great white sharks: the biology of Carcharodon carcharias. Academic, San Diego, pp: 321-345. Galaz, T. & A. De Maddalena (2004): On a great white shark, Carcharodon carcharias (Linnaeus, 1758), trapped in a tuna cage off Libya, Mediterrane- an Sea. Annales, Ser. Hist. Nat., 14, 159-164. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 340 Hakan KABASAKAL et al.: DISTRIBUTION AND STATUS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS, IN TURKISH WATERS: ..., 325–342 Giovos, I., F. Serena, D. Katsada, A. Anastasiadis, A. Barash, C. Charilaou, J.M. Hall-Spencer, F. Crocet- ta, A. Kaminas, D. Kletou, M. Maximiadi, V. Minasidis, D.K. Moutopoulos, R.N. Aga-Spyridopoulou, I. Thasi- tis & P. Kleitou (2021): Integrating literature, biodi- versity databases, and citizen-science to reconstruct the checklist of chondrichthyans in Cyprus (eastern Mediterranean Sea). Fishes. https://doi.org/10.3390/ fishes6030024. Gubili, C., R. Bilgin, E. Kalkan, S.Ü. Karhan, C.S. Jones, D.W. Sims, H. Kabasakal, A.P. Martin & L.R. Noble (2010): Antipodean white sharks on a Medi- terranean walkabout? Historical dispersal leads to genetic discontinuity and an endangered anomalous population. Proc. R. Soc. Lond. B, 278, 1679-1686. Güney, K. (1974): Balıklarımız (Fishes). Redhouse Yayınevi, Istanbul. Hoyos-Padilla, E.M., A.P. Klimley, F. Galvan-Ma- gana & A. Antoniou (2016): Contrasts in the move- ments and habitat use of juvenile and adult white sharks (Carcharodon carcharias) at Guadalupe Island, Mexico. Anim. Biotelemetry, doi:10.1186/s40317- 016-0106-7. Huveneers, C., K. Apps, E.E. Becerril-García, B. Bruce, P.A. Butcher, A.B. Carlisle, T.K. Chapple, H.M. Christiansen, G. Cliff, T.H. Curtis, T.S. Daly-Engel, H. Dewar, M.L. Dicken, M.L. Domeier, C.A.J. Duffy, R. Ford, M.P. Francis, G.C.A. French, F. Galván-Magaña, E. García-Rodríguez, E. Gennari, B. Graham, B. Hayden, E.M. Hoyos-Padilla, N.E. Hussey, O.J.D. Jewell, S.J.Jorgensen, A.A. Kock, C.G. Lowe, K.Lyons, L. Meyer, G. Oelofse, E.C. Oñate-González, H. Oosthuizen, J.B. O’Sullivan, K. Ramm, G. Skomal, S. Sloan, M.J. Smale, O. Sosa-Nishizaki, E. Sperone, E. Tamburin, A.V. Towner, M.A. Wcisel, K.C. Weng & J.M. Werry (2018): Future research directions on the “elusive” white shark. Front. Mar. Sci., doi: 10.3389/ fmars.2018.00455. Jambura, P.L, J. Türtscher, A. De Maddalena, I. Gi- ovos, J. Kriwet, J. Rizgalla, S.A.A. Al Mabruk (2021): Using citizen science to detect rare and endangered species: new records of the great white shark Carcha- rodon carcharias off the Libyan coast. Annales, Ser. Hist. Nat., 31,51-62. DOI 10.19233/ASHN.2021.07. Johnson, R., T. Keswick, M.N. Bester & W.H. Oost- huizen (2009): Encounters between white sharks and Cape fur seals in a shallow channel. Mar. Biodivers. Rec., DOI:10.1017/S1755267209000682. Jorgensen, S.J., C.A. Reeb, T.Y. Chapple, S. Ander- son, C. Perle, S.R. Van Sommeran, C. Fritz-Cope, A.C. Brown, A.P. Klimley & B.A. Block (2010): Philopatry and migration of Pacific white sharks. Proc. R. Soc. B, 277, 679-688. Kabasakal, H. (2003): Historical records of the great white shark, Carcharodon carcharias (Linnaeus, 1758) (Lamniformes, Lamnidae), from the Sea of Mar- mara. Annales, Ser. Hist. Nat., 13, 173-180. Kabasakal, H. (2008): Two recent records of the great white sharks, Carcharodon carcharias (Linna- eus, 1758) (Chondrichthyes: Lamnidae), caught in Turkish waters. Annales, Ser. Hist. Nat., 18, 11-16. Kabasakal, H. (2011): On an old record of Car- charodon carcharias (Chondrichthyes: Lamnidae) from the Bosphorus waters. Mar. Biodivers. Rec., doi:10.1017/S1755267211000613. Kabasakal, H. (2014): The status of the great white shark (Carcharodon carcharias) in Turkey’s waters. Mar. Biodivers. Rec., doi:10.1017/ S1755267214000980. Kabasakal, H. (2016): Historical despersal of the great white shark, Carcharodon carcharias, and bluefin tuna, Thunnus thynnus, in Turkish waters: decline of a predator in response to the loss of its prey. Annales, Ser. Hist. Nat., 26, 213- 220. Kabasakal, H. (2020a): Agreement with the monster – Lessons we learned from the great white shark in Turkish waters. TUDAV, Istanbul, 74 pp. Kabasakal, H. (2020b): Exploring a possible nursery ground of white shark (Carcharodon carcharias) in Edremit Bay (northeastern Aegean Sea, Turkey). J. Black Sea Medit. Environ., 26, 176-189. Kabasakal, H. (2020c): A historical catch of white shark, Carcharodon carcharias (Lamnifor- mes: Lamnidae), in the Sea of Marmara (Turkey) from the 1950s. Annales, Ser. Hist. Nat., 30, 147- 150. Kabasakal, H. (2020d): A leusistic white shark, Carcharodon carcharias (Lamniformes: Lamnidae), from the northern Aegean Sea, Turkey. Annales, Ser. Hist. Nat., 30, 187-190. Kabasakal, H. (2021): A review of shark biodi- versity in Turkish waters: Updated inventory, new arrivals, questionable species, and conservation issues. Annales, Ser. Hist. Nat., 31, 181-194. Kabasakal, H. & E. Bayrı (2020): First record of a young-of-the-year Carcharodon carcharias in the Strait of Dardanelles. Annales, Ser. Hist. Nat., 30, 175-180. Kabasakal, H. & E. Bayrı (2021): Great white sharks, Carcharodon carcharias, hidden in the past: three unpublished records of the species from Turkish waters. Annales, Ser. Hist. Nat., 31, 195-202. Kabasakal, H. & S.Ö. Gedikoğlu (2008): Two new-born great white sharks, Carcharodon carcha- rias (Linnaeus, 1758) (Lamniformes: Lamnidae) from Turkish waters of the north Aegean Sea. Acta Adriat., 49, 125-135. Kabasakal, H. & S.Ö. Gedikoğlu (2015): Shark attacks against humans and boats in Turkey’s waters in the twentieth century. Annales, Ser. Hist. Nat., 25, 115-122. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 341 Hakan KABASAKAL et al.: DISTRIBUTION AND STATUS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS, IN TURKISH WATERS: ..., 325–342 Kabasakal, H. & E. Kabasakal (2004): Sharks captured by commercial fishing vessels off the coast of Turkey in the northern Aegean Sea. Annales, Ser. Hist. Nat., 14, 171-180. Kabasakal, H. & Ö. Kabasakal (2015): Recent re- cord of the great white shark, Carcharodon carcharias (Linnaeus, 1758), from central Aegean Sea off Turkey’s coast. Annales, Ser. Hist. Nat., 25, 11-14. Kabasakal, H., A. Yarmaz & S.Ö. Gedikoğlu (2009): Two juvenile great white sharks, Carcharodon carcharias (Linnaeus, 1758) (Chondrichthyes: Lamni- dae), caught in the northeastern Aegean Sea. Annales, Ser. Hist. Nat., 19, 127-134. Kabasakal, H., E. Bayrı & E. Ataç (2018): Recent records of the great white shark, Carcharodon carcha- rias (Linnaeus, 1758) (Chondrichthyes: Lamnidae), in Turkish waters (eastern Mediterranean). Annales, Ser. Hist. Nat., 28, 93-98. Karakulak, S. & I.K. Oray (1994): The length- -weight relationship of the bluefin tunas (Thunnus thynnus L., 1758) caught in Turkey’s waters. Istanbul University, Journal of Aquatic Products, 8, 159-171. Karakulak, F.S. & I.K. Oray (2009): Remarks on the fluctiations of bluefin tuna catches in Turkish waters. Collect. Vol. Sci. Pap. ICCAT, 63, 153- 160. Kelly, J.T. & A.P. Klimley (2003): The occur- rence of the white shark, Carcharodon carcharias, at the Point Reyes headlands, California. Calif. Fish. Game, 89, 187-196. Kesici, N.B., C. Dalyan, O. Gönülal, A. Akkaya, P. Lyne, S. Tüzün & B. Yıldırım (2021): A preli- minary study on marine top predators inhabiting Gökçeada Island, the north Aegean Sea. J. Black Sea Medit. Environ., 27, 34-48. Le Boeuf, B.J. (2004): Hunting and migratory movements of white sharks in the eastern North Pacific. Mem. Natl. Inst. Polar Res. Spec. Issue, 58, 89-100. Lyons, K., E.T. Jarvis, S.J. Jorgensen, K. Weng, J. O’Sullivan, C. Winkler & C.G. Lowe (2013): The degree and result of gillnet fishery interactions with juvenile white sharks in southern California assessed by fishery-independent and –dependent methods. Fish. Res., 147, 370-380. Maliet, V., C. Reynaud & C. Capapé (2013): Occurrence of great white shark, Carcharodon car- charias (Elasmobranchii: Lamniformes: Lamnidae), off Corsica (northern Mediterranean): historical and contemporary records. Acta Ichtyol. Pisc., 43, 323- 326. Martin, R.A., N. Hammerschlag, R.S. Collier & C. Fallows (2005): Predatory behaviour of white sharks (Carcharodon carcharias) at Seal Island, South Africa. J. Mar. Biol. Ass. UK., 85, 1121- 1135. Mazzoldi, C., G. Bearzi, C. Brito, I. Carval- ho, E. Desiderà, L. Endrizzi, L. Freitas, E. Gia- comello, I. Giovos, P. Guidetti, A. Ressurreição, M. Tull & A. MacDiarmid (2019): From sea monsters to charismatic megafauna: Changes in perception and use of large marine animals. PloS One 14, https:/ /doi.org/10.1371/journal. pone.0226810. McPherson, J.M. & R.A. Myers (2009): How to infer population trends in sparse data: examples with opportunities sighting records for great white sharks. Divers. Distrib., 15, 880-890. Mollet, H.F., G.M. Cailliet, A.P. Klimley, D.A. Ebert, A.D. Testi & L.J.V. Compagno (1996): A re- view of length validation methods and protocols to measure large white sharks. In: Klimley, A. P. & D. G. Ainley, eds. Great white sharks: the biology of Carcharodon carcharias. Academic, San Diego, pp. 91-108. Morey, G., M. Martínez, E. Massutí & J. Moranta (2003): The occurrence of white sharks, Carcharo- don carcharias, around the Balearic Islands (western Mediterranean Sea). Environ. Biol. Fishes, 68, 425- 432. Moro, S., G. Jona-Lasinio, B. Block, F. Micheli, G. De Leo, F. Serena, M. Bottaro, U. Scacco & F. Ferretti (2020): Abundance and distribution of the white shark in the Mediterranean Sea. Fish Fish., 21, 338-349. DOI: 10.1111/faf.12432. Official Gazette (10 September 2022): No: 31949, p. 42. https://www.resmigazete.gov.tr/eskiler/2022/09/20220910. pdf (Last accession: 13 September 2022). Randal, J.E. (1973): Size of the great white shark (Carcharodon). Science, 181, 169-170. Rigby, C.L., R. Barreto, J. Carlson, D. Fernan- do, S. Fordham, M.P. Francis, K. Herman, R.W. Jabado, K.M. Liu, C.G. Lowe, A. Marshall & N. Pacoureau, E. Romanov, R.B. Sherley & H. Winker (2019): Carcharodon carcharias. The IUCN Red List of Threatened Species 2019: e.T3855A2878674. http://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS. T3855A2878674.en Saïdi, B., M.N. Bradaï, A. Bouaïn, O. Guélorget & C. Capapé (2005): Capture of a pregnant female white shark, Carcharodon carcharias (Lamnidae) in the Gulf of Gabès (southern Tunisia, central Mediterranean) with comments on oophagy in sharks. Cybium, 29, 303-307. Santana-Morales, O., O. Sosa-Nishizaki, M.A. Escobedo-Olvera, E.C. Oñate-González, J.B. O’Sullivan & D. Cartamil (2012): Incidental catch and ecological observations of juvenile white sharks, Carcharodon carcharias, in western Baja California, Mexico – conservation implications. In: Domeier, M. L. ed: Global Perspectives on the Biology and Life History of the White Shark. CRC Press, Boca Raton, pp. 187-198. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 342 Hakan KABASAKAL et al.: DISTRIBUTION AND STATUS OF THE GREAT WHITE SHARK, CARCHARODON CARCHARIAS, IN TURKISH WATERS: ..., 325–342 Serena, F., A.J. Abella, F. Bargnesi, M. Barone, F. Colloca, F. Ferretti, F. Fiorentino, J. Jenrette & S. Moro (2020): Species diversity, taxonomy and distri- bution of chondrichthyes in the Mediterranean and Black Sea. Eur. zool., 87, 497-536. Serena, F. (2021): Elasmobranchs. In: Carpenti- eri P, Nastasi A, Sessa M, Srour A eds Incidental catch of vulnerable species in the Mediterranean and Black Sea fisheries – A review. FAO, Rome, pp. 113-197. Soldo, A. & J. Dulčić (2005): New record of a great white shark, Carcharodon carcharias (La- mnidae) from the eastern Adriatic Sea. Cybium, 1, 89-90. Soldo, A. & I. Jardas (2002): Occurrence of great white shark, Carcharodon carcharias (Linna- eus, 1758) and basking shark, Cetorhinus maximus (Gunnerus, 1758) in the eastern Adriatic and their protection. Period. Biol., 104, 195-201. Steel, R. (1985): Sharks of the World. Facts on File, New York, 192 pp. Tiralongo, F., C. Monaco, A. De Maddalena (2020): Report on a great white shark Carcharodon carcharias observed off Lampedusa, Italy. Annales, Ser. Hist. Nat., 30, 181-186. DOI 10.19233/ASHN.2020.21. Turan, C., M. Gürlek, D. Ergüden & H. Kabasa- kal (2021): A new record for the shark fauna of the Mediterranean Sea: Whale shark, Rhincodon typus (Orectolobiformes: Rhincodontidae). Annales, Ser. Hist. Nat., 31, 167-172. Weng, K.C., A.M. Boustany, P. Pyle, S. D. Ander- son, A. Brown & B. A. Block (2007): Migration and habitat of white sharks (Carcharodon carcharias) in the eastern Pacific Ocean. Mar. Biol., doi 10.1007/ s00227-007-0739-4. White, C.F, K. Lyons, S.J. Jorgensen, J. O’Sullivan, C. Winkler, K.C. Weng & C.G. Lowe (2019): Quanti- fying habitat selection and variability in habitat sui- tability for juvenile white sharks. PLos ONE, https:// doi.org/10.1371/journal.pone.0214642. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 343 received: 2022-06-09 DOI 10.19233/ASHN.2022.35 200 YEARS OF RECORDS OF THE BASKING SHARK, CETORHINUS MAXIMUS, IN THE EASTERN ADRIATIC Alen SOLDO University of Split, Department of Marine Studies, Ulica Ruđera Boškovića 31, 21000 Split, Croatia e-mail: soldo@unist.hr ABSTRACT The basking shark was relatively rare in the Adriatic, but since the beginning of the 21st century, its occurrence was substantially increased. It was suggested that basking sharks migrate from the Mediterranean toward the northern Adriatic, following water masses carrying specific copepod species that are sufficiently abundant for their feeding. In this paper, recent and historical data are compiled to re-examine spatial and temporal trends of the basking shark occurrence in the Adriatic. During the last 200 years, a total of 75 records were reported since the first one in 1822. The majority is reported during the spring season when the copepod abundance is the highest. After spring, the winter, especially the second half, is the time of the year when most of the basking sharks are reported, while during autumn and summer only a low number of records exist, 7 and 6 respectively. Key words: basking shark, Cetorhinus maximus, Adriatic, occurrence, public perception 200 ANNI DI SEGNALAZIONI DELLO SQUALO ELEFANTE, CETORHINUS MAXIMUS, NELL’ADRIATICO ORIENTALE SINTESI Lo squalo elefante era relativamente raro nell’Adriatico, ma dall’inizio del XXI secolo la sua presenza è aumentata in modo sostanziale. È stato ipotizzato che gli squali elefante migrino dal Mediterraneo verso l’Adriatico settentrionale, seguendo masse d’acqua che trasportano specifiche specie di copepodi sufficien- temente abbondanti per la loro alimentazione. In questo lavoro vengono raccolti dati recenti e storici per riesaminare le tendenze spaziali e temporali della presenza dello squalo elefante nell’Adriatico. Nel corso degli ultimi 200 anni sono state raccolte in totale 75 segnalazioni, a partire dalla prima del 1822. La maggior parte degli avvistamenti risale alla stagione primaverile, quando l’abbondanza dei copepodi è più elevata. Dopo la primavera, l’inverno, soprattutto la seconda metà, è il periodo dell’anno in cui è stata avvistata la maggior parte degli squali elefante, mentre durante l’autunno e l’estate sono stati registrati solo, rispettiva- mente, 7 e 6 esemplari di squalo elefante. Parole chiave: squalo elefante, Cetorhinus maximus, Adriatico, presenza, percezione pubblica ANNALES · Ser. hist. nat. · 32 · 2022 · 2 344 Alen SOLDO: 200 YEARS OF RECORDS OF THE BASKING SHARK, CETORHINUS MAXIMUS, IN THE EASTERN ADRIATIC, 343–350 INTRODUCTION The basking shark, Cetorhinus maximus (Gun- nerus, 1765), is a coastal-pelagic and semioceanic or oceanic shark species found in boreal to warm- temperate waters of the continental and insular shelves, occurring well offshore and often very close to land, just off the surf zone, and entering enclosed bays (Compagno, 2002; Ebert et al., 2021). It is a highly seasonal species, noteworthy for its seasonal appearance in given localities and subsequent disappearance (Ebert et al., 2021). The numbers of basking sharks sighted may fluctuate greatly in given areas each year, with irregular increases (‘invasions’) and decreases that are of uncertain cause. In Eastern Atlantic it occurs from Iceland and Norway to North Africa and the Medi- terranean (Compagno, 2002; Ebert et al., 2021). Although the basking shark records are widespread in the Mediterranean most of the records are re- ported in the Tyrrhenian, Balearic and Adriatic regions (Mancusi et al., 2005, 2020). Soldo & Jardas (2002a, 2002b) reported 27 records of the basking shark in the Eastern Adriatic from 1822 until mid of 2001. The records were widespread all over the coastal area of the Eastern Adriatic, although most were reported in the area of Kvarner Bay in northern Adriatic. The major- ity of the records were related to the accidentally caught specimens, either in the gillnet or trawl. Hence, not many records were recorded during the 19th century as most of them were from the 20th century, thus the basking shark was considered rare species in the Adriatic (Soldo et al., 1999). How- ever, during 2000 and the first half of 2001, a lot of new records were reported along the eastern and western coasts of Central and Northern Adriatic (Zuffa et al., 2001). Some records were related to the individual specimens but some were sightings of relatively large schools of adult sharks. What Zuffa et al. (2001) also noted was the absence of the basking shark along the Tuscany coast, which was frequently visited by C. maximus, at the same time when an increasing number of records were reported from the Adriatic coast. At that time, due to the lack of data, Zuffa et al. (2001) could not give an accurate reason for such a phenomenon but further research provided a reliable explana- tion. Soldo et al. (2008) compared the records of the basking shark in the Northern Adriatic during the period from January 2000 to October 2002 with various seawater characteristics. Comparing the occurrence of basking sharks and fluctuations in temperature and salinity showed no evident pat- tern. However, when the occurrence of the basking sharks was compared to fluctuations in zooplank- ton structure and abundance it was evident that the basking sharks were found exactly in the time of high density of large copepods, particularly Calanus helgolandicus, which is their major prey. Thus, it was suggested that basking sharks migrate from the Mediterranean toward the Northern Adriatic, following water masses carrying specific copepod species that are sufficiently abundant for their feeding (Soldo et al., 2008). Hence, segregation of adults and young-of-the-year was also observed as adults were arriving during the second half of winter and then in the following months seen near the surface usually feeding on patches of plankton. From mid of spring until its end, with the decline of zooplankton abundance, adults were leaving the Adriatic along the eastern coast but in deeper waters, and later, with the start of the summer season, the arrival of newborn sharks from deep water to coastal feeding grounds was observed (Soldo et al., 2008). Furthermore, what has to be noted is that this kind of behavior observed in the Adriatic was very similar to the behavior of the basking sharks described from southwest England (Sims & Merrett, 1997; Sims et al., 1997, 2003). In the Mediterranean, thus even in the Adri- atic, the basking shark is protected under rec- ommendation GFCM/36/2012/3 (later amended to GFCM/42/2018/2) of the General Fisheries Commission of the Mediterranean (GFCM). This recommendation is aimed at protecting those spe- cies of sharks and rays that are listed in Annex II of the Protocol of the Barcelona Convention on specially protected areas and biological diversity in the Mediterranean. Furthermore, C. maximus is listed in Annex I of Regulation (EU) 2019/1241 that prohibits for EU vessels to fish for, retain on board, tranship, land, store, sell, display or offer for sale this shark for all EU waters. In Croatian waters, which encompass most of the Eastern Adriatic, the highest level of protection is given to the basking shark as it is declared as a Strictly protected spe- cies (Soldo & Lipej, 2022). The aim of this study is to compile recent and historical data to re-examine spatial and temporal trends in basking shark occurrence in the Adri- atic. Such information is essential to differentiate whether changes in the occurrence of the Mediter- ranean basking shark population happen due to changes in population size or due to the movement patterns and distribution because of environmental change. MATERIAL AND METHODS The study area presented in this paper relates to the Eastern Adriatic which in the north is separated from the Western Adriatic at the point of Lido di ANNALES · Ser. hist. nat. · 32 · 2022 · 2 345 Alen SOLDO: 200 YEARS OF RECORDS OF THE BASKING SHARK, CETORHINUS MAXIMUS, IN THE EASTERN ADRIATIC, 343–350 Jesolo. The timespan covered by this study started in 1822, when the first record was reported and ends by March 2022, thus resulting in 200 years period. Data presented in this paper were retrieved from studies focusing on the basking shark in the Adriatic (Lipej et al., 2000; Zuffa et al., 2001; Soldo & Jardas, 2002a, 2002b; Soldo et al., 2008; Lipej & Mavrić, 2015) and from records published in different media. However, only published records that were accompanied by photo and/or video evidence that could be verified were used. Luckily, being the world’s second largest fish and one of three filter-feeding shark species, the bask- ing shark is put at the center of public interest, thus most of the new records were published by several media sources with additional data which simplified the confirmation of the record. Fig. 1: Geographical locations of records of C. maximus per season in the Eastern Adriatic Sea; - juveniles ( < 299 cm TL), ■ - subadults (300–499 cm TL), ● - adults ( > 500 cm TL). Sl. 1: Geografske lokacije primerov pojavljanja vrste C. maximus v vzhodnem Jadranskem morju glede na sezono; - mladostni primerki ( < 299 cm telesne dolžine), ■ - subadulti (300–499 cm), ● - odrasli primerki ( > 500 cm). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 346 Alen SOLDO: 200 YEARS OF RECORDS OF THE BASKING SHARK, CETORHINUS MAXIMUS, IN THE EASTERN ADRIATIC, 343–350 To investigate the segregation of adults and young basking sharks three size classes were com- pared, specifically < 299 cm (juveniles), 300–499 cm (subadults), and adults > 500 cm in total length. RESULTS AND DISCUSSION During the last 200 years, a total of 75 records were reported since the first one in 1822 (Appendix 1). Appendix 1 contains even an additional record, which is not numbered, from 12th February 2008 when public media reported about the catch of the basking shark 9 NM from Rogoznica in the Central Adriatic. However, later examination of the avai- lable photos revealed that the shark in the case is not a basking shark but the bluntnose sixgill shark, Hexanchus griseus (Bonnaterre, 1788). This record also proves that although citizen science and social media are useful for gathering additional information, careful investigation of the available data is needed as reporting and successive publi- shing of incorrect data can result in misleading conclusions. Although records that contain an exact location are widespread along the Eastern Adriatic coast, most are reported from the Northern Adriatic, including Kvarner Bay, which is well known as the area of Adriatic with the highest zooplankton biomass. Soldo et al. (2008) reported that during the investigation carried out in the Northern Adri- atic many basking sharks were observed feeding on patches of plankton which coincides with the available information from new records as only for the basking sharks from that area similar feeding behavior is reported. When the records are divided by the season (Fig. 1), it is clear that the majority is reported during the spring season when the cope- pod abundance is the highest, which corresponds with the findings of Soldo et al. (2008). After spring, the winter, especially the second half, is the time of the year when most of the basking sharks are reported, while during autumn and summer only a low number of records exist, 7 and 6 respectively. The increasing numbers of records of C. maximus in spring and winter months due to the increasing abundance of larger copepods is later also reported from northern Aegean waters (Kabasakal, 2013). A similar phenomenon was also observed in the northeastern Mediterranean, where records of C. maximus in the Bay of Mersin (Turkey) were asso- ciated with annual average zooplankton biomass in coastal waters that was about nine times higher than in open waters (Zenginer & Beşiktepe, 2007; Kabasakal, 2013). Hence, during the summer, out of 6 records, 2 are juveniles and 3 subadults which also coincides with the temporal segregation of juvenile and adult age classes observed by Soldo et al. (2008) who suggested that younger sharks are arriving in summer after adults leave the Adriatic. Two juveniles were reported during the autumn but only in southern Adriatic which can be explai- ned by a late exit from the Adriatic of juveniles that were inhabiting more northern areas during the summer. The only exception from the obser- ved pattern is the case of a male juvenile basking shark of 217 cm in total length and 40 kg of weight caught on 25th December 2014 (Lipej & Mavrič, 2015). Soldo et al. (2008) already proved that the migration of the basking sharks in the Adriatic is not related to changes in temperature and/or sali- nity, which was recently also confirmed by studies performed in other world regions (Finnuci et al., 2021; Johnston et al., 2022). Thus, such surprising early winter arrival of the juvenile basking shark in very shallow waters of the Northern Adriatic (20 m depth) can not be precisely explained as the reasons can be various. Basking sharks are known to exhibit high interannual variability in occurrence, but the forcing mechanisms behind this are not known, especially for the juveniles for which the data is even more scarce than for the adults. The reason can be attributed to the feeding behavior, but on the other hand, it is unclear if basking sharks continue to actively feed during the winter (Doherty et al., 2019). It is also possible that such behavior is related to thermoregulation or aid energy conservation (Thums et al., 2013) but again all the possible explanations are difficult to confirm due to the limited amount of biological data available. Hence, what also has to be noted is that this case is not a unique one as a female juvenile basking shark at the transition stage with S-shaped snout and a total length of 3.02 m, was captured in Sagami Bay, Japan, on December 26, 2020, however, again without meaningful expla- nation (Katooka et al., 2020). During the last few decades records that are reported mainly come from sightings while inci- dental catches are decreased. Even more, when basking sharks are accidentally caught, if still ali- ve, they are usually released by the fishermen (e.g. the record from Savudrija in March 2019), which shows that the basking shark today are perceived by the general public as harmless and gentle mari- ne giants in comparison to late 20th century period when any large shark was portrayed negatively (Soldo & Jardas, 2002b). Although the increased occurrence of the basking shark is linked to en- vironmental factors, it can be also presumed that basking sharks appear to be responding well to protective measures that are existing in the eastern Adriatic, especially as they are combined with positive media and public perception that enhance conservation efforts. That is particularly important ANNALES · Ser. hist. nat. · 32 · 2022 · 2 347 Alen SOLDO: 200 YEARS OF RECORDS OF THE BASKING SHARK, CETORHINUS MAXIMUS, IN THE EASTERN ADRIATIC, 343–350 Appendix 1: Records of the basking shark, Cetorhinus maximus, in the Eastern Adriatic from 1822 until April 2022. Priloga 1: Zapisi o pojavljanju morskega psa orjaka, Cetorhinus maximus, v vzhodnem Jadranu od leta 1822 do aprila 2022. No Date Location TL (cm) Weight (kg) Sex Remarks 1 1822 Kvarner Bay - - - - 2 15.03.1825 Trieste Bay - - - - 3 1846 Dalmatia - - - - 4 1866 Kvarner Bay 800 - - - 5 1903 Hvar - - - - 6 23.07.1908 Vis 310 289 female - 7 07.10.1921 Cres 320 - male - 8 15.03.1925 - - - - - 9 09.09.1926 - 600-700 800-1000 - - 10 1931 Bakarac - - - caught in tuna gillnet 11 02.06.1933 Bakar 500 1000 - caught in tuna gillnet 12 01.09. 1934 Kraljevica 762 2400 - - 13 10.07.1937 Lumbarda 350 250 - caught in gillnet 14 07.11.1952 Poreč - - - caught in gillnet 15 August 1954 Peškera 470 - - - 16 07.12.1968 Ston 250 80 - - 17 1974 Trieste 392 386 male caught in gillnet 18 25.11.1980 Molat 550 - - - 19 14.02.1981 Bar 400 - - caught in gillnet 20 18.06.1981 Ičići 265 120 - - 21 20.05.1985 Volosko 647 2000 - caught in tuna gillnet 22 11.01.1991 Ičići 600 - - photographed in the sea 23 05.04.1995 Palagruža 650 1500 female caught by trawl 24 08.10.1995 Ugljan 700 2000 - caught in gillnet 25 23.03.1999 Pelješac 722 2500 female caught in gillnet 26 March and April 2000 Rovinj 700 2000 - several sightings and encounters with boats, finally caught in gillnet and released 27 22.05.2000 Piran 299 120 male caught in gillnet 28 23.05.2000 Blitvenica area 700 2000 - caught by trawl 29 05.06.2000 Blitvenica area 850 2500 - caught by trawl 30 19.07.2000 Piran 249 70 male caught in gillnet 31 22.03.2001 Umag 800 - - several sightings in following days 32 28.03.2001 Caorle 500 - - sighted several times and photographed 33 29.03.2001 Caorle <500 - - according to photo, different specimen 34 April 2001 Slovenian waters - - - school of 9 sharks 35 09.05.2001 Trieste 600 - - sighting 36 20.05.2001 Kali 800 - - several sightings (specimen with wounded head) 37 25.09.2001 Pašman channel 700 - - sighting 38 16.03.2002 Sv.Juraj 740 - female accidentally caught in lobster pot mainline 39 16.03.2002 Jesolo 600 - - sighting 40 8.04.2002 Lignano 600 - - caught 23 miles in front of Tagliamento estuary 41 01.05.2002 Karin sea 700 - - caught in gillnet, released, found dead after month, probably the same specimen 42 May 2002 Jesolo 600 - - sighted and photographed 43 03.03.2003 Osor 600 - - caught in gillnet 44 24.03.2003 Paška vrata 650 - caught in lobster pot line 45 01.04.2003 Supetarska Draga-Rab 710 - - caught in gillnet and released 46 07.04.2003 in front of Ugljan 500-600 - - sighting 47 12.05.2003 Savudrija >700 - female caught in gillnet, towed into Savudrija and released 48 October 2004 Herceg Novi 420 300 - caught on longline 49 20.02.2007 Umag 600 - - sighting 50 29.04.2007 Lumbarda 270 - - juvenile caught in gillnet and released 12.02.2008 9 NM from Rogoznica 350 350 female caught and reported as the basking shark but probably misidentified as sixgill shark Hexanchus griseus 51 11.07.2008 Rijeka port 250 - - juvenile 52 17.01.2009 Pula port 6 m - - sighting 53 31.03.2009 Plavnik 7 m - - caught in lobster pot line 54 26. 04.2010 Koromačno 6 m - - sighting 55 01.05.2010 Premantura 6 m - - seen with mouth wide open during feeding 56 30.05.2010 Ičići 5 m - - sighting 57 03.06.2010 Omišalj 8 m - female caught in lobster pot line 58 09.06.2010 Umag 7 m - - sighting 59 16.6.2010 Koromačno 6 m - - sighting 60 22.04.2011 Molat 10 m - - caught in gillnet 61 29.04.2011 Ilovik 7 m - - seen with mouth wide open during feeding 62 29.04.2011 Moščenička draga 3,7 m - - sighting 63 12.05.2011 Rovinj 7 m - - carcass found 64 26.04.2012 Poreč 8 m - female caught in gillnet 65 31.01.2013 Senj 8 m - - caught in gillnet and reportedly released 66 14.01.2014 Ičići, Ika 6-7 m - - sighting 67 08.06.2014 Between Mali Lošinj and Susak 5.5 m - - sighting 68 25.12.2014 Piran 217 cm 40 male juvenile 69 22.02.2015 Ližnjan 8 m - - sighting 70 29.04.2015 Cres 7 m - - sighting 71 02.02.2016 Rijeka 6 m - female carcass with the rope around the body 72 10.05.2017 Porozina-Brestova 5 m - - sighting 73 02.03.2019 Savudrija 8 m - - caught in gillnet and released 74 05.03.2021 Koromačno 8 M - - sighting 75 12.03.2022 Cape Ubaš 8 m - - sighting, missing of the dorsal fin part reported ANNALES · Ser. hist. nat. · 32 · 2022 · 2 348 Alen SOLDO: 200 YEARS OF RECORDS OF THE BASKING SHARK, CETORHINUS MAXIMUS, IN THE EASTERN ADRIATIC, 343–350 for this species as the basking shark in the Adriatic is assessed as Critically Endangered by the latest study (Soldo & Lipej, 2022). A huge amount of media articles presenting scientific facts and con- servation issues were published in the media each time after basking shark sightings or accidental cat- ches occurred, thus, changing the public attitude toward this large shark. Therefore, the case of the basking sharks in the Adriatic can be an example for other shark species’ conservation as, obviously, the combination of science, proper management and positive public perception is giving results. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 349 Alen SOLDO: 200 YEARS OF RECORDS OF THE BASKING SHARK, CETORHINUS MAXIMUS, IN THE EASTERN ADRIATIC, 343–350 DVESTO LET OPAZOVANJ MORSKEGA PSA ORJAKA, CETORHINUS MAXIMUS, V VZHODNEM JADRANSKEM MORJU Alen SOLDO University of Split, Department of Marine Studies, Ulica Ruđera Boškovića 31, 21000 Split, Croatia e-mail: soldo@unist.hr POVZETEK Morski pes orjak je relativno redka vrsta v Jadranu, toda od začetka 21. stoletja se je število opazovanj te vrste znatno povečalo. Domnevali so, da se morski psi orjaki selijo iz Sredozemskega morja proti severnemu Jadranu zasledujoč vodne mase z določenimi vrstami rakov ceponožcev, ki so dovolj številčni za njihovo prehrano. V pričujočem prispevku je avtor zbral in analiziral podatke o prostorskem in časovnem trendu pojavljanja morskih psov orjakov v Jadranskem morju. V zadnjih dvesto letih je bilo objavljenih skupaj 75 zapisov o pojavljanju te vrste po prvemu zapisu iz leta 1822. Večina podatkov se nanaša na spomladansko sezono, v kateri so največje gostote rakov ceponožcev. Poleg pomladi je največ zapisov o pojavljanju znanih pozimi, še posebej v drugi polovici, medtem ko je iz jesenskega in poletnega obdobja znanih le 7 oziroma 6 zapisov. Ključne besede: morski pes orjak, Cetorhinus maximus, Jadran, pojavljanje, dojemanje javnosti ANNALES · Ser. hist. nat. · 32 · 2022 · 2 350 Alen SOLDO: 200 YEARS OF RECORDS OF THE BASKING SHARK, CETORHINUS MAXIMUS, IN THE EASTERN ADRIATIC, 343–350 REFERENCES Compagno, L.J.V. (2002): Sharks of the world. An annotated and illustrated catalogue of shark species known to date. Volume 2. Bullhead, mackerel and carpet sharks (Heterodontiformes, Lamniformes and Orectolobiformes). No. 1, Vol. 2. FAO, Rome. Doherty, P.D., J.M. Baxter, B.J. Godley, R.T. Gra- ham, G. Hall, J. Hall, L.A. Hawkes, S.M. Henderson, L. Johnson, C. Speedie & M.J. Witt (2019): Seasonal changes in basking shark vertical space use in the north-east Atlantic. Mar. Biol., 166, 129. Ebert, D.A., M. Dando & S. Fowler (2021): Sharks of the World: A complete guide. Princeton 112 University Press, Wild Nature Press Series, UK: 608 pp. Finucci, B., C.A.J. Duffy, T. Brough, M.P. Francis, M. Milardi, M.H. Pinkerton, G. Petersen & F. Stephen- son (2021): Drivers of Spatial Distributions of Basking Shark (Cetorhinus maximus) in the Southwest Pacific. Front. Mar. Sci., 8, 665337. Johnston, E.M., J.D.R. Houghton, P.A. Mayo, G.K.F. Hatten, A.P. Klimley & P.J. Mensink (2022): Cool runnings: behavioural plasticity and the realised thermal niche of basking sharks. Environ. Biol. Fish., https://doi.org/10.1007/s10641-021-01202-8. Kabasakal, H. (2013): Rare but present: Status of basking shark, Cetorhinus maximus (Gunnerus, 1765) in eastern Mediterranean. Annales, Ser. Hist. Nat., 23, 127-132. Katooka, D., T. Sakiyama & H. Senou (2020): Record of a juvenile basking shark, Cetorhinus maximus (Lamniformes: Cetorhinidae), from Sagami Bay, central Japan, with a review of worldwide re- cords of juveniles of the species. Kanagawa Nature Magazine Material, 43, 53-60. Lipej, L., A. De Maddalena & A. Soldo (2004): Sharks of the Adriatic Sea. Knjižnica Annales Majo- ra, Koper, 254 pp. Lipej, L., T. Makovec, A. Soldo & V. Žiža (2000): Occurrence of the Basking Shark, Cetorhinus maxi- mus (Günnerus, 1765), in the waters off Piran (Gulf of Trieste, Northern Adriatic). Annales, Ser. Hist. Nat., 10(2), 205-206. Lipej, L. & B. Mavrič (2015): Juvenile basking shark Cetorhinus maximus caught in the waters off Piran (northern Adriatic). In: Tsiamis et al. New Mediterra- nean Biodiversity Records (July 2015). Mediterranean Marine Science, 16(2), 472-488. Mancusi, C., Clò, S., Affronte, M., Bradaï, M.N., Hemida, F., Serena, F., Soldo, A. & M. Vacchi (2005). On the presence of basking shark (Cetor- hinus maximus) in the Mediterranean Sea, Cybium 29 (4): 399- 405. Mancusi, C., R. Baino, C. Fortuna, L. De Sola, G. Morey, M. Bradai, A. Kallianotis, A. Soldo, F. Hemida, A. Saad, M. Dimech, P. Peristeraki, M. Bariche, S. Clò, E. De Sabata, L. Castellano, F. Garibaldi, L. Lanteri, F. Tinti, A. Pais, E. Sperone, P. Micarelli, F. Poisson, L. Sion, R. Carlucci, D. Cebrian-Menchero, B. Séret, F. Ferretti, A. El-Far, I. Saygu, E. Shakman, A. Bartoli, J. Guallart, D. Damalas, P. Megalofonou, M. Vacchi, M. Bottaro, G. Notarbartolo Di Sciara, M. Follesa, R. Cannas, H. Kabasakal, B. Zava, G. Cavlan, A. Jung, M. Abudaya, J. Kolitari, A. Barash, A. Joksimović, B. Marčeta, L. Gonzalez Vilas, F. Tiralongo, I. Giovos, F. Bargnesi, S. Lelli, M. Barone, S. Moro, C. Mazzoldi, C. Charis, A. Abella & F. Serena (2020): MEDLEM data- base, a data collection on large Elasmobranchs in the Mediterranean and Black seas. Mediterranean Marine Science, 21(2), 276-288. Sims, D.W. & D.A. Merrett (1997): Determination of zooplankton characteristics in the presence of surface feeding basking sharks Cetorhinus maximus. Mar. Ecol. Prog. Ser., 158, 297-302. Sims, D.W., A.M. Fox & D.A. Merrett (1997). Basking shark occurrence off south-west England in relation to zooplankton abundance. J. Fish Biol., 51, 436-440. Sims, D.W., E.J. Southall, D.A. Merrett & J. Sanders (2003): Effects of zooplankton density and diel period on the surface-swimming duration of basking sharks. J. Mar. Biol. Ass. U.K., 83, 643-646. Soldo A. & I. Jardas (2002a): Large sharks in the Ea- stern Adriatic. In: Vacchi M., La Mesa G., Serena F. & B. Séret (eds), Proc. 4th Elasmbranch Ass. Meet., Livorno (Italy) 2000, pp. 141-155. Soldo A. & I. Jardas (2002b): Occurrence of great white shark, Carcharodon carcharias (Linnaeus, 1758) and basking shark, Cetorhinus maximus (Gunnerus, 1765) in the Eastern Adriatic and their protection. Peri- od. Biol., 104(2), 195-201. Soldo, A. & L. Lipej (2022): An Annotated Checklist and the Conservation Status of Chondrichthyans in the Adriatic. Fishes, 7, 245. Soldo, A., M. Peharda, V. Onofri, N. Glavić & P. Tutman (1999): New record and some morphological data of the basking shark Cetorhinus maximus (Gunnerus, 1765) in the Eastern Adriatic. Annales, Ser. Hist. Nat., 17, 229-232. Thums, M., M. Meekan, J. Stevens, S. Wilson & J. Po- lovina (2013): Evidence for behavioural thermoregulation by the world’s largest fish. J. R. Soc. Interface, 10, 2-6. Zenginer, A. & Ş. Beşiktepe (2007): Annual variations of zooplankton biomass and abundance in Mersin bay (NE Mediterranean Sea). Rapp. Comm. int Mer Médit., 38, 643. Zuffa, M., A. Soldo & T. Storai (2001): Preliminary observations on abnormal abundance of Cetorhinus maximus (Gunnerus, 1765) in the Central and Northern Adriatic Sea. Ann., Ser. Hist. Nat., 11(2), 185-192. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 351 received: 2022-07-06 DOI 10.19233/ASHN.2022.36 MORPHOMETRICS OF AN INCIDENTALLY CAPTURED LITTLE GULPER SHARK, CENTROPHORUS UYATO (SQUALIFORMES: CENTROPHORIDAE), FROM THE GULF OF ANTALYA, WITH NOTES ON ITS BIOLOGY Hakan KABASAKAL Ichthyological Research Society, Tantavi mahallesi, Menteşoğlu caddesi, İdil apt., No: 30, D: 4, TR-34764 Ümraniye, İstanbul, Turkey Doğal Hayatı Koruma Vakfı (WWF-Türkiye), Asmalı Mescit, İstiklal Cd. No:136, 34430 Beyoğlu/İstanbul, Turkey e-mail: kabasakal.hakan@gmail.com Ayşe ORUÇ, Cansu İLKILINÇ, Efe SEVİM, Ebrucan KALECİK & Nilüfer ARAÇ Doğal Hayatı Koruma Vakfı (WWF-Türkiye), Asmalı Mescit, İstiklal Cd. No:136, 34430 Beyoğlu/İstanbul, Turkey ABSTRACT On 19 May 2022, a specimen of Centrophorus uyato (Rafinesque, 1810) was incidentally hooked by a commercial longliner at a depth of 140 m in the Gulf of Antalya (northeastern Mediterranean Sea). It was an immature female with a total length of 663 mm and a total weight of 1,505 g. The reproductive tract was thin and threadlike. Remains of teleostean fishes (Scomber sp., n=1; Boops boops, n=1) were found in the stomach contents. The morphometric measurements of this specimen coincided with those of C. uyato Clade A previously outlined. Key words: Elasmobranchii, Centrophorus, Levant, bathyal MORFOMETRIA DI UN PICCOLO CENTROFORO BOCCANERA, CENTROPHORUS UYATO (SQUALIFORMES: CENTROPHORIDAE), CATTURATO ACCIDENTALMENTE NEL GOLFO DI ANTALYA, CON NOTE SULLA SUA BIOLOGIA SINTESI Il 19 maggio 2022, un esemplare di Centrophorus uyato (Rafinesque, 1810) è stato accidentalmente agganciato da un peschereccio con palangari commerciali a 140 m di profondità nel Golfo di Antalya (Mediterraneo nord-orientale). Si trattava di una femmina immatura con una lunghezza totale di 663 mm e un peso totale di 1.505 g. Il tratto riproduttivo era sottile e filiforme. Nel contenuto dello stomaco sono stati trovati resti di pesci teleostei (Scomber sp., n=1; Boops boops, n=1). Le misure morfometriche di questo esemplare coincidono con quelle del clade A di C. uyato precedentemente delineato. Parole chiave: Elasmobranchii, Centrophorus, Levante, batiale ANNALES · Ser. hist. nat. · 32 · 2022 · 2 352 Hakan KABASAKAL et al.: MORPHOMETRICS OF AN INCIDENTALLY CAPTURED LITTLE GULPER SHARK, CENTROPHORUS UYATO (SQUALIFORMES: ..., 351–358 INTRODUCTION The genus Centrophorus Müller and Henle, 1837 is comprised of small- to medium-sized (<200 cm TL) deepwater bentopelagic sharks often found along outer continental shelves and upper continental and insular slopes at depths between 50 and 2,350 m throughout the world’s oceans (Ebert & Stehmann, 2013; Veríssimo et al., 2014). Although the type spe- cies of the genus was first described in the early 19th century as Squalus granulosus Bloch and Schneider, 1801 (Ebert & Stehmann, 2013), the validity of sev- eral Centrophorus species has been considered con- troversial for the last few decades (Veríssimo et al., 2014; White et al., 2013, 2017; Serena et al., 2020; Bellodi et al., 2022). For many years, two Centropho- rus species (granulosus and uyato) had been reported to occur in the Mediterranean Sea (Tortonese, 1956; Compagno, 1984; McEachran & Branstetter, 1984; Serena, 2005), however, recent studies support the presence of a single Centrophoridae species in the Mediterranean and, following the recommendation by White et al. (2022), Centrophorus uyato (Rafin- esque, 1810) should be the name used for it until the taxonomical issue is resolved. Still, any morphometric data of specimens from different geographical localities may contribute to a better description of intraspecific variation of C. uyato. Thus, in the present paper, the authors report the morphometric measurements of a C. uyato from Turkish Mediterranean waters, complete with brief biological notes on the examined specimen, and compare the percentages of TL for the present measurements with those reported in Kousteni et al. (2021), Bellodi et al. (2022) and White et al. (2022). MATERIAL AND METHODS On 19 May 2022, a female specimen of Centro- phorus uyato (663 mm TL) was incidentally hooked by a commercial longliner at a depth of 140 m in the Gulf of Antalya (Fig. 1). No longer alive when hauled on deck, it was preserved on ice and sent to first author for further inspection. Species identifica- Fig. 1: Map showing the locality of capture (*) of the female Centrophorus uyato in the Gulf of Antalya. Sl. 1: Zemljevid obravnavanega območja z lokaliteto ulova (*) samice vrste Centrophorus uyato v Antalijskem zalivu. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 353 Hakan KABASAKAL et al.: MORPHOMETRICS OF AN INCIDENTALLY CAPTURED LITTLE GULPER SHARK, CENTROPHORUS UYATO (SQUALIFORMES: ..., 351–358 Tab. 1: Morphometric measurements for the present specimen of Centrophorus uyato in mm, and expressed as percentages of total length (TL) for the present specimen and the specimens examined by Kousteni et al. (2021), from neighbouring Cypriot waters, and specimens examined by Bellodi et al. (2022) and White et al. (2022). Tab. 1: Morfometrične meritve primerka vrste Centrophorus uyato v mm, in izražene kot delež celotne dolžine (TL) v primerjavi s primerki iz bližnjih ciprskih voda, ki so jih pregledali Kousteni et al. (2021), ter primerki, ki so jih pregledali Bellodi et al. (2022) in White et al. (2022). Measurements mm Present Specimen (TOT = 663 mm) Kousteni et al. (2021) Bellodi et al. (2022) White et al. (2022) mm % of TL % of TL sp1 (TL = 522 mm) % of TL sp2 (TL = 483 mm) Mean of measurements % of TL (TL = 983 mm) PRC Precaudal length 505 76.17 79.5 79.11 79.3 PD2 Pre-second dorsal length 431 65.01 63.51 63.69 69.72 64.6 PD1 Pre-first dorsal length 205 30.92 32.6 32.23 32.89 28.7 PP1 Prepectoral length 146 22.02 24.05 24.47 22.1 PP2 Prepelvic length 383 57.77 58.18 60.69 62.90 57.1 PCA Pelvic-caudal space 95.8 14.45 14.48 12.67 13.9 SVL Snout-vent length 396 59.73 61.13 63.9 IDS Interdorsal space 161 24.28 20.27 20.04 31.28 23.2 DCS Dorsal-caudal space 53.5 8.07 7.89 6.9 6.4 PPS Pectoral-pelvic space 211 31.83 28.49 29.82 31.3 HDL Head length 150 22.62 24.82 23.82 21.93 22.5 PGL Prebranchial length 122.4 18.46 20.5 20.2 17.23 18.5 PSP Prespiracular length 86.9 13.11 14.66 14.1 12.1 POB Preorbital length 44.1 6.65 7.44 6.9 5.3 PRN Prenarial length 21.5 3.24 4.7 4.29 3.7 POR Preoral length 63.7 9.61 10.33 9.29 9.5 EYL Eye length 31.6 4.77 6.3 6.54 5.3 EYH Eye height 15 2.26 1.73 1.77 1.4 INO Interorbital space 37.9 5.72 7.9 8.27 8.3 SPL Spiracle length 12.3 1.86 1.27 1.07 1.2 ESL Eye-spiracle space 17.4 2.62 2 1.55 MOW Mouth width 55 8.30 8.1 6.91 ING Intergill length 34.1 5.14 4.32 3.62 GS1 First gill slit height 13.8 2.08 1.82 1.8 GS2 Second gill slit height 15.7 2.37 1.93 1.97 GS3 Third gill slit height 18.1 2.73 2.07 2.07 GS4 Fourth gill slit height 20.1 3.03 2.21 2.36 GS5 Fifth gill slit height 20.2 3.05 2.38 2.57 P1A Pectoral anterior margin 77.4 11.67 11.63 11.36 12.3 P1B Pectoral base 45.1 6.80 5.71 5.86 5.8 P1I Pectoral inner margin 85.1 12.84 11.71 11.95 13.57 12.3 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 354 Hakan KABASAKAL et al.: MORPHOMETRICS OF AN INCIDENTALLY CAPTURED LITTLE GULPER SHARK, CENTROPHORUS UYATO (SQUALIFORMES: ..., 351–358 tion was performed in accordance with Veríssimo et al. (2014) and taxonomic nomenclature follows White et al. (2022). Fifty-three morphometric meas- urements (Compagno, 1984) were performed either with a measurement tape to the nearest 1 mm (for measurements >10 cm) or with a vernier caliper to the nearest 0.05 mm (for measurements <10 cm). Although 53 measurements were recorded on the present specimen, only eight of them, which are typed bold in Table 1, were used to describe the present specimen or compared with the published morphometric data (Kousteni et al., 2021; Bellodi et al., 2022; White et al., 2022). Total length (TL) is the distance between the tip of the snout and tip of the upper caudal lobe, where the upper caudal lobe is in depressed position (Compagno, 1984). Total, eviscerated and liver weights (TW, EW and HW) were weighed with an electronic hand balance to the nearest 1-gram precision. Stomach contents were identified to the lowest possible taxonomical level. Since the specimen could not be formalin-fixed and preserved, the upper and lower jaws were excised and preserved in the archive of the first author as local proof of specimen. The maturity stage of the specimen was evaluated following the FAO guide- lines on the maturity stages of Mediterranean fishery resources (Follesa & Carbonara, 2019). The present study was supported by the WWF Turkey Wildlife Program within the scope of Cartilaginous Fish (Chondrichthyes) Data Generation project. RESULTS AND DISCUSSION Description of the present female little gulper shark (TL = 663 mm): a typical squaliform shark with spines in front of dorsal fins. No anal fin. Pel- vic insertion to lower caudal origin (PCA) is 14.45% of TL. Tip of snout to anterior edge of eye distance (POB) is 0.29 of head length (HDL). Height of first dorsal fin (D1H) is 6.29% of TL. First dorsal base (D1B) is 10.47% of TL. First dorsal fin moderately high and short, second dorsal moderately large, nearly as high as first; length of second dorsal base (D2B) is 0.61 of first dorsal base (D1B). Free rear tips of pectoral fins formed into narrow, angular and elongated lobes that reach well beyond the P1P Pectoral posterior margin 59.7 9.00 10.46 10.53 P2A Pelvic anterior margin 40.7 6.14 6.52 6.71 P2L Pelvic length 65.8 9.92 10.42 9.9 11.2 P2B Pelvic base 23.6 3.56 4.85 4.36 5.8 P2I Pelvic inner margin length 49 7.39 5.84 5.86 5.8 D1L First dorsal length 119.2 17.98 17.39 16.7 19.0 D1H First dorsal height 41.7 6.29 6.37 6.31 5.8 D1A First dorsal anterior margin 60.8 9.17 12.15 10.28 12.6 D1B First dorsal base 69.4 10.47 11.54 11.49 13.5 D1I First dorsal inner margin 47.3 7.13 5.84 5.2 5.8 D1P First dorsal posterior margin 64.7 9.76 8.68 8.31 9.3 D2L Second dorsal length 75.4 11.37 12.36 12.69 12 D2H Second dorsal height 32.9 4.96 3.86 4.28 4.7 D2A Second dorsal anterior margin 45.9 6.92 9.23 9.13 8.6 D2B Second dorsal base 42.9 6.47 8.1 8.53 8.3 D2I Second dorsal inner margin 27.1 4.09 4.26 4.17 4.1 D2P Second dorsal posterior margin 43.6 6.58 6.36 5.44 6.3 CDM Dorsal caudal margin 132.5 19.98 20.44 20.62 17.88 20.1 CPV Preventral caudal margin 76.3 11.51 12.89 11.52 11.9 CST Subterminal caudal margin 23.3 3.51 3.1 3.23 2.9 CTR Terminal caudal margin 51.9 7.83 5.5 5.72 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 355 Hakan KABASAKAL et al.: MORPHOMETRICS OF AN INCIDENTALLY CAPTURED LITTLE GULPER SHARK, CENTROPHORUS UYATO (SQUALIFORMES: ..., 351–358 Fig. 2: Examined specimen of Centrophorus uyato: (a) lateral view, (b) pectoral fin in ventral view, (c) mouth and snout, (d) eye and spiracle from left, (e) stomach contents, spiral valve and bilobed liver, and (f) upper and lower jaws. Sl. 2: Pregledan primerek vrste Centrophorus uyato: (a) pogled s strani, (b) prsna plavut s trebušne strani, (c) usta in gobec, (d) oko in spirakel z leve, (e) vsebina želodca, zavitnica in dvokrpa jetra, ter (f) zgornja in spodnja čeljust. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 356 Hakan KABASAKAL et al.: MORPHOMETRICS OF AN INCIDENTALLY CAPTURED LITTLE GULPER SHARK, CENTROPHORUS UYATO (SQUALIFORMES: ..., 351–358 level of first dorsal spine. Caudal fin with a strongly notched posterior margin. Bladelike unicuspid teeth in upper and lower jaws, lower teeth much larger than the upper; tooth counts for upper and lower jaws are 21-21 and 16-16, respectively. Coloration is brownish-grey dorsally and lighter in the same colour ventrally; wide blackish-dark bands on pos- terior margins of dorsal fins; pectoral, pelvic and caudal fins with conspicuous white margins. The diagnostic features of the examined specimen are depicted in Figure 2. Morphometric measurements are presented in Table 1. TW, EW and HW of the present specimen are 1505, 1045 and 255 grams, respectively. Reproductive tract was thin and threadlike. Centrophorus uyato is an ovoviviparous shark and females mature at a length between 75 and 89 cm (Serena, 2005). The condition of the reproductive organs and size (663 mm TL) of the present specimen confirm that it was an immature female (maturity stage 1) (Follesa & Carbonara, 2019). Remains of teleostean fishes (Scomber sp., n=1; Boops boops, n=1) were found in the stomach contents; total mass of stomach contents was 132 grams (Fig. 2). According to Compagno (1984), major food items of C. uyato are bony fishes and squid. Veríssimo et al. (2014) reported that in C. uyato, PCA is <16% of TL and POB is ≤ 0.33 of HDL, which equals 14.45% and 0.29, respectively, in the examined specimen. According to McEachran and Branstetter (1984), in C. uyato D1H is 6.5% of TL and D1B 11% of TL, which equals 6.29% of TL and 10.47% of TL, respectively, in the examined speci- men. Finally, D2B was reported to be about ¾ or 0.75 of D1B, which equals 0.61 in the examined lit- tle gulper shark. Since the observed morphometric measurements were very close to or coincided with those reported in the literature, the present specimen was identified as C. uyato. The slight differences observed between the ratios in the present specimen and those reported in the taxonomic literature may be due to intraspecific or intraregional variation. Kousteni et al. (2021) reported morphometric data of two females captured in Cypriot waters identified and genetically confirmed as C. uyato. According to Kousteni et al. (2021), the POB to HDL ratios of the two females (483 and 522 mm TL, respectively) varied between 0.28 and 0.29. Moreover, the PCA to TL percentage ratios in these Cypriot specimens were 12.67% (483 mm TL) and 14.48% (522 mm TL). The ratios for the present specimen coincide with or are within the ranges of those reported for specimens from neighbouring Cypriot waters (Tab. 1). For the Mediterranean Sea, Veríssimo et al. (2014) retain the globally distributed species his- torically referred to as Centrophorus granulosus or C. uyato in Clade A, under the name of C. cf. uyato, until nomenclatural confusion associated with this clade is resolved. In addition to above-mentioned POB/HDL and PCA/TL ratios, Veríssimo et al. (2014) propose further ratios for Clade A as follows: PN/ POR < 0.45, D1H/D2H > 1.0 and P1A/P1I < 1.14. In the present specimen PN/POR, D1H/D2H and P1A/P1I were 0.33 (<0.45), 1.26 (>1.0) and 0.9 (<1.14), respectively. In terms of these further ratios, the morphometric measurements of the ex- amined specimen coincide with those reported by Veríssimo et al. (2014); however, the morphological classification of Clade A is based on the measure- ment of mere 19 specimens, while for more precise mean values of these ratios that could distinguish the northeastern Mediterranean population of C. cf. uyato, further specimens would be necessary. In a recent assessment of Mediterranean Centrophorus, Bellodi et al. (2022) reported that morphometric results supporting the presence of a unique and distinct morphological group and indicating the occurrence of a single species in the region, are ascribable to C. cf. uyato. Finally, White et al. (2022) concluded that to preserve nomenclatural stability within the genus, the name Centrophorus uyato should be retained for this species and a neo- type from close to the original type locality off Italy should be designated. Geographically distant (allopatric) populations of the same fish species tend to exhibit morphomet- ric characters at the opposite margins of the value ranges (Cailliet et al., 1986). Although slight dif- ferences have been observed between the present morphometrics and those reported in Bellodi et al. (2022) and White et al. (2022), these variations can be considered admissible in view of the mentioned situation. In conclusion, morphometric measurements reported for a single specimen from the Gulf of Antalya can contribute to providing a more accurate description of Centrophorus uyato, a squaliform shark with remarkable intraspecific variation, and to filling the gap in the data on the northeastern Mediterranean population of this species. ACKNOWLEDGMENTS The authors thank to the crew of commercial bot- tom long-lining vessel YILMAZ 139 for their generosity and friendly cooperation during the field work. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 357 Hakan KABASAKAL et al.: MORPHOMETRICS OF AN INCIDENTALLY CAPTURED LITTLE GULPER SHARK, CENTROPHORUS UYATO (SQUALIFORMES: ..., 351–358 MORFOMETRIJA NAKLJUČNO UJETEGA GLOBINSKEGA TRNEŽA, CENTROPHORUS UYATO (SQUALIFORMES: CENTROPHORIDAE), IZ ANTALIJSKEGA ZALIVA Z ZAPISKI O NJEGOVI BIOLOGIJI Hakan KABASAKAL Ichthyological Research Society, Tantavi mahallesi, Menteşoğlu caddesi, İdil apt., No: 30, D: 4, TR-34764 Ümraniye, İstanbul, Turkey Doğal Hayatı Koruma Vakfı (WWF-Türkiye), Asmalı Mescit, İstiklal Cd. No:136, 34430 Beyoğlu/İstanbul, Turkey e-mail: kabasakal.hakan@gmail.com Ayşe ORUÇ, Cansu İLKILINÇ, Efe SEVİM, Ebrucan KALECİK & Nilüfer ARAÇ Doğal Hayatı Koruma Vakfı (WWF-Türkiye), Asmalı Mescit, İstiklal Cd. No:136, 34430 Beyoğlu/İstanbul, Turkey POVZETEK Devetnajstega maja 2022 se je na parangal naključno ujel primerek globinskega trneža, Centrophorus uyato (Rafinesque, 1810), na globini 140 m v Antalijskem zalivu (severovzhodno Sredozemsko morje). Bila je nedorasla samica, ki je merila 663 mm v dolžino in tehtala 1,505 g. Razmnoževalni trakt je bil tanek in nitaste oblike. Avtorji so v želodcu našli ostanka dveh primerkov plena in sicer skuše (Scomber sp.) in bukve (Boops boops). Morfometrične meritve so se ujemale s tistimi od predhodno odkritega klada C. uyato Clade A. Ključne besede: Elasmobranchii, Centrophorus, Levant, batijal ANNALES · Ser. hist. nat. · 32 · 2022 · 2 358 Hakan KABASAKAL et al.: MORPHOMETRICS OF AN INCIDENTALLY CAPTURED LITTLE GULPER SHARK, CENTROPHORUS UYATO (SQUALIFORMES: ..., 351–358 REFERENCES Bellodi, A., A. Benvenuto, R. Melis, A. Mulas, M. Barone, C. Barría, A. Cariani, L. Carugati, A. Chatz- ispyrou, M. Desrochers, A. Ferrari, J. Guallart, F. Hemida, C. Mancusi, D. Scannella, F. Serena, R. Tinti, A. Vella, M.C. Follesa & R. Cannas (2022): Call me by my name: unravelling the taxonomy of the gulper shark genus Centrophorus in the Mediterranean Sea through an integrated taxonomic approach. Zoological Journal of the Linnean Society, 20, 1-26. Cailliet, G.M., M.S. Love & A.W. Ebeling (1986): Fishes. A Field and Laboratory Manual on Their Struc- ture, Identification, and Natural History. Wadsworth Publishing Company, Belmont, 194 pp. Compagno, L.J.V. (1984): FAO species catalogue: Sharks of the world. Vol. 4. An annotated and illus- trated catalogue of shark species known to date. Part 1. Hexanchiformes to Lamniformes. Rome: FAO Fisheries Synopsis. Ebert, D.A. & M.F.W. Stehmann (2013): Sharks, batoids and chimaeras of the North Atlantic. Rome: FAO Species Catalogue for Fishery Purposes, No. 7. Follesa, M.C. & P. Carbonara, eds. (2019): Atlas of the maturity stages of Mediterranean fishery resources. Studies and Reviews n. 99. Rome, FAO. 268 pp. Kousteni, V., M. Papageorgiou, M. Rovatsos, I. Thasitis & L. Hadjioannou (2021): First genetically confirmed results of the little gulper shark Centropho- rus uyato (Squaliformes: Centrophoridae) from Cyp- riot waters. Biodiversity Data Journal 9: e71837. doi: 10.3897/BDJ.9.e71837. McEachran, J.D. & S. Branstetter (1984): Squali- dae. In: Whitehead, P.J.P., Bauchot, M.L., Hureau, J.C., Nielsen, J. & Tortonese, E. (eds.): Fishes of the north-eastern Atlantic and the Mediterranean. Vol. I. UNESCO, Paris, pp. 128-147. Serena, F. (2005): Field Identification Guide to the Sharks and Rays of the Mediterranean and Black Seas. FAO Species Identification Guide for Fishery Purposes. Rome: FAO. Serena, F., A.J. Abella, F. Bargnesi, M. Barone, F. Colloca, F. Ferretti, F. Fiorentino, J. Jenrette & S. Moro (2020): Species diversity, taxonomy and distribution of Chondrichthyes in the Mediterranean and Black Sea. The European Zoological Journal, 87, 497-536. Tortonese, E. (1956): Fauna D’Italia. Leptocardia, Ciclostomata, Selachii. Edizioni Calderini, Bologna. Veríssimo, A., C.F. Cotton, R.H. Buch, J. Guallart & G.H. Burgess (2014): Species diversity of deep-water gulper sharks (Squaliformes: Centrophoridae: Centro- phorus) in North Atlantic waters – current status and taxonomic issues. Zoological Journal of the Linnean Society, 172, 803-830. White, W.T., D.A. Ebert, G.J.P. Naylor, H.–C. Ho, P. Clerkin, A. Veríssimo & C.F. Cotton (2013): Revision of the genus Centrophorus (Squaliformes: Centrophori- dae): Part 1-Redescription of Centrophorus granulosus (Bloch & Schneider), a senior synonym of C. acus Gar- man and C. niakuang Teng. Zootaxa, 3752, 035-072. White, T.W., D.A. Ebert & G.J.P. Naylor (2017): Revision of the genus Centrophorus (Squaliformes: Centrophoridae): Part 2-Description of two new spe- cies of Centrophorus and clarification of the status of Centrophorus lusitanicus Barbosa du Bocage & de Brito Capello, 1864. Zootaxa, 4344, 086-114. White, W.T., J. Guallart, D.A. Ebert, G.J.P. Naylor, A. Veríssimo, C.E. Cotton, M. Harris, F. Serena & S.P. Iglésias (2022): Revision of the genus Centrophorus (Squaliformes: Centrophoridae): Part 3—Redescription of Centrophorus uyato (Rafinesque). with a discussion of its complicated nomenclatural history. Zootaxa, 5155, 001-051. https://doi.org/10.11646/zootaxa.5155.1.1. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 359 received: 2022-06-09 DOI 10.19233/ASHN.2022.37 ATYPICAL CLASPERS IN SMOOTHHOUND, MUSTELUS MUSTELUS (CHONDRICHTHYES: TRIAKIDAE) FROM THE COAST OF SENEGAL (EASTERN TROPICAL ATLANTIC) Christian CAPAPÉ Laboratoire d’Ichtyologie, Université de Montpellier, 34 095 Montpellier cedex 5, France e-mail: christian.capape@umontpellier.fr Almamy DIABY & Youssouph DIATTA Laboratoire de Biologie marine, Institut fondamental d’Afrique noire, (IFAN Ch. A. Diop), Université Cheikh Anta Diop de Dakar, BP 206, Dakar, Senegal Sihem RAFRAFI-NOUIRA Unité de Recherches Exploitation des Milieux aquatiques, Institut Supérieur de Pêche et d’Aquaculture de Bizerte, Université de Carthage, BP 15, 7080 Menzel Jemil, Tunisia Christian REYNAUD Laboratoire Interdisciplinaire en Didactique, Education et Formation, Université de Montpellier, 2 place Marcel Godechot, B.P. 4152, 34092 Montpellier cedex 5, France ABSTRACT The authors report the capture of an abnormal specimen of smouthhound Mustelus mustelus (Linnaeus, 1758). The specimen measured 1045 mm in total length (TL) and weighed 3615 g. It exhibited claspers of dissimilar morphology: a normally developed right clasper characteristic of an adult male, and a smaller left clasper, rounded in its distal end, with a large aperture on the ventral surface. An examination of the abdominal cavity revealed a total absence of the genital apparatus on the left side, which probably explains the aberrant shape of the left clasper. The relationship of total body weight to total length revealed that the abnormal specimen was considerably less heavy than normal specimens from the same TL class. Key words: Mustelus mustelus, abnormality, weight, condition, genital apparatus PTERIGOPODI ATIPICI IN MUSTELUS MUSTELUS (CHONDRICHTHYES: TRIAKIDAE) LUNGO LA COSTA DEL SENEGAL (ATLANTICO TROPICALE ORIENTALE) SINTESI Gli autori riportano la cattura di un esemplare anomalo di palombo, Mustelus mustelus (Linnaeus, 1758). L’esemplare misurava 1045 mm di lunghezza totale (TL) e pesava 3615 g. Presentava pterigopodi di morfo- logia diversa: quello destro normalmente sviluppato, caratteristico di un maschio adulto, e quello sinistro più piccolo, arrotondato nella sua estremità distale, con una grande apertura sulla superficie ventrale. L’esame della cavità addominale ha rivelato l’assenza totale dell’apparato genitale sul lato sinistro, il che spiega probabilmente la forma aberrante dello pterigopodio sinistro. Il rapporto tra il peso corporeo totale e la lun- ghezza totale ha rivelato che l’esemplare anormale era notevolmente meno pesante degli esemplari normali della stessa classe di TL. Parole chiave: Mustelus mustelus, anomalia, peso, condizione, apparato genitale ANNALES · Ser. hist. nat. · 32 · 2022 · 2 360 Christian CAPAPÉ et al.: ATYPICAL CLASPERS IN SMOOTHHOUND, MUSTELUS MUSTELUS (CHONDRICHTHYES: TRIAKIDAE) FROM THE COAST OF ..., 359–366 INTRODUCTION The smouthhound Mustelus mustelus (Linnaeus, 1758) is a medium-sized shark known in the eastern Atlantic from the British Isles to the coast of Portu- gal (Branstetter, 1984). To the south of the Strait of Gibraltar, the species occurs from Morocco (Lloris & Rucabado, 1998), Mauritania (Kallahi, 2013) to the Gulf of Guinea (Blache et al., 1970), as far as south African waters (Smale & Compagno, 1997). M. mustelus is commonly reported throughout the Mediterranean Sea, and generally greatly appreciated for human consumption (Branstetter, 1984; Compagno, 1984). However, the species is facing fishing pressure and a drastic decline in some areas where it was previ- ously considered abundant (Capapé et al., 2000). Along the coast of Senegal, M. mustelus, like other shark species, is the focus of intensive fishing, both commercial and artisanal. Its flesh is dried and used locally or exported to other African countries under the vernacular name of sali. Fins of larger specimens are collected and prepared as laâf and exported to Asian markets (Gueye-Ndiaye, 1993). The landings of shark species in fishing sites located along the Senegalese shore offered us the op- portunity to collect data and describe some aspects of the smoothhound’s reproductive biology (Capapé et al., 2006). Recent investigations conducted through- out the Senegalese coast and supported by local and experienced fishermen, allowed the collection of a specimen of M. mustelus from the examined area which displayed an anomalous clasper. The aim of this paper is to describe the specimen and comment on this atypical characteristic in the mentioned elas- mobranch species. MATERIAL AND METHODS The abnormal specimen of M. mustelus was captured off Dakar, Cape Verde Peninsula, and collected on 18 January 2021at the fishing site of Hann, 14°43’32.1” N and 17°25’35.4” W (Fig. 1). It was caught by a commercial 3-layer trammel net measuring 50 m in length and 2 m in height, with stretched mesh sizes of 48 mm, 50 mm, and 60 mm, respectively. The capture occurred at a depth between 5 and 16 m, on a sandy-muddy bottom, together with striped panrays, Zanobatus schoenleinii (Müller & Henle, 1841), marbled stingrays Dasyatis marmorata (Steindachner, 1892) and other teleost species. Morphometric measurements of the abnormal specimen, recorded to the nearest millimetre fol- lowing Compagno (1984), are presented in Table 1. The claspers of the abnormal specimen were fixed in 10% buffered formaldehyde, successively preserved in 75% ethanol and deposited in the Ichthyological Collection of Institut Supérieur d’Aquaculture et de Pêche of Bizerte (Tunisia), under the catalogue num- ber, ISPAB-Must-must-01. Additionally, in order to know if the abnormal M. mustelus was able to develop in the wild like normal specimens, the relation between total length (TL) and total body weight (TBW) was used as a complement following Froese et al. (2011). This relation ‒ TBW = aTLb ‒ was studied in the abnormal specimen and 14 normal previously sampled in the same area (see Capapé et al., 2006), and converted into its linear regression, expressed in decimal logarithmic coor- dinates. Correlations were assessed by least-squares regression as log TBW = log a + b logDW. The values of constant b were used to confirm or reject the hy- pothesis of isometric growth, indicating: isometry if b = 3, positive allometry if b > 3, negative allometry if b < 3 (Pauly, 1983). These two latter tests were performed using logistic model STAT VIEW 5.0. Fig. 1: Map of the Senegalese coast with the capture site of the abnormal specimen of Mustelus mustelus indicated (black star). Sl. 1: Zemljevid senegalske obale z označeno lokaliteto ulova atipičnega primerka vrste Mustelus mustelus (črna zvezdica). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 361 Christian CAPAPÉ et al.: ATYPICAL CLASPERS IN SMOOTHHOUND, MUSTELUS MUSTELUS (CHONDRICHTHYES: TRIAKIDAE) FROM THE COAST OF ..., 359–366 RESULTS AND DISCUSSION The studied specimen measured 1045 mm in TL and weighed 3615 g. It was identified as M. mustelus following a combination of main mor- phometric characters: body slender, head short, snout slightly rounded and moderately long, first dorsal origin over free pectoral fin, both dorsal fins similar in shape, second slightly smaller, pec- toral fins broadly triangular, large notch on upper caudal lobe, dermal denticles tridentate, teeth molariform with reduced cusplets; dorsal surface grey to brown, belly whitish to beige (Fig. 2). This description is in total agreement with Quignard & Capapé (1972a), Branstetter (1984), Compagno (1984) and Ebert & Stehmann (2013). The specimen exhibited two claspers of dis- similar morphology (Fig. 3). The right clasper was normally developed and characteristic of an adult male (Capapé et al., 2006). It was rigid, calcified and longer than the right pelvic fin, slender and pointed at its distal end. The left clasper was smaller than the right clasper and both pelvic fins, rounded in its distal end, exhibiting a large aperture on the ventral surface. This clasper was Tab. 1: Absolute and relative values of selected morphometric measurements (in millimetres) and total body weight (in grams) of the abnormal specimen of Mustelus mustelus collected from the coast of Senegal. Tab. 1: Absolutne in relativne vrednosti izbranih mor- fometričnih meritev v milimetrih in celokupna telesna teža v gramih atipičnega primerka vrste Mustelus mustelus, ujetega ob senegalski obali. References ISPAB-Must -must-01 Sex male Measurements mm % TL Total length (TL) 1045 100.00 Fork length 891 85.26 Standard length 825 78.95 Pre-caudal length 835 79.90 Pre-first dorsal length 305 29.19 Pre-second dorsal length 660 63.16 Head length 205 19.62 Head height 60 5.74 Mouth width 56 5.36 Abdomen height 80 7.66 Eye length 20 1.91 Eye height 10 0.96 Pre-pectoral fin length 210 20.10 Interdorsal space 252 24.11 Pectoral fin base 46 4.40 Pectoral fin anterior margin 141 13.49 Pectoral inner margin 56 5.36 Pectoral posterior margin 106 10.14 First dorsal fin base 100 9.57 First dorsal fin anterior margin 110 10.53 First dorsal fin inner margin 40 3.83 First dorsal fin posterior margin 83 7.94 Second dorsal fin anterior margin 82 7.85 Second dorsal fin inner margin 25 2.39 Second dorsal fin posterior margin 47 4.50 Pelvic fin base 50 4.78 Pelvic fin anterior margin 72 6.89 Pelvic inner margin 44 4.21 Pelvic fin posterior margin 75 7.18 Caudal base 21 2.01 Dorsal caudal margin 205 19.62 Terminal caudal lobe 70 6.70 Lower post-ventral caudal margin 80 7.66 Pre-ventral caudal margin 72 6.89 Right clasper length 101 9.67 Left clasper length 44 4.21 Total body weight (g) 3615 Fig. 2: Abnormal specimen of Mustelus mustelus col- lected from the coast of Senegal. A. Entire specimen. B. Fins of larger specimens are collected and prepared as laâf and exported to Asian markets (Gueye-Ndiaye, 1993). Scale bar = 100 mm for both A and B. Sl. 2: Atipični primerek vrste Mustelus mustelus, ujet ob senegalski obali. A. Cel primerek. B. Plavuti večjih primerkov uporabljajo za pripravo laâf in ga izvažajo na azijski trg (Gueye-Ndiaye, 1993). Merilo = 100 mm za oba, A in B. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 362 Christian CAPAPÉ et al.: ATYPICAL CLASPERS IN SMOOTHHOUND, MUSTELUS MUSTELUS (CHONDRICHTHYES: TRIAKIDAE) FROM THE COAST OF ..., 359–366 soft and flexible due to the complete absence of internal cartilages (Fig. 4). An examination of the specimen’s abdominal cavity showed a complete genital apparatus on the right side, comprising a testicle, a Leydig gland, a rather convoluted spermiduct, and a well-developed seminal vesicle with sperm. Conversely, the left side revealed a total lack of genital apparatus, which probably explains the aberrant shape of the left clasper (Fig. 5). Gener- ally, in elasmobranch species lacking claspers, the presence of aberrant or reduced claspers is a morphological consequence of hermaphroditism or pseudo-hermaphroditism (Quignard & Capapé, 1972b; Capapé et al., 2012; Rafrafi-Nouira et al., 2017). Previously, Ehemann & Gonzàlez-Gonzàlez (2018), Quigley et al. (2018, 2019) and Capapé et al. (2021) noted that of the 16 cases of abnormal claspers recorded among elasmobranch species, only 4 cases could be considered monstrosities (sensu Ribeiro-Prado et al., 2008), or 5 cases in- cluding the studied specimen. The causes of aberrant claspers are diverse, fol- lowing Capapé et al. (2021); they probably have an endogenous origin, genetic and/or hormonal, like in other vertebrates. However, the role of unfavourable environmental conditions, such as pollution due to anthropogenic activity, cannot be totally ruled out. The coast of Senegal, in fact, has been affected by an increase of pollutants in the wild (Diop et al., 2012; Bonnin et al., 2016). Consequently, several cases of abnormalities have been reported from the area with regard to benthic species, especially the most sensitive and locally abundant ones, such as Zanobatus schoenleiniii (Diatta et al., 2013; Capapé et al., 2021). Fig. 3: Claspers of the abnormal specimen of Mustelus mustelus collected from the coast of Senegal. L Cl: left clasper, L Pel F: left pelvic fin, R Cl: right clasper, R Pel F: right pelvic fin. Scale bar = 20 mm. Sl. 3: Klasperja atipičnega primerka vrste Mustelus mustelus, ujetega ob senegalski obali. L Cl: levi klasper, L Pel F: leva trebušna plavut, R Cl: desni klasper in R Pel F: desna trebušna plavut. Merilo = 20 mm. Fig 4: Left clasper of the abnormal specimen of Mus- telus mustelus collected from the coast of Senegal. Cl Op: clasper opening, L Pel F: left pelvic fin. Scale bar = 20 mm. Sl. 4: Levi klasper atipičnega primerka vrste Mustelus mustelus, ujetega ob senegalski obali. Cl Op: odprtina na klasperju, L Pel F: leva trebušna plavut. Merilo = 20 mm. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 363 Christian CAPAPÉ et al.: ATYPICAL CLASPERS IN SMOOTHHOUND, MUSTELUS MUSTELUS (CHONDRICHTHYES: TRIAKIDAE) FROM THE COAST OF ..., 359–366 The atrophy of the left clasper could not be considered as very important, because males only use a single clasper during copulation (Chapman et al., 2003). The TBW vs. TL relationship was: log TBW = -5.759 + 3.112 * log TL; r = 0.99; n = 15, displaying positive allometry (Fig. 6), as all specimens exhibit a regular increase in growth. Conversely, the abnormal specimen was consider- ably less heavy than normal specimens of the same TL class. This suggests that it did not develop in the same way as other normal specimens, possibly due to the absence of the left genital apparatus, which may play an important physiological (hormonal) role in elasmobranch species (Mellinger, 1989). It is, in fact, well known that the lack of organs re- duces to some degree the development of the body in elasmobranch species (see El Kamel et al., 2009). Fig. 5: Abdominal cavity of the abnormal specimen of Mustelus mustelus collected from the coast of Senegal. L G: Leydig gland, Sem Ves: seminal vesicle, Sp: sper- miduct, Test: testicle. Scale bar = 20 mm. Sl. 5: Trebušna votlina atipičnega primerka vrste Mustelus mustelus, ujetega ob senegalski obali. L G: Leydigova žleza, Sem Ves: semenski mešiček, Sp: se- menovod, Test: modo. Merila = 20 mm. Fig. 6: The total body mass (TBW) to total length (TL) relationship expressed in logarithmic co-ordinates for abnormal and normal specimens of Mustelus mustelus collected from the coast of Senegal. Sl. 6: Odnos med celokupno telesno težo (TBW) in totalno dolžino (TL) izražena z logaritmičnimi osmi za atipičnega in normalne primerke vrste Mustelus mustelus, ujetih ob senegalski obali. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 364 Christian CAPAPÉ et al.: ATYPICAL CLASPERS IN SMOOTHHOUND, MUSTELUS MUSTELUS (CHONDRICHTHYES: TRIAKIDAE) FROM THE COAST OF ..., 359–366 NETIPIČNA KLASPERJA NAVADNEGA MORSKEGA PSA, MUSTELUS MUSTELUS (CHONDRICHTHYES: TRIAKIDAE) IZ SENEGALSKE OBALE (VZHODNI TROPSKI ATLANTIK) Christian CAPAPÉ Laboratoire d’Ichtyologie, Université de Montpellier, 34 095 Montpellier cedex 5, France e-mail: christian.capape@umontpellier.fr Almamy DIABY & Youssouph DIATTA Laboratoire de Biologie marine, Institut fondamental d’Afrique noire, (IFAN Ch. A. Diop), Université Cheikh Anta Diop de Dakar, BP 206, Dakar, Senegal Sihem RAFRAFI-NOUIRA Unité de Recherches Exploitation des Milieux aquatiques, Institut Supérieur de Pêche et d’Aquaculture de Bizerte, Université de Carthage, BP 15, 7080 Menzel Jemil, Tunisia Christian REYNAUD Laboratoire Interdisciplinaire en Didactique, Education et Formation, Université de Montpellier, 2 place Marcel Godechot, B.P. 4152, 34092 Montpellier cedex 5, France POVZETEK Avtorji poročajo o ulovu netipičnega primerka navadnega morskega psa Mustelus mustelus (Linnaeus, 1758). Primerek je meril 1045 mm v dolžino in tehtal 3615 g. Klasperja sta bila različna; desni je bil normalno razvit, kot je značilno za odraslega samca, levi pa manjši, zaokrožen in z veliko odprtino na trebušni strani. Preiskava trebušne votline je pokazala, da primerek nima genitalnega aparata na levi strani, kar verjetno razloži nenavadno obliko levega klasperja. Dolžinsko-masni odnos je pokazal, da je atipični primerek znatno lažji od normalnih primerkov v istem velikostnem razredu. Ključne besede: Mustelus mustelus, atipičen primerek, masa, stanje, genitalni aparat ANNALES · Ser. hist. nat. · 32 · 2022 · 2 365 Christian CAPAPÉ et al.: ATYPICAL CLASPERS IN SMOOTHHOUND, MUSTELUS MUSTELUS (CHONDRICHTHYES: TRIAKIDAE) FROM THE COAST OF ..., 359–366 REFERENCES Blache, J., J. Cadenat & J. Stauch (1970): Clés de détermination des poissons de mer signalés dans l’Atlantique oriental tropical (entre le 20 ème parallèle N. et le 15 ème parallèle S. Faune trop. ORSTOM, 18, 1-479. Bonnin, M., I. Ly., B. Queffelec & M. Ngaido (2016): Droit de l’environnement marin et côtier au Sénégal, IRD, PRCM, Dakar, Sénégal, 532 pp. Branstetter, S. (1984): Carcharhinidae. In: P.J.P. Whitehead, M.-L. Bauchot, J.C. Hureau, J. Nielsen, E. Tortonese (eds.), Fishes of the North-Eastern Atlantic and the Mediterranean. UNESCO, Paris, Vol. 1. pp. 117-121. Capapé C., Y. Diatta, Y. Vergne & O. Guélorget (2006): Reproductive biology of the smoothhound Mustelus mustelus (Chondrichthyes: Triakidae) from the coast of Senegal. Cybium, 30(3), 273-282. Capapé, C., J.A Tomasini. & J.-P. Quignard (2000): Les Elasmobranches Pleurotrêmes de la côte du Langue- doc (France méridionale, Méditerranée septentrionale). Observations biologiques et démographiques. Vie Milieu, 50(2), 123-133. Capapé, C, O. El Kamel-Moutalibi, N. Mnasri, M. Boumaïza & C. Reynaud (2012): A case of hermaphro- ditism in Tortonese’s stingray Dasyatis tortonesei from the Lagoon of Bizerte (northeastern Tunisia, central Mediterranean). Acta Ichthyol. Piscat., 42(2), 141-149. Capapé C., Y. Diatta, A. Diaby, S. Rafrafi-Nouira, C. Reynaud (2021): Record of a single clasper specimen in Zanobatos schoenleinii (Chodrichthyes:Zanobatidae) from the coast of Senegal (eastern tropical Atlantic). Annales, Ser. Hist. Nat., 31(2), 243-250. Chapman, D.D., M.J. Corcoran., G.M. Harvey., S. Malan & M.S. Shivji (2003): Mating behavior of southern stingrays, Dasyatis americana (Dasyatidae). Environ. Biol. Fishes, 68(3), 241-245. Compagno, L.J.V. (1984): FAO Species Catalogue, vol. 4, Sharks of the World. An Annotated and Illus- trated Catalogue of Shark Species known to Date. FAO Fisheries Synopsis, 125, vol. 4, part 2 (non Carcharhi- noids), x +251-655. Diatta Y., C. Reynaud & C. Capapé (2013): First case of albinism recorded in striped panray, Zanobatus schoenleinii (Chondrichthyes: Platyrhinidae) from the coast of Senegal (eastern Tropical Atlantic). J. Ichthyol., 53(11), 1007-1012. Diop, C., D. Dewaele, A. Toure, M. Cabral, F. Ca- zier, M. Fall, B. Ouddane & A. Diouf (2012): Study of sediment contamination by trace metals at wastewater discharge points in Dakar (Senegal). J. Wat. Sci., 25(3), 185-299. Ebert, D. A. & M.F.W. Stehmann (2013): Sharks batoids and Chimaeras of the North Atlantic. FAO species Catalogue for Fisheries Purposes, n° 7, Rome, FAO, 523 pp. Ehemann, N.R. & L.D.V.Gonzàlez-Gonzàlez (2018): First record of a single-clasper specimen of Pseudobatos percellens (Elasmobranchii: Rhi- nopristiformes: Rhinobatidae) from the Caribbean Sea, Venezuela. Acta Ichthyol. Piscat., 48(3), 261- 263. El Kamel, O., N. Mnasri, M. Boumaïza & C. Capapé (2009): Atypical abnormality in a com- mon torpedo, Torpedo torpedo (Chondrichthyes: Torpedinidae) from the Lagoon of Bizerte (northern Tunisia, central Mediterranean). Cah. Biol. Mar., 50(1), 97-101. Froese, R., A.C. Tsikliras & K.I. Stergiou (2011): Editorial note on weight-length relations of fishes. Acta Ichthyol. Piscat., 41(4), 261-263. Gueye-Ndiaye, A. (1993): La transformation artisanale des produits halieutiques sur le littoral et son impact sur l’environnement, pp. 323-334. In: A.T. Diaw, A. Bâ, P. Bouland, P.S. Diouf, L.-A. Lake, M.-A. Mbow, P. Ndiaye, M.D. Thiam (eds), Gestion des ressources côtières et littorales du Sé- négal. Actes de l’Atelier de Gorée (Sénégal), 27-29 juillet 1992, Gland (Suisse), UICN. Kallahi, B. (2013): Ecologie et biologie de requins: écologie et biologie de l’émissole lisse Mustelus mustelus (Linné, 1758) sur les côtes de Mauritanie. Presses Académiques Francophones (French Edition), Saarbrücken, Germany, 200 pp. Lloris, D. & J. Rucabado (1998): Guide FAO d’identification des espèces pour les besoins de la pêche. Guide d’identification des ressources marines vivantes pour le Maroc. FAO, Rome, 263 pp. Mellinger, J. (1989): Reproduction et dével- oppement des Chondrichthyens. Océanis, 15, 283-303. Pauly, D. (1983): Some simple methods for as- sessment of tropical fishes. FAO Fish. Techn. Pap., 234: 3-10. Quigley, D.T.G., A. de Carlos, D. Barros-Garcia & D. McGabhann (2018): Albinism and leucism in blonde ray (Raja brachyura Lafont, 1871) (Elas- mobranchii: Batoidea) from the Irish Sea.Bull. Eur. Ass. Fish Pathol., 38(2), 79-88. Quigley, D.T.G., A. de Carlos, D. Barros-Garcia & D. McGabhann (2019): Leucistic piebald Cuckoo ray (Leucoraja naevus) (Müller and Henle) from the Irish Sea. Irish Natur.J., 36(2), 159-162. Quignard, J.P. & C. Capapé (1972a): Note sur les espèces méditerranéennes du genre Mustelus (Selachii, Galeoidea, Triakidæ). Rev. Trav. Inst. Pêch. marit., 36(1), 15-29. Quignard, J.-P. & C. Capapé (1972b): Cas d’hermaphrodisme chez Raja miraletus L., 1758. Trav. Lab. biol. halieut., Rennes, 6, 133-143. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 366 Christian CAPAPÉ et al.: ATYPICAL CLASPERS IN SMOOTHHOUND, MUSTELUS MUSTELUS (CHONDRICHTHYES: TRIAKIDAE) FROM THE COAST OF ..., 359–366 Rafrafi-Nouira, S., O. El Kamel-Moutalibi, K. Ounifi-Ben Amor, M.M. Ben Amor & C. Capapé (2017): A case of hermaphroditism in the common eagle ray Myliobatis aquila (Chondrichthyes: Mylio- batidae), reported from the Tunisian coast (central Mediterranean). Annales, Ser. Hist. Nat., 27(1), 43-48. Ribeiro-Prado, C.C., M.C. Oddone, M.M. Bueno Gonzalez, A. Ferreira de Amorim & C. Capapé (2008): Morphological Abnormalities in Skates and Rays (Chondrichthyes) from off Southeastern Brazil. Arq. Cienc. Mar. Fortaleza, 41(2), 21-28. Smale, M.J. & L.J.V. Compagno (1997): Life history and diet of two southern African smoothhound sharks, Mustelus mustelus (Linnaeus, 1758) and Mustelus palumbes Smith, 1957 (Pisces: Triakidae). South Afr. J. Mar. Sci., 18(1), 229-248. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 367 received: 2022-04-18 DOI 10.19233/ASHN.2022.38 NOTES ON A NEWBORN KITEFIN SHARK, DALATIAS LICHA: NEW EVIDENCE ON THE NURSERY OF A RARE DEEP-SEA SHARK IN NORTHEASTERN LEVANT (TURKEY) Hakan KABASAKAL Ichthyological Research Society, Tantavi mahallesi, Menteşoğlu caddesi, Idil apt., No: 30, D: 4, TR-34764 Ümraniye, Istanbul, Turkey Doğal Hayatı Koruma Vakfı (WWF-Türkiye), Asmalı Mescit, İstiklal Cd. No:136, 34430 Beyoğlu/İstanbul, Turkey e-mail: kabasakal.hakan@gmail.com Ayşe ORUÇ, Ebrucan KALECİK, Efe SEVİM, Nilüfer ARAÇ & Cansu İLKILINÇ Doğal Hayatı Koruma Vakfı (WWF-Türkiye), Asmalı Mescit, İstiklal Cd. No:136, 34430 Beyoğlu/İstanbul, Turkey ABSTRACT On 2 April 2022, a kitefin shark, Dalatias licha (Bonnaterre, 1788), was incidentally captured by a com- mercial bottom trawler off Taşucu coast (northeastern Levant), over a mixed mud-sand bottom and at a depth of nearly 550 m. It measured 373 mm in total length and 190 g in undressed weight. The healing birthmark, which was visible on the ventral surface between the pectoral fins, revealed that it was a newborn kitefin shark. Published data suggests that the area may serve as a nursery ground for 15 shark species, including D. licha, and the present record of newborn kitefin shark in the region supports this suggestion. Key words: Dalatias, kitefin shark, pups, vulnerable, conservation NOTE SU UN NEONATO DI SQUALO ZIGRINO, DALATIAS LICHA: NUOVE PROVE SULLA NURSERY DI UNO SQUALO RARO DI ACQUE PROFONDE NEL LEVANTE NORD-ORIENTALE (TURCHIA) SINTESI Il 2 aprile 2022, uno squalo zigrino, Dalatias licha (Bonnaterre, 1788), è stato catturato accidentalmente da un peschereccio commerciale a strascico al largo della costa di Taşucu (Levante nord-orientale), su un fondale misto fango-sabbia, a una profondità di circa 550 m. Misurava 373 mm di lunghezza totale e 190 g di peso. La voglia visibile sulla superficie ventrale tra le pinne pettorali, ha rivelato che si trattava di uno squalo zigrino neonato. I dati pubblicati suggeriscono che l’area può servire da nursery per 15 specie di squali, tra cui D. licha, e il presente ritrovamento di squalo zigrino neonato nella regione supporta questa ipotesi. Parole chiave: Dalatias, squalo zigrino, neonati, vulnerabile, conservazione ANNALES · Ser. hist. nat. · 32 · 2022 · 2 368 Hakan KABASAKAL et al.: NOTES ON A NEWBORN KITEFIN SHARK, DALATIAS LICHA: NEW EVIDENCE ON THE NURSERY OF A RARE DEEP-SEA SHARK ..., 367–374 INTRODUCTION The identification and mapping of nursery grounds and other essential fish habitats of exploited stocks is a key requirement for the development of spatial conservation planning aimed at reducing the adverse impact of fishing on exploited populations and eco- systems (Colloca et al., 2015). Castro (1993) defined nursery areas, or simply nurseries, as geographically discrete parts of a species’ range where gravid females deliver their young or deposit their eggs and where the young spend their first weeks, months, or years. Since the nurseries of viviparous sharks can be de- tected by the presence of gravid females, neonates and small juveniles in a given marine area (Castro, 1993), observations of newborn or young-of-the-year (YOY) individuals bearing birthmarks are reliable indications of a possible nursery ground located nearby. The kitefin shark, Dalatias licha (Bonnaterre, 1788), is a sporadically distributed deep-water shark of the outer continental shelf and insular shelves and slopes, found in depths between 37 to at least 1800 m, Fig. 1: Approximate locations of capture of Dalatias licha specimens reported from the eastern Mediterranean Sea: (*) free-swimming newborn reported in this study; (♣) subadult female kitefin shark reported by Golani (1986); (■) newborn kitefin shark reported by Meriç (1995); (●) newborn kitefin sharks (n=3) reported by Kabasakal & Kabasakal (2002); (♠) specimens (n=5) reported by Gönülal (2016); (♦) adult female kitefin shark reported by Ergüden et al. (2017); ( ) subadult female reported by Chatzispyrou et al. (2018); and (▲) kitefin sharks (n=2) reported by Spyridopoulou et al. (2020). Sl. 1: Približne lokalitete ulova primerkov vrste Dalatias licha v vzhodnem Sredozemskem morju: (*) prosto plava- joči primerek mladiča iz pričujoče raziskave; (♣) subadultna samica, o kateri je poročal Golani (1986); (■) komaj skoteni primerek, o katerem je poročal Meriç (1995); (●) komaj skoteni primerki (n=3), o katerih sta poročala Kabasakal & Kabasakal (2002); (♠) primerki (n=5), o katerih je poročal Gönülal (2016); (♦) odrasla samica, o kateri so poročali Ergüden et al. (2017); ( ) subadultna samica, o kater je poročal Chatzispyrou et al. (2018); in (▲) primerka (n=2), o katerih poročajo Spyridopoulou et al. (2020). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 369 Hakan KABASAKAL et al.: NOTES ON A NEWBORN KITEFIN SHARK, DALATIAS LICHA: NEW EVIDENCE ON THE NURSERY OF A RARE DEEP-SEA SHARK ..., 367–374 but most commonly below 200 m (Ebert & Stehmann, 2013). Its distribution range extends from the Atlantic Ocean to the entire Mediterranean Sea, the central and western Pacific, and the Indian Ocean (Serena, 2005; Ebert & Stehmann, 2013). While we know that D. licha is a yolk-sac viviparous shark, the information on its reproductive cycle or age at maturity is limited (Ebert & Stehmann, 2013). Recently, Ergüden et al. (2022) reported on the capture of an adult female (1180 mm TOT) by a commercial trawler at a depth of 40 m in the northeastern Levant. Although, Ergüden et al. (2022) assumed there was a nursery ground of D. licha in the region, the presence of gravid females bearing term embryos alone is not indication enough of a nursery area (Castro, 1993); instead, the occur- rence of neonates is required as well. In the present article, authors report on the occurrence of a new- born kitefin shark in the bathyal zone of northeastern Levant, and provide further evidence supporting the possibility of a nursery of D. licha in the region. The authors also provide morphometric measurements and biological notes of the examined kitefin shark to contribute to the knowledge of D. licha populations in the eastern Mediterranean. MATERIAL AND METHODS The examined kitefin shark was incidentally cap- tured on 2 April 2022 by a commercial bottom trawler towing over a mixed sand-mud bottom, at the depth of nearly 550 m, off Taşucu coast (northeastern Levant; Fig. 1). One of the authors of this paper checked whether the animal was alive in order to release it immediately back to the sea in the event it was. Unfortunately, the animal showed no signs of life, thus it was frozen on board for long-term storage and ultimately delivered to the laboratory for further inspection. Following the procedure of Compagno (1984), the total length (TOT) and 46 morphometric measurements were recorded to the nearest 0.05 mm using a vernier caliper. TOT is the distance between the tip of the snout and the tip of the upper caudal lobe, where the caudal fin was de- pressed to body axis (Compagno, 1984). Morphometric measurements are expressed as percentages of TOT in Table 1. The total weight, where internal organs were not eviscerated, and liver mass were weighed to the nearest gram by means of a precision spring balance (PESOLA Precision scales, Switzerland). Stomach and spiral valve were examined under a binocular dis- secting microscope for any remains of food, such as cephalopod beaks or teleostean otoliths. The eviscer- ated body of the examined kitefin shark was preserved in a 5-percent formalin solution neutralised with borax, and stored in the personal collection of the first author. The present study was supported by the WWF Turkey Wildlife Programme within the scope of the Cartilagi- nous Fish (Chondrichthyes) Data Generation project. RESULTS AND DISCUSSION The female kitefin shark, Dalatias licha, which was identified based on the descriptions of Compagno (1984) and Ebert & Stehmann (2013), is depicted in Fig. 2a. The healing birthmark, observed on the ventral surface between the pectoral fins (Fig. 2b), revealed that it was a newborn kitefin shark. The specimen measured 373 mm in TOT; its undressed weight was 190 g, liver weight 30 g (Fig. 2c). Digested remains of a teleost fish were found in the stomach contents; however, due to the level of digestion, it could not be identified at species or genera level. Data on the size at birth of Dalatias licha from dif- ferent parts of the Mediterranean Sea and the Atlantic Ocean are available in the literature. According to Capapé et al. (2008), the size of the smallest free- swimming specimens, caught off the Maghreb coast (south-western Mediterranean), were between 320 and 390 mm TOT, their weight between 256 and 300 g. The TOT of the present newborn kitefin shark (373 mm) coincided with the TOT range given by Capapé et al. (2008); however, the weight of the present specimen was clearly lower than that of the smallest free-swim- ming kitefin shark (320 mm TOT) caught in Maghrebin waters. Kabasakal & Kabasakal (2002) reported the size range of the smallest free-swimming kitefin sharks with birthmarks to be between 338 and 372.5 mm in TOT, with the largest specimen being of similar size to the one in the present study. An unhealed and prominently open umbilical scar was observed on a free-swimming newborn kitefin shark caught in south Atlantic waters (Soto & Mincarone, 2001) and matching the size range of newborn kitefin sharks from the Mediterranean Sea (Kabasakal & Kabasakal, 2002; Capapé et al., 2008; present study). Finally, size of the only kitefin shark that has been reported from the Sea of Marmara to date (345 mm TOT; Meriç, 1995), also matched the TOT range of smallest free-swimming specimens of D. licha. The Marmara specimen was captured in commercial trammel-net fishery on the northern slope at a depth of 270 m, on 5 July 1991 (Meriç, 1995). In the Mediterranean Sea, the depths of capture of newborn specimens of Dalatias licha ranged between 200 and 600 m (Kabasakal & Kabasakal, 2002; Capapé et al., 2008; present study); however, the newborn kite- fin shark reported by Soto & Mincarone (2001) was col- lected alive near the surface, and authors interpreted this finding as the expansion of the bathymetrical range of the species from a few meters to 1800 m of depth. The mentioned depths of capture of newborn kitefin sharks in the Mediterranean and in south Atlantic waters raised the question whether gravid females give birth in very shallow waters and then the newborns migrate to deep bathyal grounds or whether encounter- ing a newborn specimen of D. licha near the surface was just an unexplainable coincidence. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 370 Hakan KABASAKAL et al.: NOTES ON A NEWBORN KITEFIN SHARK, DALATIAS LICHA: NEW EVIDENCE ON THE NURSERY OF A RARE DEEP-SEA SHARK ..., 367–374 Measurements (mm) Present Study Golani (1986) Soto & Mincarone (2001) Kabasakal & Kabasakal (2002) Ergüden et al. (2017) Chatzispyrou et al. (2018) % of TOT % of TOT % of TOT % of mean TOT % of TOT % of TOT Total Length (TOT) 373 932 344 338-372.5 1180 990 Snout tip to Outer nostrils 4.15 1.11 2 1.15 2.03 Eye 11.65 3.12 4.1 3.11 4.06 Spiracle 35.65 9.56 9.6 9.24 9.59 Mouth 24.5 6.57 6.1 5.48 6.1 1st gill opening 65.2 17.48 17.2 16.16 17.15 3rd gill opening 75.65 20.28 18.72 5th gill opening 81.85 21.94 20.9 21.2 20.58 21.21 Pectoral origin 82 21.98 21.8 20.69 21.8 Pelvic origin 200.95 53.87 58.5 54.1 52.73 54.06 62.63 Cloaca 220.5 59.12 57.16 1st dorsal origin 129.3 34.66 36.8 35.5 34.11 35.46 56.57 2nd dorsal origin 223.15 59.83 62.3 59.9 58.08 59.88 69.7 Dorsal caudal origin 280.1 75.09 75 74.32 75 80.81 Ventral caudal origin 270.05 72.40 71.23 Distance between bases 1st and 2nd dorsal fins 78.9 21.15 21.2 20.09 21.22 2nd and caudal fins 33.25 8.91 10.5 10.67 10.46 Pectoral and pelvic fins 111.1 29.79 29.1 27.88 29.08 Nostrils: distance Between inner corners 10.65 2.86 2.9 3.34 2.9 Mouth Width 30.4 8.15 7.3 7.42 5.32 Gill opening lengths 1st 4.3 1.15 1.5 1.43 1.45 3rd 5 1.34 1.5 1.34 1.54 5th 7.15 1.92 1.7 1.69 1.74 Spiracle: maximum width 7.65 2.05 0.9 1.58 0.87 Eye Horizontal diameter 15.8 4.24 3.5 3.96 3.48 Vertical diameter 7.2 1.93 1.7 1.97 1.74 Interorbital width 21.2 5.68 6.1 6.18 1st dorsal fin Overall length 36.65 9.83 9.3 9.65 9.3 Length base 16.7 4.48 4.1 3.99 Length posterior margin 12.55 3.36 3.5 4.01 Height 19.15 5.13 4.1 4.05 2nd dorsal fin Overall length 38.3 10.27 10.2 10.55 9.3 Length base 21.7 5.82 5.5 5.97 Length posterior margin 15.1 4.05 4.9 4.82 Height 16.7 4.48 4.7 4.94 Pectoral fin Length base 16.05 4.30 4.4 4.65 Length anterior margin 48.25 12.94 12.2 12.23 14.24 Length distal margin 13.15 3.53 5.56 Length posterior margin 22.95 6.15 6.1 6.37 Pelvic fin Overall length 49.6 13.30 11 11.65 11.04 Length base 28.55 7.65 6.4 7.07 Length anterior margin 33 8.85 8.4 8.24 Length clasper --- --- 3.8 4.17 Caudal fin Length dorsal lobe 92.2 24.72 25.9 24.43 Length ventral lobe 42.95 11.51 12.5 11.5 Dorsal tip to notch 17.1 4.58 5.5 6.01 Depth notch 15.55 4.17 4.1 4.22 Trunk at pectoral origin Height 40.65 10.9 10.8 9.59 10.75 Total weight (g) 190 Tab. 1: Morphometric measurements of kitefin shark Dalatias licha carried out in the present study, and previous studies in the Mediterranean Sea. Tab. 1: Morfometrične meritve na primerku klinoplavutega morskega psa iz pričujoče raziskave in iz prejšnjih raziskav v Sredozemskem morju. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 371 Hakan KABASAKAL et al.: NOTES ON A NEWBORN KITEFIN SHARK, DALATIAS LICHA: NEW EVIDENCE ON THE NURSERY OF A RARE DEEP-SEA SHARK ..., 367–374 Fig. 2: (a) Lateral view of the newborn kitefin shark, Dalatias licha, captured off Taşucu coast, NE Levant; (b) arrow pointing to the healing birthmark on the ventral surface of examined newborn specimen, between the pectoral fins; and (c) internal examination of specimen showing bi-lobed liver and stomach. Sl. 2: Pogled s strani na komaj skotenega mladiča klinoplavutega morskega psa, Dalatias licha, ujetega ob obali Taşucu, SV Levant; (b) puščica označuje poporodno brazgotino na trebušni strani skotenega primerka med prsnimi plavutmi; in (c) notranji pregled primerka z vidnimi dvokrpastimi jetri in želodcem. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 372 Hakan KABASAKAL et al.: NOTES ON A NEWBORN KITEFIN SHARK, DALATIAS LICHA: NEW EVIDENCE ON THE NURSERY OF A RARE DEEP-SEA SHARK ..., 367–374 Morphometric measurements of the examined kitefin shark, accompanied by previously published morphometric data on Dalatias licha, are presented in Table 1. Minor differences were observed between the results of the present study and published morphomet- rics of D. licha, which were statistically insignificant (Table 1; t-test, p>0.10). Although the morphometric ratios of any fish can run between certain minimum and maximum extremes, the condition of the specimen (fresh, preserved, or decomposing in case of stranded specimens), the measurement tool (e.g., an ordinary measurement tape or a vernier caliper) and experience of the measurer etc., can also affect the accuracy of morphometric measurements (Takács et al., 2016). In the majority of the literature, Dalatias licha is considered a rare or data-limited shark (e.g., Capapé et al., 2008; Ergüden et al., 2017; Chatzispyrou et al., 2018; Spyridopoulou et al., 2020). Furthermore, in a recent review of species diversity, taxonomy and distribution of chondrichthyes in the Mediterranean Sea, Serena et al. (2020) stated that D. licha is not an abundant shark species in any region of its distribution range in the Mediterranean Sea. Serena et al. (2020) emphasised that kitefin shark is more frequent in the western basin. However, in two very comprehensive surveys investigating the distribution and abundance of demersal cartilaginous fish in the Mediterranean it was noted that the species is more abundant than expected throughout the investigated region (Baino et al., 2001; Sion et al., 2004). In a MEDITS survey, frequency of occurrence of D. licha was 2 percent, with kitefin sharks recorded in 152 out of 6336 bottom trawl hauls (Baino et al., 2001). During a DESEAS survey carried out in three areas of the Mediterranean Sea (Balearic Sea, western and eastern Ionian Sea), D. licha speci- mens were caught in all three areas in the 800‒1200 m depth strata (Sion et al., 2004). Moreover, Sion et al. (2004) reported that abundance of D. licha decreased with depth. Ragonese et al. (2013) analysed the data gathered in scientific bottom trawl surveys carried out off the southern coasts of Sicily from 1994 to 2009, and concluded that D. licha was common, mainly on the slope. Survey data also indicated an exclusive bathyal presence (376‒783 m) for D. licha throughout the area of investigation, with a preference for central and east- ern grounds and deeper waters (550‒783 m) (Ragonese et al., 2013). Last but not least, based on the results of a deep-sea (500‒1000 m) long-line survey conducted off the Island of Gökçeada (NE Aegean Sea), Gönülal (2016) stated that D. licha is a “frequent” deep-sea shark in the region. As seen in the map (Fig. 1), the capture localities of free-swimming newborns of D. licha in the eastern Mediterranean are widely scattered, suggesting the possibility of multiple nurseries in the region. From the perspective of conservation, the possibility of multiple nurseries of D. licha in the eastern Mediterranean could raise the chance of survival and the continuity of the generations; however, this advantageous situation could also pose new challenges in areas where com- mercial demersal fishery overlaps with those nurseries, as is the case with nurseries of many demersal fishes in the Mediterranean (Colloca et al., 2015). Based on the data reported by Meriç (1995) and Kabasakal & Kaba- sakal (2002), the suggested nurseries of D. licha in the northern Aegean Sea and in the northern slope of the Sea of Marmara (Fig. 1) are overlapped with the fish- ing zones of commercial trawlers, gill- and trammel- netters, and long-liners. According to Ergüden et al. (2022), the Bays of İskenderun and Mersin, which are also important commercial bottom trawling grounds, may serve as nursery grounds of 15 species of sharks, including D. licha, and the present record of newborn kitefin shark in the region provides supporting data for this suggestion. D. licha is a “vulnerable” shark (Finucci et al., 2018; Serena et al., 2020), and effective conservation of these nursery grounds should also be included among any fishery management measures to be implemented in the vicinity of these areas. ACKNOWLEDGMENTS Authors thank to the crew of fishing trawler “Çınar Bey” for their friendly help during the field work. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 373 Hakan KABASAKAL et al.: NOTES ON A NEWBORN KITEFIN SHARK, DALATIAS LICHA: NEW EVIDENCE ON THE NURSERY OF A RARE DEEP-SEA SHARK ..., 367–374 ZAPIS O NAJDBI SKOTENEGA KLINOPLAVUTEGA MORSKEGA PSA, DALATIAS LICHA: NOVI DOKAZ O JASLICAH REDKEGA GLOBOKOMORSKEGA MORSKEGA PSA V SEVEROVZHODNEM LEVANTU (TURČIJA) Hakan KABASAKAL Ichthyological Research Society, Tantavi mahallesi, Menteşoğlu caddesi, Idil apt., No: 30, D: 4, TR-34764 Ümraniye, Istanbul, Turkey Doğal Hayatı Koruma Vakfı (WWF-Türkiye), Asmalı Mescit, İstiklal Cd. No:136, 34430 Beyoğlu/İstanbul, Turkey e-mail: kabasakal.hakan@gmail.com Ayşe ORUÇ, Ebrucan KALECİK, Efe SEVİM, Nilüfer ARAÇ & Cansu İLKILINÇ Doğal Hayatı Koruma Vakfı (WWF-Türkiye), Asmalı Mescit, İstiklal Cd. No:136, 34430 Beyoğlu/İstanbul, Turkey POVZETEK Dvaindvajsetega aprila 2022 so v bližini obale Taşucu (severovzhodni Levant) na mešanem peščenem muljastem dnu na globini 550 m v pridneno kočo naključno ujeli primerek klinoplavutega morskega psa, Dalatias licha (Bon- naterre, 1788). Meril je 373 mm v dolžino in očiščen (brez kože) tehtal 190 g. Na podlagi poporodne brazgotine na trebušni strani med prsnimi plavutmi se je izkazalo, da gre za pred kratkim skotenega mladiča klinoplavutega morskega psa. Avtorji na podlagi objavljenih podatkov domnevajo, da bi lahko bilo območje severovzhodnega Levanta vzrejno območje (jaslice) za najmanj 15 vrst morskih psov, vključno s klinoplavutim morskim psom, kar potrjuje tudi pričujoča najdba komaj skotenega mladiča. Ključne besede: Dalatias, klinoplavuti morski pes, mladič, ranljiva vrsta, varovanje ANNALES · Ser. hist. nat. · 32 · 2022 · 2 374 Hakan KABASAKAL et al.: NOTES ON A NEWBORN KITEFIN SHARK, DALATIAS LICHA: NEW EVIDENCE ON THE NURSERY OF A RARE DEEP-SEA SHARK ..., 367–374 REFERENCES Baino, R., F. Serena, S. Ragonese, J. Rey & P. Rinelli (2001): Catch composition and abundance of elasmo- branchs based on the MEDITS program. Rapp. Comm. int. Mer Médit., 36, 234. Capapé, C., F. Hemida, J.-P. Quignard, M.M. Ben Amor. & C. Reynaud (2008): Biological observations on a rare deep-sea shark, Dalatias licha (Chondrichthyes: Dalatiidae), off the Maghreb coast (south-western Mediterranean). Panamjas, 3, 355-360. Castro, J.I. (1993): The shark nursery of Bulls Bay, South Carolina, with a review of the shark nurseries of the southeastern coast of the United States. In L. S. Demski, & J. P. Wourms, (Ed.), The reproduction and development of sharks, skates, rays and ratfishes. Envi- ron. Biol. Fishes, 38, 37-48. Chatzispyrou, A., M. Aroni, E. Lefkaditou, K. Ka- piris, I. Giovos & A. Anastasopoulou (2018): Some biological information on a female kitefin shark, Dala- tias licha (Bonnaterre, 1788) stranded in the Laconikos Gulf of Greece (SE Ionian Sea) Turk. J. Fish.& Aquat. Sci., 19, 1069-1072. http://doi.org/10.4194/1303- 2712-v19_12_09 Colloca, F., G. Garofalo, I. Bitetto, M.T. Facchini, F. Grati, A. Martiradonna et al. (2015): The seascape of demersal fish nursery areas in the north Mediter- ranean Sea, a first step towards the implementation of spatial planning for trawl fisheries. PLoS ONE 10(3), e0119590. doi:10.1371/journal.pone.0119590. Compagno, L.J.V. (1984): FAO species catalogue: Sharks of the world. Vol. 4. An annotated and illus- trated catalogue of shark species known to date. Part 1. Hexanchiformes to Lamniformes. Part 2. Carcharhini- formes. FAO Fisheries Synopsis, FAO, Rome. Ebert, D.A. & M.F.W. Stehmann (2013): Sharks, ba- toids and chimaeras of the North Atlantic. FAO Species Catalogue for Fishery Purposes, No. 7. FAO, Rome. Ergüden, D., M. Çekiç, S.A. Ergüden, A. Altun & N. Uyğur (2017): Occurrence of adult female kitefin shark Dalatias licha (Bonnaterre, 1788) in İskenderun Bay (Eastern Mediterranean, Turkey). Comm. J. Biol., 1, 60-62. Ergüden, D., H. Kabasakal & D. Ayas (2022): Fisheries bycatch and conservation priorities of young sharks (Chondrichthyes: Elasmobranchii) in the Eastern Mediterranean. Zool. Middle East, http://dx.doi.org/10. 1080/09397140.2022.2051916. Finucci, B., R.H.L. Walls, J. Guallart & P.M. Kyne (2018): Dalatias licha. The IUCN Red List of Threat- ened Species 2018: e.T6229A3111662. http://dx.doi. org/10.2305/IUCN.UK.2018-2.RLTS.T6229A3111662.en Golani, D. (1986): On deep-water sharks caught off the Mediterranean coast of Israel. Isr. J. Zool., 34, 23-31. Gönülal, O. (2016): A preliminary study on the bathymetric distribution of the deep sea fishes from northern Aegean Sea. Bio. Di. Con., 9, 144-148. Kabasakal, H. & E. Kabasakal (2002): Morphomet- rics of young kitefin sharks, Dalatias licha (Bonnaterre, 1788), from northeastern Aegean Sea, with notes on its biology. Annales, Ser. Hist. Nat., 12, 161-166. Meriç, N. (1995): A study on existence of some fishes on the continental slope of the Sea of Marmara. Tr. J. of Zoology, 19, 191-198. Ragonese, S., S. Vitale, M. Dimech & S. Mazzola (2013): Abundances of Demersal Sharks andChimaera from 1994-2009 Scientific Surveys in the Central Medi- terranean Sea. PLoS ONE, 8(9), e74865. doi:10.1371/ journal.pone.0074865. Serena, F. (2005): Field Identification Guide to the Sharks and Rays of the Mediterranean and Black Seas. FAO Species Identification Guide for Fishery Purposes. FAO, Rome. Serena, F., A.J. Abella, F. Bargnesi, M. Barone, F. Colloca, F. Ferretti, F. Fiorentino, J. Jenrette & S. Moro (2020): Species diversity, taxonomy and distribution of Chondrichthyes in the Mediterranean and Black Sea. Eur. Zool. J., 87, 497-536. Sion, L., A. Bozzano, D. D’Onghia, F. Capezzuto & M. Panza (2004): Chondrichthyes in deep waters of the Mediterranean Sea. Sci. Mar., 68 (Suppl. 3), 153-162. Soto, J.M.R. & M.M. Mincarone (2001): First re- cord of kitefin shark, Dalatias licha (Bonnaterre, 1788) (Chondrichthyes, Dalatiidae), in the south Atlantic. Mare Magnum, 1, 23-36. Spyridopoulou, R.N.A., J. Langeneck, D. Bouziotis, I. Giovos, P. Kleitou & S. Kalogirou (2020): Filling the gap of data-limited fish species in the eastern Mediter- ranean Sea: a contribution by citizen science. J. Mar. Sci. Eng., 8, 107; doi:10.3390/jmse8020107. Takács, P., Z. Vitál, Á. Ferincz & Á. Staszny (2016): Repeatability, Reproducibility, Separative Power and Subjectivity of Different Fish Morphometric Analysis Methods. PLoS ONE, 11(6), e0157890. doi:10.1371/ journal.pone.0157890. ANNALES · Ser. hist. nat. · 30 · 2020 · 1 375 Saul CIRIACO et al.: A RECORD OF RARE SPINY BUTTERFLY RAY, GYMNURA ALTAVELA (LINNAEUS, 1758), IN THE AMVRAKIKOS GULF (GREECE), 39–42 IHTIOFAVNA ITTIOFAUNA ICHTHYOFAUNA ANNALES · Ser. hist. nat. · 30 · 2020 · 1 376 Saul CIRIACO et al.: A RECORD OF RARE SPINY BUTTERFLY RAY, GYMNURA ALTAVELA (LINNAEUS, 1758), IN THE AMVRAKIKOS GULF (GREECE), 39–42 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 377 received: 2022-04-18 DOI 10.19233/ASHN.2022.39 DIET COMPOSITION AND FEEDING STRATEGY OF ATLANTIC CHUB MACKEREL SCOMBER COLIAS IN THE ATLANTIC COAST OF MOROCCO Nadia BOUZZAMMIT Ibn Zohr University, Faculty of Sciences, Laboratory of Aquatic Systems: Marine and Continental Environments, P.O. Box 8106 - Dakhla Avenue, Agadir, Morocco e-mail: nadia.bouzzammit@edu.uiz.ac.ma Hammou EL HABOUZ National Institute of Fisheries Research, Anza, Agadir, Morocco El hassan AIT-TALBORJT, Zahra OKBA & Hassan EL OUIZGANI Laboratory of Aquatic Systems: Marine and Continental Environments, P. O. Box 8106, Faculty of Sciences, Ibn Zohr University Dakhla Avenue, Agadir, Morocco ABSTRACT The diet composition and feeding strategy of the Atlantic chub mackerel (Scomber colias) were studied in the Atlantic coast of Morocco in the winter of 2017. A total of 330 stomach contents of S. colias were examined. The study of the vacuity index indicated high feeding activity of S. colias in Safi (SF) (2%), and Laayoune (LA) (6%). However, low feeding activity was shown in El Jadida (JD) (25%) and Agadir (AG) (20%). The analysis of the diet composition of studied populations led to identifying 22 items. The most abundant prey was fish with high importance index, followed by copepods in three localities (AG, SF, and LA), where the dominant preys in El Jadida (JD) were crustaceans and mysids with a high importance index. S. colias is a carnivorous fish and a ferocious fish predator. We recorded several cases of cannibalism among the studied populations. Key words: Diet, Scomber colias, stomach contents, vacuity index, cannibalism COMPOSIZIONE DELLA DIETA E STRATEGIA ALIMENTARE DELLO SGOMBRO OCCHIONE SCOMBER COLIAS LUNGO LA COSTA ATLANTICA DEL MAROCCO SINTESI La composizione della dieta e la strategia alimentare dello sgombro occhione (Scomber colias) sono state studiate lungo la costa atlantica del Marocco nell’inverno del 2017. Sono stati esaminati 330 contenuti stoma- cali di S. colias. Lo studio dell’indice di vacuità ha indicato un’elevata attività alimentare di S. colias a Safi (SF) (2%) e Laayoune (LA) (6%). Tuttavia, è stata evidenziata una bassa attività alimentare a El Jadida (JD) (25%) e Agadir (AG) (20%). L’analisi della composizione della dieta delle popolazioni studiate ha portato all’identi- ficazione di 22 elementi. La preda più abbondante sono stati i pesci, con un alto indice di importanza, seguiti dai copepodi in tre località (AG, SF e LA), mentre le prede dominanti a El Jadida (JD) sono state i crostacei e i misidi, con un alto indice di importanza. S. colias è un pesce carnivoro e un feroce predatore di pesci. Abbiamo registrato diversi casi di cannibalismo tra le popolazioni studiate. Parole chiave: dieta, Scomber colias, contenuto stomacale, indice di vacuità, cannibalismo ANNALES · Ser. hist. nat. · 32 · 2022 · 2 378 Nadia BOUZZAMMIT et al.: DIET COMPOSITION AND FEEDING STRATEGY OF ATLANTIC CHUB MACKEREL SCOMBER COLIAS IN THE ATLANTIC ..., 377–390 INTRODUCTION The Atlantic chub mackerel Scomber colias (Gmelin, 1789) is an epipelagic to mesopelagic species observed over the continental slope in warm and temperate waters between 0-250 to 300 m (Collette & Nauen, 1983; (Čikeš Kec & Zorica, 2012)). It is widely distributed in the Atlantic Ocean of Northwest Africa including the Eastern Atlantic (the Canary and Azore Islands) to the Bay of Biscay, in the Mediterranean Sea, and the adjacent waters, such as the Black Sea (Collette & Nauen, 1983; Navarro et al., 2012). The Atlantic chub mackerel occupies a key position in the trophic web and is considered to be the link between the primary pro- ducers and the higher trophic levels. Thus, it is an important prey for large pelagic fish (tuna, sharks) and marine mammals (dolphins) (Velasco et al., 2011; Machado et al., 2022). The quantity of food available and the interaction between fish using the same food source represent the key factors that in- fluence the size (length-weight) of fish. Hence, the length-weight relationship is an important biologi- cal parameter that provides information about the growth, health, habitat conditions, gonad maturity, life history, and fatness of a fish species (Froese, 2006; Froese et al., 2011; Jisr et al., 2018), and is helpful in comparing life histories and morpho- logical aspects of populations inhabiting different habitats (Cherif et al., 2008, Hashemzadeh et al., 2015, Bouzzammit et al., 2019). The analysis of the composition of stomach contents and dietary patterns can be used to as- sess habitat preferences, prey selection, effects of ontogenesis, and the development of conserva- tion strategies (Chakraborty et al., 2019; Mishra, 2020). Besides providing important insights into ecological and biological aspects of fish behavior, habitat use, energy intake, and interaction between species in the ecosystem, the study of feeding habits contributes to understanding the ecosystem structure, community composition, and population dynamics (Litvaitis, 2000; Stergiou & Karpouzi, 2002; Zacharia & Abdurahiman, 2004; Ahlbeck et al., 2012; Manko, 2016; Atique & An, 2018; Rahman et al., 2020; Saeed et al., 2020). Also, the feeding habit analysis of aquatic species can yield an understanding of their growth, abundance, and productivity (Nansimole et al., 2014). Therefore, knowledge about dietary patterns and the diet of fish is indispensable in the decision-making process related to the sustainable management of aquatic ecosystems (Garvey & Chipps, 2012). Several studies have been carried out about the food and feeding habits of fish in general, with many authors discussing in particular the inspection of fish stomach contents (including Hynes, 1950; Windell & Bowen, 1978; Hyslop, 1980; Mohan & Sankaran, 1988; Costello, 1990; Da Silveira et al., 2020), all agreeing that a food item should be counted, weighed, or measured by their volume. Still, the Atlantic chub mackerel (S. colias) remains poorly studied and very little is known about their behavioural patterns and feeding strategy in Moroc- can waters. As the sustainable management of small pelagic stocks has become a scientific concern in Morocco, a study on the dietary pattern of S. colias and its interactions with the ecosystem will con- tribute to improving the knowledge of this species, especially in terms of stock management. This study aims to examine the stomach contents composition and to determine the feeding strategy of S. colias from four localities in the Atlantic coast of Morocco during winter, in order to provide infor- mation on trophic ecology for a good management of this species in Moroccan waters. MATERIAL AND METHODS Sampling area A total of 330 individuals of Scomber colias were collected from small-scale boats and purse seiners from four ports in the Atlantic coast of Morocco, located between 33°15’17” N, -8°30’21” O and 27°08’30” N - 13°11’16” O, namely El Jadida (JD), Safi (SF), Agadir (AG), and Laayoune (LA) (Fig. 1). Analysis of stomach contents All samples were measured for total length (TL) to the nearest 1 mm, and total weight (TW) to the nearest 0.1 g. The stomachs were carefully removed from the body, weighed, and preserved in 5% neu- tralised formalin. The stomachs were opened by making a small cut and the gut fullness was assessed on a visual scale from 0 (empty) to 1.0 (completely full) with intermediate values of 0.25 for 1/4 full, 0.5 for 1/2 full, and 0.75 for 3/4 full. The specimens with full and 3/4 full stomachs were considered to have been feeding actively. The gut contents were transferred into a petri dish. Each stomach content was examined under a compound inverted micro- scope (X40). All prey items were first identified to the lowest taxonomic level possible using the Bol- tovskoy (1999) and Rose (1933) identification keys. Diet composition was analysed and evaluated using the following indexes. The empty stomachs were counted in order to calculate the vacuity index (VI), which corresponds to the percentage of empty stomachs (ES) in the total number of analysed stomachs (TS): VI% = ES / TS * 100 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 379 Nadia BOUZZAMMIT et al.: DIET COMPOSITION AND FEEDING STRATEGY OF ATLANTIC CHUB MACKEREL SCOMBER COLIAS IN THE ATLANTIC ..., 377–390 The importance index indicates the relative importance, and the volumetric analysis index indi- cates the relative abundance of specific items found in the stomach samples (Lima-Junior & Goitein, 2001). They were used to identify important prey groups in the diet of S. colias: AIi = Fi. * Vi Q = %F * Cp% where Fi = frequency of occurrence, Vi = volu- metric analysis index of item (Lima Junior et al., 2001), Q = feeding coefficient, %F = frequency index of prey i, and Cp% = percentage of the prey item’s volume. By applying the food coefficient Q and the fre- quency index F (the Geistdoerfer index [1978]), the prey is divided into three categories, with each further subdivided into two subcategories: Q>100 indicates main prey, which can be preferen- tial (F>0.30) or occasional (F<0.30); 100.10) or accessory (F<0.10); Q<10 indicates complementary prey, which can be first order (F>0.10) or second order (F<0.10). While the importance of prey items and feed- ing strategy were analysed via a graphical method (Amundsen et al., 1996), plots were constructed using a modified Costello method (Amundsen et al., 1996). The graphical analysis of feeding strategy (Pi) is based on a two-dimensional representation of prey-specific Figure 1: Sampling areas of Scomber colias from the Atlantic coast of Morocco Laâyoune Safi Agadir El Jadida Fig. 1: Sampling areas of Scomber colias on the Atlantic coast of Morocco. Sl. 1: Vzorčevalni predeli, kjer so vzorčili vrsto Scomber colias ob atlantski obali Maroka. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 380 Nadia BOUZZAMMIT et al.: DIET COMPOSITION AND FEEDING STRATEGY OF ATLANTIC CHUB MACKEREL SCOMBER COLIAS IN THE ATLANTIC ..., 377–390 abundance and frequency of occurrence of the differ- ent prey types in the diet, and calculated according to the formulae: Pi = (∑Si/∑Sti) * 100 Fi = 100 * (Ni/N) where Si is the stomach content (volume, weight, or number) composed by prey i, and Sti is the total stom- ach content of all stomachs in the entire sample. Ni is the number of predators with prey i in their stomachs, and N is the total number of predators with stomach contents of any kind (Amundsen et al., 1996). Length-weight relationships and condition factor The length-weight relationship was studied for different samples collected in the aforementioned areas (EL Jadida, Safi, Agadir, and Laayoune). The body weight was calculated using the equation Wt = a.TLb, where Wt is the total weight, TL is the total length, a is a coefficient related to body shape, and b is an exponent that indicates isometric growth in body proportions if b=3 (Froese 2006). The parameters (a, b) are important in stock assess- ment studies (Froese 1998; Froese et al., 2011). The relationships between length and weight may also be used for determining the fish condition, compar- ing fish growth among areas, and as a complement to species-specific reproduction and feeding studies (Koutrakis & Tsikliras, 2003; Froese, 2006; Froese et al., 2011). The condition factor (K) was calculated to compare the change in size based on weight variation: K= (Wt/ TL3) * 100 (Pauly, 1983), where Wt is the total body weight in grams, and TL is the total length in cm. Statistical analysis For statistical analysis, one-way ANOVA was used to test the difference in total length (TL) between four localities. The data were analysed statistically using the SPSS (version 21) statistical software package. RESULTS Feeding intensity Among a total of 330 stomachs of S. colias exam- ined, 20 empty stomachs were recorded in the Agadir sample (VI%=20%), 3 empty stomachs were recorded in the Laayoune sample (VI%=6%), 2 empty stomachs in the Safi sample (2%), and 19 empty stomachs in the El Jadida sample (VI%=23%). The highest numbers of empty stomachs were found in the Agadir and El Jadida samples, the lowest in the Safi and Laayoune samples (Fig. 2). Diet composition and feeding strategy An analysis of the diet composition of 330 indi- viduals led to the identification of 22 items (Tab. 1), manifesting that the diet of S. colias is characterized by a wide spectrum of prey groups and species. The rela- tive importance index showed the most common preys to occur in stomachs of S. colias from the different Figure 2: Variation of vacuity index among four areas (El Jadida, Safi, Agadir, and Laâyoune) 0% 5% 10% 15% 20% 25% 30% EL JADIDA SAFI AGADIR LAAYOUNE Va cu ity in de x Areas Fig. 2: Variation of vacuity index in the four areas (El Jadida, Safi, Agadir, and Laayoune). Sl. 2: Variabilnost indeksa praznosti na štirih predelih (El Jadida, Safi, Agadir in Laayoune). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 381 Nadia BOUZZAMMIT et al.: DIET COMPOSITION AND FEEDING STRATEGY OF ATLANTIC CHUB MACKEREL SCOMBER COLIAS IN THE ATLANTIC ..., 377–390 studied localities (El Jadida [JD], Safi [SF], and Agadir [AG]) were fish, copepods, crustaceans, chaetognaths, and mysids. However, in Laayoune, the single most important prey recorded was fish, with chaetognaths a distant second. The statistical analysis revealed a significant differ- ence (p<0.05) between the four localities. The Laay- oune sample represents the largest sample, followed by Agadir and El Jadida. The Safi sample was the smallest (Fig. 3). Fish were the predominant prey in AG, SF, and LA because those samples contained a higher number of (adult) mackerel individuals, which prefer to consume fish (sardines, anchovy, and mackerel), compared to smaller individuals (juveniles), which tend to con- sume zooplankton (copepods, mysids, isopods, am- phipods, cladocerans, chaetognaths, and ostracodes). We plotted the prey-specific abundance Pi against the frequency of occurrence Fi to assess the feeding strategy of S. colias. Figures 4 and Figure 5 indicate differences in the feeding strategies of specimens from the four areas (El Jadida, Safi, Agadir, and Laayoune). Many kinds of prey were found in the stomachs of the Atlantic chub mackerel, with fish being the most abundant in three of the four studied populations (Agadir, Safi, and Laayoune) Tab. 1: Composition of Scomber colias’ stomach contents with Occurrence Frequency (Fi%) and Importance Index (AI) recorded for each food item. Tab. 1: Vsebina prehrane lokarde na podlagi frekvence pojavljanja (Fi%) in indeksa pomembnosti (AI) za vsako prehranjevalno kategorijo. Taxon Occurrence Frequency Importance Index Eljadida Safi Agadir Laayoune Eljadida Safi Agadir Laayoune Copepoda 52.4 78 40 0 520 689 144 0.1 Shrimp 4.8 0 26.3 0 24 0 0 0 Debris of crustaceans 79.4 1.1 1.3 0 2567 0.3 3 0 Crab 3.2 0 0 0 11 0 0 0 Mysids 46 1.1 21.3 0 1370 0.1 53 0 Amphipoda 6.4 0 0 0 20 0 0 0 Ostracoda 11.1 3.3 2.5 0 13 1.3 0 0 Cladocera 19 29.4 10 0 45 100 1.6 0 Isopod 47.6 1.1 16.3 0 123 0.1 33 0 Chaetognathes 33.3 23.9 45 8.2 185 49 56 21 Sardina pilchardus 0 35.9 26.3 93.9 0 731 701 8767 Engraulis encrasicolus 0 65.2 27.5 0 0 2100 687 0 Scomber colias 3.2 21.7 11.3 14.3 5 390 181 284 Debris of fish 4.8 8.7 3.8 0 8 14 0 0 Larvae 19 44.6 1.3 0 79 321 0.98 0 Egg 11.1 43.5 3.8 0 42 248 0 0 Loligo 0 0 1.3 0 0 0 0.78 0 Annelida 11.1 3.3 0 0 24.2 1.3 0 0 Lammelibranchs 0 0 2.5 0 0 0 0.78 0 Cnidaire 3.2 2.2 0 0 1.3 0.3 0 0 Appendicularia 0 2.2 0 0 0 0.9 0 0 Sand, debris, plastic 3.2 0 2.5 0 3.8 0 2.73 0 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 382 Nadia BOUZZAMMIT et al.: DIET COMPOSITION AND FEEDING STRATEGY OF ATLANTIC CHUB MACKEREL SCOMBER COLIAS IN THE ATLANTIC ..., 377–390 Figure 3: Representation of total length (Lt) between four localities Fig. 3: Scomber colias total length in the four areas. Sl. 3: Celotna dolžina vrste Scomber colias na štirih predelih. Fig. 4: Graphical explanation of feeding strategy plots of Scomber colias adapted from Amundsen et al. (1996). Sl. 4: Grafična razlaga prehranjevalnih strategij lokarde, prirejena po Amundsenu in sod. (1996). Figure 4: Graphical explanation for feeding strategy plots of Scomber colias adapted from Amundson et al. (1996). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 383 Nadia BOUZZAMMIT et al.: DIET COMPOSITION AND FEEDING STRATEGY OF ATLANTIC CHUB MACKEREL SCOMBER COLIAS IN THE ATLANTIC ..., 377–390 (Fig. 5). The El Jadida prey sample was dominated by crustaceans, such as mysids and fragments of shrimp, followed by copepods (Fig. 5). The results obtained from the graphical method of Amundsen et al. (1996) showed that fish was the most important prey in the diet of S. colias from the Atlantic coast, followed by copepods and mysids (Fig. 4). Estimation of length-weight relationship and condition factor K The sample size, the length, and the weight characteristics, as well as the estimation of the length-weight relationship parameters a and b, are presented in Table 2, the length-weight re- lationships in Figure 6. The Agadir area had the highest number of fish sampled (N=100), with their total lengths ranging from 15 to 34 cm, and weights from 17 and 306 g; Safi ranked second (N=94), with the specimens’ total lengths ranging from 14 to 25 cm, and weights from 15 to 100 g; the third largest sample was from the area of El Jadida (N=83), with the specimens’ total lengths ranging from19 to 30 cm and total weights from 42 to 187g; the Laayoune sample was the smallest sample (N=53) and only composed of adult fish with the total lengths ranging from 23 to 31 cm and total weight from 75 to 302 g. Figure 5. Distribution of prey abundance between four areas El Jadida Copepoda Crustacean Mysida Amphipoda Ostracoda Cladocera Isopod Chaetognathes Fish Larvae Loligo Annelida Safi Copepoda Crustacean Mysida Amphipoda Ostracoda Cladocera Isopod Chaetognathes Fish Larvae Loligo Annelida Agadir Copepoda Crustacean Mysida Amphipoda Ostracoda Cladocera Isopod Chaetognathes Fish Larvae Loligo Annelida Laâyoune Copepoda Chaetognathes Fish Fig. 5: Distribution of prey abundance among the four areas. Sl. 5: Porazdelitev številčnosti plena na štirih predelih. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 384 Nadia BOUZZAMMIT et al.: DIET COMPOSITION AND FEEDING STRATEGY OF ATLANTIC CHUB MACKEREL SCOMBER COLIAS IN THE ATLANTIC ..., 377–390 Tab. 2: Length-weight relationship parameters (a = intercept of the regression line; b = slope of the regression line; R2 = coefficient of determination; N = number of specimens; TL = total length; Wt = total weight, F = females; M = males; Comb = combined). Tab. 2: Parametri dolžinsko-masnega odnosa (a = presek regresijske premice; b = naklon regresijske premice; R2 = koeficient determinacije; N = število osebkov; TL = celotna dolžina; Wt = totalna teža, F = samice; M = samci; Comb = kombinirano). Area N TL (cm) (Min-Max) Wt (g) (Min-Max) a b R2 K F M comb El Jadida 83 19-30 42-187 0,0023 3,3485 0.8943 0.64 0.64 0.64 Safi 94 14-25 15-100 0,0023 3,3219 0.9221 0.61 0.62 0.62 Agadir 100 15-34 17-306 0,0018 3,4421 0.9206 0.71 0.71 0.71 Laayoune 53 23-31 75-302 0,0009 3,6755 0.9055 0.9 0.9 0.9 Fig. 6: Plot of length-weight relationships of Scomber colias from the Atlantic coast of Morocco. Sl. 6: Dolžinsko-masni odnos lokarde na atlantski obali Maroka. Figure 6: Plot of length-weight relationships of Scomber colias on the Atlantic coast of Morocco Wt = 0,0023TL3,3285 R² = 0,8943 0 20 40 60 80 100 120 140 160 180 200 0 10 20 30 40 To ta l w ei gh t ( g) Total length (cm) El Jadida Wt = 0,0023TL3,3219 R² = 0,9221 0 20 40 60 80 100 120 0 10 20 30 To ta l w ei gh t ( g) Total length (cm) Safi Wt= 0,0018TL3,4421 R² = 0,9206 0 50 100 150 200 250 300 350 0 10 20 30 40 To ta lw ei gh t ( g) Total length (cm) Agadir Wt = 0,0009TL3,6755 R² = 0,9055 0 50 100 150 200 250 300 350 0 10 20 30 40 To ta l w ei gh t ( g) Total length (cm) Laâyoune ANNALES · Ser. hist. nat. · 32 · 2022 · 2 385 Nadia BOUZZAMMIT et al.: DIET COMPOSITION AND FEEDING STRATEGY OF ATLANTIC CHUB MACKEREL SCOMBER COLIAS IN THE ATLANTIC ..., 377–390 The correlation coefficient R2≥0.9 was very impor- tant for all areas (Safi, Agadir, Laayoune, and El Jadida). The allometric coefficient for all samples of S. colias in total was b>3, whereas the allometric coefficients for El Jadida, Safi, Agadir, and Laayoune separately were b=3.35, b=3.22, b=3.44, and b=3.67, respectively. The pattern observed among the samples is that of positive allometric growth, where the weight gain exceeds the increase in length. The mean values of condition factor (K) were K=0.64 for El Jadida, K=0.61 for Safi, K=0.71 for Agadir, K=0.87 for Laayoune. DISCUSSION All four S. colias populations studied (from El Jadida, Safi, Agadir, and Laayoune) exhibited low percentages of specimens with empty stomachs; the slightly higher percentages observed in samples from Agadir (20 %) and El Jadida (23 %) may be due to a reduced avail- ability of food or frequency of feeding activity. The study was carried out in winter 2017 and the majority of the individuals treated appeared to be in an advanced stage of sexual maturity (mature gonads). The period of sampling thus coincided with the reproduction period of S. colias on the Atlantic coast of Morocco, where the spawning of the species takes place between December and March, peaking in Janu- ary (Techetach et al., 2010; Bouzzammit et al., 2022). The majority of the examined stomachs contained food, with the prey in different stages of digestion. Nikolsky (1976) mentioned that fish feeding intensity decreases during the spawning season, but his hypoth- esis that the mackerel fasts during the reproduction period is not applicable to our case. Our suggestion is consistent with that of Hernandez & Ortega (2000) who indicated that the mackerel from the Atlantic coast of northwest Africa feed continuously, even during the breeding season. The diet composition of the Atlantic chub mackerel from the Atlantic coast of Morocco indicates that fish (sardines, anchovies, mackerel) and zooplankton (co- pepods, mysids, euphausiids) are two main and pref- erential prey groups of this species. Preferences vary according to the size of the individual and the avail- ability of prey in their environment. The differences in food preferences between different localities may be due to differences in the size structure of the studied populations or different environmental conditions. The total length across all samples varied from 145 to 340 mm. The total lengths recorded in El Jadida were between 194 and 300 mm, in Safi between 144 and 247 mm, in Agadir between 145 and 340 mm, and in Laayoune between 228 and 312 mm, with the respec- tive averages of 229 ± 2.2 (JD), 206 ± 2.1 (SF), 228±3.5 (AG), and 279 ± 2.1 (LA). The Atlantic chub mack- erel is characterised by different food intake strategies: feeding on plankton through filtration in juvenile fish, and predation in large adult fish (Ait Talborjt, 2020). Consequently, the diet composition changes according to the size of the fish, but the switch to larger prey richer in energy may also be prompted by scarcity of the optimum/preferred food source in the environment (Kvaavik et al., 2019). Likewise, Castro (1993) found that in the Canary Islands mackerel fed on different categories of prey, from zooplankton (copepods, my- sids, isopods, crustacean larvae), to clupeids as one of the most important prey groups, followed by Engraulis encrasicolus and Scomber colias. Our results are also in agreement with Angelescu (1979), Angelescu (1980) and Pájaro (1993) with regard to the coasts of Argen- tina, who mentioned that the diet of the Atlantic chub mackerel was very flexible, both in terms of diversity (20 prey species) and size of prey (ranging from quite small, such as crustaceans, especially copepods, to rather large, such as fish). The graphical method of Amundsen et al. (1996) shows that fish are the main and preferential prey in the diet of S. colias, followed by copepods. This re- sult is in agreement with the results of Castro (1991; 1993; 1998), who stated that the diet of the Spanish mackerel was based on fish and copepods. In addition, the populations of Scomber colias from the Atlantic coast focus on three types of prey: fish, copepods, and mysids, with the feeding habits changing according to the size of the fish. These form the bulk of the species’ diet during the winter. It follows that the Atlantic chub mackerel is an opportunistically feeding carnivorous fish whose selection of prey is based on availability and geographic abundance. This result is similar to the finding of Sever et al. (2006) with regard to the Bay of Izmir, indicating that the diet of mackerel is influenced by abundance of prey and availability of food in the environment. In this study, we also recorded several cases of cannibalism: 22 in the Agadir sample, 18 in the Safi sample, seven in the Laayoune sample, and two in the El Jadida sample. According to Garrido et al. (2015), the juveniles of sardines and Atlantic chub mackerel were the main predators of the fish eggs of their spe- cies, possibly affecting the mortality rate of their own populations. Furthermore, three cases of Spanish mackerel cannibalism were recorded in the Canary Islands by Castro (1993), while Hunter and Kimbrell (1980), Hernández & Ortega (2000) reported cannibal- ism in the chub mackerel, associating it with sexual cannibalism where the females kill and consume the males. The length-weight relationship results indicated positive allometric growth (b>3) for all samples (El Jadida, Safi, Agadir, and Laayoune), with fish weight increasing faster than its length. Coefficient b is related to both length and weight. In the sample from Laay- oune, for example, which contains large and heavy ANNALES · Ser. hist. nat. · 32 · 2022 · 2 386 Nadia BOUZZAMMIT et al.: DIET COMPOSITION AND FEEDING STRATEGY OF ATLANTIC CHUB MACKEREL SCOMBER COLIAS IN THE ATLANTIC ..., 377–390 individuals, the coefficient b is expectedly higher and attributable to good environmental conditions and availability of food. The coefficient of determination R2 for the length-weight relationship was high (R2 ≥0.9) in all areas (EL Jadida, Safi, Agadir, and Laayoune), indi- cating that the length increased with the increase in the weight of fish. The differences recorded in condition factor (K) among areas are directly proportional to dif- ferences in weight. For example, the condition factor (K) in the Laayoune area was K=0.9, and the weights of specimens ranged between 75 to 306 g, while the condition factor (K) in the Safi area was K=0.62 and the weights ranged between 15 and 100 g. Generally, the condition factor (K) indicates the physiological condi- tion of fish (Getso et al., 2017). The increase in the K value indicates the fatness and gonadal development of fish (Maguire & Mace, 1993). Ujjania et al. (2012) also reported that when the value of condition factor (K) is superior to or equals 1, it indicates a good level of feeding and appropriate environmental conditions. The length-weight relationship parameters and the condition factor (K) has been confirmedly affected by feeding intensity, availability of food, fish size, stage of maturation, season, fullness of gut, amount of fat reserves, and life history (Ujjania et al., 2012; Gupta & Banerjee, 2015). CONCLUSIONS The diet of S. colias was characterized by a high di- versity of prey groups, including fish (sardines, ancho- vy, and chub mackerels), copepods, crustaceans (crab, shrimp), mysids, annelids, isopods, chaetognaths, am- phipods, larvae, fish eggs, cladocerans, ostracods, and cephalopods. The Atlantic chub mackerel (S. colias) is an opportunistic predator that feeds on available food in its habitat. The shift in the diet composition of this species could be interpreted as a result of change in the abundance of prey in its ecosystem. The size of prey targeted by the Atlantic chub mackerel increases in correlation with increase in body size, but the species also predates the smallest prey according to their avail- ability in their habitat. The length-weight relationship parameters and the condition factor (K) are affected by feeding intensity, availability of food, fish size, fullness of gut, and amount of fat reserves. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 387 Nadia BOUZZAMMIT et al.: DIET COMPOSITION AND FEEDING STRATEGY OF ATLANTIC CHUB MACKEREL SCOMBER COLIAS IN THE ATLANTIC ..., 377–390 PREHRANA IN PREHRANJEVALNA STRATEGIJA LOKARDE (SCOMBER COLIAS) OB ATLANTSKI OBALI MAROKA Nadia BOUZZAMMIT Ibn Zohr University, Faculty of Sciences, Laboratory of Aquatic Systems: Marine and Continental Environments, P.O. Box 8106 - Dakhla Avenue, Agadir, Morocco e-mail: nadia.bouzzammit@edu.uiz.ac.ma Hammou EL HABOUZ National Institute of Fisheries Research, Anza, Agadir, Morocco El hassan AIT-TALBORJT, Zahra OKBA & Hassan EL OUIZGANI Laboratory of Aquatic Systems: Marine and Continental Environments, P. O. Box 8106, Faculty of Sciences, Ibn Zohr University Dakhla Avenue, Agadir, Morocco POVZETEK Avtorji so raziskovali sestavo prehrane in prehranjevalno strategijo lokarde (Scomber colias) ob atlantski obali Maroka pozimi 2017. Preiskali so skupno 330 vsebin želodcev. Indeks praznosti želodca je pokazal veliko intenziteto hranjenja na lokalitetah Safi (SF) (2%) in Laayoune (LA) (6%), nižjo pa v El Jadida (JD) (25%) in Agadirju (AG) (20%). V preiskavi prehrane so določili 22 prehranjevalnih kategorij. Najbolj številen plen z najvišjim indeksom relativne pomembnosti so bile ribe, sledili so raki ceponožci na treh lokalitetah (AG, SF, and LA), medtem ko so bili na lokaliteti El Jadida (JD) najpomembnejši raki in mizidi. S. colias je mesojeda riba in krvoločni plenilec drugih rib. Avtorji so med raziskanimi populacijami zasledili več primerov kanibalizma. Ključne besede: prehrana, Scomber colias, vsebina želodcev, indeks praznosti, kanibalizem ANNALES · Ser. hist. nat. · 32 · 2022 · 2 388 Nadia BOUZZAMMIT et al.: DIET COMPOSITION AND FEEDING STRATEGY OF ATLANTIC CHUB MACKEREL SCOMBER COLIAS IN THE ATLANTIC ..., 377–390 REFERENCES Ait Talborjt, E. (2020): Analyse temporelle de l’abondance, de la biomasse et du spectre de taille du zooplancton de la baie d’Imessouane par la méthode d’imagerie numérique Zooscan- Zooprocesse– Ecotaxa. Thèse. Biologie et Ecologie Animale, université Ibn Zohr, 199 pp. Ahlbeck, I., S. Hansson & O. Hjerne (2012): Evaluating fish diet analysis methods by individual- based modelling. Can. J. Fish. Aquat. Sci., 69, 1184-1201. Amundson, P.A., H.M Gabler & F.J. Staldvik (1996): A new approach to graphical analysis of feeding strategy from stomach contents: Data modi- fication of the Costello method (1990). J. Fish Biol., 48, 607-614. Angelescu, V. (1980): Ecologia trofica de la ca- balla (Scombridae, Scomber japonicus marplatensis) del Atlantico sudoccidental. Biol.Isnt.Oceanogr., Sao Paulo, 29, 6-7. Angelescu, V. (1979): Trophic ecology of the mackerel of Argentine continental shelf. (Scombri- dae, Scomber japonicus marplatensis) part I. Rev. Invest Desarr, Pesq, 1, 6-44. Atique, U. & K.G. An (2018): Stream health evaluation using a combined approach of multi- metric chemical pollution and biological integrity models. Water, 661 pp. Boltovskoy, D. (1999): South Atlantic Zooplank- ton. Backhuys Publishers, Leiden, The Netherlands, 1706 pp. Bouzzammit, N. & H. El Ouizgani (2019): Morphometric and meristic variation in the Atlantic chub mackerel Scomber colias Gmelin, 1789 from the Moroccan coast. Indian J. Fish., 66(2), 8-15. Bouzzammit, N., H. El Habouz, A. Ben-Bani & H. El Ouizgani (2022): Spawning season, size at first maturity, and fecundity in chub mackerel (Scomber colias Gmelin, 1789) from the Atlantic coast of Morocco. Reg. Stud. Mar. Sci., 102451. Castro, J.J. (1991): Ecología trófica de la caballa (Scomber japonicus Houttuyn, 1780), en aguas del Archipiélago Canario.Tesis Doctoral, universidade de Las palmas de gran Canaria, 313 pp. Castro, J.J. (1993): Feeding ecology of chub mackerel Scomber japonicus in the Canary Islands area, South Afr. J. Mar. Sci., 13, 323-328. Castro, J.J. (1998): Mysids and euphausiids in the diet of Scomber japonicus Houttuyn, 1782 off the Canary Islands. Oceanographic Literature Re- view, 1234. Chakraborty, B.K., M.H. Shahroz, A.B. Bhuiyan, S. Bhattacharjee & S. Chattoraj (2019): Status of Indian major carps spawns in the Halda River along with marketing and economic condition of the Fishers and related collectors. Int. J. Biol. Innov., 1, 40-50. Cherif, M., R. Zarrad, H. Gharbi, H. Missaout, O. Jarbout (2008): Length-weight relationships for 11 fish species from the Gulf of Tunis (SW Mediterranean Sea, Tunisia). Pan-Am. J. Aquat. Sci., 3(1), 1-5. Čikeš Keč, V. & B. Zorica (2012): Mesenteric fat and condition of chub mackerel, Scomber colias in the Adriatic Sea. Ribar. Croat. J. Fish., 70, 19-30. Collette, B.B. & C.E. Nauen (1983): Scombrids of the World. FAO Fisheries Synopsis, no. 125. FAO, Rome, Italy. Costello, M.J. (1990): Predator feeding strategy and prey importance: a new graphical analysis. J. Fish Biol., 36, 261-263. Da Silveira, E.L., N. Semmar, J.E. Cartes, V.M. Tuset, A. Lombarte, E.L.C. Ballester & A.M. Vaz- dos-Santos (2020): Methods for trophic ecology assessment in fishes: a critical review of stomach analyses. Reviews in Fisheries Science & Aqua- culture, 28, 71-106. Froese, R. (1998): Length–weight relationships for 18 less-studied fish species. J Appl Ichthyol., 14, 117-118. Froese, R. (2006): Cube law, condition factor and weight–length relationships: History, meta- analysis and recommendations. J. Appl. Ichthyol., 22(4), 241-253. Froese, R., A.C. Tsikliras & K.I. Stergiou (2011): Editorial note on weight-length relations of fishes. Acta Ichthyol. Piscat., 41(4), 261-263. Garrido, S., A. Silva, J. Pastor, R. Dominguez, A.V. Silva, A.M. Santos (2015): Trophic ecology of pelagic fish species off the Iberian coast: diet overlap, cannibalism and intraguild predation. Mar. Ecol. Prog. Ser., 539, 271-286. Garvey, J .E. & S.R. Chipps (2012): Diets and energy f low. In: Zale AV, Parr ish DL, Sut- ton TM, edi tors. Fisheries Techniques. 3rd ed. Bethesda (MD): American Fisheries Society, pp. 733-779. Getso, B.U., J.M. Abdullahi & I.A. Yola (2017): Length-weight relationship and condition factor of Clarias gariepinus and Oreochromis niloticus of Wudil River, Kano, Nigeria. Agro-Science, 16(1), 1-4. Hashemzadeh, I., S.N. Tabatabaei, A. Man- souri, A. Abdoli, M. Ghalenoei, & K. Golzarian- pour (2015): Length-weight relationships of Garra rufa, in the Tigris and Persian Gulf basins of Iran. Int. J. Aquat. Biol., 3(1), 25-27. Hernández, J.J.C. & A.T.S. Ortega (2000): Synopsis of biological data on the chub mackerel (Scomber japonicus Houttuyn, 1782). FAO, Fish- eries Synopsis, 157. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 389 Nadia BOUZZAMMIT et al.: DIET COMPOSITION AND FEEDING STRATEGY OF ATLANTIC CHUB MACKEREL SCOMBER COLIAS IN THE ATLANTIC ..., 377–390 Hynes, H.B.N. (1950): The food of freshwater sticklebacks (Gasterosteus aculeatus and Pygosteus pungitius) with a review of methods used in studies of the food of fishes. J. Anim. Ecol., Oxford, 19, 36-58. Hyslop, E.J. (1980): Stomach content analysis: a review of methods and their applications. J. Fish Biol., 17, 411-429. INRH (2017): Annual report on the state of Moroccan stocks and fisheries. National Institute of Fisheries Research, Casablanca (Maroc), 287 pp. Jisr, N., G. Younes, C. Sukhn, & M.H. El-Dakdouki (2018): Length-weight relationships and relative condition factor of fish inhabiting the marine area of the Eastern Mediterranean city, Tripoli-Lebanon. Egypt. J. Aquat. Res., 44(4), 299-305. Koutrakis, Ε.Τ., Α.C. Tsikliras (2003): Length– weight relationships of fishes from three northern Aegean estuarine systems (Greece). J. Appl. Ich- thyol., 19(4), 258-260. Kvaavik, C., G.J. Óskarsson, A.K. Daníelsdót- tir & G. Marteinsdóttir (2019): Diet and feeding strategy of Northeast Atlantic mackerel (Scomber scombrus) in Icelandic waters. PLoS one, 14, (12), p. e0225552. Lima-Junior, S.E. & R. Goitein (2001): A new method for the analysis of fish stomach contents. Acta Scientiarum, 23(2), 421-424. Litvaitis, J.A. (2000): Investigating food habits of terrestrial vertebrates. In: Boitani L. & Fuller T.K (Eds.) Research techniques in animal ecology: con- troversies and consequences. Columbia University Press, New York, pp. 165-190. Machado, A.M., A. Gomes-dos-Santos, M.M. Fonseca, R.R. Da Fonseca, A. Veríssimo, M. Felí- cio, R. Capela N. Alves, M. Santos, F. Salvador- Caramelo, M. Domingues, R. Ruivo, E. Froufe, L. Filipe C. Castro (2022): A genome assembly of the Atlantic chub mackerel (Scomber colias): a valu- able teleost fishing resource. Gigabyte, https://doi. org/10.46471/gigabyte.40. Maguire J.J. and P.M. Mace (1993): Biological reference points for Canadian Atlantic Gadoid stocks. In:Smith S.J., Hunt J.J. and Rivard D. (eds.), Risk Evaluation and Biological Reference Points for Fisheries Management. Can. Spec. Publ. Fish. Aquat. Sci., 120, 67-82. Manko, P. (2016): Stomach content analysis in freshwater fish feeding ecology. University of Prešov, 1-116. Mishra, S.P. (2020): Seasonal variation in gut contents of Indian major Carp Cirrhinus mrigala from Meeranpur lake, India. Int. J. Biol. Innov., 2, 202-208. Mohan, M.V. & T.M. Sankaran (1988): Two new indices for stomach content analysis of fishes. J. Fish. Biol., 33, 289-292. Navarro, M.R., B. Villamor, S. Myklevoll, J. Gil, P. Abaunza & J. Canoura (2012): Maximum size of Atlantic mackerel (Scomber scombrus) and Atlantic chub mackerel (Scomber colias) in the Northeast Atlantic. Cybium, 36, 406-408. Nikolsky, G.V. (1976): The Ecology of Fishes. Academic Press, London, 352 pp. Pájaro, M. (1993): Consideraciones sobre la alimentacíon de la caballa con especial énfasis en la depredacíon de huevos y larvas de peces. INIDEP Documento Cientifico, 2, 19-29. Pauly, D. (1983): Some simple methods for the assessment of tropical fish stocks. FAO Fisheries Technical paper, FAO, Rome, Italy. 234 pp. Rahman, M.M., S.M. Haque, M.A. Islam, A.K. Paul, S. Iqbal, U. Atique, A. Wahab, H. Egna & C. Brown (2020): Assessment of mud crab fatten- ing and culture practices in coastal Bangladesh: understanding the current technologies and de- velopment. Aquaculture, Aquarium, Conservation & Legislation, 13, 582-596. Rose, M. (1933): Faune de France. Copépodes pélagiques. Fédération Française des Sociétés de Sciences Naturelles Office Central de Faunistique, 26, 337 pp. Saeed, F., K.J. Iqbal, U. Atique, A. Javid, N. khan, S. Iqbal, H. Majeed, H. Azmat, B.Y.A. Khan, I. Baboo, M.T. Shahid & G. Afzal (2020): Toxic trace metals assessment in selected organs of edible fish species, sediment and water in Head Punjnad, Punjab, Pakistan. Punjab University Journal of Zoology, 35, 43-50. Sever, T.M., B. Bayhan, M. Bilecenoglu & S. Mavili (2006): Diet composition of the juvenile chub mackerel (Scomber japonicus) in the Ae- gean Sea (Izmir Bay, Turkey). J. Appl. Ichthyol., 22,145-148. Stergiou, K.I. & V.S. Karpouzi (2002): Feeding habits and trophic levels of Mediterranean fish. Reviews in Fish biology and Fisheries, 11, 217- 254. Techetach, M., J.A. Hernando-Casal, Y. Saoud & M.H. Benajiba (2010): Reproductive biology of chub mackerel Scomber japonicus in Larache area, Moroccan North Atlantic coast. Cybium, 34, 159-165. Ujjania, N.C., M.P.S. Kohli & L.L. Sharma (2012): Length-weight relationship and condition factors of Indian major carps (C. catla, L. rohita and C. mrigala) in Mahi Bajaj Sagar, India. Res. J. Biol., 2(1), 30-36. Velasco, E.M., J. del Arbol, J. Baro & I. So- brino (2011): Age and growth of the Spanish chub mackerel Scomber colias off southern Spain: a comparison between samples from the NE Atlan- tic and the SW Mediterranean. Rev. Biol. Mar. Oceanogr., 46, 27-34. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 390 Nadia BOUZZAMMIT et al.: DIET COMPOSITION AND FEEDING STRATEGY OF ATLANTIC CHUB MACKEREL SCOMBER COLIAS IN THE ATLANTIC ..., 377–390 Windell, J.T. & S.H. Bowen (1978): Methods for study of fish diets based on analysis of stom- ach contents. In: Methods for Assessment of Fish Production in Fresh Waters, IBP Handbook No. 3 (T. Bagenal, ed.), Oxford: Blackwell Scientific, pp. 219-226. Zacharia, P.U. & K.P. Abdurahiman (2004): Methods of stomach content analysis of fishes. Winter School on Towards Ecosystem Based Man- agement of Marine Fisheries–Building Mass Balance Trophic and Simulation Models, 200 pp. ANNALES · Ser. hist. nat. · 30 · 2020 · 1 391 Claudio BATTELLI & Neža GREGORIČ: FIRST REPORT OF AN AEGAGROPILOUS FORM OF RYTIPHLAEA TINCTORIA FROM THE LAGOON OF STRUNJAN ..., 61–68 FLORA FLORA FLORA ANNALES · Ser. hist. nat. · 30 · 2020 · 1 392 Claudio BATTELLI & Neža GREGORIČ: FIRST REPORT OF AN AEGAGROPILOUS FORM OF RYTIPHLAEA TINCTORIA FROM THE LAGOON OF STRUNJAN ..., 61–68 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 393 received: 2022-06-15 DOI 10.19233/ASHN.2022.40 LE ORCHIDACEAE DI ALBONA (LABIN, CROAZIA) Amelio PEZZETTA Via Monteperalba 34, 34149 Trieste, Italy e-mail: fonterossi@libero.it SINTESI La città di Albona-Labin è situata nell’Istria sud-orientale e il suo territorio si estende su una superficie di circa 71,85 km2. Il presente lavoro, basato su osservazioni dirette dell’autore, ricerca bibliografica e segnalazioni inedite di vari studiosi, riporta una check-list aggiornata di tutte le Orchidaceae presenti in tale territorio che comprende 37 taxa specifici e infraspecifici e un ibrido. Inoltre è stata eseguita l’analisi corologica da cui risulta la prevalenza dell’elemento Mediterraneo seguito da quello Eurasiatico. Parole chiave: Albona, Labin, Orchidaceae, check-list, spettro corologico THE ORCHIDACEAE OF ALBONA (LABIN, CROATIA) ABSTRACT The town of Albona-Labin is located in southeastern Istria and covers an area of approximately 71.85 km2. The present work, based on direct observations of the author, a literature search and unpublished reports of some researchers, contains an updated checklist of all Orchidaceae occurring in this area, including 37 specific and in- fraspecific taxa and one hybrid. In addition, a chorological analysis was performed, showing that the Mediterranean element is predominant, followed by the Eurasian. Key words: Albona, Labin, Orchidaceae, check-list, chorological spectrum ANNALES · Ser. hist. nat. · 32 · 2022 · 2 394 Amelio Pezzetta: LE ORCHIDACEAE DI ALBONA (LABIN, CROAZIA), 393–402 INTRODUZIONE La famiglia delle Orchidaceae Juss. è costituita da circa 27.800 specie ripartite in 880 generi (Giv- nish et al., 2016) e, dopo le Asteraceae Martinov, è la più ricca del mondo vegetale. Essa, pur raggiun- gendo la maggiore abbondanza e diversità nelle zone tropicali, ha colonizzato con successo quasi ogni bioma terrestre. In Europa e nel bacino del Mediterraneo sono segnalati oltre 600 taxa (Del- forge, 2016) e nella penisola istriana 82 (Pezzetta, 2018a). Tale famiglia vegetale suscita un notevole fascino per cui è oggetto di notevoli studi natura- listico-sistematici, è stata assunta a emblema da alcuni comuni italiani e, numerose associazioni e semplici appassionati le ricercano in natura, studiano e coltivano. La penisola istriana è molto frequentata da ap- passionati e ricercatori di orchidacee provenienti da diversi stati europei e nonostante i loro studi, si presenta ancora la necessità di approfondirli per descrivere o analizzare qualche ambito poco esplorato o rielaborare le conoscenze esistenti. Una delle aree della penisola istriana ricca di orchida- cee è il territorio della Città di Albona (Labin) di cui allo stato attuale non esiste ancora un lavoro mo- nografico completo. Con il presente saggio si vuole colmare questa lacuna e compilare una check-list comprendente le specie, le sottospecie egli ibridi segnalati con le località comunali di presenza. Inquadramento dell’area d’indagine Il territorio comunale di Albona (in croato La- bin) è situato sulla costa sud-orientale dell’Istria e confina con il Mare Adriatico (est) e i comuni di Kršan (nord), Sveta Nedelja (nord e nord-ovest) e Raša (sud-ovest, sud e sud-est). Esso occupa la superficie di 71,85 km² di una penisola che misura circa 25 km di lunghezza, 13 di larghezza ed è circondato su tre lati dall’acqua: quella del fiume Arsa e dell’omonimo canale a ovest, quella del golfo del Quarnaro a sud e a est. A nord è separata dalla Liburnia dal fiordo di Fianona e dalla val d’Arsa, che fino gli anni Trenta del secolo scorso era ricoperta dall’omonimo lago (De Luca, 2014). Nei suoi confini attuali il territorio comunale della città di Albona è situato in una fascia altitudina- le che va dal livello del mare a circa 540 metri d’altitudine. Il suo paesaggio morfologicamente differenziato è costituito da aree più o meno pianeggianti, valli e colline che culminano con le vette dei monti Standar (474 m), Oštri (474m), Goli (539 m), Lutovo (526 m), Studeni Vrh (526 m) e Thiovine (513 m). A sua volta la fascia costiera è lunga 20,2 km ed è caratterizzata dalle baie di Rabac e Prklog, entrambe estensioni di valli tor- renticole che iniziano dall’altopiano e scorrono verso il mare seguendo orientamenti diversi. Nel territorio albonese sono presenti alcune sorgenti d’acqua dolce in cui le acque sono captate e piccoli torrenti che scorrono nei fondivalle. Tra essi il Pećina, il Rabljački potok che nasce presso Podlabin e sfocia nella baia di Rabac; il Carpano (Krapan) che segna parte dei confini comunali e un altro che sfocia nella baia di Duga Luka. In alcuni ambiti del territorio comunale sino al 1937 erano presenti diverse fonti di acqua potabile che si pro- sciugarono a seguito delle perforazioni minerarie (Šegulja, 1970). In base al censimento del 2011 la popolazione complessiva dell’intero comune è di 11642 abitan- ti, mentre la densità media è di circa 162 abitanti per km², un valore notevolmente superiore alla grandezza omonima della contea istriana (73,4 abitanti / km²) e di quella della Repubblica di Cro- azia (78,1 abitanti / km²). Essa, oltre che nella sede comunale, vive sparsa in 17 diversi insediamenti (naselja): Bartici (Bartići), Becici (Bečići), Cappel- letta (Kapelica), Crainzi (Kranjci), Fratta (Presika), Gondali (Gondolići), Glussici (Gora Glušići), Marcegliani (Marceljani), Montagna (Breg), Porto Albona (Rabac), Porto Lungo (Duga Luka), Ripen- da Cossi (Ripenda Kosi), Ripenda Carso (Ripenda Kras), Ripenda Verbanzio (Ripenda Verbanci), Rogozzana (Rogočana), Salaco (Salakovci) e Vines (Vinež). Il centro cittadino di Albona è formato da un nucleo antico, d’origine medioevale situato sulla cima di una collina alta 320 metri s.l.m. e da una area urbanizzata detta Podlabin che si trova ai piedi della città vecchia e si è creata a seguito dello sviluppo minerario dell’area avvenuto negli anni 30 del secolo scorso. Aspetti geologici Il territorio comunale di Albona è caratterizzato da tre tipi di formazioni rocciose: rocce calcaree, marnoso-arenacee e depositi alluvionali quater- nari. Nell’area sono presenti anche depositi di carbon fossile, bauxite e travertino. I sedimenti più antichi iniziarono a depositarsi durante il Cretaceo Superiore, continuarono nel Paleogene e nelle epoche successive (Salopek, 1954; Šikić & Polšak, 1973; D’Ambrosi, 1976; Balbo et al., 2004). La maggior parte dei depositi cretacei sono presenti lungo la fascia costiera, la baia di Rabac e in alcune aree interne situate presso i villaggi di Gondolići, Bani, etc. I depo- siti del Paleogene si rinvengono presso i villaggi di Škrokoni, Majel, Marina, Grpci e Duka Luka. Lungo i torrenti sono presenti i depositi quaternari costituiti da terra rossa, argilla, sabbia e ghiaia. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 395 Amelio Pezzetta: LE ORCHIDACEAE DI ALBONA (LABIN, CROAZIA), 393–402 Il clima Il territorio albonese si estende dal livello del mare sino a oltre 474 metri d’altitudine, presenta ambiti esposti alle correnti d’aria fredde e, altri esposti a quelle calde e più riparati. Di conseguen- za, a causa delle differenze d’esposizione e d’alti- tudine, al suo interno si registrano diverse tipologie climatiche. I principali parametri climatici assumono i se- guenti valori: precipitazioni annue che oscillano tra 1000 e 1400 mm (Pericin, 2014), temperatura media annua i circa 14 °C, temperatura media del mese più freddo (gennaio) con circa 5,5°C, temperatura media del mese più (luglio) con circa 23,5 °C. La stagione più piovosa è l’autunno, quella più secca è l’estate; il mese più piovoso è novembre e quello meno piovoso luglio. Nel loro complesso i valori di temperatura e precipitazioni riportati sono tipici di un ambito di transizione climatica da mediterraneo a submediterraneo. Tenendo conto del modello di classificazione climatica di Köppen & Geiger (1954) e dei dati riportati, ad avviso di (Filipčić, 1992) il clima di Albona rientra nel tipo caldo-umido temperato senza stagione secca che è definito “Cfa” ed è ca- ratterizzato dalla temperatura media del mese più caldo che supera 22 °C e le precipitazioni annue comprese tra 700 mm e 1500 mm. Il paesaggio vegetale La fisionomia del paesaggio e la sua composi- zione floristica sono influenzate dal clima, dalle vicende storico-geologiche e dalla pressione antro- pica attuale e del passato. Il territorio albonese è abitato dall’epoca prei- storica, come dimostrano i vari castellieri presenti (Alberi, 1997). Per diversi millenni, la popolazione del luogo ha operato nel territorio trasformandolo al fine di ricavare legna da ardere, terreni colti- vabili, pascoli e materiali da costruzione. Queste pratiche hanno portato alla fondazione di aree ur- banizzate, alla riduzione di quelle forestali e alla formazione di terreni aperti, prati sassosi, garighe e lembi di macchia mediterranea. Attorno agli anni 30 del secolo scorso, lo sviluppo minerario della zona portò all’espansione della fascia urbana e dagli anni ‘60 sono iniziate nuove trasformazioni economico-territoriali quali lo sviluppo delle in- frastrutture turistiche e l’abbandono delle pratiche agro-pastorali tradizionali. A causa di questi fattori, ora si osserva la riduzione dei terreni aperti e degli spazi naturali, lo sviluppo di formazioni vegetali arbustive e la ripresa spontanea del processo di riforestazione nei terreni e pascoli abbandonati. Di conseguenza il paesaggio attuale rispetto ad alcuni decenni fa è cambiato ed è caratterizzato da un mosaico che associa strutture turistiche, centri abitati, case sparse, infrastrutture stradali, centri commerciali, radure, terreni coltivati, aree incolte con boschi più o meno estesi, cespuglieti e prati-pascolo. A tal proposito Vragović (2018) ha evidenziato che nel 2012, rispetto al 1980 si sono registrati: l’aumento delle aree incespugliate e dei boschi, la riduzione significativa dei terreni coltivati (-19,6%) e un incremento delle aree dei centri abitati, commerciali, industriali e delle infrastrutture ad esse collegate. In particolare Vragović ha fatto presente che nel 2012 le aree urbane occupavano 3,9 km², le aree industriali 0,1 km², le aree sportive e ricreative 0,3 km², i pascoli 0,8 km², i terreni coltivati 2,2 km², i terreni preva- lentemente agricoli 10,2 km², le aree con boschi a foglie caduche 37,5 km², le pinete 2,5 km², i boschi misti 6 km², le aree in cui la foresta si stava espandendo 3,6 km² e i prati naturali 5,6 km². Ora, il territorio della città di Albona si presenta piuttosto boscoso, con qualche appendice brulla, terreni coltivati, pascoli abbandonati, case sparse e centri abitati. In base al diverso uso del suolo, esso si può ripartire in circa 320 ha di terreni incolti e forestali oltre 175 ha di terreni agricoli di cui 39,88 ha destinato a seminativi e giardini, 74,78 ha destinati a pascoli, 4,95 ha a frutteti e 36,42 ha a vigneti (Grad Labin, 2016). Il resto è occupato dalle aree urbanizzate e le infrastrutture a esse annesse. Nel territorio albonese sono state individuate le seguenti aree protette poiché di alto valore paesag- gistico e naturalistico: 1) l’area compresa tra la Baia di Labin-Rabac e Prklog che occupa 1121,50 ha ed è protetta dal 1973; 2) la zona compresa tra Rabac e Labin con la vegetazione di ripido pendio; 3) la collina su cui sorge il centro di Albona; 4) la fascia costiera compresa tra Rabac e Brestova. Per quanto riguarda la vegetazione, le ricerche di Šegulja (1970) hanno individuato nell’area 20 diverse associazioni caratterizzate ognuna da un proprio corteggio floristico. Questa ricchezza fitosociologia è la conseguenza del fatto che il territorio albonese appartiene a una zona di transi- zione fitogeografica. Infatti, Šegulja (1970) sostiene che l’ambito in esame si ripartisce tra le zone eu- mediterranea e submediterranea in cui si registra l’influenza dei reciproci influssi e a causa di ciò, la copertura vegetale è molto varia e insolitamente ricca. La vegetazione inizia a svilupparsi nella fascia litoranea non sottoposta a una forte pressione turi- stica e a poca distanza dalla linea di battigia ove si osservano varie associazioni che generalmente com- prendono entità xerotermiche capaci di sopravvivere in ambienti molto aridi e con scarsa disponibilità ANNALES · Ser. hist. nat. · 32 · 2022 · 2 396 Amelio Pezzetta: LE ORCHIDACEAE DI ALBONA (LABIN, CROAZIA), 393–402 idrica poiché il terreno calcareo e le rocce fessurate non trattengono le precipitazioni. Alcune specie che caratterizzano tale zona sono: Catapodium loliaceum (L.) C.E. Hubb., Parapholis incurva (L.) C.E. Hubb., Limonium cancellatum (Bertol.) Kuntze, Plantago weldenii Rchb., P. holosteum Scop., Sene- cio caroli-malyi Horvatić, Silene angustifolia Poir., Juncus acutus L., Arthrocaulon macrostachyum (Moric.) Piirainen & G. Kadereit, Glaucium flavum Crantz, Euphorbia segetalis L. e Plantago coronopus L. subsp. commutata (Guss.) Pilg. In diverse parti della fascia costiera non toccate dagli insediamenti turistici e a poche decine di metri dalla linea di battigia sono presenti anche pinete, praterie e il bosco misto mediterraneo Orno-Quercetum ilicis H-ić (1939) 1958) che è co- stituito da essenze arboree a foglie persistenti e da caducifoglie. Esso è diffuso lungo le coste orien- tali adriatico-ioniche dalla Grecia sino al Golfo di Trieste ove raggiunge il limite settentrionale di distribuzione geografica (Poldini et al. 1980). Alla sua composizione concorrono: Quercus ilex L, Fraxinus ornus L., Phyllirea latifolia L., Pistacia terebinthus L., Asparagus acutifolius L., Cyclamen repandum Sibth & Sm., Rubia peregrina L., Carex distachya Desf., Rhamnus alaternus L., Lonicera implexa Ait., etc. All’allontanamento dalla linea di battigia, l’au- mento dell’altitudine e la maggior esposizione ai venti freddi corrisponde il cambiamento delle for- mazioni vegetali presenti di cui l’aspetto più vistoso è costituito dalle leccete mediterranee che lasciano gradualmente il posto al bosco submediterraneo, che si sviluppa sia sui terreni marnoso-arenacei sia su quelli calcarei. Alla sua composizione concorrono le seguenti essenze arboree: Acer monspessulanus, A. campestre L., Fraxinus ornus L., Ostrya carpini- folia Scop., Quercus pubescens Willd, Cornus mas L. ed altro. Le ricerche botaniche effettuate nel territorio albonese dallo scrivente, Pericin (2014), Rottenstei- ner (2013, 2019), Starmühler (2003, 2010) e Šegulja (1969, 1970) hanno portato alla descrizione di altre formazioni e associazioni vegetali quali: - prati-pascolo appartenenti a varie associazioni (Stipo-Salvietum officinalis H-ić (1956) 1958, Dan- thonio-Scorzoneretum villosae Ht. & H-ić (1956) 1958, Festuco-Koelerietum splendentis H-ić 1963, H-ić 1962, Ononidi-Brometum condensati H-ić 1962 e Chrysopogoni-Euphorbietum nicaeensis H-ić 1962 (Šegulja, 1970); - arbusteti e formazioni arboreo-arbustive che occupano i pascoli e terreni abbandonati, apparten- gono a varie associazioni vegetali e alla loro com- posizione generalmente concorrono: Asphodelus microcarpus Viv., Carpinus orientalis Mill., Colutea arborescens L., Cornus mas L., Cornus sanguínea L., Coronilla emerus L., Erica arborea L, Ligustrum vul- gare L, Juniperus oxycedrus L., Paliurus spina-christi Mill., Prunus spinosa L., Rosa canina L, Rosa sem- pervirens L., Ruscus aculeatus L., Smilax aspera L., Spartium junceum L., varie specie dei generi Cistus L., Rubus L.; - associazioni tipiche degli ambiti pietrosi molto degradati con Salvia officinalis L., Juniperus oxyce- drus L., Achnatherum bromoides (L.) P. Beauv., etc.; - formazioni tipiche degli affioramenti rocciosi con varie specie di Sedum L. e altre piante; - associazioni vegetali tipiche degli ambiti rupestri a cui concorrono: Alyssum medium Host., Asphodeline lutea (L.) Rchb., Campanula pyramida- lis L., Euphorbia fragifera Jan., etc.; - associazioni vegetali sinantropiche con compo- sizioni floristiche molto variabili che attecchiscono presso i centri abitati, le abitazioni sparse, i bordi stradali, i campi coltivati e i terreni incolti; - pinete artificiali di rimboschimento a pino nero; - formazioni idrofile e igrofile presenti presso gli stagni, le sorgenti e i pochi corsi d’acqua che carat- terizzano l’area in cui generalmente si rinvengono: Callitriche cophocarpa Sendtn, Eleocharis palustris (L.) Roem. & Schult, Lemna gibba L., Myriophyllum spicatum L., Phragmites australis (Cav.) Steud., Ra- nunculus peltatus Schrank, Ranunculus trycophyllus Chaix, Wolffia arrhiza (L.) Wimm., Zannichella pa- lustris L. e varie specie dei generi Carex L., Juncus L., Potamogeton L., etc. (Pericin, 2014). In alcune località dell’Albonese sono presenti diverse specie endemiche e rare tra cui: Carlina fiumensis Simonk., Asphodelus microcarpus Viv., Aurinia leucadea (Guss.) K. Koch, Senecio caro- li-malyi Horvatić. Al generale corteggio floristico del comune di Albona concorrono anche le orchidacee che in seguito saranno analizzate e discusse. MATERIALI E METODI L’elenco floristico è stato realizzato tenendo conto delle ricerche sul campo dell’autore e dei dati ricavati dalla bibliografia consultata (Dekker, 2002; Hertel & Hertel, 2002; Grabner, 2009; Griebl, 2009; Kranjčev, 2005; Pericin, 2014, Perko & Ker- schbaumsteiner, 2003; Pezzetta, 2018a, Rottenstei- ner, 2013, 2019; Starmühler, 2003, 2010; Verhart, 2016). Esso comprende le specie, le sottospecie e gli ibridi mentre non sono state prese in considera- zione le varietà cromatiche e morfologiche. Le prime estemporanee e personali osservazioni nell’area iniziarono circa una decina di anni fa e sono continuate con cadenze varie sino al 2019. Negli anni 2020 e 2021 le escursioni si sono inter- rotte a causa della pandemia. Nel mese di aprile ANNALES · Ser. hist. nat. · 32 · 2022 · 2 397 Amelio Pezzetta: LE ORCHIDACEAE DI ALBONA (LABIN, CROAZIA), 393–402 del 2002 esse sono riprese con cadenza settimanale e si sono protratte sino a oltre la metà del mese di giugno. Accanto ad ogni taxon sono riportati: il tipo corologico, gli autori che l’hanno segnalato, le località di presenza in lingua croata e le eventuali osservazioni sul rango tassonomico. Per la nomenclatura si è seguita quella adottata nel recente volume del GIROS (2016) mentre per le specie non riportate in tale testo Delforge (2016). In diversi casi, alla nomenclatura sono aggiunte varie precisazioni riportate nelle osservazioni. Per l’assegnazione dei tipi corologici si è tenuto conto di quanto riportato in: Delforge (2016), Pi- gnatti (2017) e Pezzetta (2018b). Nell’elenco floristico per ogni taxon sono ri- portati tutti i siti di ritrovamento seguiti dal punto esclamativo per indicare le osservazioni personali e da sigle costituite da lettere maiuscole che si rife- riscono agli autori delle segnalazioni. Esse hanno il seguente significato: AX: Dekker (2002); AY: Hertel & Hertel (2002); BX: Perko & Kerschbaumsteiner (2003); BY: Star- mühler (2003); CX: Kranjčev (2005); CY: Grabner (2009); DX: Griebl (2009); DY: Starmühler (2010); FX: Rottensteiner (2013); FY: Pericin (2014); GX: Verhart (2016); GY: Pezzetta (2018a); HX: Rotten- steiner (2019). Sono state riportate alla voce “Ripenda” tutte le osservazioni fatte a Ripenda Kosi, Ripenda Kras e Ripenda Verbanci. La bibliografia comprende: 1) i saggi sulla città di Albona di carattere generale, geografico e natu- ralistico che sono stati consultati; 2) quelli più spe- cifici riguardanti le ricerche floristiche pubblicati dopo il 2000 per evitare citazioni di ritrovamenti non confermati o confermabili a causa delle trasfor- mazioni degli habitat. RISULTATI E DISCUSSIONE Elenco floristico 1. Anacamptis berica D. Doro – Subendemico. Presika!, Ripenda!, Salakovci! OSSERVAZIONI: Il taxon, molto simile a Ana- camptis pyramidalis da cui si differenzia per vari aspetti morfologici, fenologici e genetici, è stato descritto da Doro (2020) che inizial- mente l’ha segnalato sui Colli Berici (Regione Veneto e provincia di Vicenza). In seguito Doro (2021) lo riporta in altre località del Veneto, varie regioni italiane, località istro-croate e una località istro-slovena (Podpeč). Pezzetta tra il 2021e il 2022 ha osservato il taxon nei pressi di Caresana (Provincia di Trieste), nei dintorni di Capodistria (Butari, Brezovica, Belvedur, etc.) e varie località istro-croate. Nei territori albonese Anacamptis berica è stata osservata dalla scrivente in piena fioritura il 2 giugno 2022. Successivamente con l’escur- sione del 12 giugno nelle stesse stazioni, le piante precedentemente osservate ed attribuite a A. berica erano sfiorite, mentre erano in pie- na fioritura altre attribuibili a A. pyramidalis. Probabilmente andrebbero attribuite al taxon anche altre segnalazioni storiche assegnate ad A. pyramidalis che sono state fatte in Istria. 2. Anacamptis coriophora (L.) R.M. Bateman, Pridgeon & M.W. Chase subsp. fragrans (Pol- lini) R.M. Bateman, Pridgeon & M.W. Chase – Eurimediterraneo. (GX, GY). Albona, Rabac, Ripenda!. 3. Anacamptis laxiflora (Lam.) R.M. Bateman, Pridgeon & M.W. Chase – Eurimediterraneo. (FY, GX, GY). Ceketov Kol. 4. Anacamptis morio subsp. morio (L.) R.M. Bateman, Pridgeon & M.W. Chase – Europe- o-Caucasico. (AX, AY, DX, GX, GY). Albona!, Bartići!, Gondolići!, Gora Glušići!, Kapelica!, Knapici!, Kranjci!, Presika!, Rabac!, Ripenda!, Salakovci!. 5. Anacamptis papilionacea (L.) R.M. Bateman, Pridgeon & M.W. Chase – Eurimediterraneo. (AX, AY, CX, GX, GY). Albona, Kapelica!, Kna- pici!, Gora Glušići!, Presika!, Salakovci! 6. Anacamptis pyramidalis (L.) Rich. subsp. pyra- midalis – Eurimediterraneo. (AY, FY, GX, GY). Albona!, Bartići!, Gondolići!, Gora Glušići!, Knapici!, Kranjci!, Presika!, Rabac!, Ripenda!. Rogočana!, Salakovci! 7. Cephalanthera damasonium (Mill.) Druce – Eurimediterraneo. (AX, AY, GX, GY). Albona, Gora Glušići!, Presika!, Ripenda!, Rogočana!, Salakovci!. 8. Cephalanthera longifolia (L.) Fritsch – Eura- siatico. (AX, AY, GX, GY). Albona, Kranići!, Presika!, Ripenda!, Salakovci. 9. Epipactis helleborine subsp. helleborine (L.) Crantz – Paleotemperato. (AX, GX, GY). Albo- na, Presika, Rabac. 10. Epipactis microphylla (Ehrh.) Sw. – Europeo-Cauca- sico. (GX, GY). Albona, Rabac. 11. Epipactis muelleri Godfery – Centro-Europeo. (AY). Kranjci!, Rabac, Ripenda, Salakovci. 12. Gymnadenia conopsea (L.) R. Br. in W.T. Aiton susbp. conopsea – Eurasiatico. (GY). Albona. 13. Himantoglossum adriaticum H. Baumann – Eurimediterraneo. (GX, GY). Albona!, Kranjci! Presika!, Ripenda!, Salakovci!. 14. Limodorum abortivum (L.) Sw. – Eurimediter- raneo. (AY, BY, DX, GX, GY). Albona, Gondo- lići!, Gora Glušići!, Kranjci!, Rabac, Ripenda!, Salakovci!. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 398 Amelio Pezzetta: LE ORCHIDACEAE DI ALBONA (LABIN, CROAZIA), 393–402 15. Neotinea maculata (Desf.) Stearn – Mediterra- neo-Atlantico. (CY). Albona, Salakovci. 16. Neotinea tridentata (Scop.) R.M. Bateman, Pridgeon & M.W. Chase – Eurimediterraneo. (AX, AY, DX, GX, GY). Albona, Bartići!, Gora Glušići!, Kranjci!, Presika!, Rabac, Ripenda!, Rogočana!, Salakovci!. 17. Neottia ovata (L.) Bluff & Fingerh. – Eurasiati- co. (AY). Salakovci. 18. Neottia nidus-avis (L.) Rich. – Eurasiatico. (GX, GY). Albona. 19. Ophrys apifera Huds. – Eurimediterraneo. (AY, BY, DX, GX, GY). Albona, Bartići!, Gondolići!, Gora Glušići!, Kranjci!, Presika!, Rabac, Ri- penda!, Salakovci! 20. Ophrys holosericea (Burm. f.) Greuter subsp. tetraloniae (W.P. Teschner) Kreutz – Appenni- no-Balcanico. (AY, FY, GY). Albona, Kranjci!, Presika!, Rabac, Ripenda, Rogočana. Salakovci!. 21. Ophrys holosericea (Burm. f.) Greuter subsp. untchjii (M. Schulze) Kreutz– Subendemico. (AY, FY, GX, GY). Albona, Gondolići!, Kranjci!, Presika!, Rabac, Ripenda!, Rogočana!, Salako- vci. 22. Ophrys incubacea Bianca subsp. incubacea – Stenomediterraneo. (GX, GY). Albona, Rabac, Salakovci! 23. Ophrys insectifera L. – Europeo. (AX, GX, GY). Albona, Kranjci!, Presika!. 24. Ophrys sphegodes subsp. sphegodes Mill. – Eurimediterraneo. (AX, AY, DX, GY). Albona, Bartići!, Gora Glušići!, Kranjci!, Presika!, Rabac, Ripenda!, Salakovci! 25. Ophrys sphegodes subsp. tommasinii (Vis.) Soó – Appennino-Balcanico. (AX, AY, CY. GY). Albona, Gora Glušići!, Presika!, Rogočana. Salakovci. 26. Ophrys sulcata. Devillers-Tersch. & P. Devil- lers – Mediterraneo-Occidentale. (AY, GY). Albona, Salakovci! 27. Ophrys zinsmeisteri A. Fuchs & Ziegenspeck (pro hybr.) – Endemico. (BX, DX, GX, GY). Albona, Gondolići, Knapici!, Kranjci!, Rabac, Salakovci!. 28. Orchis mascula (L.) L. subsp. mascula – Euro- peo. (GX, GY). Albona 29. Orchis militaris L. – Eurasiatico. (CX, DY, GX, GY). Albona, Rabac. 30. Orchis pauciflora Ten. – Stenomediterraneo. (AY, CX, FX, GY, HX). Albona, Kranjci!, Rabac, Ripenda!, Salakovci. 31. Orchis provincialis Balb. Ex Lam. – Stenomedi- terraneo. (AY, CY, GY). Albona, Salakovci. 32. Orchis purpurea Huds. – Eurasiatico. (AX, CX, CY, FY, GX, GY). Albona!, Bartići!, Gora Glušići!, Knapici!, Kranjci!, Mikoti, Presika!, Rabac, Ripenda!, Rogočana!, Salakovci!, 33. Orchis simia Lam. – Eurimediterraneo. (GY). Albona. 34. Platanthera bifolia (L.) Rchb. subsp. bifolia – Paleotemperato. (AX, AY, GX, GY). Albona, Gondolići!, Gora Glušići!, Kranjci!, Presika!, Rabac, Ripenda!, Salakovci!. 35. Platanthera chlorantha (Custer) Rchb. – Eurosi- beriano. (AY, GX, GY). Albona, Bartići, Rabac, Ripenda!, Salakovci!. 36. Serapias vomeracea (Burm.f.) Briq. subsp. vomeracea – Eurimediterraneo. (GX, GY). Albona, Gondolići!, Kranjci!, Presika!, Rabac, Ripenda!. 37. Spiranthes spiralis (L.) Chevall. – Europeo-Cau- casico. (CX, GY). Albona, Duga Luka!, Rabac!, Ripenda. Ibridi 1. Anacamptis xgennarii (Rchb. f.) Nazzaro & La Valva. (AY, GY). Albona, Kapelica!, Knapici!, Ripenda, Salakovci! L’elenco floristico comprende 37 taxa infraspeci- fici. Tale numero costituisce il 45 % delle Orchidacee presenti nella Penisola Istriana e circa il 20 % della Repubblica di Croazia. A tale insieme si aggiunge un ibrido per cui l’ammontare complessivo delle entità presenti è di 38, un valore numerico che tenendo conto di quanto riportato in Pezzetta (2018a), col- loca il territorio della città di Albona tra i comuni istriani più ricchi di orchidacee. Nel territorio di Albona, Pezzetta (2018a), se- gnalava a presenza di 29 taxa infraspecifici e un ibrido. Di conseguenza con tale saggio, l’ambito Tab. 1: Biodiversità dei generi delle Orchidaceae di Albona. Tab. 1: Pestrost rodov kukavičevk na območju Labina. Genere Numero taxa Genere Numero taxa Anacamptis 6 Neottia 2 Cephalanthera 2 Ophrys 9 Epipactis 3 Orchis 6 Gymnadenia 1 Platanthera 2 Himantoglossum 1 Serapias 1 Limodorum 1 Spiranthes 1 Neotinea 2 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 399 Amelio Pezzetta: LE ORCHIDACEAE DI ALBONA (LABIN, CROAZIA), 393–402 di studio si arricchisce di 8 taxa. Inoltre nell’e- lenco floristico sono riportate molte segnalazioni di località e stazioni inedite che contribuiscono ad allargare l’areale di diffusione dei singoli taxa nella penisola istriana Dalla Tabella 1 emerge come varie entità si ripartiscono in 13 generi tra cui il più rappre- sentato è il genere Ophrys con 9 taxa. Seguono i generi: Anacamptis e Orchis con 6 taxa ciascuno, Epipactis con 3; Cephalanthera, Neotinea e Ne- ottia con 2 taxa ciascuno; Gymnadenia, Himan- toglossum, Limodorum, Serapias e Spiranthes con un solo taxon. I taxa più diffusi sono i seguenti: Anacamptis morio subsp. morio e Orchis purpurea che sono segnalati in 11 località; Anacamptis pyramidalis con 10 segnalazioni; Neotinea tridentata e Ophrys apifera con 9 segnalazioni; Ophrys holosericea subsp. untchjii, O. sphegodes subsp. sphegodes e Platanthera bifolia subsp. bifolia che sono segnalate in 8 località. Le specie più rare del territorio albonese che sono presenti in un’unica località sono le seguenti: Ana- camptis laxiflora, Gymnadenia conopsea, Neottia ovata, N. nidus-avis, Orchis mascula subsp. mascula e O. simia. La Tabella 2 mostra che l’insieme dei taxa è presente in 15 località. Il maggior numero di segnalazioni si registra nei dintorni della città di Albona. Molte segnalazioni riguardanti “Albona” sono ricavate dalla bibliografia consultata e non sono state confermate dalle ricerche dello scri- vente. Di conseguenza è molto probabile che esse possano riferirsi ad altre località del territorio comunale che poiché non conosciute nella loro denominazione corretta, sono state ricondotte alla voce “Albona”. La Tabella 3 riporta i risultati dell’analisi co- rologica, con la ripartizione percentuale dei vari contingenti geografici. Si può osservare che domina il contingente Mediterraneo con 16 taxa (43,24%) ripartiti nei corotipi Eurimediterraneo (12 taxa), Tab. 2: Località di Albona con presenza di Orchidaceae. Tab. 2: Lokalitete na območju Labina z označenimi ugotovljenimi taksoni kukavičevk. Località Taxa totali Località Taxa totali Albona (Labin) 35 Kranjci 17 Bartići 7 Micoti 1 Ceketov Kol 1 Presika 17 Duga Luka 1 Rabac 21 Gondolići 8 Ripenda 21 Gora Glušići 10 Rogočana 7 Kapelica 3 Salakovci 27 Knapići 6 Tab. 3: Corotipi delle Orchidaceae del comune di Albona. Nella tabella i contingenti geografici sono segnati in grassetto. Tab. 3: Horotipi kukavičevk na območju Labina. Geo- grafski kontingenti so označeni z mastnim tiskom. Contingenti Geografici e Corotipi (1) Numero taxa % Endemico 3 8,11 Endemico 1 Subendemico 2 Mediterraneo 16 43,25 Eurimediterraneo 12 Stenomediterraneo 3 Mediteraneo-Occidentale 1 Eurasiatico 12 32,43 Eurasiatico s. s. 6 Europeo-Caucasico 3 Eurosiberiano 1 Paleotemperato 2 Europeo 5 13,51 Europeo s. s. 2 Centro-Europeo 1 Appennino-Balcanico 2 Mediterraneo-Atlantico 1 2,7 Mediterraneo-Atlantico 1 Totale 37 100 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 400 Amelio Pezzetta: LE ORCHIDACEAE DI ALBONA (LABIN, CROAZIA), 393–402 Stenomediterraneo (3) e Mediteraneo-Occidentale (1 taxon). Esso è seguito dai contingenti: Eurasiatico (12 taxa), Europeo (5), Endemico (3) e Mediterrane- o-Atlantico (1 taxon). CONCLUSIONI I dati riportati dimostrano come il territorio di Albona sia molto interessante per il popolamento di orchidacee poiché vi attecchiscono specie rare per la penisola istriana e per tutta la Repubblica di Croazia. Il numero rilevato è un indicatore della sua buona qualità ambientale poiché le entità di tale famiglia attecchiscono su terreni che non sono alterati da dissodamenti, concimazioni e largo uso di diserbanti e insetticidi. È tuttavia possibile che a causa della diffusione delle aree urbane, delle infrastrutture turistiche, dell’espansione delle aree forestali e dell’abbandono delle pratiche agro-pa- storali tradizionali seguano delle trasformazioni di habitat che potrebbero portare ad una diversa ripartizione delle varie specie con alcune in fase espansione e altre in contrazione o addirittura a rischio di estinzione. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 401 Amelio Pezzetta: LE ORCHIDACEAE DI ALBONA (LABIN, CROAZIA), 393–402 KUKAVIČEVKE LABINA (HRVAŠKA) Amelio PEZZETTA Via Monte Peralba 34, 34149 Trieste, Italy e-mail: fonterossi@libero.it POVZETEK Labin leži v jugovzhodnem delu Istre in pokriva površino približno 71,85 km2. Avtor poroča o seznamu vrst kukavičevk, ki temelji na podlagi lastnih vzorčenj, razpoložljive strokovne literature in neobjavljenih podatkov različnih raziskovalcev, in vključuje 37 vrst, intraspecifičnih taksonov in križancev. Obenem je opravil horološko analizo, ki kaže na prevlado sredozemskih elementov, tem pa sledijo evrazijski elementi. Ključne besede: Labin, Albona, Orchidaceae, seznam vrst, horološki spekter ANNALES · Ser. hist. nat. · 32 · 2022 · 2 402 Amelio Pezzetta: LE ORCHIDACEAE DI ALBONA (LABIN, CROAZIA), 393–402 BIBLIOGRAFIA Alberi, D. (1997): Istria, storia, arte, cultura. Ed. Lint, Trieste. Balbo, A.L., D. Komšo & P.T. Miracle (2004): Ge- oarchaeological survey of Polje Čepić and part of its hydrological basin (Istria Peninsula, Croatia): Report on the first field season. Histria Archaeologica, 33, 265-276. D’Ambrosi, C. (1976): Cenni sull’origine e lo sviluppo geologico e geomorfologico del Carso di Trieste e dell’Istria. Museo Civico di Storia Naturale, Pro Natura Carsica, Trieste. Dekker, H. (2002): Vinnplaatsen van orchideen in Istrie (Kroatie) en in Carso (Italie) April-Mei 2002. Manoscritto inedito. De Luca, L. (2014): Albona, un centro urbano dell’Istria veneta, Unione Italiana Comunità degli Ita- liani «Giuseppina Martinuzzi» Albona. Velva Graph, Raša – Arsia. Delforge, P. (2016): Guide des orchidées d’Europe, d’Afrique du Nord et du Proche Orient. Delachaux et Niestlé, Paris. Doro, D. (2020): Anacamptis berica, una nuova specie autotetralpoide del gruppo di Anacamptis pyra- midalis. J. Eur. Orch., 52(2-4), 427-460. Doro, D. (2021): Anacamptis berica, una nuova specie autotetralpoide. GIROS Orch. Spont. Eur. 64 (2), 265-277. Filipčić, A. (1992): Klima Hrvatske. Geografski horizont, 38(2), 26-35. Givnish, T.J., D. Spalink, M. Ames, S.P. Lyon, S.J. Hunter, A. Zuluaga, A. Doucette, G.G. Caro, J. Mc-Daniel, M.A. Clements, M.T.K. Arroyo, L. Endara, R. Kriebel, N.H. Williams & K.M. Cameron (2016): Orchid historical biogeography, diversifcation, Antar- ctica and the paradox of orchid dispersal. J. Biogeogr., 43, 1905-1916. Grabner, U. (2009): Übersicht der von uns bisher gesehenen Orchideenarten in Istrien (Kroatien). www. grabner-orchideen.com/ist.portal_istr.htm Grad Labin (2016): Strategija razvoja grada Labina 2016–2020. Finalni Dokument, 79 pp. http://www. labin.hr/Files/201902/Strategija%20razvoja%20 2016.%20-2020.%20-%20cjelokupni%20tekst.pdf Griebl, N. (2009): Die Orchideen Istriens und de- ren Begleitflora. Ber. Arbeitskrs. Heim. Orchid., 26(2), 98-165. Hertel, S. & K. Hertel (2002): Beobachtungen zu den Orchideen Istriens. J. Eur. Orch.24, 493-542. Köppen, W. & G.C. Geiger (1954): Klima der Erde (JPG). - Gotha, Klett-Perthes. Kranjćev R. (2015): Hrvatske Orhideje. AKD, Za- greb. Nikolić, T. (Ed.) (2015): Flora Croatica Database (http://hirc.botanic.hr/fcd). Faculty of Science, Univer- sity of Zagreb (visitato il 25 novembre 2020). Pericin, C. (2014): Lachi e lacuzzi dell’Albonese e della Valle d’Arsa. Centro di ricerche storiche Rovi- gno, Collana degli Atti Extra Serie, 8, 1-531. Perko, M.L. & H., Kerschbaumsteiner (2003): Ophrys kvarneri M.L. Perko & H. Kerschbaumsteiner, spec. nov., eine bisher übersehene Art aus Istrien und dem Kvarner-Archipel. Ber. Arbeitskrs. Heim. Orchid., 20(1), 45-53. Pezzetta, A.(2018a): Le Orchidaceae dell’Istria e dell’arcipelago di Cherso-Lussino. Atti Mus. Civ. St. Nat. Trieste, 59, 27-76. Pezzetta, A. (2018b): Le orchidee della flora ita- liana: distribuzione geografica e origini. GIROS Orch. Spont. Eur., 61(1), 218-248. Pignatti, S. (2017): Flora d’Italia. Vol. 1, Edagricole - New Business Media, Milano. Poldini, L., G. Gioitti, F. Martini & S. Budin (1980): Introduzione alla flora e alla vegetazione del Carso. Ed. Lint, Trieste. Rottensteiner, W.R. (2013): Vorarbeiten zu einer Flora von Istrien Teil XVI. Carinthia, II (203/123), 575- 632. Rottensteiner, W.R. (2019): Notizen zur Flora von Istrien, Teil V. Joannea Botanik, 16, 81-160. Salopek, M. (1954): Prilozi poznavanju geološke građe Labinskog i Pićanskog basena Istre. JAZU, 26, 1-58. Starmühler, W. (2003): Vorarbeiten zu einer Flora von Istrien Teil 6. Carinthia, 2(193/113), 579-658. Starmühler, W. (2010): Vorarbeiten zu einer Flora von Istrien Teil 13. Carinthia, 2 (200/120), 465-524. Šegota, T. & A. Filipić (2003): Köppenova klasifika- cija klime i Hrvatsko nazivlje. Geoadria, 8(1), 17-37. Šegulja, N. (1969): Prilog Poznavanju Kamenjarske Vegetacije u Istri. Acta Botanica Croatica, 28, 367-371. Šegulja, N. (1970): Vegetacija Sjeveroistočnog dijela Labinštine u Istri. Acta Botanica Croatica, 29, 157-172. Šikić, D. & A. Polšak (1973): Supplement to ge- ological map Labin L 33–101 (in Croatian). Savezni geološki zavod, Beograd. Verhart, F. (2016): Orchid observations in Croatia in 2016. franknature.nl/Orchid%20observations%20 in%20Croatia%20in Vragović, V. (2018): Analiza promjena i načina korištenja zemljišta na području Grada Labina u po- sljednjih 50 godina. Master’s thesis / Diplomski rad. University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet. ANNALES · Ser. hist. nat. · 30 · 2020 · 1 403 Claudio BATTELLI & Neža GREGORIČ: FIRST REPORT OF AN AEGAGROPILOUS FORM OF RYTIPHLAEA TINCTORIA FROM THE LAGOON OF STRUNJAN ..., 61–68 FAVNA FAVNA FAVNA ANNALES · Ser. hist. nat. · 30 · 2020 · 1 404 Claudio BATTELLI & Neža GREGORIČ: FIRST REPORT OF AN AEGAGROPILOUS FORM OF RYTIPHLAEA TINCTORIA FROM THE LAGOON OF STRUNJAN ..., 61–68 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 405 received: 2022-06-20 DOI 10.19233/ASHN.2022.41 THE MAUVE STINGER, PELAGIA NOCTILUCA, HAS EXPANDED ITS RANGE TO THE SEA OF MARMARA Murat BILECENOĞLU Department of Biology, Faculty of Science, Aydın Adnan Menderes University, 09010 Aydın, Turkey e-mail: mbilecenoglu@adu.edu.tr Melih Ertan ÇINAR Ege University, Faculty of Fisheries, Department of Hydrobiology, 35100, İzmir, Turkey ABSTRACT A single individual of Pelagia noctiluca (Forsskål, 1775) with an approximate bell diameter of 10 cm was observed and photographed from Paşalimanı Island on 12 December 2021, located at the south of Sea of Marmara. The species was hitherto known only from the Aegean and Levantine coasts of Turkey and the present record significantly expands its distribution range. There are currently no signs of an established P. noctiluca population, but monitoring studies are certainly required to detect any possible further records from the region. Key words: Pelagia noctiluca, Sea of Marmara, Scyphozoa, range expansion LA MEDUSA LUMINOSA, PELAGIA NOCTILUCA, HA ESTESO IL SUO AREALE AL MAR DI MARMARA SINTESI Un singolo individuo di Pelagia noctiluca (Forsskål, 1775) con un diametro dell’ombrello di circa 10 cm è stato osservato e fotografato il 12 dicembre 2021 dall’isola di Paşalimanı, situata a sud del Mar di Marmara. La specie era finora nota solo per le coste egee e levantine della Turchia e il presente ritrovamento ne amplia significativamente l’areale di distribuzione. Al momento non ci sono segni di una popolazione consolidata di P. noctiluca, ma sono certamente necessari studi di monitoraggio per individuare eventuali ulteriori segnalazioni nella regione. Parole chiave: Pelagia noctiluca, Mar di Marmara, Scyphozoa, espansione dell’areale ANNALES · Ser. hist. nat. · 32 · 2022 · 2 406 Murat BILECENOĞLU & Melih Ertan ÇINAR: THE MAUVE STINGER, PELAGIA NOCTILUCA, HAS EXPANDED ITS RANGE TO THE SEA OF MARMARA, 405–410 INTRODUCTION In their comprehensive checklist, Çinar et al. (2014) has listed five scyphozoan species from the Sea of Marmara, namely, Aurelia aurita (Lin- naeus, 1758), Chrysaora hysoscella (Linnaeus, 1767), Rhizostoma pulmo (Macri, 1778), Periphylla periphylla (Péron & Lesueur, 1810) and Paraphyl- lina ransoni Russell, 1956. The local inventory has prominently increased since then by newly recorded species, as an indication of the complex changes in hydrography and bioecology of the region. Occur- rences of four additional species were documented lately (Discomedusa lobata Claus, 1877 – İşinibilir et al. 2015; Cotylorhiza tuberculata (Macri, 1778) – İşinibilir et al., 2021; Mawia benovici (Piraino, Aglieri, Scorrano & Boero, 2014) and Drymonema dalmatinum Haeckel, 1880 – İşinibilir et al., 2022), corresponding to 80% increase in Scyphozoa diver- sity of Sea of Marmara just within the past eight years. The mauve stinger, Pelagia noctiluca (Forsskål, 1775), is a small-sized warm-temperate holoplank- tonic jellyfish occurring in tropical and subtropical regions of the world as far as the North Sea (Mari- ottini et al., 2008), which is also widely distrib- uted across the Mediterranean Sea (Boero, 2013). Periodical blooms of this species in the western Mediterranean have been reported, causing adverse effects on human health, fisheries, and pelagic ecosystems (Axiak & Civili, 1991). In Turkey, the distribution of the species is restricted to the Aegean and Levantine coasts (Çinar et al. 2014), in which the northern limit of the species is the entrance of Çanakkale Strait (Alpaslan, 2001). Despite its noteworthy abundance in the Mediterranean Sea, published information on the species from Turkey is quite limited and only a single outbreak from the northeastern Levant has recently been documented (Çinar & Dağlı, in press). In this paper, we are recording the first occur- rence of P. noctiluca from the Marmara Archipelago (Sea of Marmara) ecosystem, representing a sig- nificant expansion from its documented distribu- tion range. Due to its characteristic coloration and distinct morphology, we assume its range expansion to the region as a recent event. MATERIAL AND METHODS A scientific survey on board the research vessel K. Piri Reis was organized at Marmara Archipelago (south of the Sea of Marmara) during December 2021 within the scope of the MarIAS project (Addressing Invasive Alien Species Threats at Key Marine Bio- diversity Areas Project) to assess the composition and distribution of certain alien species through scuba dives and bottom trawlings. Since the region has recently undergone a catastrophic mucilage event between late 2020 and summer 2021, we also tracked a wide range of organisms other than those targeted within the project. On 12 December 2021, a single individual of Pelagia noctiluca was sighted and photographed (Fig. 1) at the southern tip of Paşalimanı Island (Fig. 2., 40°26’42.67ʺN – 27°39ʹ21.87ʺE), at a depth of 10 m where the seawater temperature was 13°C. Although the col- lection of the specimen was not possible at that time, several underwater photographs enabled us to carry out a positive identification. Photographs were taken with a digital compact Olympus TG-6 camera. RESULTS AND DISCUSSION The single individual observed had a bell diam- eter of about 10 cm, characterized by a hemispheri- cal umbrella, four oral arms (longer than the bell diameter) around the mouth, eight relatively thick tentacles (> 25 cm) arising between successive lappets, mauve-colored exumbrella, oral arms and tentacles, rounded warts scattered on the exumbrel- lar dome, and reddish (female) to purple (male) gonads, conforming to the diagnostic features of P. noctiluca (Piraino et al., 2014). The closely related confamilial species Mawia benovici is clearly dis- tinguished from P. noctiluca by having horse-shoe shaped milky white outwardly convex gonads, white transparent color of tentacles, manubrium and oral arms, and rounded to arrow-pointed exumbrellar cnidocyst warts (Piraino et al., 2014). Considering the bell diameter >8.5 cm (Malej & Malej, 2004) and the purple-colored gonad (Fig. 1), we may as- sume the present finding of P. noctiluca from the Sea of Marmara denotes a mature male individual. Since the study locality (Marmara Archipelago) is regularly being surveyed on a seasonal basis since September 2020 where more than 100 scuba dives were performed, the occurrence of P. noctiluca in the region is probably a recent event, currently with no signs of an established population. The Sea of Marmara is the focus of attention in Tur- key, especially due to the drastic ecosystem changes and environmental catastrophes it has experienced during the past few decades. Not only the seawater temperatures showed a significant increase from 15.1 °C during the 1970-1979 period to 16.8 °C during the 2011-2021 period (TSMS, 2021), but also extreme blooms of algae are being observed since 2007, likely to be triggered by the combined effects of human- induced pressures such as domestic and industrial wastes, insufficient treatment levels and overfishing, along with the climate change (Balkıs-Özdelice et al., 2021). Such cumulative effects have been indicated ANNALES · Ser. hist. nat. · 32 · 2022 · 2 407 Murat BILECENOĞLU & Melih Ertan ÇINAR: THE MAUVE STINGER, PELAGIA NOCTILUCA, HAS EXPANDED ITS RANGE TO THE SEA OF MARMARA, 405–410 Fig. 1: Underwater photographs of the single Pelagia noctiluca individual observed in Sea of Marmara (top: upper view, bottom: lateral view). Gonad color (purple) indicates a male individual (Photo: M. Bilecenoğlu). Sl. 1: Podvodni fotografiji primerka mesečinke (Pelagia noctiluca), opaženega v Marmarskem morju (zgoraj: pogled z vrha; spodaj: pogled s strani). Barva gonad (vijolična) kaže, da gre za samca (Foto: M. Bilecenoğlu). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 408 Murat BILECENOĞLU & Melih Ertan ÇINAR: THE MAUVE STINGER, PELAGIA NOCTILUCA, HAS EXPANDED ITS RANGE TO THE SEA OF MARMARA, 405–410 to be involved in the mechanisms which can promote the increase of jellyfish occurrence (Mills, 2001; Boero, 2013). In addition to the above-mentioned stressors, P. noctiluca has been identified as prey of some apex Mediterranean predators, including tuna (Thunnus thynnus) and swordfish (Xiphias gladius) (Cardona et al., 2012), which have disappeared from the Sea of Marmara simply due to overfishing (Ulman et al., 2020), and massive removal of top-predator fishes could open up food resources for jellyfish (Mills, 2001). It is worth mentioning that our P. nocti- luca observation from the Sea of Marmara is followed by the recent mucilage event (November 2020 to mid-2021) that has intensely impacted the region to an unimaginable extent, corresponding to the most vulnerable ecosystem state where mass mortalities and/or severe declines of several taxa such as the endangered Pinna nobilis (Çinar et al., 2021a; also see the dead individuals in the background of Fig.1) and the vulnerable Paramuricea clavata (Topçu & Öztürk, 2021) were observed. The Aegean Sea is connected to the Sea of Mar- mara through the Çanakkale Strait, which is a very important biological corridor characterized by a two-layered current system, facilitating not only the penetration of thermophilic native species, such as P. noctulica, but also many alien species originating from the Red Sea that have formed viable popula- tions (Çinar et al., 2021b). To assess and understand the changes that these species will trigger in the fragile ecosystems of the Sea of Marmara, long-term monitoring studies are required. ACKNOWLEDGEMENTS We are grateful to the crew of research vessel K.Piri Reis for their constant support throughout the study. Special thanks to our scuba diving bud- dies Dr. M.Baki Yokeş and Dr. Harun Güçlüsoy. The study is financed by the project titled “Address- ing Invasive Alien Species Threats at Key Marine Biodiversity Areas GEF VI Project” implemented by the Republic of Türkiye, Ministry of Agriculture and Forestry, the General Directorate of Nature Conservation and National Parks in cooperation with the United Nations Development Programme (UNDP) funded by the Global Environment Facility (GEF). Fig. 2: Map of the observation locality of Pelagia noctiluca (indicated by a full dot) in the Sea of Marmara. Sl. 2: Zemljevid z lokaliteto, kjer je bil opažen primerek mesečinke (Pelagia noctiluca) (črn krogec) v Marmarskem morju. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 409 Murat BILECENOĞLU & Melih Ertan ÇINAR: THE MAUVE STINGER, PELAGIA NOCTILUCA, HAS EXPANDED ITS RANGE TO THE SEA OF MARMARA, 405–410 MESEČINKA (PELAGIA NOCTILUCA) JE RAZŠIRILA SVOJ AREAL DO MARMARSKEGA MORJA Murat BILECENOĞLU Department of Biology, Faculty of Science, Aydın Adnan Menderes University, 09010 Aydın, Turkey e-mail: mbilecenoglu@adu.edu.tr Melih Ertan ÇINAR Ege University, Faculty of Fisheries, Department of Hydrobiology, 35100, İzmir, Turkey POVZETEK Primerek mesečinke, Pelagia noctiluca (Forsskål, 1775) s premerom klobuka približno 10 cm so 12 decembra 2021 opazovali in fotografirali blizu otoka Paşalimanı v južnem Marmarskem morju. Do zdaj so to vrsto poznali le z egejske in levantske obale Turčije. Pričujoči zapis o pojavljanju potrjuje, da se je njen areal znatno razširil. Za zdaj ni znakov, da bi mesečinka vzpostavila svojo populacijo, je pa smiseln redni monitoring, ki bi obelodanil možne nove zapise o pojavljanju te vrste v regiji. Ključne vrste: Pelagia noctiluca, Marmarsko morje, Scyphozoa, širjenje areala ANNALES · Ser. hist. nat. · 32 · 2022 · 2 410 Murat BILECENOĞLU & Melih Ertan ÇINAR: THE MAUVE STINGER, PELAGIA NOCTILUCA, HAS EXPANDED ITS RANGE TO THE SEA OF MARMARA, 405–410 REFERENCES Alpaslan, M. (2001): Succession of Scyphozoa- Ctenophora in the Harbour of Çanakkale. Turkish J. Mar. Sci., 7, 59-68. Axiak, V. & F.S. Civili (1991): Jellyfish blooms in the Mediterranean: causes, mechanisms, impact on man and the environment. A programme review. In: Pro- ceedings of the II Workshop on Jellyfish in the Mediter- ranean Sea, UNEP MAP Technical Reports Series, 47, Athens, pp. 1-21. Balkıs-Özdelice, N., T. Durmuş & M. Balci (2021): A preliminary study on the intense pelagic and benthic mucilage phenomenon observed in the Sea of Mar- mara. Int. J. Environ. Geoinformatics, 8, 414-422. Boero, F. (2013): Review of jellyfish blooms in the Mediterranean and Black Sea. Studies and Reviews. General Fisheries Commission for the Mediterranean, No. 92. Rome, FAO, 53 pp. Cardona, L, I.A. de Quevedo, A. Borrell & A. Aguilar (2012): Massive consumption of gelatinous plankton by Mediterranean apex predators. PLoS ONE, 7, e31329. Çinar, M.E. & E. Dağlı (in press): A Pelagia noctiluca bloom in the eastern Mediterranean (Iskenderun Bay, Turkey). New records of rare species in the Mediter- ranean Sea. Med. Mar. Sci., 23. Çinar, M.E., M. BilecenoĞlu, M.B. Yokeş & H. Güçlüsoy (2021a): The last fortress fell: mass mortality of Pinna nobilis in the Sea of Marmara. Med. Mar. Sci., 22, 669-676. Çinar, M.E., M. Bilecenoğlu, M.B. Yokeş, B. Öztürk, E. Taşkin, K. Bakir, A. Doğan & Ş. Açik (2021b): Cur- rent status (as of end of 2020) of marine alien species in Turkey. PLoS ONE, 16(5), e0251086. Çinar, M.E., M.B. Yokeş, Ş. Açık Çınar & A.K. Bakır (2014): Checklist of Cnidaria and Ctenophora from the coasts of Turkey. Tr. J. Zool, 38, 677-697. Isinibilir, M., E. Yuksel & C. Dalyan (2021): First record of Cotylorhiza tuberculata (Macri, 1778) from the Sea of Marmara. Aquat. Sci. Eng., 36(1), 38-41. Isinibilir, M., E. Yuksel, E.E. Turkeri, O. Dogan, F.S. Karakulak, U. Uzer, C. Dalyan, G. Furfaro & S. Piraino (2022): New additions to the jellyfish fauna of the Sea of Marmara. Aquat. Sci. Eng., 37(1), 53-57. Isinibilir, M., I.N. Yilmaz & N. Demirel (2015): New records of jellyfish species in the Marmara Sea. Ital. J. Zool., 82, 425-429. Malej, A., & Jr. A. Malej (2004): Invasion of the jellyfish Pelagia noctiluca in Northern Adriatic: a non-success story. In Dumont, H., T. Shiganova & U. Niermann (eds.): Aquatic Invasions in Black, Caspian and Mediterranean Sea. Kluwer Academic Publishers, Netherlands, pp. 273-285. Mariottini, G.L., E. Giacco & L. Pane (2008): The mauve stinger Pelagia noctiluca (Forsskål, 1775). Dis- tribution, ecology, toxicity and epidemiology of stings. A review. Mar. Drugs, 6, 496-513. Mills, C.E. (2001): Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia, 451, 55-68. Piraino, S., G. Aglieri, L. Martell, C. Mazzoldi, V. Melli, G. Milisenda, S. Scorrano & F. Boero (2014): Pelagia benovici sp. nov. (Cnidaria, Scyphozoa): a new jellyfish in the Mediterranean Sea. Zootaxa, 3794, 455-468. Topçu, N.E. & B. Öztürk (2021): The impact of the massive mucilage outbreak in the Sea of Marmara on gorgonians of Prince Islands: A qualitative assessment. J. Black Sea/Mediterr. Environ., 27, 270-278. TSMS (Turkish State Meteorological Service) (2021): Official statistics, sea water temperature analysis. Available from: https://www.mgm.gov.tr/ veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=K. Retrieved 2 June 2022. Ulman, A., M. Zengin, N. Demirel & D. Pauly (2020): The lost fish of Turkey: a recent history of dis- appeared species and commercial fishery extinctions for the Turkish Marmara and Black Seas. Front. Mar. Sci., 7, 650. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 411 received: 2022-05-10 DOI 10.19233/ASHN.2022.42 DYNAMICS OF MESOZOOPLANKTON ALONG THE EASTERN COAST OF THE SOUTH ADRIATIC SEA Marijana HURE, Davor LUČIĆ, Barbara GANGAI ZOVKO & Ivona ONOFRI Institute for Marine and Coastal Research, University of Dubrovnik, Kneza Damjana Jude 12, 20000 Dubrovnik, Croatia e-mail: marijana.hure@unidu.hr Ivana VIOLIĆ Departmant of Applied Ecology, University of Dubrovnik, Ćira Carića 4, 20000 Dubrovnik, Croatia ABSTRACT Temporal and spatial variability of the mesozooplankton community was studied along the eastern coast of the south Adriatic Sea on a monthly basis from October 2012 to September 2013. Samples were collected at three stations using a 200 µm mesh Nansen net by vertical hauls at two depth layers. A total of 141 holoplanktonic taxa were identified, of which copepods were the dominant group. Total abundances showed high temporal variation (from 181 ind.m-3 in October to 1923 ind.m-3 in May). The mesozooplank- ton community differed significantly between the investigated layers and seasons. Deeper layers as well as the winter period were characterized by a subsurface and mesopelagic fauna, while over the warmer months the dominance of typically coastal Adriatic species was recorded. Comparing our results with stud- ies carried out in the middle of the last century, it can be concluded that the eastern coast of the southern Adriatic hosts a stable mesozooplankton community, less affected by global changes. Key words: copepods, seasonal variations, zooplankton, Mediterranean Sea DINAMICA DEL MESOZOOPLANCTON LUNGO LA COSTA ORIENTALE DEL MARE ADRIATICO MERIDIONALE SINTESI La variabilità temporale e spaziale della comunità di mesozooplancton è stata studiata lungo la costa orientale dell’Adriatico meridionale su base mensile da ottobre 2012 a settembre 2013. I campioni sono stati raccolti in tre stazioni utilizzando una rete Nansen con maglie da 200 µm, con retate verticali a due strati di profondità. Sono stati identificati 141 taxa oloplanctonici, di cui i copepodi erano il gruppo dominante. Le abbondanze totali hanno mostrato un’elevata variazione temporale (da 181 ind.m-3 in ottobre a 1923 ind.m-3 in maggio). La comunità di mesozooplancton differiva significativamente tra gli strati e le stagioni analizzate. Gli strati più profondi e il periodo invernale sono stati caratterizzati da una fauna mesopelagica e sub-super- ficiale, mentre nei mesi più caldi si è registrata la dominanza di specie tipicamente costiere dell’Adriatico. Confrontando i nostri risultati con studi condotti a metà del secolo scorso, si può concludere che la costa orientale dell’Adriatico meridionale ospita una comunità di mesozooplancton stabile, meno influenzata dai cambiamenti globali. Parole chiave: copepodi, variazioni stagionali, zooplancton, Mediterraneo ANNALES · Ser. hist. nat. · 32 · 2022 · 2 412 Marijana HURE et al.: DYNAMICS OF MESOZOOPLANKTON ALONG THE EASTERN COAST OF THE SOUTH ADRIATIC SEA, 411–430 INTRODUCTION The mesozooplankton occupy an essential posi- tion in pelagic carbon-flux processes since they serve as links between phytoplankton and higher pelagic trophic levels, such as larval and juvenile fishes, and interact with the benthic community. They are impor- tant indicators of climate change impact on marine and estuarine systems (Hays et al., 2005; Hsiao et al., 2011; Edwards et al., 2013; Menéndez et al., 2014; Varkitzi et al., 2018). Data on spatial and temporal population variability and food-web interactions of zooplankton can be a valuable index of trophic dynamics and the ability of marine ecosystems to support marine fisheries. The size range of the mesozooplankton (0.2-20 mm) corresponds almost exactly to the size range of copepodites and adult copepods, which are generally the dominant zooplankton group. Other members of the mesozooplankton include small hydromedusae, ctenophores, chaetognaths, appendicularians, doliol- ids, fish eggs and larvae, together with the older stages of crustacean plankton and meroplanktonic larvae. Different copepod species in various developmental stages may ingest a wide variety of prey and are most- ly omnivorous, i.e., they are able to switch between suspension feeding on phytoplankton and ambush feeding on motile prey (Kiørboe, 1997) depending on the relative abundance of the different types of prey in the environment. Furthermore, small-sized copepods (<1 mm in length) are able to efficiently utilize com- ponents of the microbial food web (Turner, 2004). The occurrence of other taxa, such as cladocerans and gelatinous tunicates (appendicularians and doliolids) is more seasonal and characterized by high growth rates (Hopcroft & Roff, 1995; Rose, 2004). Zooplankton respond rapidly to ecosystem dis- turbances and there is a strong correlation between environmental changes and plankton dynamics (Roemmich & McGowan, 1995). Temperature and salinity can directly influence growth rate and usually become dominant factors in determining the spatial and seasonal distribution of mesozooplankton (Ba- dylak & Philps, 2008). Moreover, biotic interactions, including competition and predation, are also con- sidered to control populations of mesozooplankton (Verity & Smetacek, 1996). In contrast to the offshore, the estuarine and coastal areas are systems with strong spatio-temporal variability in hydrobiological factors. Physical processes such as changes in water circulation patterns, variations in land inputs (sew- age discharges, rivers, etc.) associated with coastline configurations, and bottom topography may also ac- count for a significant part of the temporal variation in zooplankton community structure (Kurt & Polat, 2013). Therefore, studies of spatial and temporal variability of coastal zooplankton are important for a better understanding of the functioning of coastal ecosystems, but also with respect to fisheries. Seasonal variability of zooplankton has been studied in different coastal regions of the Medi- terranean (Mazzocchi & Ribera d’Alcala, 1995; Siokou-Frangou, 1996; Siokou-Frangou et al., 1998; Christou, 1998; Fernández de Puelles et al., 2003, 2004, 2014; Jamet et al., 2001, 2005; Zakaria, 2006; Mazzocchi et al., 2011; Kurt & Polat, 2013; Vidjak et al., 2019). Investigations of the zooplankton of the Adriatic coast have mostly focused on its productive northern part (Cataletto et al., 1995; Fonda Umani et al., 2005; Kamburska & Fonda Umani, 2006; Mackas et al., 2012; Mozetič et al., 2012; Bernardi Aubry et al., 2012; Bojanić Varezić et al., 2015; Pierson et al., 2020). With regard to the eastern Adriatic coast, the copepod fauna of the Kvarner region was analyzed in the work of Hure et al. (1979), with several papers describing zooplankton communities in the coastal areas of the central Adriatic (Regner, 1985; Vidjak et al., 2006, 2009, 2012). Zooplankton investigations of the southern shallow neritic areas have mostly focused on the more productive enclosed areas such as Mali Ston Bay (Benović & Onofri, 1982; Lučić & Kršinić, 1988; Lučić & Onofri, 1990;), Neretva Chan- nel (Vidjak et al., 2007, 2012), Mljet Lakes (Benović et al., 2000; Miloslavić et al., 2015) or inshore waters near Dubrovnik (Benović et al., 1978). However, little information and data are available on species com- position and seasonal variation of the zooplankton in the Dubrovnik offshore waters. Information on the current area mostly forms part of broader surveys of the open waters of the southern Adriatic. For exam- ple, Benović et al. (2004) presented data on medusae over the spring period in the central and southern Adriatic Sea. Additionally, a station near Dubrovnik has recently been involved in two investigations: studies of mesozooplankton over two transects in the southern Adriatic during winter, and presentation of copepod fauna in pre- and post-winter conditions in the southern Adriatic (Hure at al., 2018, 2020, 2022). However, this is the first comprehensive study of the zooplankton of the coastal waters surrounding Dubrovnik, including their taxonomic composition and annual pattern of abundance and diversity. The present study focuses on identifying the dominant en- vironmental factors that drive species-specific spatial and temporal variability. MATERIAL AND METHODS Study area The southern Adriatic is a relatively deep (up to 1250 m) oligotrophic circular basin. Interaction with the main body of the Mediterranean Sea includes inflow of Levantine Intermediate Water and Ionian ANNALES · Ser. hist. nat. · 32 · 2022 · 2 413 Marijana HURE et al.: DYNAMICS OF MESOZOOPLANKTON ALONG THE EASTERN COAST OF THE SOUTH ADRIATIC SEA, 411–430 Surface Water northward along the eastern Adriatic coastline, and outflow southward along the western coast (Zore-Armanda, 1969; Orlić et al., 1992; Gačić et al., 2002). The intensity of the inflow varies depend- ing on climatic oscillations and on the mechanism of the Bimodal Oscillating System that changes the circulation of the North Ionian Gyre from cyclonic to anticyclonic and vice versa, on a decadal time scale (Gačić et al., 2010). The study area, located near the city of Dubrovnik, is strongly influenced by currents originating from the eastern Mediterranean (Zore-Armanda, 1969; Gačić et al., 2010). Furthermore, in such coastal areas, land runoff and inshore waters often interact with complex dynamics on a variety of temporal and spatial scales, and fluctuations in ecological parameters can be quite complex. Sample collection and processing Sampling was carried out during 11 monthly oceanographic surveys (from October 2012 to Sep- tember 2013) at 3 stations: S1, S2 and S3. Instead of the one sampling in March, two were conducted in April (at the beginning and end of the month). The stations were located along the eastern part of the southern Adriatic coast at a bottom depth of 100 m (Fig. 1). Due to difficult weather conditions, samples could not be collected at S3 in February 2013. Temperature, salinity and dissolved oxygen (DO) were measured using a SeaBird OC25 probe. Seawater samples (500 mL) for chlorophyll-a (Chl a) measurements were collected from depths of 0, 5, 10, 20, 50, 70 and 100 m using a Niskin bottle. For Chl a, seawater was filtered through Whatman GF/C glass-fiber filters. The filters were then homogenized in 90% aqueous acetone and the extract measured in a spectrophotometer according to the method described by Strickland & Parsons (1972). A total of 64 mesozooplankton samples were col- lected from two depth layers (0-50 m, 50-100 m) using a vertically towed version of a modified open-closed Nansen net (1.13 m diameter; mesh size 200 µm). Samples were collected in daylight and immediately preserved with buffered formaldehyde (4% final con- centration). Sample processing and species identifica- Fig 1: Study area with the sampling stations. Sl. 1: Zemljevid obravnavanega območja z vzorčevalnimi postajami. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 414 Marijana HURE et al.: DYNAMICS OF MESOZOOPLANKTON ALONG THE EASTERN COAST OF THE SOUTH ADRIATIC SEA, 411–430 tion were conducted at the laboratory according to standard zooplankton methodology (Harris et al., 2000), using an Olympus SZX16 stereomicroscope for counting and detailed observations. Each sample was examined in its entirety for rare species. Taxonomic identification was performed at the lowest possible taxonomical level: most of holoplankters were identi- fied at the species level while some zooplankton were grouped in larger taxonomic groups (e.g., copepodite stages, copepod families Oncaeidae, Corycaeidae, Sap- phirinidae, amphipods, ostracods, mysids, euphausids, doliolids). Abundance was expressed as individuals per cubic meter (ind.m-3). Data analyses For univariate biodiversity measures, the Mar- galef species richness (d) and Shannon-Wiener di- versity index (H’) were calculated for each sample to analyze seasonal diversity changes. The Margalef formula (Margalef, 1968) compares the number of taxa in a sample and the total number of organ- isms comprising those taxa. The Margalef species richness index is given by the equation: d = (S-1)/ ln N, where S is the number of taxa in the sam- ple and N is the total number of individuals. The Shannon-Wiener index (Shannon & Wiener, 1963) evaluates how individuals are distributed among taxa and is determined by the equation: H’ = å-Σi Pi ln Pi, where Pi is the proportion that the i-th taxa represent to the total number of individuals in the sample space. One-way analysis of similarity (ANOSIM) was used to test whether the community structure differed significantly between groups: investigated sites, lay- ers and seasons (winter: J, F, spring: A, M, J, summer: J, A, S, Autumn: O, N). ANOSIM generated a test statistic, R, and the magnitude of R is the indicator of the degree of separation between groups, with the score of 1 indicating complete separation and 0 indicating no separation (Clarke & Green, 1988; Clarke, 1993). Fig. 2: Annual variability of temperature, salinity and Chl a in the South Adriatic. Sl. 2: Letna variabilnost temperature, slanosti in Chl a v južnem Jadranu. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 415 Marijana HURE et al.: DYNAMICS OF MESOZOOPLANKTON ALONG THE EASTERN COAST OF THE SOUTH ADRIATIC SEA, 411–430 The PRIMER 5 software package for Windows (Clarke & Gorley, 2001) was used to obtain diversity indices and conduct the ANOSIM analysis. To identify taxa representative of the different layers and seasons, we employed Indicator Species Analysis (ISA; Dufrene & Legendre, 1997). This method combines information on the concentration of species abundance in a particular group and the consistency of occurrence of a species in a particular group. It generates an indicator value (IndVal) for each taxon, ranging from 0 (no indication) to 100 (perfect indication). The statistical significance of each taxa IndVal was determined by the Monte Carlo method, in which sample units were randomly reassigned 1000 times to test if the IndVal value was higher than expected by chance (Dufrene & Leg- endre, 1997). Taxa with IndVal>25 and p<0.1 were considered characteristic of the groups. Non-metric multidimensional scaling (NMDS) ordination was used to detect relationships between major zooplankton taxa (>3% contribution) and environmental variables (temperature, salinity, Chl a and DO). Prior to the analyses, the data were log-transformed to normalize the variance while maintaining the distances between low values. The final matrix consisted of 64 samples and 19 taxa. The Bray-Curtis measure was used. Dimensionality was determined through evaluation of the standard residual sum of squares (STRESS; Mather, 1976). STRESS values of less than 20 indicate a stable solu- tion (McCune & Grace, 2002). The ISA and NMDS analyses were performed using PC-ORD v. 5.32 (Mc- Cune & Mefford, 2006). RESULTS Environmental conditions The annual variations in temperature, salinity and Chl a are shown in Fig. 2. The greatest temperature fluctuations were recorded at the surface, particu- larly at S2, where a minimum of 12.6 ̊C (February) and a maximum of 25.7 ̊C (August) were recorded. A period of isothermal conditions occurred from December to April at all stations. Sea surface tem- perature increased from the end of April, with the strongest thermal stratification in August between 10 and 20 m depth. The vertical salinity distribution shows that the largest fluctuations occurred in the upper 20 m, due to lateral advection of fresh water from the coast. This was most evident at station S2, where a sharp halocline was detected in spring (minimum of 34.6 recorded at the surface in April). Layers below 20 m are characterized by high salinity values (>38.5) with a maximum of 39.0 noticed at the S3, in October at 30 m depth. During the study period, the water column was well oxygenated (Tab. 1), with DO concentrations ranging from 4.4 ml/L (S3; October; bottom layers) to 5.9 ml/L (S1; August; 25 m depth). The highest variations in Chl a concentration were recorded at S1, from a minimum of 0.01 mg.m- 3, recorded in the bottom layer in October 2012 to 0.64 mg.m-3 found at the surface in April. Generally, the highest values were recorded in the surface layers of S2 during spring, with a maximum of 0.36 mg.m-3. Mesozooplankton abundance and distribution Zooplankton abundances in the surface layers (0-50 m) ranged between 346 ind.m-3 in October (S1) and 2357 ind.m-3 in August (S1) with an av- erage value of 983±553 ind.m-3 (Figs. 3 a, b, c). The bottom layers (50-100 m) generally had lower zooplankton abundance than the upper, with an average density of 517±329 ind.m-3. The minimum (181 ind.m-3) was also found in October at S1 (Fig. 3d), and the maximum (1013 ind.m-3) was recorded in April at S3 (Fig. 3f). The increased abundances were generally recorded in spring, following the trend of the copepods as the dominant group com- Tab. 1: Average dissolved oxygen (DO) concentrations (ml/L) of each investigated layer at stations S1, S2 and S3. Tab. 1: Povprečna koncentracija raztopljenega kisika (DO; v ml/L) na raziskanih slojih na postajah S1, S2 in S3. Month Layer STATION S1 S2 S3 OCT 0 - 50 m 4.97 5.03 5.03 50 - 100 m 4.87 4.91 4.73 NOV 0 - 50 m 4.97 4.96 4.87 50 - 100 m 5.05 5.15 4.70 JAN 0 - 50 m 5.21 5.17 5.21 50 - 100 m 4.95 4.93 4.90 FEB 0 - 50 m 5.36 5.33 50 - 100 m 5.24 5.25 APR 0 - 50 m 5.41 5.39 5.43 50 - 100 m 5.20 5.21 4.90 APR 0 - 50 m 5.36 5.44 5.45 50 - 100 m 5.12 5.14 5.21 MAY 0 - 50 m 5.38 5.48 5.49 50 - 100 m 5.13 5.11 5.17 JUNE 0 - 50 m 5.26 5.25 5.21 50 - 100 m 4.86 4.93 4.93 JULY 0 - 50 m 5.44 5.45 5.34 50 - 100 m 4.85 4.99 5.02 AUG 0 - 50 m 5.66 5.58 5.36 50 - 100 m 5.13 5.06 4.92 SEP 0 - 50 m 5.12 5.14 4.99 50 - 100 m 4.95 4.82 4.84 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 416 Marijana HURE et al.: DYNAMICS OF MESOZOOPLANKTON ALONG THE EASTERN COAST OF THE SOUTH ADRIATIC SEA, 411–430 Fig. 3: Annual distribution of the abundances of all mesozooplankton and the dominant mesozooplankton gro- ups at stations S1, S2 and S3 in the upper layer (a, b, c) and in the bottom layer (d, e, f). Sl. 3: Letna porazdelitev abundance celotnega mezozooplanktona in prevladujočih mezozooplanktonskih skupin, na postajah S1, S2 in S3 v zgornjem sloju (a, b, c) in v spodnjem sloju (d, e, f). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 417 Marijana HURE et al.: DYNAMICS OF MESOZOOPLANKTON ALONG THE EASTERN COAST OF THE SOUTH ADRIATIC SEA, 411–430 prising from 60 to 98% (mean: 82%) of the total. On average, copepods were more numerous in the upper layer (796±490 ind.m-3) than in the lower (427±310 ind.m-3). Calanoids were the dominant group and their copepodites were more abundant than adults, representing on average 67% of the total of calanoids at all stations. Oithonidae were more numerous only in spring in the layer below 50 m (stations S1 and S2). Oncaeidae were more abundant in the bottom layer during the summer, especially at S1. Appendicularians were the second most important mesozooplankton group with the highest abundances in August (up to 145 ind.m-3), especially in the layers below 50 m depth. Cladocerans were found mainly in the surface layers and were relatively important from August to October, contributing 17% on aver- age. Of the other invertebrates, doliolods were rela- tively more abundant, especially in the bottom layer, where they reached a maximum average abundance of 112 ind.m-3 in August. Chaethognats were more abundant in the upper layer (16±10 ind.m-3) than in the layer below (6±5 ind.m-3). Meroplanktonic groups fluctuated significantly in time and space (total average of 36±10 ind.m-3) with bivalvia larvae being the most abundant taxon. Mesozooplankton diversity and community structure A total of 141 holoplanktonic taxa were identified (Appendix 1). Copepods were the most important group in terms of diversity with 71 taxa found, followed by hydromedusae (18), ap- pendicularians (14) and siphonophores (13). The annual trend of diversity showed a clear seasonal pattern, with the lowest values registered in spring and increasing over winter (Fig. 4). Generally, higher diversity was found in the 50–100 m layer (average d=9.0; H’= 2.9) than in the upper 50 m (d= 8.4; H’= 2.8). The most abundant and regular adult copepods were calanoids and cyclopoids, including Oithona similis (average contribution 8.2%), Ctenocalanus vanus (4.2%), Acartia (Acartiura) clausi (4.1%), On- caeidae (3.4%) and Oithona nana (3.0%). Harpacti- coid density was low, mainly due to the variability of the most important species of the group – Euterpina acutifrons (average contribution 0.3%). Apart from copepods, a larger contribution to the entire com- munity was noted for Cladocera Penilia avirostris (3.4%), the doliolids (1.4%) and Appendicularia Oikopleura longicauda (1.1%). ANOSIM analyses showed no statistically significant difference between sampling stations (ANOSIM global R=-0.026, P>0.01), while signifi- cant differences were observed between sampling layers (global R=0.265, P<0.01) and seasons (global R=0.591, P<0.01). When considering seasons, significant differences were noted between spring/ autumn samples (R=0.738), attributable to different zooplankton composition, while the least differences were observed between summer and autumn sam- ples (R=0.368). Indicative taxa (IndVal>25; p<0.1), with their abundances and the contribution of each layer and season are shown in Table 2. Most of the mesozooplankton that characterized the upper layer were coastal or warm water taxa (e.g., Cory- caeidae). By contrast, the deeper layers were oc- cupied by subsurface and mesopelagic copepods (e.g., Lucicutia flavicornis, Haloptilus longicornis, genus Pleuromamma). In winter, the most im- portant taxa were also copepod species that are generally found in open waters (e.g., L. clausi, P. abdominalis). In spring, cyclopoids of the genus Oithona showed the highest abundances while Paracalanus parvus showed the highest IndVal. The pteropod Limacina trochiformis, doliolids, the appendicularian species Fritillaria pellucida and Oikopleura fusiformis, the cladoceran P. avirostris and the calanoid genus Centropages (C. typicus and C. kroyeri) characterized the summer period along the southeastern Adriatic coast. In autumn, only five mesozooplankton taxa displayed Ind- Val>25 and were composed of highly heterogenic members, including copepod genus Calocalanus, dinoflagellate Noctiluca scintillans, ostracods, and hydromedusae Liriope tetraphylla. Fig. 4: Annual diversity distribution in the upper layer (full line) and in the bottom layer (dotted line). H' = Shannon's diversity index, D = Margalef's species richness index. Sl. 4: Letna porazdelitev diverzitete v zgornjem (neprekinjena črta) in globinskem sloju (prekinjena črta). H' = Shannonov diverzitetni indeks, D = Margalefov indeks vrstne pestrosti. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 418 Marijana HURE et al.: DYNAMICS OF MESOZOOPLANKTON ALONG THE EASTERN COAST OF THE SOUTH ADRIATIC SEA, 411–430 The ordination of the major taxa, with the highest IndVal and an overall contribution of >3% related to environmental factors, is shown in Fig 5. A 2D NMDS ordination solution was chosen based on the final moderate stress value of 15.6 and the final instability <0.000001. The ordination cumulatively represented 80.6% of the community variance. Axis 1 represented 38.8% of the variance and was related to temperature variation (r=0.737). Thus, this axis distinguished summer from winter samples. The cladoceran Penilia avirostris was strongly associated with summer high- temperature samples, while the copepod Clausoca- lanus paululus displayed the opposite pattern. Axis 2 explained 41.8% of the remaining variance and was positively correlated with DO (r=0.462) and nega- tively with salinity (r=-0.436). Distribution of samples (grouped by season) along the second axes confirmed the strong separation between spring and winter/au- tumn samples where the spring samples were grouped with higher DO values. Tab. 2: Mesozooplankton taxa characterizing each depth layer and seasons with their indicator values (IndVal), average abundance (N - ind. m-3) and average contribution (%). Tab. 2: Mezozooplanktonski taksoni, značilni za oba sloja in sezone z njihovimi indikatorskimi vrednostmi (IndVal), povprečno abundanco (N - os.m-3) in povprečnim deležem (%). IndVal N % IndVal N % Upper layer (0-50 m) Bottom layer (50-100 m) Corycaeidae 77.9 18.3 2.2 Tomopteris spp. 67.1 0.6 0.1 Temora stylifera 77.4 7.4 0.8 Lucicutia flavicornis 63.8 1.8 0.6 Flaccisagitta enflata 71.8 1.8 0.2 Diaixis pygmaea 61.4 1.7 0.3 Acartia (Acartiura) clausi 68.8 58.1 4.2 Clausocalanus paululus 60.3 5.0 1.4 Muggiaea kochii 63.5 1.4 0.2 Haloptilus longicornis 46.8 2.9 1.0 Aglaura hemistoma 62.9 1.4 0.2 Pleuromamma gracilis 43.0 0.5 0.2 Creseis spp. 62.2 5.1 0.7 Pleuromamma abdominalis 37.5 0.2 0.1 Euterpina accutifrons 61.5 3.4 0.4 Scolecithricella dentata 36.8 0.3 0.1 Evadne spinifera 57.5 7.0 0.7 Isias clavipes 44.1 1.7 0.1 Pseudevadne tergestina 28.1 2.8 0.2 Winter Spring Euterpina accutifrons 63.1 6.3 1.2 Paracalanus parvus 58.0 14.6 1.4 Haloptilus longicornis 55.9 4.3 1.7 Hyperiidae 57.1 3.5 0.6 Lucicutia clausi 52.6 2.3 0.7 Ctenocalanus vanus 55.8 55.4 5.6 Pleuromamma abdominalis 44.9 0.6 0.3 Acartia (Acartiura) clausi 55.3 56.4 4.3 Lucicutia flavicornis 46.0 2.3 0.9 Oithona similis 54.8 108.8 12.9 Euchaeta marina 37.9 0.4 0.1 Calanus helgolandicus 54.6 3.9 0.5 Neocalanus gracilis 39.6 0.4 0.1 Oithona nana 53.4 39.7 4.4 Serratosagitta serratodentata 31.4 0.1 <0.1 Summer Autumn Limacina trochiformis 66.6 4.7 0.8 Ostracoda 58.6 14.4 3.7 Doliolida 64.4 25.4 2.8 Calolacalnus styliremis 52.0 8.5 1.5 Fritillaria pellucida 59.2 14.8 2.1 Calocalanus elongatus 50.0 0.5 0.1 Centropages typicus 58.0 14.7 1.3 Noctiluca scintillans 49.1 18.2 3.6 Oikopleura (Coecaria) fusiformis 55.9 11.2 1.5 Liriope tetraphylla 41.7 0.1 <0.1 Penilia avirostris 53.8 61.5 4.6 Lizzia blondina 38.9 0.2 <0.1 Centropages kroyeri 32.5 1.9 0.1 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 419 Marijana HURE et al.: DYNAMICS OF MESOZOOPLANKTON ALONG THE EASTERN COAST OF THE SOUTH ADRIATIC SEA, 411–430 DISCUSSION In this study, the annual distribution of mesozoo- plankton in the coastal area of the Dubrovnik region was investigated with the aim of providing detailed information on their composition, biodiversity and relationship with environmental parameters. Total mesozooplankton values were considerably lower compared to other coastal Mediterranean re- gions (Siokou-Frangou, 1996; Fernández de Puelles et al., 2003; Ribera d’Alcala et al., 2004; Kurt & Polat, 2013) or other eastern Adriatic coastal sites (Hure et al., 1979; Vidjak et al., 2007, 2012; Miloslavić et al., 2015). Similar abundance ranges were found in the open surface waters of southern Adriatic (Hure et al., 2018), indicating low productivity, negligible human impact and a high influence of the open sea. Despite the proximity of the mouth of a stream whose freshwater discharge causes lower surface salinities in spring (affecting station S2 the most) Chl a values also remain low, analogous to those found in offshore waters (Benović et al., 2004; Hure et al., 2018, 2020), confirming the oligotrophic nature of the study sites. In Mediterranean coastal areas, zooplankton abundance generally follows the phytoplankton bloom that takes place in late winter, with increased Fig. 5: Ordination joint plot with results of nonmetric multidimensional scaling (NMDS) with the position of the most important taxa and the related environmental variables overlaid as vectors (Temp-temperature, Sal – salinity, Chl a, DO). Vector length and direction indicate relative strength of the correlation with axes. Samples were grouped by season (W - winter, Sp - spring, Sm - summer, A - autumn). Sl. 5: Ordinacijski diagram z rezultati nemetričnega večdimenzionalnega skaliranja (NMDS) s položajem najpomembnejših taksonov in povezanimi okoljskimi spremenljivkami kot vektorji (Temp - temperatura, Sal - slanost, Chl a, DO). Dolžina in smer vektorja označujeta relativno moč korelacije z osmi. Vzorci so bili razvrščeni po sezonah (W - zima, Sp - pomlad, Sm - poletje, A - jesen). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 420 Marijana HURE et al.: DYNAMICS OF MESOZOOPLANKTON ALONG THE EASTERN COAST OF THE SOUTH ADRIATIC SEA, 411–430 values in spring/summer (Siokou-Frangou, 1996; Ribera d’Alcala et al., 2004; Morabito et al., 2018) and/or bimodal distribution with a second peak in autumn (Scotto di Carlo & Ianora, 1983; Morabito et al., 2018). Generally, our results show higher values during spring and summer. Unlike more eutrophic coastal Mediterranean sites, where clad- ocerans (mostly Penilia avirostris) dominate during the summer (Siokou-Frangou, 1996; Calbet et al., 2001; Vidjak et al., 2007; Isari et al., 2007; Cama- tti et al., 2008; Piontkovski et al., 2012; Bernardi Aubry et al., 2012; Peirson et al., 2020) and have a great influence on total mesozooplankton densities, our total abundances in the surface layers followed copepod densities even during the August/Septem- ber. Thus, the lack of seasonal predominance of cladocerans indicates a negligible coastal influence in the study area. In the bottom layers, the summer peak was associated with the higher densities of doliolids and appendicularians, which were found to be the most important group after copepods. Their temperature-dependent seasonality has been frequently documented (Lučić & Onofri, 1990; Vidjak et al., 2007; Isari et al., 2007; Miloslavić et al., 2015). Compared to other more productive surrounding areas where cyclopoids (Oithonidae) prevail over copepod fauna during summer (Lučić & Kršinić, 1998; Vidjak et al., 2007; Miloslavić et al., 2015), calanoids remained dominant in our study for almost the entire period of investigation. All the species identified during this research have already been recorded in the Adriatic Sea (Hure et al., 1980; Benović et al., 2004; Batistić et al., 2004; Hure et al., 2018). The most abundant co- pepod taxa, such as Oithona similis, Ctenocalanus vanus, Acartia (Acartiura) clausi, Oithona nana and Oncaeidae, are similar to those reported for other coastal Adriatic areas (Hure et al., 1979; Hure & Kršinić, 1998; Vidjak et al., 2012; Miloslavić et al., 2015), confirming a relative uniformity of the cope- pod community in coastal Adriatic waters. Even so, their numbers over the investigated sampling sites were considerably lower than in other coastal areas. The studied area is characterized by a high influ- ence of open-water intrusion, including inflowing Ionian currents (Gačić et al., 2002), which have a great impact on the distribution of zooplankton species (Hure et al., 2018). It should be emphasized here that some taxonomic groups, whose members show high species-specific differences, were not determined at species level but at family level (e.g., Corycaeidae, Oncaeidae, Ostracoda). Although sta- tion S2 was under a greater influence of low salinity water inflow, i.e., terrestrial runoff, than the other two investigated stations, this influence seems to have a negligible effect on the mesozooplankton community, which did not differ between stations. Moderate differences were found in the vertical levels, where neritic species occupied the surface layer, while mainly subsurface (Tomopteris spp., Clausocalanus paululus, Lucicutia flavicornis, Pleu- romamma gracilis) and mesopelagic (Pleuromamma abdominalis, Haloptilus longicornis, Scolecithricella dentata) taxa were indicative of the bottom layer. In general, seasonality was a major factor influencing the distribution of zooplankton in the study area. The NMDS analysis revealed that seasonal temperature changes were the main en- vironmental gradient responsible for the formation of the first axis. It is well known that temperature is an important factor regulating the distribution of zooplankton (Siokou-Frangou et al., 2004; Vidjak et al., 2007, 2012; Miloslavić et al., 2015). There is a strong separation of winter samples from all others along this axis, with mid-temperature (C. paululus) and termophilic (P. avirostris, T. stylifera, Doliolids) taxa also being distinguished. The winter period along the southern Adriatic coast was characterized by low densities and presence of characteristic offshore species, with the exception of E. acutifrons at the surface. E. acutifrons also peaked in winter in the Neretva Channel (Vidjak et al., 2007), and in even greater numbers. The spread of subsurface and intermediate copepod species from southern and central Adriatic along the eastern coast winter isotherm has already been reported (Regner, 1985; Hure & Kršinić, 1998; Vidjak et al., 2007). This is related to the eastern Adriatic circulation pattern, which is characterized by an increased inflow enhancing currents along the eastern coast (Zore- Armanda et al., 1999; Boicourt et al., 2020). The annual diversity pattern over the study period also confirmed this condition. The most significant differences in the zooplank- ton community were found between spring and autumn samples, as displayed by the results of the NMDS analysis along the second axis. The environ- mental traits characterizing the spring samples, on the other hand, are low salinity and higher Chl a and DO values. Typical coastal copepods (Paracalanus parvus, Acartia (Acartiura) clausi) were conspicuous, as were species of the genus Oithona, whose domi- nance over the warmer part of the year has already been reported in the eastern Adriatic coast (Vidjak et al., 2007; Miloslavić et al., 2015). Autumn was distinguished by cold water taxa, such as the copepod genus Calocalanus and ostra- cods, which are an important element of the south- ern Adriatic winter zooplankton community (Hure & Kršinić, 1998; Brautović et al., 2006). Dinoflagel- lates of the species Noctiluca scintilans also showed higher abundances in this part of the year, although their blooms normally occur in the spring-summer period (Fonda Umani, 2004; Mikaelyan et al., 2014). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 421 Marijana HURE et al.: DYNAMICS OF MESOZOOPLANKTON ALONG THE EASTERN COAST OF THE SOUTH ADRIATIC SEA, 411–430 During summer, in addition to the copepod genus Centropages, other zooplankton groups and taxa were conspicuous, including the pteropod Limacina trochiformis or appendicularians Fritillaria pellucida and Oikopleura fusiformis. These species usually peak in spring or summer (Siokou-Frangou, 1996; Calbet, 2001; Ribera d’Alcala et al., 2004; Miloslavić et al., 2015). CONCLUSIONS It can be concluded that the mesozooplankton fauna of the investigated area is marked by high dynamics and a high degree of temporal variability due to the particular hydrographic regime and oc- currence of characteristic taxa in the annual cycle. The low values of Chl a and total abundance of mesozooplankton pointed to the oligotrophic char- acter of the studied area, indicating a negligible influence of the nearby freshwater source or the Boka Kotorska system located further south. In the warmer months, higher neritic zooplankton abun- dances were recorded in the upper layers. In winter, strong and persistent physical forces maintain the homogeneity of the water column and therewith higher salinity, promoting the presence of species characteristic of the open sea, greater diversity, and decrease in overall densities. There are sev- eral studies confirming significant changes in the composition and abundance of mesozooplankton in the Adriatic Sea as a result of global warming and introduction of non-native species, especially in its northern region (Conversi et al., 2009; Bernardi Aubry et al., 2012; Mozetič et al., 2012; Pierson et al., 2020). Overall, the authors found that the species preferring cold water decreased while spe- cies with a preference for warm water expanded their residence and migrated northwards. This was mostly related to summer–autumn increases in sea surface temperature. This investigation could be of particular im- portance as a database for future monitoring of the planktonic communities of the Adriatic Sea, representing a baseline study of the zooplankton biodiversity of the eastern Adriatic coastal system, fundamental for future considerations about the possible measures to mitigate to the effects of cli- mate change and anthropogenic activities. However, a major limitation in describing the annual cycles is the remarkable complexity and interannual variability of environmental factors and plankton responses. This is particularly evident in oligotrophic waters, where short-term and/or small- scale patchiness may be of greater importance. More frequent sampling and multi-year surveys are therefore needed to cover all phases of an annual cycle and to distinguish regular patterns from oc- casional and exceptional events in this variable system. ACKNOWLEDGEMENTS This work was supported by the Croatian Science Foundation, as a part of a project “New aspects of diel vertical migration of zooplankton in the complex open South Adriatic ecosystem” (DiVMAd; IP-2019-04-9043). The authors thank to the captain of ship “Baldo Kosić II” Željko Baće as well as to Zoran Jurić and Marko Žarić for their assistance for obtaining samples. We also thank Dr. Rade Garić for his valuable help in determination of appen- dicularians. We are also very grateful to Mr. Steve Latham for English editing of the Manuscript. The comments of the reviewers are greatly appreciated. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 422 Marijana HURE et al.: DYNAMICS OF MESOZOOPLANKTON ALONG THE EASTERN COAST OF THE SOUTH ADRIATIC SEA, 411–430 Appendix 1: List of determined zooplankton taxa found in the eastern coast of the south Adriatic in 2012/2013. An Asterisk indicates presence in investigated layer and season (W-winter, Sp-spring, Sm-summer, A-Autumn). Priloga 1: Seznam določenih taksonov zooplanktona, najdenih na vzhodni obali južnega Jadrana v letih 2012/2013. Zvezdica označuje prisotnost v preiskovanem sloju in sezoni (W-zima, Sp-pomlad, Sm-poletje, A-jesen). Layer Season Taxon 0-50 m 50-100 m W Sp Sm A HOLOPLANKTON Cnidaria Hydrozoa Order Anthoathecata Podocorynoides minima * * * * Lizzia blondina * * * Podocoryna areolata * * Odessia maeotica * * Euphysa aurata * * * Turritopsis dohrnii * * Eucodonium brownei * * Order Leptothecata Obelia spp. * * * * * Clytia hemisphaerica * * * * * * Helgicirrha cari * * * Eutima gracilis * * Order Trachymedusae Rhopalonema velatum * * * * * * Aglaura hemistoma * * * * * * Persa incolorata * * * * * * Order Limnomedusae Liriope tetraphylla * * * * Order Narcomedusae Solmissus albescens * * * Solmaris leucostyla * * * Solmundella bitentaculata * * * * Order Siphonophorae (Calycophorae) Sulculeolaria chuni * * Sulculeolaria quadrivalvis * * Lensia campanella * * * * Lensia fowleri * * Lensia multicristata * * Lensia subtilis * * * * * * Muggiaea atlantica * * * * * * Muggiaea kochii * * * * * * Chelophyes appendiculata * * * Eudoxoides spiralis * * * * * * Sphaeronectes irregularis * * Sphaeronectes koellikeri * * * * * * ANNALES · Ser. hist. nat. · 32 · 2022 · 2 423 Marijana HURE et al.: DYNAMICS OF MESOZOOPLANKTON ALONG THE EASTERN COAST OF THE SOUTH ADRIATIC SEA, 411–430 Bassia bassensis * * * * * Ctenophora * * * * Mollusca Gastropoda Order Littorinimorpha Atlanta peronii * * * * * Order Thecosomata Limacina sp. * * Limacina trochiformis * * * * * * Heliconoides inflatus * * * * * * Creseis spp. * * * * * * Annelida (Polychaeta) Tomopteris spp. * * * * * * Chaetognatha Sagittoidea Flaccisagitta enflata * * * * * Mesosagitta minima * * * * Parasagitta setosa * * * * * * Serratosagitta serratodentata * * * * Decipisagitta descipiens * * * * Arthropoda Crustacea Superorder Cladocera Penilia avirostris * * * * * Evadne spinfera * * * * * * Evadne nordmanni * * * * Pseudevadne tergestina * * * Pleopis polyphemoides * * * * * * Podon intermedius * * * Class Ostracoda * * * * * * Subclass Copepoda Calanus helgolandicus * * * * * * Mesocalanus tenuicornis * * * * * * Nannocalanus minor * * * * * * Neocalanus gracilis * * * * * * Pareucalanus attenuatus * * * * * * Paracalanus parvus * * * * * * Paracalanus denudatus * * * * * * Calocalanus pavo * * * * * * Calocalanus contractus * * * * * * Calocalanus styliremis * * * * * * Calocalanus elongatus * * * * * Mecynocera clausi * * * * * * Clausocalanus arcuicornis * * * * * * Clausocalanus jobei * * * * * * Clausocalanus furcatus * * * * * * Clausocalanus pergens * * * * * * Clausocalanus parapergens * * * * * ANNALES · Ser. hist. nat. · 32 · 2022 · 2 424 Marijana HURE et al.: DYNAMICS OF MESOZOOPLANKTON ALONG THE EASTERN COAST OF THE SOUTH ADRIATIC SEA, 411–430 Clausocalanus lividus * * * * * * Clausocalanus mastigophorus * * * * * * Clausocalanus paulusus * * * * * * Ctenocalanus vanus * * * * * * Pseudocalanus elongatus * * * * * Aetideus armatus * * * * * * Aetideus giesbrechti * * * * Paraeuchaeta hebes * * * * * * Euchaeta marina * * * * * Xanthocalanus agilis * * * Spinocalanus longicornis * * Scaphocalanus curtus * * * * * * Scolecithricella dentata * * * * * * Scolecithrix bradyi * * * * * * Diaixis pygmaea * * * * * * Centropages typicus * * * * * * Centropages kroyeri * * * * Centropages violaceus * * Isias clavipes * * * * * * Temora stylifera * * * * * * Temora longicornis * * Pleuromamma abdominalis * * * * * Pleuromamma gracilis * * * * * * Labidocera wollostoni * * Lucicutia flavicornis * * * * * * Lucicutia ovalis * * * * * * Lucicutia clausi * * * * * Lucicutia gemina * * Heterorhabdus papilliger * * * * * Heterorhabdus abyssalis * * Heterorhabdus spinifrons * * Haloptilus longicornis * * * * * * Candacia giesbrechti * * * * * * Candacia bipinata * * Phaenna spinifera * * * * Acartia (Acartiura) clausi * * * * * * Acartia(Acartiura) longirermis * * * * * Acartia (Acartia)negligens * * Oithona nana * * * * * * Oithona plumifera * * * * * * Oithona similis * * * * * * Oithona setigera * * * * * * Oithona atlantica * * * * Oithona linearis * * * * Oncea spp. * * * * * * ANNALES · Ser. hist. nat. · 32 · 2022 · 2 425 Marijana HURE et al.: DYNAMICS OF MESOZOOPLANKTON ALONG THE EASTERN COAST OF THE SOUTH ADRIATIC SEA, 411–430 Euterpina acutifrons * * * * * * Microsetella norvegica * * * * * Macrosetella gracilis * * * * * * Corycaeidae * * * * * * Goniopsillus clausi * * * * * * Lubbockia squillimana * * * * * * Copilia spp. * * * Sapphirina spp. * * * * * * Monstrilla longiremis * * * Order Euphausiacea * * * * * * Order Mysida * * * * Order Isopoda * * * * Order Amphipoda Hyperiidea * * * * * * Chordata Thaliacae Order Doliolida * * * * * * Chordata Appendicularia Oikopleura (Vexillaria)albicans * * Oikopleura (Vexillaria)dioica * * * * * * Oikopleura (Coecaria) longicauda * * * * * * Oikopleura cophocerca * * * Oikopleura (Coecaria) fusiformis * * * * * * Appendicularia sicula * * * Mesoikopleura haranti * * Fritillaria borealis * * * * * * Fritillaria pellucida * * * * * * Fritillaria haplostoma * * * * * * Fritillaria formica * * * * Fritillaria megachile * * Stegosoma magnum * * Kowalevskia tenuis * * MEROPLANKTON Decapoda * * * * * * Bivalvia * * * * * * Phoronida * * * * * * Gastropoda * * * * * * Polychaeta * * * * * * Cirripedia * * * * Echinodermata Bipinnaria * * * * * * Echinodermata Ophiopluteus * * * * * * Echinodermata Auricularia * * * * * * Pisces * * * * * * Branchiostoma lanceolatum juv. * * * * ANNALES · Ser. hist. nat. · 32 · 2022 · 2 426 Marijana HURE et al.: DYNAMICS OF MESOZOOPLANKTON ALONG THE EASTERN COAST OF THE SOUTH ADRIATIC SEA, 411–430 DINAMIKA MEZOZOOPLANKTONA VZDOLŽ VZHODNE OBALE JUŽNEGA JADRANA Marijana HURE, Davor LUČIĆ, Barbara GANGAI ZOVKO & Ivona ONOFRI Institute for Marine and Coastal Research, University of Dubrovnik, Kneza Damjana Jude 12, 20000 Dubrovnik, Croatia e-mail: marijana.hure@unidu.hr Ivana VIOLIĆ Departmant of Applied Ecology, University of Dubrovnik, Ćira Carića 4, 20000 Dubrovnik, Croatia POVZETEK Avtorji so raziksovali časovno in prostorsko dinamiko mezozooplanktonske združbe vzdolž vzhodne obale južnega Jadranskega morja enkrat mesečno od oktobra 2012 do septembra 2013. Vzorce so pobirali z navpičnimi dvigi na dveh globinskih slojih treh postaj z uporabo Nansenove 200 µm planktonske mreže. Določili so skupno 141 holoplanktonskih taksonov, med katerimi so prevladovali raki ceponožci. Zaznali so velika nihanja celokupne abundance v časovni skali (od 181 os.m-3 oktobra do 1923 os.m-3 v maju). Združba mezozooplanktona se je v raziskanih slojih in sezonah značilno razlikovala. V globljih slojih in v zimskem času je prevladovala podpovršinska in mezopelagična favna, v toplejših mesecih pa so prevlado- vale značilne obalne jadranske vrste. Na podlagi primerjave z raziskavami s polovice prejšnjega stoletja so avtorji zaključili, da se v južnem Jadranu pojavlja stabilna mezozooplanktonska združba, na katero globalne spremembe manj vplivajo. Ključne besede: raki ceponožci, sezonska nihanja, zooplankton, Sredozemsko morje ANNALES · Ser. hist. nat. · 32 · 2022 · 2 427 Marijana HURE et al.: DYNAMICS OF MESOZOOPLANKTON ALONG THE EASTERN COAST OF THE SOUTH ADRIATIC SEA, 411–430 REFERENCES Badylak, S. & E.J. Phlips (2008): Spatial and Tempo- ral Distributions of Zooplankton in Tampa Bay, Florida, Including Observations during a HAB Event. J. Plankton Res., 30, 449-465. doi:10.1093/plankt/fbn010. Batistić, M., F. Kršinić, N. Jasprica, M. Carić, D. Viličić & D. Lučić (2004): Gelatinous Invertebrate Zooplankton of the South Adriatic: Species Composi- tion and Vertical Distribution. J. Plankton Res., 26, 459-474. doi:10.1093/plankt/fbh043. Benović, A., T. Gamulin, J. Hure, F. Kršinić & B. Skaramuca (1978): Zooplankton Communities of the NW Adriatic Inshore Waters near Dubrovnik. IVes Journees Etud Pollut. C.I.E.S.M., 391-398. Benović, A. & V. Onofri (1982): Net-Zooplankton of Maoston Bay and Malo More. In Savjetovanje “Malostonski zaljev - Prirodna podloga i društvno valoriziranje, JAZU: Zagreb, pp. 120-131. Benović, A., D. Lučić, V. Onofri, M. Peharda, M. Carić, N. Jasprica & S. Bobanović-Ćolić (2000): Eco- logical Characteristics of the Mljet Islands Seawater Lakes (South Adriatic Sea) with Special Reference to Their Resident Populations of Medusae. Sci. Mar., 197- 206. doi:10.3989/scimar.2000.64s1197. Benović, A., D. Lučić, V. Onofri, M. Batistić & J. Njire (2004): Bathymetric Distribution of Medusae in the Open Waters of the Middle and South Adriatic Sea during Spring 2002. J. Plankton Res., 27, 79-89. doi:10.1093/plankt/fbh153. Bernardi Aubry, F., G. Cossarini, F. Acri, M. Bastian- ini, F. Bianchi, E. Camatti, A. De Lazzari, A. Pugnetti, C. Solidoro & G. Socal (2012): Plankton Communities in the Northern Adriatic Sea: Patterns and Changes over the Last 30 Years. Estuar. Coast. Shelf Sci., 115, 125-137. doi:10.1016/j.ecss.2012.03.011. Boicourt, W.C., M. Ličer, M. Li, M. Vodopivec & V. Malačič (2020): Sea State: Recent Progress in the Context of Climate Change. In: Malone, T. C., A. Malej & J. Faganeli (eds.): Coastal Ecosystems in Transition: A Comparative Analysis of the Northern Adriatic and Chesapeake Bay, AGU, Wiley, New Jersey, pp. 21-48. Bojanić Varezić, D., O. Vidjak, R. Kraus & R. Precali (2015): Regulating mechanisms of calanoid copepods variability in the northern Adriatic Sea: Testing the roles of west-east salinity and phytoplankton gradients. Estuar. Coast. Shelf Sci., 164, 288-300. https://doi. org/10.1016/j.ecss.2015.07.026. Brautović, I., N. Bojanić, M. Batistić & M. Carić (2006): Annual Variability of Planktonic Ostracods (Crustacea) in the South Adriatic Sea.Mar. Ecol., 27, 124-132. doi:10.1111/j.1439-0485.2006.00090.x. Calbet, A., S. Garrido, E. Saiz, M. Alcaraz & C.M. Duarte (2001): Annual Zooplankton Succession in Coastal NW Mediterranean Waters: The Importance of the Smaller Size Fractions. J. Plankton Res., 23, 319- 331. doi:10.1093/plankt/23.3.319. Camatti, E., A. Comaschi, A. de Olazabal & S. Fonda Umani (2008): Annual Dynamics of the Meso- zooplankton Communities in a Highly Variable Ecosys- tem (North Adriatic Sea, Italy). Mar. Ecol., 29, 387-398. doi:10.1111/j.1439-0485.2008.00256.x. Cataletto, B., E. Feoli, S.F. Umani & S. Chen-Yong (1995): Eleven Years of Time-Series Analysis on the Net-Zooplankton Community in the Gulf of Trieste. ICES J. Mar. Sci., 52, 669-678. doi:10.1016/1054- 3139(95)80080-8. Christou, E.D. (1998): Interannual Variability of Copepods in a Mediterranean Coastal Area (Saron- ikos Gulf, Aegean Sea). J. Mar. Syst., 15, 523-532. doi:10.1016/S0924-7963(97)00080-8. Clarke, K. & R. Green (1988): Statistical Design and Analysis for a “biological Effects” Study. Mar. Ecol. Prog. Ser., 46, 213-226. doi:10.3354/meps046213. Clarke, K.R. (1993): Non-Parametric Multivariate Analyses of Changes in Community Structure. Austral Ecol., 18, 117-143. doi:10.1111/j.1442-9993.1993. tb00438.x. Clarke, K.R. & R.N. Gorley (2001): Primer v5: User Manual/Tutorial, PRIMER-E: Plymouth UK. Conversi, A., T. Peluso & S. Fonda-Umani (2009): Gulf of Trieste: A Changing Ecosystem. J. Geophys. Res., 114, C03S90. doi:10.1029/2008JC004763. Dufrene, M. & P. Legendre (1997): Species Assem- blages and Indicator Species: The Need for a Flexible Asymmetrical Approach. Ecol.Monogr., 67, 345-366. Edwards, M., E. Bresnan, K. Cook, M. Heath, P. Helanaouet, C. Lynam, R. Raine & C. Widdicombe (2013): Impacts of Climate Change on Plankton. MCCIP Sci. Rev., 1-15. doi:10.14465/2013.ARC12.098-112. Fernández de Puelles, M., J.-M. Pinot & J. Valen- cia (2003): Seasonal and Interannual Variability of Zooplankton Community in Waters off Mallorca Island (Balearic Sea, Western Mediterranean): 1994–1999. Oceanol. Acta, 26, 673-686. doi:10.1016/j.oce- act.2003.07.001. Fernández de Puelles, M.L., J. Valencia, J. Jansá & A. Morillas (2004): Hydrographical Characteristics and Zooplankton Distribution in the Mallorca Channel (Western Mediterranean): Spring 2001. ICES J. Mar. Sci., 61, 654-666. doi:10.1016/j.icesjms.2004.03.031. Fernández de Puelles, M.L., V. Macias, L. Vicente & J.C. Molinero (2014): Seasonal spatial pattern and community structure of zooplankton in waters off the Baleares archipelago (Central Western Mediterranean). J. Marine Syst., 138, 82-94. https://doi.org/10.1016/j. jmarsys.2014.01.001. Fonda Umani, S. (2004): Noctiluca scintillans (Macartney) in the Northern Adriatic Sea: Long-Term Dynamics, Relationships with Temperature and Eu- trophication, and Role in the Food Web. J. Plankton Res., 26, 545-561. doi:10.1093/plankt/fbh045. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 428 Marijana HURE et al.: DYNAMICS OF MESOZOOPLANKTON ALONG THE EASTERN COAST OF THE SOUTH ADRIATIC SEA, 411–430 Fonda Umani, S., V. Tirelli, A. Beran & B. Guardiani (2005): Relationships between Microzooplankton and Mesozooplankton: Competition versus Preda- tion on Natural Assemblages of the Gulf of Trieste (Northern Adriatic Sea). J. Plankton Res., 27, 973-986. doi:10.1093/plankt/fbi069. Gačić, M., G. Civitarese, S. Miserocchi, V. Cardin, A. Crise & E. Mauri (2002): The open-ocean convec- tion in the Southern Adriatic: a controlling mechanism of the spring phytoplankton bloom. Cont. Shelf Res., 22(14), 1897-1908. https://doi.org/10.1016/S0278- 4343(02)00050-X. Gačić, M., G.L.E. Borzelli, G. Civitarese, V. Cardin & S. Yari (2010): Can Internal Processes Sustain Reversals of the Ocean Upper Circulation? The Ionian Sea Exam- ple: Internal processes and upper circulation. Geophys. Res. Lett., 37(9). doi:10.1029/2010GL043216. Harris, R., P. Wiebe, J. Lenz, H.-R. Skjoldal & M.E. Huntley (2000): ICES Zooplankton Methodology Manual. Academic Press, London, 684 pp. Hays, G., A. Richardson & C. Robinson (2005): Climate Change and Marine Plankton. Trends Ecol. Evol., 20, 337-344. Hopcroft, R.R. & J.C. Roff (1995): Zooplankton Growth Rates: Extraordinary Production by the Larva- cean Oikopleura Dioica in Tropical Waters. J. Plankton Res., 17, 205–220. doi:10.1093/plankt/17.2.205. Hsiao, S.-H., S. Kâ, T.-H. Fang & J.-S. Hwang (2011): Zooplankton Assemblages as Indicators of Seasonal Changes in Water Masses in the Boundary Waters between the East China Sea and the Taiwan Strait. Hydrobiologia, 666, 317-330. doi:10.1007/s10750-011-0628-1. Hure, J., A. Ianora & B. Scotto di Carlo (1979): Cruises of the Research Vessel “Vila Velebita” in the Kvarner Region of the Adriatic Sea. XIII. Planktonic Copepods. Thalass Jugosl., 15, 203-216. Hure, J., A. Ianora & B. Scotto di Carlo (1980): Spatial and Temporal Distribution of Copepod Com- munities in the Adriatic Sea. J. Plankton Res., 2, 295- 316. doi:10.1093/plankt/2.4.295. Hure, J. & F. Kršinić (1998): Planktonic Copepods of the Adriatic Sea. Nat. Croat., 7, 1-135. Hure, M., H. Mihanović, D. Lučić, Z. Ljubešić & P. Kružić (2018): Mesozooplankton Spatial Distribu- tion and Community Structure in the South Adriatic Sea during Two Winters (2015, 2016). Mar. Ecol., 39. e12488, doi:10.1111/maec.12488. Hure, M., M. Batistić, V. Kovačević, M. Bensi & R. Garić (2020): Copepod Community Structure in Pre- and Post- Winter Conditions in the Southern Adri- atic Sea (NE Mediterranean). J. Mar. Sci. Eng., 8, 567. doi:10.3390/jmse8080567. Hure, M., M. Batistić & R. Garić (2022): Copepod Diel Vertical Distribution in the Open Southern Adri- atic Sea (NE Mediterranean) under Two Different Envi- ronmental Conditions. Water, 14(12), 1901. https://doi. org/10.3390/w14121901. Isari, S., S. Psarra, P. Pitta, P. Mara, M.O. Tomprou, A. Ramfos, S. Somarakis, A. Tselepides, C. Koutsiko- poulos & N. Fragopoulu (2007): Differential Patterns of Mesozooplankters’ Distribution in Relation to Physical and Biological Variables of the Northeastern Aegean Sea (Eastern Mediterranean). Mar. Biol., 151, 1035- 1050. doi:10.1007/s00227-006-0542-7. Jamet, J.-L., G. Bogé, S. Richard, C. Geneys & D. Jamet (2001): The Zooplankton Commu- nity in Bays of Toulon Area (Northwest Mediter- ranean Sea, France). Hydrobiologia, 457, 155-165. doi:10.1023/A:1012279417451. Jamet, J.-L., N. Jean, G. Bogé, S. Richard & D. Jamet (2005): Plankton Succession and Assemblage Structure in Two Neighbouring Littoral Ecosystems in the North-West Mediterranean Sea. Mar. Freshw. Res., 56, 69. doi:10.1071/MF04102. Kamburska, L. & S. Fonda-Umani (2006): Long- Term Copepod Dynamics in the Gulf of Trieste (North- ern Adriatic Sea): Recent Changes and Trends. Clim. Res., 31, 195-203. doi:10.3354/cr031195. Kiørboe, T. (1997): Population regulation and role of mesozooplankton in shaping marine pelagic food webs. Hydrobiologia, 363, 13-27. Kurt, T.T. & S. Polat (2013): Seasonal Distribution of Coastal Mesozooplankton Community in Relation to the Environmental Factors in İskenderun Bay (North-East Levantine, Mediterranean Sea). J. Mar. Biol. Assoc. U. K., 93, 1163-1174. doi:10.1017/S0025315412001713. Lučić, D. & F. Kršinić (1988): Annual Variability of Mesozooplankton Assemblages in Mali Ston Bay (Southern Adriatic). Period. Biol., 100, 43-52. Lučić, D. & V. Onofri (1990): Seasonal Variation of Neritic Mesozooplankton in Mali Ston Bay (Southern Adriatic). Acta Adriat., 31, 117-137. Mackas, D.L., W. Greve, M. Edwards, S. Chiba, K. Tadokoro, D. Eloire, M.G. Mazzocchi, S. Batten, A.J. Richardson, C. Johnson, E. Head, A. Conversi & T. Peluso (2012): Changing zooplankton seasonality in a changing ocean: Comparing time series of zooplankton phenology. Prog. Oceanogr., 97-100, 31-62. https:// doi.org/10.1016/j.pocean.2011.11.005. Margalef, R. (1968): Perspectives in Ecology Theory, Univ. Chicago Press: Chicago. Mather, P.M. (1976): Computational Methods of Multivariate Analysis in Physical Geography, J. Wiley and Sons: London. Mazzocchi, M.G. & M. Ribera d’Alcala (1995): Recurrent Patterns in Zooplankton Structure and Suc- cession in a Variable Coastal Environment. ICES J. Mar. Sci., 52, 679-691. Mazzocchi, M.G., P. Licandro, L. Dubroca, I. Di Capua & V. Saggiomo (2011): Zooplankton Associations in a Mediterranean Long-Term Time-Series. J. Plankton Res., 33, 1163-1181. doi:10.1093/plankt/fbr017. McCune, B. & J.B. Grace (2002): Analysis of Eco- logical Communities, Gleneden Beach Oregon, USA. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 429 Marijana HURE et al.: DYNAMICS OF MESOZOOPLANKTON ALONG THE EASTERN COAST OF THE SOUTH ADRIATIC SEA, 411–430 McCune, B. & M.J. Mefford (2006): PC-ORD Mul- tivariate Analysis of Ecological Data, MjM Software: Gleneden Beach. Menéndez, M.C., M.D. Fernandez Severini, F. Bian- calana, M.S. Dutto, M.C. Lopéz Abbate & A.A. Berasat- egui (2014): Climate change and marine zooplankton. In A. H. Arias & M. C. Menéndez (eds.): Marine Ecology in a changing World, CRC Press. 262 pp. Mikaelyan, A.S., A. Malej, T.A. Shiganova, V. Turk, A.E. Sivkovitch, E.I. Musaeva, T. Kogovšek & T.A. Lu- kasheva (2014): Populations of the Red Tide Forming Dinoflagellate Noctiluca scintillans (Macartney): A Comparison between the Black Sea and the Northern Adriatic Sea. Harmful Algae, 33, 29-40. doi:10.1016/j. hal.2014.01.004. Miloslavić, M., D. Lučić, M. Žarić, B. Gangai & I. Onofri (2015): The Importance of Vertical Habitat Gradi- ents on Zooplankton Distribution in an Enclosed Marine Environment (South Adriatic Sea). Mar. Biol. Res., 11, 462-474. doi:10.1080/17451000.2014.955802. Morabito, G., M.G. Mazzocchi, N. Salmaso, A. Zingone, C. Bergami, G. Flaim, S. Accoroni, A. Basset, M. Bastianini, G. Belmonte, F. Bernardi Aubry, I. Ber- tani, M. Bresciani, F. Buzzi, M. Cabrini, E. Camatti, C. Caroppo, B. Cataletto, M. Castellano, P. Del Negro, A. de Olazabal, I. Di Capua, A.C. Elia, D. Fornasaro, M. Giallain, F. Grilli, B. Leoni, M. Lipizer, L. Longobardi, A. Ludovisi, A. Lugliè, M. Manca, F. Margiotta, M.A. Mariani, M. Marini, M. Marzocchi, U. Obertegger, A. Oggioni, B.M. Padedda. M. Pansera, R. Piscia, P. Povero, S. Pulina, T. Romagnoli, I. Rosati, G. Rossetti, F. Rubino, D. Sarno, C.T. Satta, N. Sechi, E. Stanca, V. Tirelli, C. Totti & A. Pugnetti (2018): Plankton dynamics across the freshwater, transitional and marine research sites of the LTER-Italy Network. Patterns, fluctuations, drivers. Sci. Total Environ., 627, 373-387. https://doi. org/10.1016/j.scitotenv.2018.01.153. Mozetič, P., J. Francé, T. Kogovšek, I. Talaber & A. Malej (2012): Plankton Trends and Community Changes in a Coastal Sea (Northern Adriatic): Bottom- up vs. Top-down Control in Relation to Environmental Drivers. Estuar. Coast. Shelf Sci., 115, 138-148. doi:10.1016/j.ecss.2012.02.009. Orlić, M., M. Gačić & P.E. La Violette (1992): The Current and Circulation of the Adriatic Sea. Oceanol Acta, 15, 109-124. Pierson, J., E. Camatti, R. Hood, T. Kogovšek, D. Lučić, V. Tirelli & A. Malej (2020): Mesozooplankton and Gelatinous Zooplankton in the Face of Environ- mental Stressors. In: Malone, T.C., Malej, A., Faganeli, J. (eds.), Coastal Ecosystems in Transition. A Comparative Analysis of the Northern Adriatic and Chesapeake Bay. Geophysical Monograph Series, Wiley, pp. 105-127. Piontkovski, S.A., S. Fonda-Umani, A. De Olazabal & A.D. Gubanova (2012): Penilia avirostris: Regional and Global Patterns of Seasonal Cycles. Int. J. Oceans Oceanogr., 6(1), 9-25. Regner, D. (1985): Seasonal and Multiannual Dynamics of Copepods in the Middle Adriatic. Acta Adriat., 26, 11-99. Ribera d’Alcalà, M., F. Conversano, F. Corato, P. Licandro, O. Mangoni, D. Marino, M.G. Mazzocchi, M. Modigh, M. Montresor, M. Nardella, V. Saggiomo, D. Sarno & A. Zignone (2004): Seasonal Patterns in Plankton Communities in a Pluriannual Time Series at a Coastal Mediterranean Site (Gulf of Naples): An Attempt to Discern Recurrences and Trends. Sci. Mar., 68, 65-83. doi:10.3989/scimar.2004.68s165. Roemmich, D. & J. McGowan (1995): Climatic Warming and the Decline of Zooplankton in the Cali- fornia Current. Science, 267, 1324-1326. doi:10.1126/ science.267.5202.1324. Rose, K. (2004): Production of Penilia avirostris in Kingston Harbour, Jamaica. J. Plankton Res., 26, 605- 615. doi:10.1093/plankt/fbh059. Scotto di Carlo, B. & A. Ianora (1983): Standing Stocks and Species Composition of Mediterranean Zooplankton. In Quantitative Analysis and Simula- tion of Mediterranean Ecosystems: The Gulf of Na- ples, a Case Study. Unesco Rep. Mar. Sci., Vol. 20, pp. 59-69. Shannon, C.E. & W. Wiener (1963): The Mathemati- cal Theory of Communication, University of Illinois Press: Urbana, USA. Siokou-Frangou I. (1996): Zooplankton Annual Cy- cle in a Mediterranean Coastal Area. J. Plankton Res., 18, 203-223. Siokou-Frangou, I., E. Papathanassiou, A. Lepretre & S. Frontier (1998): Zooplankton Assemblages and Influence of Environmental Parameters on Them in a Mediterranean Coastal Area. J. Plankton Res., 20, 847- 870. doi:10.1093/plankt/20.5.847. Siokou-Frangou, I., T. Shiganova, E.D. Christou, L. Kamburska, A. Gubanova, A. Konsulov, E. Musaeva, V. Skryabin & V. Khoroshilov (2004): Mesozooplankton Communities in the Aegean and Black Seas: A Compar- ative Study. Mar. Biol., 144, 1111-1126. doi:10.1007/ s00227-003-1277-3. Strickland, J.D.H. & T.R. Parsons (1972): A Practi- cal Handbook of Seawater Analysis, Fisheries Research Board Of Canada: Ottawa. Turner, J.T. (2004): The Importance of Small Plank- tonic Copepods and Their Roles in Pelagic Marine Food. Zool. Stud., 43, 255-266. Varkitzi, I., J. Francé, A. Basset, F. Cozzoli, E. Stanca, S. Zervoudaki, A. Giannakourou, G. Assima- kopoulou, A. Venetsanopoulou, P. Mozetič, T. Tinta, S. Skejić, O. Vidjak, J.-F. Cadiou & K. Pagou (2018): Pelagic Habitats in the Mediterranean Sea: A Review of Good Environmental Status (GES) Determination for Plankton Components and Identification of Gaps and Priority Needs to Improve Coherence for the MSFD Im- plementation. Ecol. Indic., 95, 203-218. doi:10.1016/j. ecolind.2018.07.036. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 430 Marijana HURE et al.: DYNAMICS OF MESOZOOPLANKTON ALONG THE EASTERN COAST OF THE SOUTH ADRIATIC SEA, 411–430 Verity, P. & V. Smetacek (1996): Organism Life Cycles, Predation, and the Structure of Marine Pe- lagic Ecosystems. Mar. Ecol. Prog. Ser., 130, 277-293. doi:10.3354/meps130277. Vidjak, O., N. Bojanić, G. Kušpilić, I. Marasović, Ž. Ninčević Gladan & I. Brautović (2006): Annual Vari- ability and Trophic Relations of the Mesozooplankton Community in the Eutrophicated Coastal Area (Vranjic Basin, Eastern Adriatic Sea). J. Mar. Biol. Assoc. U. K.,, 86, 19-26. doi:10.1017/S0025315406012811. Vidjak, O., N. Bojanić, G. Kušpilić, Ž. Ninčević Gladan & V. Tičina (2007): Zooplankton Community and Hydrographical Properties of the Neretva Channel (Eastern Adriatic Sea). Helgol. Mar. Res., 61, 267-282. doi:10.1007/s10152-007-0074-7. Vidjak, O., N. Bojanić, G. Kušpilić, B. Grbec, Ž. Ninčević Gladan, S. Matijević & I. Brautović (2009): Population Structure and Abundance of Zooplankton along the Krka River Estuary in Spring 2006. Acta Adriat., 50, 45-58. Vidjak, O., N. Bojanić, S. Matijević, G. Kušpilić, Ž. Ninčević Gladan, S. Skejić, B. Grbec & I. Brautović. (2012): Environmental Drivers of Zooplankton Vari- ability in the Coastal Eastern Adriatic (Mediterranean Sea). Acta Adriat., 52, 243-262. Vidjak, O., N. Bojanić, A. Olazabal, M. Benzi, I. Brautović, E. Camatti, M. Hure, L. Lipej, D. Lučić, M. Pansera, M. Pećarević, B. Pestorić, S. Pigozzi & V. Tire- lli (2019): Zooplankton in Adriatic port environments: Indigenous communities and non-indigenous species. Mar. Pollut. Bull., 147, 133-149. Zakaria, H. Y. (2006): The Zooplankton Commu- nity in Egyptian Mediterranean Waters: A Review. Acta Adriat., 47, 195-206. Zore-Armanda, M. (1969): Water Exchange be- tween the Adriatic and Eastern Mediterranean. Deep Sea Res., 16, 171-178. Zore-Armanda, M., B. Grbec & M. Morović (1999): Oceanographic Properties of the Adriatic Sea-A Point of View. Acta Adriat., 40, 39-54. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 431 received: 2022-08-02 DOI 10.19233/ASHN.2022.43 POPULATION DYNAMICS OF THE COCKLE CERASTODERMA GLAUCUM (MOLLUSCA: BIVALVIA) IN THE GULF OF GABES (TUNISIA) Abdelkarim DERBALI National Institute of Marine Sciences and Technologies of the Sea (INSTM). BP 1035 Sfax 3018, Tunisia e-mail: derbali10@gmail.com; abdelkarim.derbali@instm.rnrt.tn Kandeel E. KANDEEL Fayoum University, Faculty of Science, Department of Zoology, 63514 Fayoum, Egypt Aymen HADJ TAIEB National Institute of Marine Sciences and Technologies of the Sea (INSTM). BP 1035 Sfax 3018, Tunisia Othman JARBOUI National Institute of Marine Sciences and Technologies of the Sea (INSTM). BP 1035 Sfax 3018, Tunisia ABSTRACT The cockle Cerastoderma glaucum is one of the most abundant shellfish species in the southern Tunisian waters. Its current exploitation status and management are becoming a major concern for fishing industry in Tunisia. This study is the first attempt to investigate its population dynamics including the population structure, growth, mortality, and exploitation status of two populations. Cockles were collected from Sfax (site A) and Gabes (site B) during a one-year period. Length frequency data were analyzed for estimation of population parameters to evaluate the stock. Recruitment was continuous and showed two major pulses in the two sites. The data presented herein are essential for the appropriate fisheries management and conservation for cockles. Key words: Cerastoderma glaucum, population dynamics, mortality, recruitment, south of Tunisia DINAMICA DI POPOLAZIONE DEL CUORE DI LAGUNA CERASTODERMA GLAUCUM (MOLLUSCA: BIVALVIA) NEL GOLFO DI GABES (TUNISIA) SINTESI Il cuore di laguna Cerastoderma glaucum è una delle specie di molluschi più abbondanti nelle acque della Tunisia meridionale. Il suo attuale stato di sfruttamento e la sua gestione stanno diventando una delle principali preoccupazioni per l’industria della pesca in Tunisia. Questo studio è il primo tentativo di indagare le dinamiche di popolazione, tra cui la struttura della popolazione, la crescita, la mortalità e lo stato di sfruttamento di due popolazioni. Gli esemplari sono stati raccolti a Sfax (sito A) e a Gabes (sito B) durante il periodo di un anno. I dati sulla frequenza delle lunghezze sono stati analizzati per stimare i parametri della popolazione e valutare lo stock. Il reclutamento è stato continuo e ha mostrato due impulsi principali nei due siti. I dati qui presentati sono essenziali per un’adeguata gestione e conservazione della pesca della specie. Parole chiave: Cerastoderma glaucum, dinamiche di popolazione, mortalità, reclutamento, sud della Tunisia ANNALES · Ser. hist. nat. · 32 · 2022 · 2 432 Abdelkarim Derbali et al.: POPULATION DYNAMICS OF THE COCKLE CERASTODERMA GLAUCUM (MOLLUSCA: BIVALVIA) ..., 431–442 INTRODUCTION Cerastoderma glaucum (Poiret, 1789) is a benthic species of bivalve mollusk which is very common in the Mediterranean Sea and southern Europe, preferentially dwells on muddy bottoms of lagoons and estuaries. It has been recorded from the coasts of Tunisia, Egypt, Turkey, Sardinia, Italy, Greece, Portugal, Spain, France, the Netherlands, the British Isles, Denmark, Finland, Norway and in the Wadden Sea, Adriatic Sea, Red Sea, Aegean Sea and Caspian Sea (Derbali, 2011; Malham et al., 2012; Derbali et al. 2012, 2014). The cockle C. glaucum lives in a wide range of salinity and thermal characteristics (Rygg, 1970). This makes C. glaucum an interesting subject for cultivation and/or reducing the environmental impact of organic loading in estuaries’ systems (Trotta & Cordisco, 1998). Cockles have an important role in the nutrient cycle because they establish a connection between trophic levels - feeding on primary producers and being prey of several invertebrates and vertebrates (including humans). Accordingly, C. glaucum is important within the macrobenthos that contribute to regulating the benthic fauna ecosystem in its habitat (El-Shabrawy, 2001; Fishar, 2005). In southern Tunisia, cockles repre- sent one of the dominant species of macrozoobenthos (Machreki-Ajmi et al., 2008; Derbali, 2011) and so are important for ecological functioning. Previous findings have shown that the cockle’s abundance was highly variable according to location. In southern Tunisian waters, the highest mean density has been estimated as 270 inds.m-2 (Derbali et al., 2012, 2014). Several studies of C. glaucum were also undertaken from other Tunisian sites, e.g., Bougrara Lagoon (Derbali et al., 2009). Previous surveys have highlighted the high di- vergence between cockle populations in southern Tunisian waters (Derbali, 2011), that could be related to the environmental and ecological conditions of the Gulf of Gabes. Such studies could be important for investigating the populations’ dynamics as a result to their potential adaptations since several environmental characteristics (e.g., climate, temperature, salinity, wave action, available substrate, species composition, species interactions, and food sources) vary consider- ably. Despite this species prevalence in the literature, no empirical work has rigorously investigated the cockles’ dynamics in the south of Tunisia. The commercial importance of C. glaucum increases as a candidate species for Tunisian food, research on its population parameters will be of considerable necessity for future economic valorization and sustainable management of this resource in Tunisian waters. In this context and considering the absence of information on cockles’ dynamics, the present study is the first attempt to estimate the population structure, growth, mortality, exploitation rates and recruitment pattern of C. glau- cum populations in the Gulf of Gabes. MATERIAL AND METHODS Study area Sampling sites are located in southern Tunisian waters. Both sites are wide tidal flats. Specimens were sampled from Site A (34°35’17’’N, 10°37’00’’E) and Site B (34°20’44’’N, 10°12’40”E) chosen with respect to environmental conditions and cockle densities (Fig. 1). In the first sector, the substratum is mud and detrital organic matter with high cover of the marine seagrasses Cymodocea nodosa (Ascherson, 1870) and Zostera noltei (Hornemann, 1832). In contrast, the second sec- tor is characterized by a muddy-sand substratum and the anthropogenic activities resulting from receiving runoff and discharge of pollutants from drainage water (Derbali, 2011). Sampling and laboratory procedures In the two sites, systematic surveys were carried out during one year from January to December 2017. Approximately 200 individuals were collected each month by quadrats (0.25 m²) using a shovel (up to 1 m depth). The sediments were washed out care- fully in situ through one mm mesh size sieve. Large specimens were collected by hand and the small were taken by the sieve. The materials retained by the sieve were kept in labeled containers filled with 7% formaldehyde-seawater solution. Seawater tem- perature and salinity were recorded at the same time as the cockle collections. Fig. 1: Geographical position of sampling sites of Cerasto- derma glaucum in the Gulf of Gabes (Tunisia). Sl. 1: Geografski položaj vzorčevalnih postaj za nabiranje navadnih srčank v Gabeškem zalivu (Tunizija). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 433 Abdelkarim Derbali et al.: POPULATION DYNAMICS OF THE COCKLE CERASTODERMA GLAUCUM (MOLLUSCA: BIVALVIA) ..., 431–442 In the laboratory, shell length (maximum distance on the anterior-posterior axis, SL) of each cockle was measured to the nearest 0.1 mm using a digital caliper. Length measurements were used to produce length-frequency distribution for each sample col- lected from the two sites using class intervals of 1 mm size. Total fresh weights (TW) of adult cockles were measured using top-loading digital balance (precision of 0.0001 g). Data analysis Length-weight relationships The relationship between total weight (TW) and anterior-posterior shell length (SL, mm) was described by the following allometric equation: logTW = log a + b log SL where log a and b are intercept (initial growth coefficient) and slope (relative growth rate of variables) of the linear regression line, respectively. The devia- tion of the b value of the regression function from the isometric hypothetical value (b = 3) was analyzed by means of a Student’s t-test. A significance deviation indicates a negative (b < 3) or positive (b > 3) allomet- ric relationship. Statistical analyses were carried out using MINITAB software (version 13, 2000). Statistical significance was considered when p < 0.05. Von Bertalanffy growth parameters Length-frequency data were analyzed using the FiSAT ΙΙ software as explained in detail by Gayanilo et al. (2005). The asymptotic shell length (L∞, mm) and the growth coefficient (K, yr-1) of the von Berta- lanffy Growth Function (VBGF) were estimated from these data by means of ELEFAN-Ι (Electronic Length Frequency Analysis; Pauly & David, 1981; Pauly & Morgan, 1987). The VBGF is defined by the equation: Lt = L∞ [1 – e –K (t – t0)] where Lt = mean length at age t, L∞ = asymptotic shell length, K = growth coefficient, t = age, and t0, the hypothetical age at which the length is zero (Pauly & David, 1981), here t0 = 0. L∞ and K were used to calculate the growth per- formance index Φ’ (Pauly & Munro, 1984) using the equation: Φ˺= log (K) + 2 log (L∞) Growth performance indices are calculated to com- pare between our two sampling sites and with other populations of C. glaucum. The inverse von Bertalanffy growth equation was used to find the lengths of C. glaucum at various ages. The theoretical maximum age (Tmax) was calculated for each population by solving for t in the von Bertalanffy equation by setting Lt = L∞, us- ing the following equation constructed by Michaelson & Neves (1995): Tmax = Mortality and exploitation rate Total mortality (Z, yr-1) was estimated by length- converted catch curve method (Pauly, 1990). FiSAT calculates Z as well as the 95% confidence intervals surrounding Z based on the goodness-of-fit of the re- gression. Natural mortality rate (M, yr-1) was estimated using the empirical relationship of Pauly (1980): Log10 M = -0.0066 - 0.279 Log10 L∞ + 0.6543 Log10 K + 0.4634 Log10T where T = is the mean annual temperature (°C). Once Z and M were obtained, then fishing mortality (F, yr-1) was estimated using the relationship: F = Z – M. The exploitation rate (E) was obtained with the rela- tionship proposed by Gulland (1971): E = F/Z = F/ (M+F) Recruitment pattern The routine in FiSAT reconstructs the recruitment pulses from a time series of length-frequency data to determine the number of pulses per year and the rela- tive strength of each pulse, using the VBGF parameters (Moreau & Cuende, 1991). Normal distribution of the % of recruits was determined by NORMSEP (Pauly & Caddy, 1985) in FiSAT. RESULTS Shell length-weight relationships Relationships between logarithmically trans- formed data of total weight (TW.) and shell length (SL, mm) of C. glaucum collected from site A and site B are shown in Table 1. In site A, isometric growth patterns were recorded for C. glaucum. On the other hand, slope values (b) significantly deviated from 3 (p < 0.05) indicating negative allometric growth patterns for C. glaucum at site B. Population structure Overall, 2256 and 2340 individuals of C. glau- cum were measured and their population structure studied for site A and site B, respectively (Fig. 2). The shell length ranged between 6–31 and 10–35 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 434 Abdelkarim Derbali et al.: POPULATION DYNAMICS OF THE COCKLE CERASTODERMA GLAUCUM (MOLLUSCA: BIVALVIA) ..., 431–442 mm for the two sites, respectively. Two peaks were observed corresponding to individuals with 20 and 25 mm shell length in site A and with 20 and 26 mm shell length in site B. Large individuals (> 25 mm) represent 31 and 53% of total collected samples from site A and site B, respectively. Growth and age Estimated asymptotic length (L∞) and growth coefficient (K) of the von Bertalanffy Growth Func- tion (VBGF) by ELEFAN-I were 32.55 mm and 0.48 yr-1 and 36.75 mm and 0.42 yr-1 for the cockles col- lected from site A and site B, respectively. Figure 3 showed length frequency distribution and the su- perimposed growth curves estimated by ELEFAN-I for C. glaucum from the two sites, respectively. Growth performance indices (Φ˺) were 2.71 and 2.75 in sites A and B, respectively (Tab. 2). Also, the theoretical maximum age (Tmax) was higher in site B (Tmax = 8.58 yr -1) than in site A (Tmax = 7.25 yr-1). Mortality and exploitation rate Length-converted catch curve analysis produced total mortality (Z) for C. glaucum was 1.25 yr-1 (con- fidence interval; CI = -2.13 – 4.63) and 0.90 yr-1 (CI Tab. 1: Regression parameters (log a and b) of shell length (SL, mm) and total weight (TW, g.) relationships of Cerastoderma glaucum collected from two sites in Tunisia. t: values of Student’s t-test; p: level of signi- ficance from isometric value of the slope; r2: coefficient of determination; F: variance ratio; N: number of individuals; SD: standard deviation. Tab. 1: Regresijski parametri (log a in b) odnosa med dolžino lupine (totalna dolžina, mm) in maso (g) navadne srčanke iz dveh tunizijskih lokalitet. Legenda: T= vrednost Studentovega testa, p: interval zaupanja izometrične vrednosti naklona; r2: koeficient determinacije; F: delež variance; N: število primerkov; SD: standardna deviacija. Fig. 2: Variations in the percentage occurrence of the different size classes of Cerastoderma glaucum collected from sites A and B throughout the study period. Sl. 2: Spremembe v deležu pojavljanja posameznih velikostnih razredov primerkov navadne srčanke, pobranih na lokalitetah A in B v obravnavanem obdobju. Length-Weight relationship Sites Log a ± S.D. b ± S.D. t p r2 F SL range TW range N Site A -3.34 ± 0.04 2.86 ± 0.03 4.66 p > 0.05 0.937 8189.46 12.0-31.4 0.55-9.532 550 Site B -3.31 ± 0.05 2.48 ± 0.03 17.33 p < 0.05 0.929 7023.47 12.4-32.4 0.584-9.532 541 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 435 Abdelkarim Derbali et al.: POPULATION DYNAMICS OF THE COCKLE CERASTODERMA GLAUCUM (MOLLUSCA: BIVALVIA) ..., 431–442 Fig. 3: Von Bertalanffy growth curves superimposed on length frequency histograms of Cerastoderma glaucum at site A (L∞ = 32.55 mm and K= 0.48 yr-1) and site B (L∞ = 36.75 mm and K= 0.42 yr-1) using ELEFAN 1. Sl. 3: Von Bertalanffijeve rastne krivulje in velikostni histogrami primerkov navadne srčanke na lokalitetah A (L∞ = 32.55 mm in K= 0.48 leto-1) in B (L∞ = 36.75 mm in K= 0.42 leto-1) z uporabo ELEFAN 1. Tab. 2: Population parameters of Cerastoderma glaucum in the south of Tunisia. Tab. 2: Populacijski parametri navadne srčanke iz juga Tunizije. Population parameters Site A Site B Asymptotic length (L∞, mm) 32.55 36.75 Growth co-efficient (K) yr -1 0.48 0.42 Growth performance index (Φ) 2.71 2.75 The theoretical maximum age (Tmax) yr -1 7.3 8.6 Natural mortality (M) yr -1 0.90 0.81 Fishing mortality (F) yr -1 0.35 0.09 Total mortality (Z) yr -1 1.25 0.90 Exploitation rate (E) 0.28 0.10 Shell length (SL) range (mm) 6.5 – 31.60 10.00 – 35.00 Sample number (N) 2256 2340 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 436 Abdelkarim Derbali et al.: POPULATION DYNAMICS OF THE COCKLE CERASTODERMA GLAUCUM (MOLLUSCA: BIVALVIA) ..., 431–442 = 0.80 – 1.00) for site A and site B, respectively. The catch curves used in the estimation of Z are repre- sented in Figure 4 for the two sites, respectively. The darkened circles represent the points used in calculating Z through least square regression analysis. Estimated value of natural mortality (M) from Pauly’s empirical formula is relatively higher (0.90 yr-1) in site A than in site B (0.81 yr-1). Fishing mortality (F) was estimated to be 0.35 and 0.09 yr-1 for the two sites, respectively. The rate of exploita- tion (E) was estimated at 0.28 for site A and 0.10 for site B (Tab. 2). Fig. 4: Length converted catch curve of Cerastoder- ma glaucum at sites A and B. Solid dots are those used in calculating the parameters of the straight line, the slope of which is an estimate of Z. Open dots represent cockles not used in mortality esti- mation. Sl. 4: Krivulja ulova navadne srčanke, preračunane- ga na dolžino, na lokacijah A in B. Polni krogci so tisti, ki so bili uporabljeni pri izračunu parametrov premice, katere naklon je ocenjena Z vrednost. Prazni krogci predstavljajo primerke, ki niso bili upoštevani v oceni smrtnosti. Fig. 5: Recruitment pattern of Cerastoderma glaucum at sites A and B showing two major recruitment pulses within a year. Sl. 5: Rekrutacija primerkov navadne srčanke na lokali- tetah A in B kaže dva letna viška. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 437 Abdelkarim Derbali et al.: POPULATION DYNAMICS OF THE COCKLE CERASTODERMA GLAUCUM (MOLLUSCA: BIVALVIA) ..., 431–442 In both sites, the salinity remains almost stable throughout the year, i.e. 28–48 in site A and 36–48 in site B. Temperature of the seawater recorded in the whole study area showed an an- nual fluctuation between 11°C (winter) and 28°C (summer). Recruitment patterns Relative strength of recruitment pulses generated by FiSAT for C. glaucum among the two sites was continuous throughout the year with two major pulses in June and November. For site A, the rela- tive strength of these pulses was 10.3 and 17.4 % recruitment, respectively. For site B, the relative strength of the pulses was 7.8 and 15.7 % recruit- ment, respectively. Also, a minor pulse (4.4 and 10.5 % recruitment; respectively) was recorded in August (Fig. 5). DISCUSSION The present study provided new information about the population structure, growth, mortality, and exploitation rates and recruitment pattern of cockles’ populations at two different sites in south- ern Tunisian waters. The strong correlation between Tab. 3: Values of von Bertalanffy growth parameters (K and L∞) and growth performance indices (ϕ‚) of Cerastoderma glaucum and its congeneric Cerastoderma edule in different localities. Legend: ϕ‚ = log K + 2 log L∞. *: Mean value for males and females. Tab. 3: Vrednosti von Bertalanffijevih rastnih parametrov (K in L∞) in indeks uspešnosti rasti (ϕ‚) navadne srčanke (Cerastoderma glaucum) in njene sorodnice, užitne srčanke (Cerastoderma edule) v različnih loka- litetah. Legenda: ϕ‚ = log K + 2 log L∞. *: Srednja vrednost za samce in samice. Species K yr -1 L∞ (mm) Φ˺ Location Source C. glaucum 0.48 32.55 2.71 Gargour, Tunisia Present study C. glaucum 0.42 36.75 2.75 Akarit, Tunisia Present study C. glaucum 0.45 28.35 2.56 Lake Qarun, Fayoum Depression, Egypt Kandeel et al. (2017) C. glaucum 0.28 33.60 2.50 Lake Timsah, Suez Canal, Egypt Kandeel et al. (2017) C. glaucum 0.22* 0.26* 38.07* 39.31* 2.49 2.59 Lake Timsah, Suez Canal, Egypt Mohammed et al. (2006) C. edule 0.600 40.00 2.98 South Bull, Dublin Bay, Irish Sea West et al. (1979) C. edule 1.609 26.50 3.05 Rias Atlas, North Spain Catoria et al. (1984) C. edule 0.640 34.36 2.88 Bay of Saint-Brieuc, North coast of Britany Ponsero et al. (2009) C. edule 0.404 40.00 2.81 Wadden Sea, German Ramon (2003) C. edule 0.026 28.27 1.32 Mundaca estuary, north Spain Iglesias & Navarro (1990) C. edule 0.180 36.00 2.37 Algeciras Bay, South Spain Guevara & Niell (1989) C. edule 0.640 36.00 2.92 Banc d’Arguin, French Magalhaes et al. (2016) C. edule 1.300 1.330 31.00 38.00 3.10 3.30 Merja Zerga, Moroccan Atlantic Coast Arcachon Bay, French Atlantic Coast Gam et al. (2010) ANNALES · Ser. hist. nat. · 32 · 2022 · 2 438 Abdelkarim Derbali et al.: POPULATION DYNAMICS OF THE COCKLE CERASTODERMA GLAUCUM (MOLLUSCA: BIVALVIA) ..., 431–442 shell length and weight for C. glaucum in this study and in earlier studies (Leontarakis et al., 2009; Der- bali et al., 2012; Kandeel et al., 2017) is similar to that reported for other bivalves (Gaspar et al., 2001; Zeinalipour et al., 2015). Previous surveys highlighted several estima- tions of the growth parameters for C. glaucum and its congeneric C. edule (Tab. 3). On com- parison, our findings were not in agreement with those recorded from Egypt by Mohammed et al. (2006) and later by Kandeel et al. (2017). Saeedi et al. (2010) have suggested several key factors affecting growth at the local scale in bivalves inhabiting the northern Persian Gulf including individual’s difference, climate, latitude, and longitude. Asymptotic shell length (L∞) derived from site A population (32.55 mm) proved to be smaller compared to site B population (36.75 mm) due to the lack of bigger sizes. The negative correlation between asymptotic shell length (L∞) and growth coefficient (K) invalidates comparison based on individual parameters (Pauly & Munro, 1984). As a result, comparison of the growth performance of bivalve populations is better fitted by the growth index phi prime (Φ˺). This criterion was used to characterize not only similar species (Pauly & Munro, 1984), but also related species as in the case of scallops (Del Norte, 1988). The value of (Φ˺) obtained in the present study (2.75) is con- sistent with those previously calculated for other studies (Table 3). Values ranged from 2.49 to 2.75 and from 1.32 to 3.05 for C. glaucum and C. edule, respectively. Total mortality rate of C. glaucum population was significantly higher at site A (Z = 1.25 yr−1) than at site B (Z = 0.90 yr−1). Natural mortality (M = 0.81 yr−1) and total mortality (Z = 0.90 yr−1) of the cockles in site B have nearly the same value as there is no fishery in the study area (Gayanilo & Pauly, 1997). A similar observation was recorded for the same species in Lake Qarun, Egypt (Kandeel et al., 2017) and for the clam Barbatia trapezina (= Barbatia decussata) (Lamarck, 1819) in the north- ern Persian Gulf, Iran (Zeinalipour et al., 2014). Mortality of C. glaucum is generally natural and may occasionally be caused by anthropogenic activities (e.g., habitat modification and habitat degradation). Habitat degradation resulting from receiving runoff and discharge of pollutants from drainage water may be the major reason underly- ing the relatively high natural mortality (0.81 yr−1) for C. glaucum in site B. However, commercial harvesting of the venerids, Ruditapes decussatus (Linnaeus, 1758) causes disturbances and higher mortality for the cockle C. glaucum in site A. Thus, fishing mortality of C. glaucum in site A (0.35 yr−1) was much higher than that recorded in site B (0.09 yr−1). Earlier studies have shown that commercial harvesting can reduce the fitness of bi- valves leading to their higher mortality. Robinson & Richardson, 1998 found that undersized Ensis magnus (Schumacher, 1817) (= Ensis arcuatus) individuals returned to the seabed were slow to re-bury, becoming highly vulnerable to predation by crabs. Population dynamics of cockles are controlled also by abiotic factors such as salinity, tempera- ture, immersion time, water velocity and sediment dynamics (Malham et al., 2012). Salinity may be the main factor affecting macrobenthos abundance. Rygg (1970) tested the tolerance of C. glaucum in a range from 3 to 60 and found that this species lived in a wide range of salinities from 5 to 45. In the present study, we have found that cockles lived in a wide range of salinities between 28 and 48. Boyden (1972) stated that maximum age of the cockle C. glaucum is reduced within hypersaline environments. Therefore, salinity increase may in- terpret the high representation of large sizes (31% and 53%) in populations of site A and site B, re- spectively. Accordingly, the theoretical maximum age (Tmax) was lower in site A (7.3 yr -1) than in site B (8.6 yr-1). Reproduction of C. glaucum in the two sites occurred throughout the year (Derbali, 2011). Re- cruitment pattern was continuous during the study period and two major peaks were observed during June and November. Also, one minor peak was recorded in August. This pattern of recruitment is typical for tropical bivalves, which are fast-growing and short-lived species (Del Norte-Campos, 2004). The cockle C. glaucum has a bi-phasic life cycle with a pelagic larva and a benthic postlarval stage which can also be pelagic before settling on the sediment and becoming benthic adults (Malham et al., 2012). Reduction in cockle recruitment suc- cess by high predation rates and the presence of high densities of adult macrofauna led to recruit- ment failures (André & Rosenberg, 1991; Beukema & Dekker, 2005; Flach, 2003). Predation of larval cockles by adult cockles through larviphagy can lead to reductions of up to 40% of the popula- tion (Malham et al., 2012). The same sequence of events has been reported for C. edule from Sweden (André et al., 1993). Authors stated that survival of settling larvae decreased drastically with increas- ing adult density and reported that inhalation of settling larvae by populations of resident suspen- sion feeders may cause a significant decrease in settlement on a larger scale. The present paper is the first report on popu- lation structure, growth, mortality, and exploita- tion status of C. glaucum from southern Tunisian ANNALES · Ser. hist. nat. · 32 · 2022 · 2 439 Abdelkarim Derbali et al.: POPULATION DYNAMICS OF THE COCKLE CERASTODERMA GLAUCUM (MOLLUSCA: BIVALVIA) ..., 431–442 waters. This study will help to accurately monitor the population dynamics of cockles and introduce measures of appropriate fisheries management. The data may help to determine future quantitative changes indicating trends in Tunisian waters that are exposed to various factors of environmental conditions and human activities. Further work is required to explore the asso- ciation between spawning and recruitment for C. glaucum with environmental variables to accu- rately monitor its exploitation. The adoption and implementation of rules, such as limiting the size of cockles, will be required to protect this new ex- ploitable fishery resource similar to R. decussatus natural populations. ACKNOWLEDGEMENTS This work was carried out as part of the research at the Laboratory of Fisheries Sciences of the National Institute of Marine Sciences and Tech- nologies (INSTM). Special thanks are extended the anonymous referees for their help to improve the quality of this manuscript. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 440 Abdelkarim Derbali et al.: POPULATION DYNAMICS OF THE COCKLE CERASTODERMA GLAUCUM (MOLLUSCA: BIVALVIA) ..., 431–442 POPULACIJSKA DINAMIKA NAVADNE SRČANKE CERASTODERMA GLAUCUM (MOLLUSCA: BIVALVIA) V GABEŠKEM ZALIVU (TUNIZIJA) Abdelkarim DERBALI National Institute of Marine Sciences and Technologies of the Sea (INSTM). BP 1035 Sfax 3018, Tunisia e-mail: derbali10@gmail.com; abdelkarim.derbali@instm.rnrt.tn Kandeel E. KANDEEL Fayoum University, Faculty of Science, Department of Zoology, 63514 Fayoum, Egypt Aymen HADJ TAIEB National Institute of Marine Sciences and Technologies of the Sea (INSTM). BP 1035 Sfax 3018, Tunisia Othman JARBOUI National Institute of Marine Sciences and Technologies of the Sea (INSTM). BP 1035 Sfax 3018, Tunisia POVZETEK Navadna srčanka (Cerastoderma glaucum) je ena od najštevilčnejših školjk v južnih tunizijskih vodah. Status izkoriščanja in menedžment te vrste v ribištvu v Tuniziji postajata zaskrbljujoča. Ta študija je prvi poskus raziskovanja populacijske dinamike te vrste, upoštevaje strukturo populacije, rast, smrtnost in status izkoriščenosti dveh populacij. Srčanke so v enoletnem obdobju pobirali v Sfaxu (lokalitete A) in Gabesu (lokaliteta B). Da bi ocenili populacijske parametre za opredelitev staleža, so analizirali velikostno poraz- delitev. Rekrutiranje, ki je bilo kontinuirano, je pokazalo dva glavna viška na obeh lokalitetah. Predstavljeni podatki so ključnega pomena za primeren menedžment navadne srčanke in njeno ohranitev. Ključne besede: Cerastoderma glaucum, populacijska dinamika, smrtnost, rekrutiranje, jug Tunizije ANNALES · Ser. hist. nat. · 32 · 2022 · 2 441 Abdelkarim Derbali et al.: POPULATION DYNAMICS OF THE COCKLE CERASTODERMA GLAUCUM (MOLLUSCA: BIVALVIA) ..., 431–442 REFERENCES André, C. & R. Rosenberg (1991): Adult-larval inter- actions the suspension-feeding bivalves Cerastoderma edule (L.) and Mya arenaria L. Mar. Ecol. Prog. Ser., 71, 227-234. André, C., P.R. Jonsson & M. Lindegarth (1993): Pre- dation on settling bivalve larvae by benthic suspension feeders: the role of hydrodynamics and larval behavior. Mar. Ecol. Prog. Ser., 97, 183-192. Beukema, J.J. & R. Dekker (2005): Decline of re- cruitment success in cockles and other bivalves in the Wadden Sea: possible role of climate change, predation on postlarvae and fisheries. Mar. Ecol. Prog. Ser., 287, 149-167. Boyden, C.R. (1972): Relationship of size to age in the cockles Cerastoderma edule and C. glaucum from the river Crouch estuary, Essex. J. Conchol., 27, 475-489. Catoria, J.L., D. Martinez & A. De Coo (1984): Contribución al estudio del crecimiento del berberecho (Cerastoderma edule L.) en las Rías Altas gallegas. Actas do IV SimposioIbérico de estudos do benthos marinho, 2, 295-306. Del Norte, A.G.C. (1988): Aspects of the growth, re- cruitment, mortality and reproduction of the Asian Moon Scallop, Amusium pleuronectes (Linné) in the Lingayen Gulf, Philippines. Ophelia, 29, 153-168. Del Norte-Campos, A.G.C. (2004): Some aspects of the population biology of the sunset elongate clam Garie longata (Lamarck 1818) (Mollusca, Pelecypoda: Psammobiidae) from the Banate Bay area, West Central Philippines. Asian Fish. Sc., 17, 299-312. Derbali, A. (2011): Biology, abundance and cartog- raphy of two bivalves species: the pearl-oyster Pinctada radiata and the cockle Cerastoderma glaucum in the Gulf of Gabes). Ph.D. Thesis, University of Sfax, Tunisia, 169 pp. Derbali, A., K. Elhasni, O. Jarboui & M. Ghorbel (2012): Distribution, abundance and biological param- eters of Cerastoderma glaucum (Mollusca: Bivalvia) along the Gabes coasts (Tunisia, Central Mediterranean). Acta Adriat., 53, 363-374. Derbali, A., O. Jarboui & M. Ghorbel (2009): Re- productive biology of the cockle Cerastoderma glaucum (Mollusca: Bivalvia) from the north coast of Sfax (Gulf of Gabes, Tunisia). Cienc. Mar., 35, 141-152. Derbali, A., A. Hadj Taieb, W. Kammoun, O. Jarboui & M. Ghorbel (2014): Mapping stocks and population structure of the cockle Cerastoderma glaucum in the lit- toral zone of Sfax (Tunisia, Central Mediterranean). Cah. Biol. Mar., 55, 353-361. El-Shabrawy, G.M. (2001): Ecological studies on macrobenthos of Lake Qarun, El-Fayoum, Egypt. J. Egypt Acad. Soc. Environ. Dev., 1, 29-49. Fishar, M.R.A. (2005): Ecology of benthic communi- ties of Lake Bardawil, Egypt. B. Macrobenthos. Egypt. J. Aquat. biol. Fish., 9, 53-71. Flach, E.C. (2003): The separate and combined effects of epibenthic predation and presence of macro-infauna on the recruitment success of bivalves in shallow soft- bottom areas on the Swedish west coast. J. Sea Res., 49, 59-67. Gam, M., X. De Montaudouin & H. Bazairi (2010): Population dynamics and secondary produc- tion of the cockle Cerastoderma edule: A comparison between Merja Zerga (Moroccan Atlantic Coast) and Arcachon Bay (French Atlantic Coast). J. Sea Res., 63, 191-201. Gaspar, M., M.N. Santos & P. Vasconcelos (2001): Weight-length relationship of 25 bivalve species (Mollus- ca: Bivalvia) from the Algarve Coast (southern Portugal). J. Mar. Biol. Assoc. UK., 81, 805-807. Gayanilo, F.C., & D. Pauly (1997): FAO-ICLARM stock assessment tools (FiSAT) reference manual. FAO Computerized Information Series (Fisheries). Rome, 262 pp. Gayanilo, F.C. Jr, P. Sparre & D. Pauly (2005): FAO- ICLARM stock assessment tools II (FiSAT)-revised version, User’s guide, FAO, Rome. Guevara, J.M. & F.X. Niell (1989): Growth rates in a continuously immersed population of Cerastoderma edule L. Sci. Mar., 53, 483-489. Gulland, J.A. (1971): Fish Resources of the Ocean. Fishing New Books, London. 255 pp. Iglesias, J.I.P. & E. Navarro. (1990): Shell growth of the cockle Cerastoderma edule in the Mundaca estuary (north Spain). J. Mollus. Stud., 56, 229-238. Kandeel, E.K., S.Z. Mohammed, A.M. Mostafa & M.E. Abd-Alla (2017): Population dynamics of the cockle Cerastoderma glaucum: a comparison between Lake Qarun and Lake Timsah, Egypt. Turk. J. Fish. Aquat. Sc., 17, 945-958. Leontarakis, P.K., L.I. Xatzianastasiou & J.A. Theo- dorou (2009): Biological aspects of the lagoon cockle, Cerastoderma glaucum (Poiret 1879), in a coastal lagoon in Keramoti, Greece in the northeastern Mediterranean. J. Shellfish Res., 27, 1171-1175. Machreki-Ajmi, M., I. Ketata, R. Ladhar-Chaabouni & A. Hamza-Chaffai (2008): The effect of in situ cadmium contamination on some biomarkers in Cerastoderma glaucum. Ecotoxicology, 17, 1-11. Magalhães, L., R. Freitas & X. De Montaudouin (2016): Cockle population dynamics: recruitment predicts adult biomass, not the inverse. Mar. Biol., 163(1), 16. Malham, S.K., T.H. Hutchinson & M. Longshaw (2012): A review of the biology of European cockle (Cerastoderma spp.). J. Mar. Biol. Assoc. U.K., 92, 1563- 1577. Michaelson, D.L. & R.J. Neves (1995): Life history and habitat of the endangered dwarf wedgemussel Alasmi- donta heterodon (Bivalvia: Unionidae. J. North American Benthological Soc., 14, 324-340. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 442 Abdelkarim Derbali et al.: POPULATION DYNAMICS OF THE COCKLE CERASTODERMA GLAUCUM (MOLLUSCA: BIVALVIA) ..., 431–442 Mohammad, S.H., M.E. Mohallal, S.Z. Mohammed & M.N. Attia (2006): Age and growth of the cockles Cerastoderma glaucum and Papyridea papyraca in Lake Timsah, Suez Canal. Catrina, 1, 25-32. Monti, D., L. Frenkiel & M. Moueza (1991): De- mography and growth of Anomalocardia brasiliana (Gmelin) (Bivalvia: Veneridae) in a mangrove, in Guadeloupe (French West Indies). J. Mollus. Stud., 57, 249-257. Moreau, J. & F.X. Cuende (1991): On improving the resolution of the recruitment pat-terns of fishes. ICLARM Fishbyte, 9, 45-46. Pauly, D. (1980): On the interrelationships between natural mortality, growth parameters and mean envi- ronmental temperature in 175 fish stocks. J. Cons. Int. Explor. Mer, 39, 175-192. Pauly, D. (1990): Length-converted catch curves and the seasonal growth of fishes. ICLARM Fishbyte, 8, 33-38. Pauly, D. & J.F. Caddy (1985): A modification of Bhattacharya’s method for the analysis of mixtures of normal distributions. FAO Fisheries Circular, 781, 16 pp. Pauly, D., & N. David (1981): ELEFAN-1, a BASIC program for the objective extraction of growth para- meters from length frequency data. Meeresforsch, 28, 205-211. Pauly, D. & G.R. Morgan (1987). Length-based methods in fisheries research. ICLARM Conference Proceedings, 13, 468 pp. Pauly, D. & J.L. Munro (1984): Once more on the comparison of growth in fish and invertebrate. Fis- hbyte, 2, 21 pp. Ponsero, A., L. Dabouineau & J. Allain (2009): Mo- delling of the common European cockle (Cerastoderma edule L.) fishing grounds aimed at sustainable mana- gement of traditional harvesting. Fisheries Sci., 75(4), 839-850. Ramon, M. (2003): Population dynamics and secon- dary production of the cockle Cerastoderma edule (L) in the backbarrier tidal flat of the Wadden Sea. Sci. Mar., 67, 429-443. Robinson, R.F. & C.A. Richardson (1998): The direct and indirect effects of suction dredging on a razor clam (Ensis arcuatus) population. ICES J. Mar. Sc., 55, 970-977. Rygg, B. (1970): Studies on Cerastoderma edule (L.) and Cerastoderma glaucum (poiret), Sarsia, 43, 65-80. Saeedi, H., A.A. Ardalan, E. Kamrani & B.H. Kiabi (2010): Reproduction, growth and production of Amian- tis umbonella (Bivalvia: Veneridae) on northern coast of the Persian Gulf, Bandar Abbas, Iran. J. Mar. Biol. Assoc. UK, 90, 711-718. Trotta, P. & C.A. Cordisco (1998): Gonadal matura- tion, conditioning, and spawning in the laboratory and maturation cycle in the wild of Cerastoderma glaucum Bruguiere. J. Shellfish Res., 17, 919-923. West, A.B., J.K. Partridge & A. Lovitt (1979): The cockle Cerastoderma edule (L.) on the South Bull, Du- blin Bay: population parameters and fishery potential”, Irish Fisheries Investigations Series B, pp. 1-18. Zeinalipour, M., B. Hassanzadeh Kiabi & M.R. Shokri (2015): Allometry, condition index and secon- dary production in bivalve Barbatia decussata on rocky intertidal shores in the Northern Persian Gulf, Iran. J. Environ. Biol., 36, 1185-1192. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 443 received: 2022-04-26 DOI 10.19233/ASHN.2022.44 TRACING DOLPHIN-FISHERY INTERACTION IN EARLY GREEK FISHERIES Vasiliki K. SOKOU Department of Animal Production, Fisheries & Aquaculture, University of Patras, Mesolongi, Greece Joan GONZALVO Tethys Research Institute, Milan, Italy Ioannis GIOVOS Department of Animal Production, Fisheries & Aquaculture, University of Patras, Mesolongi, Greece iSea, Environmental Organization for the Preservation of the Aquatic Ecosystems, Thessaloniki, Greece Cristina BRITO CHAM - Centre for the Humanities FCSH, Universidade NOVA de Lisboa, Campus de Campolide, Lisboa, Portugal Dimitrios K. MOUTOPOULOS Department of Animal Production, Fisheries & Aquaculture, University of Patras, Mesolongi, Greece e-mail: dmoutopo@upatras.gr ABSTRACT An exhaustive review of anecdotal references related to dolphin-fishery information in the Greek seas during the early phase of fishery development (1900-1975) was conducted. In that period fishers perceived dolphins as competitors and would intentionally kill them in retaliation for the loss that the dolphins caused by obstructing fishing operations and damaging fishing gear. This review highlights that dolphin-fishery interaction has been a major cause of concern to Greek fishers since the early 20th century, escalating with the way of life of modern society. Key words: historical accounts, cetaceans, occurrence, historical ecology, marine environmental history TRACCIA DELL’INTERAZIONE DELFINO-PESCATORE NELLE PRIME ATTIVITÀ DI PESCA GRECHE SINTESI È stata condotta una revisione esaustiva dei riferimenti aneddotici relativi alle informazioni sulla pesca dei delfini nei mari greci durante la prima fase dello sviluppo della pesca (1900-1975). In quel periodo i pescatori percepivano i delfini come concorrenti e li uccidevano intenzionalmente come ritorsione per le perdite che i delfini causavano ostacolando le operazioni di pesca e danneggiando gli attrezzi da pesca. Questa rassegna evidenzia come l’interazione tra delfini e pesca sia stata una delle principali cause di preoccupazione per i pescatori greci fin dall’inizio del XX secolo, intensificandosi con lo stile di vita della società moderna. Parole chiave: testimonianze storiche, cetacei, occorrenza, ecologia storica, storia dell’ambiente marino ANNALES · Ser. hist. nat. · 32 · 2022 · 2 444 Vasiliki K. SOKOU et al.: TRACING DOLPHIN-FISHERY INTERACTION IN EARLY GREEK FISHERIES, 443–450 INTRODUCTION Human-marine environmental interaction has occurred throughout history and the study of the dynamics of eco- systems and their biota needs to be temporarily broadened (Holm, 2022; Thurstan, 2022). The understanding gained and passed on from earlier periods, when human impact was limited (Moutopoulos & Stergiou, 2011), could serve as a useful knowledge repository in the efforts toward a re-evaluation of management thresholds (Zeller & Pauly, 2018). In this context, the body of historical and “forgotten” science combined with modern natural observations has increased significantly, particularly within the frameworks of marine historical ecology and marine environmental history (Fortibuoni et al., 2017a; Mazzoldi et al., 2019), and nowadays incorporates findings from a wide range of multi- disciplinary scientific fields (e.g., Engelhard et al., 2016). The Mediterranean Sea provides ample possibilities of interaction between human activities and the surrounding communities (Coll et al., 2010). In this context, dolphins represent important elements of historical and cultural heritage of marine ecosystems (e.g., Greek waters: Pa- padopoulos et al., 2002; Portugal: Brito & Vieira, 2010; Brito & Sousa, 2011). The importance of dolphins for the marine ecosystems is reflected in their very appellation, namely, the origin of the word dolphin is the ancient Greek word δελφίνι, meaning “womb”, as the sea is the womb of all life on the planet. Although the number of historical dolphin-human interaction studies for Mediter- ranean waters has considerably increased over the past decades (for review see: STECF, 2019) and correspond- ing data are easily found for the western Mediterranean (e.g., Brito & Vieira, 2010; Brito & Sousa, 2011; Sousa & Brito, 2011), such information is generally lacking for the eastern part of the basin. The present study aims to evaluate dolphin-human interaction in Greek waters during the early phase of fishery development (1900-1975). The data collection method has been harmonised with the European Com- mission for Marine Knowledge 2020 and the information incorporated into the European Marine Observation and Data Network (EMODnet). MATERIAL AND METHODS Greek fisheries officially started to organise in 1911, and by the mid-1970s, they had passed from an es- sentially pre-industrial stage to the industrialisation of fishing activities (Moutopoulos & Stergiou, 2012). An exhaustive search of traditional and digital libraries (i.e., newspapers, technical reports, and books) related to dolphins was conducted using the keyword “dolphins” for retrieving issues on dolphin-human interactions in the Greek seas during the early phase of fishery development (1900-1975). The following Athenian and regional jour- nals were found in the National Library of Greece (http:// efimeris.nlg.gr/ns/main.html?fbclid=IwAR0n__4AKJQ- ci7BFEwxCxZmu-90qQRZhlGhyMSmmcpkvB9gThXn- wQmwi8E): Eleftheria (1944-1967), Empros (1896-1969), Macedonia (1911-1981), Rizospastis (1917-1983), Scrip (1893-1963), Acropolis (1883-1884), and Tachydromos of Egypt (1958-1977). For the journals published on the island of Crete and in the Dodecanese, old archives were found in an online database (http://vikelaia-epapers. heraklion.gr/%CE%B5%CF%86%CE%B7%CE%BC%C E%B5%CF%81%CE%AF%CE%B4%CE%B5%CF%82/). Duplicate records of the same report published in differ- ent journals were excluded. RESULTS Overall, 28 historical records on dolphin-fishery inter- actions and dolphin occurrences were retrieved from the 1900-1975 period (Tab. 1). Records were more frequent for the Aegean Sea and mostly focused on conflicts between dolphins and fisheries, rather than on natural history reports. The first record (1906) of the presence of dolphins in the Greek seas refers to a shipwreck incident in Messinia, in which seamen were rescued by dolphins (Fig. 1) (Anonymous 1906). Later on, during the interwar period (1920-1940), dolphin conflicts with fisheries were increasingly reported (Tsakakis, 1950) creating the impression that “dolphins are enemies of the fishers” (Tsakakis, 1950). The first post-World War II reference describes nets destroyed by dolphins in the Chalkida area (Yakoumis, 1948). The fishers’ appeals to the competent authorities continued throughout the 1950s, describing damaged nets, calling for action against dolphins in cooperation with competent bodies and ichthyologists (Anonymous, 1953a, 1954c), asking for compensation for damaged nets, requesting permission to hunt dolphins with firearms (Tsakakis, 1950), and claiming monetary rewards for killed dolphins (Anonymous, 1959a). During the 1950s, dolphins were described as “the plague of the Greek seas” (Anonymous, 1952) (Fig. 2). The spatial extent of this conflict encompassed the Kavala and Thessaloniki Bays, Limnos, Mytilene, and Chalkida in the northern and central Aegean. In 1951, a petition for the granting of the right to use weapons against dolphins was signed by professional fishers from all around Greece and sent to the Directorate of Fisheries (Anonymous, 1952). The same trend continued in the following decades with reports of damaged nets (Anonymous, 1952), calls for cull- ing, compensation claims for damaged fishing gear, tips for “fighting” dolphins (Anonymous, 1975a), and demands for effective dolphin tracking measures (Anonymous, 1970). In 1975, trawlers and purse seiners from the Kavala port (Thracian sea) demanded that the government allocate 500,000 Greek drachmas (an amount equivalent to € 7,000 today) for extermination of dolphins by professional shoot- ers (Anonymous, 1975a). However, during the 1970s the first signs of a changing human attitude towards dolphins appeared in local periodic magazines, describing dolphins as “the intellectuals of the seabed” (Katiforis, 1970). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 445 Vasiliki K. SOKOU et al.: TRACING DOLPHIN-FISHERY INTERACTION IN EARLY GREEK FISHERIES, 443–450 Tab. 1: References on dolphin-fishery interaction in the Greek seas during the 1900‒1975 period. Tab. 1: Reference o interakciji med delfini in ribištvom v grških morjih v obdobju 1900–1975. Year Area Details Reference 1906 South Ionian (Messinia) Ship-wreckers were rescued by dolphins. Anonymous (1906) 1948 Evvoikos Gulf (Chalkis) Nets destruction by dolphins. The Chalkis Coastal Fishers’ Association has made an official request to the Ministry for allowing the use of harpoons in order to hunt and kill dolphins. Anonymous (1948) 1951 Greek Seas Nets destruction by dolphins. in the Greek seas, according to letters provided from fishers all throughout Greece. Fishers asked the Custom Port Authorities for permission to kill dolphins using guns. Anonymous (1951) 1952 North Aegean (Kavala) Appeals from fishers to the Ministry authorities for effective dolphin prosecution. A memorandum was signed from the Fisher’s Association in Kavala port. Dolphins were responsible for net destruction and fish catch losses. Dolphins are referred to as “beasts”. Fishers applied for a gun license allowing killing dolphins. Anonymous (1952) 1953 North and Central Aegean (Kavala, Lesvos and Chios Islands) Request by the professional fishers for the use of guns for the repelling of dolphins. Anonymous (1953a) Greek Seas At the first professional fishers’ workshop, fishers reported that the cost of losses due to dolphin attacks were equal to 10 fishing days each month.. Anonymous (1953b) 1954 Thracian Sea (Kavala) A request has been made to the Governor of Thrace by an editor of the Kavala newspaper “Proini” to take action to prosecute dolphins in collaboration with competent ichthyologists. Anonymous (1954c) North Aegean (Kavala) Fishers’ memorandum to the Governor of Thrace, citing dolphin-caused fishing gear destruction. Fisher’s associations request funding for the replacement of damaged nets. A request for the repelling of dolphins has been also made. Anonymous (1954d) Eastern Aegean (Limnos) Reports on net damages and loss of the catches. Report about ineffective use of hunting weapons on dolphins. Greek Seas Claims from fishers to the Directorate of Fisheries for an official allowance of the use of fire gun for the repulsion of dolphins. Anonymous (1954b) Greek Seas The Ministry of Industry is considering the introduction of awards for professional fishers who will catch dolphins. According to the available data, the damage to the purse seiners is the most serious. Anonymous (1954a) 1956 North Aegean (Kavala, Thessaloniki) Nets damages caused by dolphins. A craft with guns was reported for pre-war employment in the Thermaikos Gulf for killing dolphins, whereas the use of this method was outlawed in 1956. Fishers proposed measures to kill dolphins by using explosive capsules. Proposal for the exploitation of the dead dolphins (skin, fat). Tsakakis (1956) 1958 Pagassitikos Gulf (Volos) Reports were made for dolphins’ attack on the fishing gears. Anonymous (1958) 1959 Thracian Sea (Kavala) A compensatory measure was proposed by the Fisher Association of Kavala to the Ministry of Industry by a payout of 200 drachmas (current value of 55 €) per dead dolphin. Anonymous (1959c) Inner Ionian Archipelagos (Astakos) Two dolphins bycaught by a nylon fishing net. Anonymous (1959b) Greek Seas Fishers proposal to the Ministry of Marine for the persecution of dolphins by using firearms. Anonymous (1959a) Eastern Aegean (Lesvos Island) Fishers claim that purse seine catches were reduced due to dolphins. Anonymous (1959d) 1960 Thracian Sea (Kavala) Nets damages caused by dolphins. The vessels of the Port Authority were pursuing dolphins. Request for persecution of the dolphins. Anonymous (1960) 1961 Amvrakikos Gulf (Ionian Sea) According to a local newspaper 3,000 dolphins devastating the Amvrakikos Gulf. Gonzalvo et al. (2015) 1962 Thracian Sea (Kavala) From July to September 1961, the hiring of Turkish crews for hunting dolphins has resulted from a 15% to 20% increase in fish catches, as well as the avoidance of expenses of 800,000 drachmas (current value of 210,000 €) for repairing fishing gear. A grant of 250,000 drachmas (approximately 66,000 €) was requested to re-establish three hunting teams to kill dolphins during the 1962 fishing season. Anonymous (1962) Saronikos Gulf (Athens) Rescue of an injured dolphin in July 1962. Katiforis (1970) 1963 North Aegean, Central Aegean (Kavala, Volos, Lesvos Island) Net losses have been reported, similar to those caused by the olive fruit fly and downy mildew. Dolphins were considered as “beasts of the seas”. The Fisheries Directorate has been requested to coordinate dolphin hunts and allocate fundings for this purpose. Anonymous (1963) 1965 Saronikos Gulf (Athens) Schooling dolphins can be seen. Anonymous (1965) 1966 Patraikos Gulf (Ionian Sea) A grant of 600 drachmas (current value of 1.76 €) have been petitioned to subsidize the pursuit of dolphins by fishers. Anonymous (1966) 1970 Greek Seas The request for effective dolphin hunting was one of the outcomes of the 8th Pan-Hellenic Conference of Fishers (March 1970). Anonymous (1970) 1975 Thracian Sea (Kavala) The owners of trawl and purse seine vessels have petitioned the government for 500,000 drachmas (current value of 70,000 €) to subsidize the pursuit of dolphins by shooters. Anonymous (1975a) 1975 Thracian Sea (Kavala) Fisher’s association from Kavala issued a memorandum on dolphin killing and extinction (December 23, 1975). The Custom Port Authorities and the Navy have asked the Ministries of Agriculture and Merchant Marine to prosecute dolphins by hiring special shooters. There have been reports of extensive gear damages as well as a loss of catch. Dolphins have been compared to “sea wolves”. Anonymous (1975b) 1945- 1970 Thermaikos Gulf (Thessaloniki) Dolphins attacked on purse seine nets. Fishers change their fishing tactics in response to the dolphins’ net destruction. Fragoudi (2010) ANNALES · Ser. hist. nat. · 32 · 2022 · 2 446 Vasiliki K. SOKOU et al.: TRACING DOLPHIN-FISHERY INTERACTION IN EARLY GREEK FISHERIES, 443–450 DISCUSSION Greek waters have always been a key habitat for coastal dolphin populations (Frantzis, 2007; Crowley, 2010). After the official organisation of the fishery sector (1911) (Moutopoulos & Stergiou, 2011) the dolphin- human interaction in Greek Seas increased, especially in the wake of fishing gear depredation, catch and income losses, a pattern that was present throughout the Mediter- ranean and beyond (STECF, 2019). This negative devel- opment in the human-dolphin relations, which emerged in Greece later than in other regions of the world (Brito et al., 2016), shaped new attitudes and resulted in the characterisation of dolphins as “beasts” (Anonymous, 1952) and “sea wolves” (Anonymous, 1975b). Ten years after the end of World War II, Greek fishers proposed using explosive capsules to kill dolphins (Tsakakis, 1950) and for almost two decades the extinction and deliberate killing of dolphins was one of the main activities of Greek fisheries (Anonymous, 1975b). Dolphin hunting and killing were legal (Fragoudi, 2010), and anyone killing a dolphin was entitled to compensation from the port authorities for each individual killed (Bearzi et al., 2003, 2004; Fragoudi, 2010). This highly conflictive period ex- tending into the mid-1970s coincided with the reported decline of the species that started in the late 1960s (Bearzi et al., 2021). However, as it is indicated in our review, all reports of dolphin-fishery interaction were gathered in enclosed gulfs adjacent to large ports and cities on the mainland, and on large islands (Fig. 1). This is because during the first mid-1900s most Greek fisheries were characterised by poorly equipped fishing vessels, which limited the spatial and temporal extent of their operations (Moutopoulos & Stergiou, 2011). This likely had a strong impact on local populations of dolphins living in con- tinental shelf waters, particularly on common and bot- tlenose dolphins, as the total biomass otherwise removed by fisheries in such areas may exceed that predated by dolphins (Bearzi et al., 2009). Fig. 1: References on sightings and strandings indicating the presence of dolphins during the early period of Greek fishery development (references for historic data up to 1975 presented in Tab. 1). Sl. 1: Reference o opažanjih in primerih nasedlih delfinov, ki kažejo na njihovo prisotnost v zgodnjem obdobju razvoja grškega ribištva (reference za zgodovinske podatke do leta 1975 so predstavljene v Tabeli 1). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 447 Vasiliki K. SOKOU et al.: TRACING DOLPHIN-FISHERY INTERACTION IN EARLY GREEK FISHERIES, 443–450 At the time of ancient Greece, dolphins were con- sidered fishers’ friends, an incarnation of gods helping them herd fish schools towards their fishing gear, and indicators of fish abundance (Fragoudi, 2010). However, with the modernisation and spatiotemporal expansion of Greek fisheries, strong competition gradually developed, not only with dolphins but with marine mammals in general, (Vergitsi & Trova, 1997). In more recent times, unsustainable fishing and habitat degradation have contributed to dramatic ecological changes in the Mediterranean Sea (For- tibuoni et al. 2017b) and also in Greece (Tsikliras et al., 2021), exacerbating the perception that dolphins reduce fishery yields (Reeves et al., 2001), which was also present among Greek fishers during the 1950s and 1960s (Table 1). The protection of dolphins - which is supported by a variety of legal provisions, both national and European, such as for instance the Habitats Directive, which is related to the conservation of habitat types and of habitats of species (Council Directive 92/43/ EEC) - cannot solely rely on legislative measures, both because of the long time the relevant laws take to be enacted and/or ratified and because of the far too com- mon lack of law enforcement, which often translates as non-compliance on the part of the stakeholders (e.g., fishers). Formal commitments to protect the dolphin population conflict with geopolitical complexity and socio-economic benefits, and a generally weak political will results in inaction (Bearzi et al., 2016). Although nowadays the dolphin-human interaction is still a criti- cal topic, information on the presence, distribution and status of dolphin populations is spatially limited. The present study provides valuable data for implementing marine strategy policies, such as the Common Fisher- ies Policy of the European Union and the EU Marine Strategy Framework Directive (2008/56/EC). CONCLUSIONS Historical anecdotal data can improve our under- standing of past system dynamics and rising concerns about long-term human impact on the ecosystem (Brito & Vieira, 2016; Thurstan, 2022). These sources of histori- cal information can also help us curb the phenomenon of shifting environmental baselines described by Pauly (1995), who noted that each generation subconsciously views as “natural” the way the environment appeared in their youth. The present study showed that some attitudes and behaviours that were once acceptable and even presented by the media as commendable, are nowadays illegal and socially unacceptable. Historical science may play an important role in comprehend- ing present-day effects and conditions (Brito & Vieira, 2010). Historical accounts of cetaceans may also be extremely useful in adding new data to the occurrence and distribution of marine mammals in poorly studied areas, many of which are distributed along the coasts of eastern and southern Mediterranean (Brito & Vieira, 2010). ACKNOWLEDGMENTS The authors wish to thank the editor and the two anonymous referees for their valuable comments, which improved the content and quality of the article. Fig. 2: Articles published in the fisheries magazines during the 1950s and 1960s on the topic of dolphin-fishery interaction: Main article title “Dolphins, plague of the Greek seas” (top), images of killed dolphins (bottom). Sl. 2: Članki, objavljeni v ribiških revijah v petdesetih in šestdesetih letih prejšnjega stoletja na temo interakcije med delfini in ribištvom: Naslov glavnega članka »Delfini, kuga grških morij« (zgoraj), slike ubitih delfinov (spodaj). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 448 Vasiliki K. SOKOU et al.: TRACING DOLPHIN-FISHERY INTERACTION IN EARLY GREEK FISHERIES, 443–450 SLEDENJE INTERAKCIJ MED DELFINI IN RIBIČI V ZGODNJIH GRŠKIH RIBIŠKIH DEJAVNOSTIH Vasiliki K. SOKOU Department of Animal Production, Fisheries & Aquaculture, University of Patras, Mesolongi, Greece Joan GONZALVO Tethys Research Institute, Milan, Italy Ioannis GIOVOS Department of Animal Production, Fisheries & Aquaculture, University of Patras, Mesolongi, Greece iSea, Environmental Organization for the Preservation of the Aquatic Ecosystems, Thessaloniki, Greece Cristina BRITO CHAM - Centre for the Humanities FCSH, Universidade NOVA de Lisboa, Campus de Campolide, Lisboa, Portugal Dimitrios K. MOUTOPOULOS Department of Animal Production, Fisheries & Aquaculture, University of Patras, Mesolongi, Greece e-mail: dmoutopo@upatras.gr POVZETEK Avtorji so izvedli izčrpen pregled anekdotičnih sklicevanj v zvezi z informacijami o ribolovu na delfine v grških morjih v prvi fazi razvoja ribištva (1900-1975). Takrat so ribiči delfine dojemali kot tekmece in jih namenoma ubijali zaradi izgub, ki so jih delfini povzročili z oviranjem ribolova in poškodovanjem ribiškega orodja. Ta pregled poudarja, kako je bila interakcija med delfini in ribištvom glavni vzrok za zaskrbljenost grških ribičev od začetka 20. stoletja, ki se je stopnjevala z življenjskim slogom sodobne družbe. Ključne besede: zgodovinski pregled, kiti, pojavljanje, historična ekologija, zgodovina morskega okolja ANNALES · Ser. hist. nat. · 32 · 2022 · 2 449 Vasiliki K. SOKOU et al.: TRACING DOLPHIN-FISHERY INTERACTION IN EARLY GREEK FISHERIES, 443–450 REFERENCES Anonymous (1906): The dolphins (Mesinia). Nou- mas Magazine, 26/2/1906, 25. Anonymous (1948): Dolphins. Monthly Review of Greek Sea Wealth, December 1948, 18, 135. Anonymous (1951): Dolphins. Monthly Review of Greek Sea Wealth, July 1952, 49, 225. Anonymous (1952): Fisheries, The dolphins, a wound of the Greek seas. Monthly Review of Greek Sea Wealth, July 1952, 61, 90. Anonymous (1953a): Dolphins. Monthly Review of Greek Sea Wealth, July 1953, 74, 29. Anonymous (1953b): How to be safe from dolphins. Monthly Review of Greek Sea Wealth, July 1953, 76, 87. Anonymous (1954a): Funding from dolphin caugh. Neologos Patron, 23463, 1. Anonymous (1954b): Dolphins. Fisheries, Monthly Review of Greek Sea Wealth, March 1954, 81, 207. Anonymous (1954c): Ichthyology. Fisheries, Monthly Review of Greek Sea Wealth, March 1954, 81, 230. Anonymous (1954d): Memorandum from fishers: Dangers from the dolphins. Fisheries, Monthly Review of Greek Sea Wealth, March 1954, 81, 236-237. Anonymous (1958): Defeat of fishermen in the bat- tle against dolphins. Newspaper Eleftheria, 4377, 1. Anonymous (1959a): Dolphins. Fisheries, Monthly Financial Review of Greek Sea Wealth, July 1959, 169, 10. Anonymous (1959b): Nylon net fishes two dol- phins. Fisheries, Monthly Financial Review of Greek Sea Wealth, December 1959, 174, 143. Anonymous (1959c): The dolphins hunting. Fisher- ies, Monthly Financial Review of Greek Sea Wealth, October 1959, 172, 94. Anonymous (1959d): Dolphins reduce the purse seine catches. Tachydromos magazine, 14-8-1959, 6. Anonymous (1960): Fisheries, Monthly Financial Review of Greek Sea Wealth, September 1960, 159, 63. Anonymous (1962b): Dolphin hunting. Newspaper “Proini” of Kavalla, 20/3/1962: 1. Anonymous (1963): Dolphins. Fisheries, Monthly Financial Review of Greek Sea Wealth, April 1963, 190, 413. Anonymous (1965): Dolphins and sharks in the Saronikos Gulf. Newspaper Empros. Anonymous (1970): The findings of the 8th Pan- Hellenic Conference of Fish Workers. Fisheries, Monthly Financial Review of Greek Sea Wealth, May 1970, 275, 373. Anonymous (1975a): Request for hunting dolphins. Fisheries, Monthly Financial Review of Greek Sea Wealth, January 1975, 331, 123. Anonymous (1975b): Suggestions to combat dol- phins. Fisheries, Monthly Financial Review of Greek Sea Wealth, January 1975, 331, 156. Bearzi, G., T. Genov, A. Natoli, J. Gonzalvo & G.J. Pierce (2021): Delphinus delphis (Inner Mediterra- nean subpopulation). The IUCN Red List of Threat- ened Species 2021: e.T189865869A189865884. https://dx.doi.org/10.2305/IUCN.UK.2021-3.RLTS. T189865869A189865884.en Bearzi, G., S. Bonizzoni, N.L. Santostasi, N.B. Furey, L. Edd, V.D. Valavanis & O. Gimenez (2016): Dolphins in a scaled-down Mediterranean: The Gulf of Corinth’s odontocetes. In di Sciara GN, Podestà M, Curry BE (eds). Mediterranean marine mammal ecology and conservation. Adv. Mar. Biol., 75, 297-331. Bearzi, G., C.M. Fortuna & R.R. Reeves (2009): Ecology and conservation of common bottlenose dolphins Tursiops truncates in the Mediterranean Sea. Mam. Rev., 39(2), 92-123. Bearzi, G., D. Holcer & G. Notarbartolo Di Sci- ara (2004): The role of historical dolphin takes and habitat degradation in shaping the present status of northern Adriatic cetaceans. Aquatic Conserv: Mar. Freshw. Ecosyst., 14, 363-379. Bearzi, G., R.R Reeves, G. Notarbartolo Di Sciara, E. Politi, A. Cañadas, A. Frantzis & B. Mussi (2003): Ecology, status and conservation of short- beaked common dolphins Delphinus delphis in the Mediterranean Sea. Mam. Rev., 33(3), 224-252. Brito, C. & N. Vieira (2016): A sea-change in the sea? Perceptions and practices towards sea turtles and manatees in Portugal’s Atlantic Ocean legacy. In: K. Schwerdtner Máñez & B. Poulsen (eds) Perspectives on Oceans Past. A Handbook of Marine Environmental History. Springer, Dordrecht, 175-191. Brito, C. & N. Vieira (2010): Using historical accounts to assess the occurrence and distribution of small cetaceans in a poorly known area. J Mar. Biol. Assoc. UK, 90(8), 1583-1588. Brito, C. & A. Sousa (2011): The Environmental History of Cetaceans in Portugal: Ten Centuries of Whale and Dolphin Records. PLoS ONE, 6(9), e23951. Coll , M., C. Piroddi, J. Steenbeek, K. Kaschner, F. Ben Rais Lasram, J. Aguzzi, E. Ballesteros, C.N. Bian- chi, J. Corbera, T. Dailianis, R. Danovaro, M. Estrada, C. Froglia, B. S. Galil, J.M. Gasol, R. Gertwagen, J. Gil, F. Guilhaumon, K. Kesner-Reyes, M.-S. Kitsos, A. Kou- kouras, N. Lampadariou, E. Laxamana, C.M. López-Fé de la Cuadra, H.K. Lotze, D. Martin, D. Mouillot, D. Oro, S. Raicevich, J. Rius-Barile, J.I. Saiz-Salinas, C. San Vicente, S. Somot, J. Templado, X. Turon, D. Vafidis, R. Villanueva & E. Voultsiadou (2010): The Biodiversity of the Mediterranean Sea: Estimates, Pat- terns, and Threats. PLoS ONE, 5(8), e11842. https://doi. org/10.1371/journal.pone.0011842. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 450 Vasiliki K. SOKOU et al.: TRACING DOLPHIN-FISHERY INTERACTION IN EARLY GREEK FISHERIES, 443–450 Crowley, J. (2010): The Aegean Masters of Ani- mals: The Evidence of the Seals, Signets and Sealings. In: Counts, D.B. & B. Arnold (eds), The Master of Animals in Old World Iconography. Archaeolingua Alapítvány, 79-87. ISBN 978-963-9911-14-7. Directive 2008/56/EC of the European parlia- ment and of the council of 17 June 2008 establish- ing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora, OJ L 206, 22.7.1992, p. 7. Engelhard, G.H., R.H. Thurstan, B.R. MacKenzie, H.K. Alleway, R.C.A. Bannister, M. Cardinale, M.W. Clarke, J.C. Currie, T. Fortibuoni, P. Holm, S.J. Holt, C. Mazzoldi, J.K. Pinnegar, S. Raicevich, F.A.M. Volckaert, E.S. Klein & A.-K. Lescrauwaet (2016): ICES meets marine historical ecology: Placing the history of fish and fisheries in current policy context. ICES J Mar. Sci., 73, 1386-1403. Fortibuoni, T., O. Giovarnani, F. Pranovi, S. Raice- vich, C. Solidoro & S. Libralato (2017b): Analysis of Long-Term Changes in a Mediterranean Marine Ecosys- tem Based on Fishery Landings. Front. Mar. Sci., 4, 33. Fortibuoni, T., S. Libralato & E. Arneri (2017a): Fish and fishery historical data since the 19th century in the Adriatic Sea, Mediterranean. Scientific Data, 4, 170104. Fragoudi, K. (2010): Fishing in Nea Michaniona. J Mod. Greek. Stud., 223-233. Frantzis, A. (2007): Fisheries interactions with cetacean species in Hellas. In: Papaconstantinou C., Zenetos A., Vassilopoulou V. & Tserpes G. (eds) State of Hellenic fisheries. Hellenic Centre for Marine Re- search, Athens, p. 274−278. Gonzalvo, J., I. Giovos & D.K. Moutopoulos (2015): Fishermen’s perception on the sustainability of small- scale fisheries and dolphin–fisheries interactions in two increasingly fragile coastal ecosystems in western Greece. Aquat. Conserv., 25, 91-106. Holm, P. (2022): Exploiting and Managing the Alien and Unseen World below Water. In: Gutmann, M. & D. Gorman (eds): Before the UN Sustainable Development Goals: A Historical Companion, Vol. 14. Oxford University Press, Oxford, pp. 425-447. ht tps : / /oxford.univers i typressscholarship.com/ view/10.1093/oso/9780192848758.001.0001/oso- 9780192848758-chapter-15. Katiforis, P. (1970): Dolphins, the intellectuals of the marine seabed. Monthly Review of Greek Sea Wealth, January 1970, 271, 213-214. Mazzoldi, C., G. Bearzi, C. Brito, I. Carvalho, E. Desiderà, L. Endrizzi, L. Freitas, E. Giacomello, I. Giovos, P. Guidetti, A. Ressurreição, M. Tull & A. MacDiarmid (2019): From sea monsters to charismatic megafauna: Changes in perception and use of large marine animals. PLoS ONE, 14(12), e0226810. Moutopoulos, D.K. & K.I. Stergiou (2011): The evolution of the Greek fisheries during the 1928-1939 period. Acta Adriat., 52(2), 183-200. Moutopoulos, D.K. & K.I. Stergiou (2012): Spatial disentangling of Greek commercial fisheries landings by gear between 1928-2007. J Biol Res-Thessaloniki, 18, 265-279. Olympitou, E. (2010): Fishing in the Aegean in the 19th century. J Mod. Greek Stud., 139-155. Pardalou, A. & A.C. Tsikliras (2018): Anecdotal information on dolphin−fisheries interactions based on empirical knowledge of fishers in the northeastern Mediterranean Sea. Ethics Sci. Environ. Polit, 18, 1-8. Pauly, D. (1995): Anecdotes and the shifting base- line syndrome of fisheries. TREE, 10, 430. Reeves, R.R., A.J. Read & G. Notarbartolo di Sci- ara (2001): Report of the Workshop on Interactions between Dolphins and Fisheries in the Mediterranean: Evaluation of Mitigation Alternatives. ICRAM: Rome. Papadopoulos, J.K. & D. Ruscillo (2002): A Ketos in Early Athens: An Archaeology of Whales and Sea Monsters in the Greek World. Am. J Archaeol., 106(2), 187-227. Sousa, A. & C. Brito (2011): Historical strandings of cetaceans on the Portuguese coast: anecdotes, people and naturalists. Mar. Biodiv. Rec., 4, 1-8. Scientific, Technical and Economic Committee for Fisheries (STECF) (2019): Review of the imple- mentation of the EU regulation on the incidental catches of cetaceans (STECF-19-07). Publications Office of the European Union, Luxembourg, 2019. https://stecf.jrc.ec.europa.eu/reports/env-impacts/-/ asset_publisher/5liR/document/id/2568179?inheritRed irect=false. Thurstan, R.H. (2022): The potential of historical ecology to aid understanding of human–ocean interac- tions throughout the Anthropocene. J Fish Biol., 101(2), 351-364. Tsakakis, Sp. (1950): Fisheries in Greece. In: newer encyclopeadic dictionnaire “Helios”. Athens vol. 7th, 1479-1484. Tsikliras, A.C., K. Touloumis, A. Pardalou, A. Ada- midou, I. Keramidas, G.A. Orfanidis, D. Dimarcho- poulou & M. Koutrakis (2021): Status and Exploitation of 74 Un-Assessed Demersal Fish and Invertebrate Stocks in the Aegean Sea (Greece) Using Abundance and Resilience. Front. Mar. Sci., 7, 578601. Vergitsi, M.A. & D. Trova (1997): Man and Dolphin an interaction relationship. Undergraduate thesis, Technological Educational Institute of Mesologi, De- partment of Fisheries –Aquaculture, 65 pp. Yakoumis, P. (1948): Dolphins. Fisheries Monthly Review of Greek Sea Wealth, July 1948, 13, 135. Zeller, D. & D. Pauly (2018): The ’presentist bias’ in time-series data: implications for fisheries science and policy. Mar. Pol., 90, 14. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 451 received: 2022-05-31 DOI 10.19233/ASHN.2022.45 NOVI NAJDIŠČI PLEISTOCENSKE FAVNE POD KRAŠKIM ROBOM. SMO KONČNO NAŠLI TUDI JAMO GROTTA DELLʼORSO? Pavel JAMNIK Kočna 5, 4273 Blejska Dobrava, Slovenija e-mail: pavel.jamnik@telemach.net Matija KRIŽNAR Prirodoslovni muzej Slovenije, Prešernova 20, 1000 Ljubljana, Slovenija e-mail: mkriznar@pms-lj.si Bruno BLAŽINA Jenkova 16, 6230 Postojna, Slovenija e-mail: bruno.blazina@gmail.com IZVLEČEK V prispevku predstavljamo dve novi najdišči pleistocenske favne na Kraškem robu. V Podrti jami pred Zazidom sta bili odkriti ena fosilizirana kost planinskega orla in ena fosilizirana kost taksonomsko ožje neopredeljivega medveda. V prekopanem sedimentu pod Previsom s spodmolom v Luskanici pri Podpeči, kjer so pred več kot sto leti uredili gredice za zeljne sadike, pa so bili najdeni fosilni ostanki jamskega medveda. Z analizo objav in podatkov, ki so bili na voljo, smo ugotovili, da bi bila lahko tako imenovana Grotta dellʼOrso, iz katere fosilne kosti jamskega medveda hrani Pokrajinski muzej v Kopru, prav Previs s spodmolom v Luskanici. Ključne besede: Podrta jama, Previs s spodmolom v Luskanici, Grotta dellʼOrso, Jama pri železniškem useku, Jama v Kovšci, pleistocenska favna NUOVI SITI DI FAUNA PLEISTOCENICA NELL'AREA DEL CIGLIONE CARSICO. ABBIAMO FINALMENTE INDIVIDUATO ANCHE LA GROTTA DELL'ORSO? SINTESI Nel seguente contributo vengono presentati due nuovi siti con resti di fauna pleistocenica nell’area del Ciglione carsico. Nella grotta Podrta jama, in prossimità di Zazid, sono state rinvenute due ossa fossili: la prima appartenente all’aquila reale e la seconda a un orso non identificabile dal punto di vista tassonomico. Dall’area antistante il riparo “Previs s spodmolom v Luskanici” presso Podpeč, utilizzato più di un secolo fa per la coltivazione delle piantine di cavolo, sono state trovate nel terreno rimaneggiato ossa fossili di orso delle caverne. Dall’analisi delle pubblicazioni esistenti e di altri dati disponibili, gli autori deducono che il “Previs s spodmolom v Luskanici” corrisponde alla Grotta dell’Orso, dalla quale provengono i resti fossili dell’orso delle caverne custoditi nel Museo provinciale di Capodistria. Parole chiave: grotta Podrta jama, Previs s spodmolom v Luskanici, Grotta dellʼOrso, Grotta presso il raccordo ferroviario, Grotta a Kovšca, fauna pleistocenica ANNALES · Ser. hist. nat. · 32 · 2022 · 2 452 Pavel JAMNIK et al.: NOVI NAJDIŠČI PLEISTOCENSKE FAVNE POD KRAŠKIM ROBOM. SMO KONČNO NAŠLI TUDI JAMO GROTTA DELLʼORSO?, 451–468 UVOD Kraški rob je geološka, geomorfološka in tudi klimatska meja med Krasom ter flišno pokrajino Istre, ki jo zaznamujejo značilne navpične apnenčaste stene. Te se raztezajo v obliki posameznih lusk iz italijanske strani preko doline Glinščice, vse do Učke nad Reko na Hrvaškem. Na ozemlju Slovenije je Kraški rob sestavljen iz 47 kamnitih sten oziroma lusk, ki skupno predstavljajo približno 51 km skalnih sten (Placer, 2007). Množica večinoma vodoravnih jam in spodmolov (previsov) ob vznožjih apnenčastih sten (pogosto na spodnjem stiku s flišem) je že dolgo poznana po arheološki in/ali paleontološki vsebini. Ostanke živalstva (večinoma ledenodobnega) za zdaj poznamo iz dvanajstih lokacij: Sveta jama pri Socerbu, kat. št. 1157 (Leben, 1978; Riedel, 2002), Kamnolom v Črnotičah (Bosak et al., 1999; Mihevc, 2001; Jamnik et al., 2013), zasuta brezna na zgornji in srednji terasi črnokalskega kamnoloma (Pohar & Pavlovec, 1997; Pohar & Kralj, 2002; Jamnik et al., 2013; Križnar & Preisinger, 2017; Križnar, 2019), s sedimenti zapol- njena Jama v kamnolomu nad Črnim Kalom, kat. št. 1578 (Brodar, 1958; Rakovec, 1958, 1973; Pohar & Pavlovec, 1997; Pohar & Kralj, 2002; Jamnik et al., 2013; Križnar, 2019; Toškan, 2019), jama Č2 – Jama pod Škorjašco, kat. št. 5404 (Turk, 1982), Ladrica, kat. št. 3754 (Dirjec et al., 1992; Bernardini et al., 2014), Globoka jama, kat. št. 3753 (Jamnik & Blažina, 2019), Jama velikih podkovnjakov ali Bobalova jama, kat. št. 3752 (Pavšič & Turk, 1989; Turk in Saksida, 1990; Dirjec et al., 1992; Toškan, 2019; Križnar et al., 2021; Križnar, 2021), Ločka jama (Müller, 1914; Lepori, 1937; Brodar, 1960–1961; Rakovec, 1973; Jamnik & Blažina, 2019), jama Brežec 3, kat. št. 5415 (Dirjec, 2001), Globoška peč (Toškan, 2019; Jamnik et al., 2020) in Partizanska jama, kat. št. 4771 (Jamnik et al., 2015; Toškan, 2019). Vznožja kamnitih sten oziroma lusk so le delno preiskana. Že več let, predvsem v zimskem in zgodn- jem pomladanskem času, ko je zaradi manj bujne veg- etacije dostop do skalnih sten nekoliko lažji, v okviru rednega evidentiranja najdišč fosilov in neformalnega projekta Dokumentiranje najdišč jamskega medveda v Sloveniji, ki ga v Prirodoslovnem muzeju Slovenije izvaja Kustodiat za geologijo, pregledujemo skalne sto- pnje. S sistematičnim pregledovanjem širšega območja Kraškega roba evidentiramo še neodkrite jame ali os- tanke nekdanjih jamskih sistemov in v njih morebitne ostanke pleistocenske favne in flore. REZULTATI IN DISKUSIJA Podrta jama nad izravnavo »Pred Senico« ob Zazidu V letu 2014 smo opravljali preglede skalnih lusk od vznožja Goliča nad zaselkom Rakitovec v smeri severozahodno proti zaselku Zazid in naprej proti Podpeči. Kraški rob na tem območju sestavlja več skalnih stopenj, najmanj pet daljših in nekaj vmesnih, krajših. Ena takih krajših skalnih stopenj, dolgih le približno 500 metrov, se dviguje nad ožjo izravnavo, poimenovano Pred Senico, po kateri je speljana cestna povezava med Zazidom in Podpečjo. V skalni stopnji je registrirana tudi Z3 – Jama pred Senico, kat. št. 7162, ki je poznana kot arheološko najdišče (Turk, 2004: 17–18). Le 95 metrov severneje od vhoda v jamo Z3 je ob vznožju skalne stene mogoče prepoznati ostanek nekdanje večje jame. Od nje je ostalo le nekaj metrov rova, ki danes tvori približno 10 metrov visok previs, ob katerem je vzporedno s skalno steno ohranjen še 8 metrov dolg ozek rov, ki se iz stene odpre v obliki do 2 metrov širokega okna. V previsu so lepo vidni ostanki kapniških tvorb, na stenah nekdanjega jamskega rova pa trije nivoji starih zapolnitev jame s sedimenti, ki so bili med speleogenezo denudirani (Sl. 1a, 1b). Menimo, da so sledi procesov zasipanja in odstranjevanja sedimentov starejši od podora jame, po katerem je od nekdanje večje jame do danes ostal previs. Med najvišjim in srednjim nivojem nekdanje zapolnitve je ob severni jamski steni del starega sedimenta ohran- jen v obliki breče. Danes so sedimenti pod previsom ohranjeni le še v dolžini približno 8 metrov, kolikor je od kapa previsa do zadnje stene. Pod previsom se takoj za kapom pobočje strmo prevesi navzdol, po strmem pobočju pa ležijo veliki skalni bloki, ki pričajo o zadnjem, najmlajšem po- doru jame. Skalni bloki so še razmeroma ostrorobi, zato domnevamo, da zadnji podor, ki se je zgodil, ne more biti zelo star. Morda se je zgodil že v holocenu. Na ne povsem preraslem strmem pobočju pod previsom, ki ga erodira tudi občasen pretok meteorne vode, je lepo videti, da se že manj kot en meter pod ohranjenim sedimentom v previsu pojavi fliš, ki ga lahko sledimo vse do naravne izravnave »Pred Senico«, po kateri je speljana lokalna cesta v Zazid. Prehod med tlemi previsa in pobočjem pred jamo z ostanki podora je oster. Da bi ugotovili, ali je sediment na današnjih tleh previsa ostanek nek- danjega jamskega sedimenta ali pa gre morda že za holocenske nanose, ki so se pod previsom odložili po podoru jame, smo oster prehod med sedimentom in pobočjem očistili v širini 0,60 m (Sl. 1b). V globini 0,50 m se je pojavil skalni blok, ki je preprečil glo- blje čiščenje profila. Večje globine avtohtonih jam- skih sedimentov niti ni mogoče pričakovati, saj se že pol metra nižje v pobočju pokaže flišni sediment. Globina ohranjenega gruščnato-ilovnato-meljastega sedimenta na današnjih tleh previsa ne presega globine 1 metra. V očiščenem profilu je mogoče pre- poznati dve različni plasti. V prvih 0,10 do 0,15 m je na današnjih tleh previsa sipka, popolnoma suha ilovnato humusna plast, v kateri so le redki manjši ANNALES · Ser. hist. nat. · 32 · 2022 · 2 453 Pavel JAMNIK et al.: NOVI NAJDIŠČI PLEISTOCENSKE FAVNE POD KRAŠKIM ROBOM. SMO KONČNO NAŠLI TUDI JAMO GROTTA DELLʼORSO?, 451–468 koščki grušča. Plast označujemo z oznako »A«. Na globini 0,10 do 0,15 m je med plastmi ostra meja. Navzdol do globine 0,50 m je odložen značilen av- tohtoni jamski, ilovnato gruščnat sediment z vključki kosov odpadle sige in manjših kosov od stropa od- padlih kosov kamenja. Sediment je zelo zbit in na nekaterih mestih že delno sprijet v brečo (Sl. 2). Plast označujemo kot plast »B«. V tej plasti sta bili na globini 0,30 m najdeni dve povsem fosilizirani kosti in štirje majhni nedoločljivi kostni fragmenti. Taksonomsko je bilo mogoče določiti le dve kosti. Najbolje ohranjena je prva prstnica (Sl. 3), ki jo pripisujemo planinskemu orlu (Aquila chrysaetos). Ohranjena fosilizirana kost dimenzijsko ustreza manjšim osebkom pla- ninskega orla. Ker gre za odrasel primerek, bi ga lahko pripisali samcu. Drugi fosilni kostni ostanek, ki je slabše ohranjen, je druga ali tretja dlančnica (Mc 2 ali Mc 3) neke zveri. Glede na dimenzijo in nekatere delno ohranjene sklepne površine bi lahko pripadal manjšemu jamskemu oziroma manjši vrsti jamskega medveda (Ursus spelaeus s. l.). Kateri vrsti medveda (Ursus spelaeus, U. ingresuss, U. ladinicus ali U. eremus) je pripadal, na podlagi najdene, slabo ohranjene dlančnice ne moremo natančno določiti. Mogoče pa je, da kost pripada celo rjavemu medvedu (Ursus arctos). Za štiri manjše, le nekaj milimetrov velike kostne fragmente ni mogoče določiti niti tega, ali pripadajo sesalcem ali pticam. Trenutno zbrana fosilna favna iz Podrte jame pred Zazidom ne omogoča natančne določitve starosti. Prav dosti si ne moremo pomagati niti s stratigrafijo odloženih sedimentov. Glede na sto- pnjo fosilnosti in strukturo plasti »B« lahko rečemo le, da kostni ostanki nedvomno spadajo v pleisto- cen. Planinski orel je bil v Sloveniji odkrit le še v pleistocenskih (poznoglacialnih) plasteh Lukenjske jame pri Novem mestu (Pohar, 1983). Vrsta pa se pojavlja tudi vzdolž vzhodne Jadranske obale na nekaterih pleistocenskih najdiščih (Šandalja I in II, Kopačina) (Mauch Lenardić et al., 2018). Previs s spodmolom v Luskanici Pred leti so na pobočju Luskanice, nekaj sto metrov vzhodno od Podpeči, tik nad makadamsko cesto, ki se vzpenja proti Brežcu, posekali večje borovce, ki so pred tem zastirali pogled na skalno stopnjo Kraškega roba. Med opazovanjem sten Kraškega roba iznad Smokvice pri Gračišču smo opazili pod skalno steno večji previs (Sl. 4), pred katerim so bile vidne suhozidne terase. Ker na tem območju ni registrirane nobene jame, smo marca 2022 opravili ogled previsa. Iz pobočja pod previsom do vznožja skalne stene je narejenih pet nivojev suhozidnih teras. Najvišja in tudi najširša terasa je narejena prav pod kapom previsa, ki se na dnu skalne stene Sl. 1: A, B: Pogled vzhodno in jugovzhodno proti previsu Podrte jame z označenimi nivoji starih sedimentnih zapolnitev, ohranjenim sedimentom in nivojem fliša pod previsom (foto: P. Jamnik). Fig. 1: A, B: A view of the overhang toward east and southeast. Podrta jama with marked levels of old sedimentary fillings, preserved sediment and flysch level below the overhang (photo: P. Jamnik). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 454 Pavel JAMNIK et al.: NOVI NAJDIŠČI PLEISTOCENSKE FAVNE POD KRAŠKIM ROBOM. SMO KONČNO NAŠLI TUDI JAMO GROTTA DELLʼORSO?, 451–468 uviha v manjši spodmol. Od kapa previsa do konca manjšega spodmola je 14 m. Previs pod steno je širok približno 17 m, spodmol pa 9 m. Vhod v spodmol je visok 1 m, vendar se takoj za vhodom jamski prostor dvigne do 2,5 m, in potem spet zniža ter združi z jamskimi tlemi spodmola. Spodmol je torej le manjša kamrica za večjim previsom (Sl. 5). Tla spodmola so pokrita z od stropa odpadlimi kosi kamnov, takoj pod njimi pa je videti jamski, gruščnato ilovnat sediment. Terase pred previsom so zaradi dobre osončenosti in zavetrne lege ljudem služile kot gredice za zeljne sadike, ki so jih pozneje presadili na njive nad skalno stopnjo, saj v okolici Podpeči zaradi strmine ni bilo možnosti za njive. Zeljne sadike so pod previsom vzgajali še nekaj let po drugi svetovni vojni, pozneje pa so bile terase opuščene. Domačin Lado Primožič se še spominja, kako je njegova mati morala vodo za zalivanje sadik pod previs nositi iz vasi Podpeč. Za previs oziroma spodmol domačini niso nikoli imeli posebnega imena. Primožič pravi, da so za poimenovanje teras z gredicami, ki so bile tudi levo in desno od previsa, vedno uporabljali le ime »Pod luskanʼco«. Ker imena za jamski objekt ni, smo ga mi poimenovali »Previs s spodmolom v Luskanici«. Tik pod kapom previsa je po celotni širini odložen material, ki je bil pred previsom odkopan ob izdelavi zadnje, najvišje terase dimenzij 10 m x 6 m (Sl. 6a in 6b). Ob tem je nastala približno meter visoka stopnja oziroma nasip (Sl. 6b in Sl. 7). Dež, ki je občasno zajel tudi nastali nasip, je nje- gov vrhnji del že precej izpral. Zato je na prvi pogled na nasipu videti le grušč, pri natančnem pregledu pa je jasno, da gre za tipičen groboklastičen jamski sediment. Ta se je odlagal pred previsom, še v času, ko je bilo pod skalno steno več jamskega prostora. Na robovih previsa, kjer je bil sediment pred odkopa- vanjem za izdelavo terase izpostavljen večji vlagi, se je ob skalni steni že sprijel v brečo. Zdaj so tam ostale le manjše zaplate breče, ki je ob izdelavi terase niso odkopali. V njej smo opazili sprijete fosilne kosti (Slika 8), kar nas je spodbudilo, da smo natančneje pregledali tudi gruščnato gradivo nasipa. Fosilne kosti smo našli tudi v nasipu. Vse pri- padajo jamskemu medvedu (Ursus ex gr. spelaeus). Cele so ohranjene le nekatere dlančnice in sto- palnice, vse drugo je fragmentirano. Na fragmentih kosti, ki smo jih našli, je videti, da je bila večina kosti verjetno poškodovana in razlomljena (frag- mentirana) že v sedimentu, preden so ga odkopali. Po odložitvi na nasip je na kosteh, zaradi dolgotrajne izpostavljenosti vremenskim pogojem, prišlo še do podolžnega pokanja kostnih fragmentov. Tudi pri Sl. 2: Profil ostanka sedimenta v Podrti jami. A – sipka ilovnato humusna plast, B – ilovnato gruščnat jamski sediment (foto: P. Jamnik). Fig. 2: A sediment residue profile in Podrta jama. A – loose loamy humus layer, B – clayey, gritty cave sediment (photo: P. Jamnik). Sl. 3: Fosilizirani ostanek drugega členka prvega prsta planinskega orla iz Podrte jame (Aquila chrysaetos) (foto: M. Križnar). Fig. 3: Fossilised remnant of the second joint of the first finger of a mountain eagle from Podrta jama (Aquila chrysaetos) (photo: M. Križnar). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 455 Pavel JAMNIK et al.: NOVI NAJDIŠČI PLEISTOCENSKE FAVNE POD KRAŠKIM ROBOM. SMO KONČNO NAŠLI TUDI JAMO GROTTA DELLʼORSO?, 451–468 Sl. 4: Pogled na stene Kraškega roba nad Podpečjo in na Previs s spodmolom v Luskanici ter suhozidne terase pod njim (foto: P. Jamnik). Fig. 4: View of the rock walls of the Karst Edge above Podpeč and Previs s spodmolom v Luskanici and the dry-stone wall terraces below it (photo: P. Jamnik). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 456 Pavel JAMNIK et al.: NOVI NAJDIŠČI PLEISTOCENSKE FAVNE POD KRAŠKIM ROBOM. SMO KONČNO NAŠLI TUDI JAMO GROTTA DELLʼORSO?, 451–468 treh najdenih podočnikih je ohranjena le korenina, pa še v teh primerih so podolžno prepokane. Na nasipu smo skupno pobrali 41 kosti in zob. Poleg omenjenih treh podočnikov smo pobrali še 12 celih ali fragmentiranih dlančnic in stopalnic, eno vretence, večji fragment dolge kosti ter 24 manjših fragmentov anatomsko nedoločenih kosti. Sediment pod previsom za umetno narejenim nasipom, ki se nadaljuje proti spodmolu, je še nedotaknjen. Prav tako ni videti, da bi bil kdaj pre- kopan sediment v spodmolu. Skoraj ni dvoma, da so fosilni ostanki tudi v tej še neprekopani plasti pred spodmolom in v njem. Menimo, da obstaja možnost, da se je na koncu spodmola z naravnim odlagan- jem sedimenta celo zaprlo nadaljevanje spodmola v jamo. Na to nas napeljuje predvsem razmeroma velika količina fosilnih kosti na mestu pred previ- som, saj to pomeni, da je bil spodmol mesto, kjer so jamski medvedi skozi tisočletja hibernirali. Današnji videz previsa in spodmola ne vzbuja občutka, da bi bil to najprimernejši prostor za hibernacijo (o izbiri mest za hibernacijo rjavega medveda in poskusu primerjave z načinom odzivanja na okolje glej Hu- ber & Gužvica, 2011). Ker so bile kosti v jamskem sedimentu, ki so ga izkopali za izravnavo terase, že zunaj podkapa previsa, to pomeni, da se je bil previs s podori že zmanjšal oziroma pomaknil nazaj. Na take podore nakazuje tudi nekaj velikih skalnih blokov pod previsom, okoli katerih so zdaj narejene stopnje terasastih izravnav. Dne 19. maja 2022 smo, arheologinji Maša Saccara in Špela Prunk iz Pokrajinskega muzeja v Kopru, arheolog Jaka Bizjak iz Zavoda za varstvo kulturne dediščine, območna enota Piran, speleolog France Malečkar in prvopodpisani avtor opravili skupni ogled Previsa s spodmolom v Luskanici. Tudi tokrat kljub natančnemu pregledu vkopa in nasipa nismo našli niti fragmenta lončenine ali ostanka, ki bi kazal, da je najdišče fosilnih kosti tudi arheološko najdišče. Kljub temu pa, glede na primernost previsa s spodmolom za zavetje, obstaja kar upoštevanja vredna možnost, da bi se morda na tem najdišču fos- ilnih kosti odkrili tudi ostanki človekove prisotnosti v času pleistocena. Žal te domneve brez vsaj manjšega testnega vkopa v še neprekopane sedimente ne bo mogoče preveriti. Sl. 5: Prerez Previsa s spodmolom v Luskanici (risba: P. Jamnik). Fig. 5: Cross section of the Previs s spodmolom v Luskanici (drawing: P. Jamnik). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 457 Pavel JAMNIK et al.: NOVI NAJDIŠČI PLEISTOCENSKE FAVNE POD KRAŠKIM ROBOM. SMO KONČNO NAŠLI TUDI JAMO GROTTA DELLʼORSO?, 451–468 Je previs s spodmolom v Luskanici v resnici predvojna »Grotta dellʼorso«? V Pokrajinskem muzeju Koper je v stalni arheološki zbirki na ogled nekaj fragmentov loban- jskih kosti in sestavljena leva šapa jamskega med- veda (Sl. 9). Kosti naj bi iz podatka v vitrini izvirale iz Grotte dellʼOrso oziroma Medvedove jame pri Črnem Kalu. Prvi, ki je to jamo omenil v literaturi, je bil leta 1977 italijanski avtor Benedetto Lonza. Že v tej prvi objavi pa se pojavijo nejasnosti glede imena in lokacije jame. Grotto dellʼOrso je omenil na straneh 28, 71, 73 in 88 kot jamo »di Popecchio«, torej pri Podpeči. O njej je na strani 28 zapisal, da je to primer istrskega najdišča zunaj ožjega območja gradišč. Na strani 71 je jamo navedel v seznamu najdišč, kjer so našli trinožne krožnike, na strani 73 je omenjena v Sl. 6: A) Pogled proti jugu na vhod v spodmol Previsa s spodmolom v Luskanici in umetno izravnano teraso pred kapom previsa. Pred vhodom v spodmol na prvoten sediment nametan na terasi odkopan material. B) Pogled na nastalo stopnjo pred vhodom v spodmol proti zahodu (foto: P. Jamnik). Fig. 6: A) A view to the south of the entrance to the rock shelter Previs s spodmolom v Luskanici and the artificially levelled terrace in front of the overhang dripstone. In front of the entrance to the rock shelter on the original sediment imposed on the terrace excavated material. B) View of the resulting stage in front of the entrance to the rock shelter to the west (photo: P. Jamnik). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 458 Pavel JAMNIK et al.: NOVI NAJDIŠČI PLEISTOCENSKE FAVNE POD KRAŠKIM ROBOM. SMO KONČNO NAŠLI TUDI JAMO GROTTA DELLʼORSO?, 451–468 seznamu najdišč, kjer so našli keramična rešeta za peči, na strani 88 pa je zapisal, da so v jami odkrili keramiko kaštelirskega tipa. Vse te najdbe naj bi bile shranjene v koprskem muzeju (Lonza, 1977). Vmes pa je na strani 80 uporabil drugo lokacijo jame, in sicer Grotta dellʼOrso di Cernikalle. Zapisal je, da je risbo in podatek o nogi keramične posode in njenem verjetnem najdišču v Grotta dellʼOrso di Cernikalle dobil iz koprskega muzeja. Lonza je takoj za navedbo lokacije v oklepaju zapisal: »... a vemo, da je v tej jami v predvojnem obdobju raziskoval F. Stradi«. V nadaljevanju pa je podvomil, da je posoda pripisana pravemu najdišču (Lonza, 1977). Iz zapisanega je mogoče razumeti, kot da je Lonza imel neko informacijo o raziskovanju Grotte dellʼOrso, ki naj bi ga v predvojnem času opravil F. Stradi. Na žalost pa ni navedel ničesar natančnejšega. Prav tako Lonza v omembah Grotte dellʼOrso ne omenja kakršnih koli fosilnih kostnih ostankov. Po izselitvi predvojnih upravljavcev koprskega muzeja v Italijo se podatki o lokacijah nekaterih arheoloških najdišč niso ohranili. Italijani so ob odhodu s seboj odnesli tudi dokumentacijo o arheoloških raziskavah in nekaj inventarnih knjig. Med najdišči, za katera točnejših podatkov v muzeju danes ni, je tudi jamsko najdišče Grotta dellʼOrso. Kljub temu pa je za ugotavljanje, za katero jamo gre, zelo pomembno vsaj to, kar piše na škatlah s pred- meti, ki so ohranjeni v Pokrajinskem muzeju Koper. Fosilne kosti jamskega medveda iz škatle številka 195 in zobje jamskega medveda iz škatle številka 197 naj bi bili iz Grotte dellʼOrso di Popecchio. V škatli številka 193 z oznako Orso pa je lončenina. V opombah je zabeleženo »Orso, Pečina pod Steno, Grotta dellʼGallerie, Botače pri Borštu«. Jasno je, da gre za dve različni jamski lokaciji. Kostne najdbe so iz »Grotte dellʼOrso di Popecchio«, lončenina pa iz »Orso, Pečina pod Steno, Grotta dellʼGallerie, Botače pri Borštu«. Zakaj je pri imenu jame Pečina pod Steno, Grotta dellʼGallerie kot prvo ime nave- deno »Orso« ni jasno. Pečina pod steno se v literaturi namreč ni omenjala kot jama Orso. Najbližja jama z Sl. 7: Višina stopnje med prvotnimi jamskimi tlemi pred Previsom s spodmolom v Luskanici in izravnavo za teraso pred previsom (foto: P. Jamnik). Fig. 7: The height of the level between the original cave floor before the Previs s spodmolom v Luskanici and the levelling for the terrace before the overhang (photo: P. Jamnik). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 459 Pavel JAMNIK et al.: NOVI NAJDIŠČI PLEISTOCENSKE FAVNE POD KRAŠKIM ROBOM. SMO KONČNO NAŠLI TUDI JAMO GROTTA DELLʼORSO?, 451–468 imenom »Grotta dellʼOrso« z italijansko katastrsko številko 7 VG je nad Gabrovico na italijanski strani in je dobro poznano paleontološko in arheološko najdišče. Domnevamo, da je prav pripis imena »Orso«, k imenu »Grotta dellʼGallerie, Botače pri Borštu« zavedel in povzročil razumevanje, kot da najdbe iz obeh škatel izvirajo iz ene jame. To je imelo verjetno tudi za posledico, da so bili Lonzu posredovani podatki o lončenini iz Grotta delle Gallerie / Pečina pod steno, z napačnim podatkom, da izvira iz jame Grotta dellʼOrso di Cernikalle. Grotta delle Gallerie / Pečina pod steno (VG 420, cat. reg. 290) je arheološko znana jama že vse od leta 1890. V skupno 104 metre dolgem jamskem sistemu je bilo od vseh jam na območju Glinščice opravljenih največ raziskav. Prva izkopavanja je izvedel že Marche- setti leta 1890, pozneje pa so v jami kopali še Battaglia, Cossiansich & Neumann v letih 1914 in 1923, Stradi v letu 1938/39, Cannarella & Valles v letu 1954/55, skupina Gruppo Speleologico San Giusto leta 1959 in raziskovalci iz institucije Centro Studi Carsici leta 1975 (Leben, 1967; Flego & Župančič, 1991). Gradivo je shranjeno v različnih muzejskih zbirkah. V plasteh so kot najstarejši elementi zastopane najdbe zgodnjega, mlajšega in poznega neolitika. Večina najdb pa pripada bronasti dobi, prisotne so tudi najdbe iz železne dobe. V vrhnjih plasteh je prisotna antična lončevina (Leben, 1967; Flego & Župančič, 1991; Gilli & Montagnari Kokelj, 1993; Jamnik et al., 2018 in tam navedena literatura). Tu je pomemben podatek, da je v jami kopal tudi Stradi, kar pomeni, da je verjetno takrat vsaj nekaj najdb prišlo v Koprski muzej. Podatki o različnem izvoru lončenih in kostnih na- jdb v koprskem muzeju so bili iz neznanega razloga spregledani. Kmalu po Lonzovi objavi je tudi arhe- olog Pokrajinskega muzeja v Kopru Matej Župančič začel na območju Kraškega roba iskati jamo, v kateri sta prisotna tako lončenina kot tudi kostni ostanki jamskega medveda. Leta 1980 je Župančič izvedel arheološko sondiranje v Jami pri železniškem useku, ki jo je v katastru Jamar- ske zveze Slovenije leta 1979 pod številko 3735 regis- Sl. 8: Fosilne kosti v ostanku breče ob stranski steni Previsa s spodmolom v Luskanici (foto: P. Jamnik). Fig. 8: Fossil bones in the remnant of the breccia along the sidewall of the Previs s spodmolom v Luskanici (photo: P. Jamnik). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 460 Pavel JAMNIK et al.: NOVI NAJDIŠČI PLEISTOCENSKE FAVNE POD KRAŠKIM ROBOM. SMO KONČNO NAŠLI TUDI JAMO GROTTA DELLʼORSO?, 451–468 triral speleolog F. Malečkar (Malečkar, 1979). V objavi rezultatov leta 1982 je za Jamo pri železniškem useku Župančič uporabil novo ime, in sicer Jernejeva jama. Kot se spominja F. Malečkar, je jamo na novo poimeno- val v času izkopavanja, po svojem takrat rojenem sinu. V objavi je navedel stratigrafske podatke o odkopanih plasteh (»1. zemlja, pomešana s kamenjem in amfornimi fragmenti antične in recentne keramike do 40 cm gl.; 2. do 40 cm db. sterilna plast rdeče oker ilovice in nato flišna rahla plast, prerita z rovi, napolnjenimi s črno rahlo zemljo.«). Prav tako je zapisal: »Med obema vojnama so v jami večkrat kopali; PM Koper hrani iz nje praz- godovinsko keramiko in bodalo. Po spominu arheologa amaterja Manila Peracce iz Milj je to tako imenovana 'Grotta d'Orso'« (Župančič, 1982: 214). Izgleda, da je Župančič verjel, da so arheološke in paleontološke na- jdbe v koprskem muzeju, na katerih so oznake najdišča Grotta dellʼOrso di Popecchio in Orso, iz iste jame, zato je ocenil, da je to pravzaprav Jama pri železniškem useku. Kot dodaten argument, da gre res za isto jamo, pa je navedel še mnenje amaterskega arheologa Peracce. Župančič je pri svojem delu sodeloval s speleologom Francetom Malečkarjem iz jamarskega društva Dim- nice. Leta 1982, torej že po Župančičevem izkopavanju v Jami pri železniškem useku, je Malečkar v kataster oddal dopolnilni zapisnik k Jegliški jami (kat. št. 2401), v katerem je zapisal, da »arheološka izkopavanja M. Župančiča iz Pokrajinskega muzeja v Kopru kažejo, da je Jama pri (nad) Loki ali Grotta dellʼOrso, arheološka jama, verjetno Jama pri Železniškem useku, kat. št. 3735 in bi kazalo njuni katastrski številki zamenjati« (Malečkar, 1982). Leta 1985 pa je Malečkar ob pregledovanju pred- vojnega italijanskega jamskega katastra ugotovil, da ta njegova domneva ne drži. Jama, ki jo Italijani v svojem katastru vodijo pod kat. št. 2218 VG kot Grotta di Loka / Jama Stajelska, jama, je v sloven- skem jamskem katastru vpisana pod imenom Jegliška jama (kat. št. 2401) in ne Jama pri železniškem useku (kat. št. 3735), kot je domneval tri leta prej. Pri Jegliški ali Grotta di Loka / Stajelski jami gre torej za jamo, ki ima v italijanskem katastru številko 2218, v slovenskem pa 2401. Prvotna Malečkarjeva navedba možnosti, da naj bi bila morda Jama pri železniškem useku italijanska Grotta di Loka / Stajelska jama, je torej odpadla. Ni pa v italijanskem katastru ob načrtu Grotte di Loka / Stajelska jama nikjer omembe imena Grotta dellʼOrso. Zakaj je Malečkar torej leta 1982, ob prvi domnevi o istovetnosti Jame pri železniškem useku z Grotto di Loka / Stajelsko jamo, k njima sploh dodajal še ime Grotta dellʼOrso? Župančič je Malečkarju ob začetku iskanje Grotte dellʼOrso zagotovo posredoval tudi podatek, da naj bi bila Sl. 9: V Pokrajinskem muzeju Koper razstavljene kosti šape jamskega medveda iz tako imenovane Grotte dellʼOrso (foto: P. Jamnik). Fig. 9: Exhibited bones of the cave bear paws in the Provincial Museum of Koper from the so-called Grotta dellʼOrso (photo: P. Jamnik). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 461 Pavel JAMNIK et al.: NOVI NAJDIŠČI PLEISTOCENSKE FAVNE POD KRAŠKIM ROBOM. SMO KONČNO NAŠLI TUDI JAMO GROTTA DELLʼORSO?, 451–468 Grotta dellʼOrso jama z arheološkimi ostanki. Ob Župančičevem odkritju arheoloških najdb v Jami pri železniškem useku in ker tudi Malečkar kot poz- navalec terena na tem območju ni vedel za nobeno drugo vodoravno jamo, se mu je zato verjetno zdela ta povezava povsem logična. Še zlasti, ker se je Župančič že v prvi objavi izkopavanja v Jami pri železniškem useku (Župančič, 1982) skliceval na spomin ljubiteljskega arheologa iz Milj, da je Jama pri železniškem useku v resnici Grotta dellʼOrso. Leta 1990 je v članku o arheološki podobi Brega s Kraškim robom Župančič vnovič omenil Grotto dellʼOrso. Tokrat je imenu Grotta dellʼOrso dodal še lokacijo, in sicer Popecchio (Podpeč). Še vedno pa jo je kljub oddaljenosti med Črnim Kalom in Podpečjo povezoval z Jamo pri železniškem useku. K vsem dosedanjim imenom te jame, ki jo je v objavi navajal z glavnim imenom Jernejeva jama, je dodal še eno novo ime: »[…] bronastodobne ostanke zasledimo v vrsti jam, morda so do sedaj najpomembnejše v Jernejevi jami ('Grotta delʼOrso di Popecchio', Jama pri železniškem useku, Jama v Kavšci). Tu so pred vojno izkopali bronastodobno bodalo in keramiko« (Župančič, 1990). Od kod se je za Jamo pri železniškem useku po- javilo še eno novo ime Jama v Kavšci, je Župančič pojasnil šele leta 2008, ko je v članku obravnaval obiske Ludwiga Karla Moserja na Kraškem robu. V njem je predstavil Moserjevo prisotnost v Pred- loki in bližnji Bržaniji na osnovi dopisov dunajski Osrednji spomeniški komisiji, ki se hranijo v Avs- trijskem državnem arhivu (ÖSA AVA) na Dunaju. Moserjevo delovanje je povzel iz rokopisnih pisem, ki jih je pošiljal na dunajsko Osrednjo komisijo. Pri tem je zapisal, da si je nekoliko pomagal tudi z Moserjevimi, v Trstu ohranjeni dnevniki, ki jih je lahko uporabil pri rekonstrukciji Moserjeve dejavnosti na obravnavanem območju. Osnovni poročili Spomeniški komisiji sta dopisa v Avstri- jskem državnem arhivu (ÖSA AVA, 2 za Osp) in (ÖSA AVA, 1 za Bezovico, Predloko in Črni Kal). Župančič je takole rekonstruiral Moserjevo pot: »Iz Predloke se je avtor 27. oktobra 1898 odpravil proti Črnemu Kalu. […] Nad vasjo stoji na skalnati luski pred kraško steno ruševina Grad. Moserja je prevzela slikovitost pogleda, in ga je tudi upodobil v svinčniku. Skica VI naj bi kazala ruševino s Steno od strani, viden je pri tem tudi del nižje ležečega jamskega gradu. […] Desno se v ozadju vidi jam- ska pečina, morda je skiciral tudi jamsko utrdbo. Ugotavljamo, da je desno od Gradu opazil vhod v jamo 'Felsenhöhle'), verjetno Jamo v Kovšci, ki jo je pozneje tudi želel obiskati« (Župančič, 1990). Župančič se je skliceval na Moserjevo skico, ki naj bi bila v njegovem članku predstavljena kot slika 5, vendar je očitno prišlo do napake, saj Župančič te slike v članek ni dodal. V opombi 22 ob omembi Jame v Kovšci pa je zapisal: »Jama v Kovšci: imeno- vana tudi Grotta dell'orso di Poppecchio, Jama v Kavšci, Jernejeva jama, Jama pri železniškem useku: kat. št. 3735. Omenja jo Lonza (1977, 200), izkopa- vanj B. Lonze se je spominjal tudi M. Peracca iz Milj (Župančič, 1982)« (Župančič, 1990). Žal je tudi tu očitno pri Župančiču prišlo do napake, saj Lonza na strani 200 Grotte dellʼOrso ne omenja. Prav tako Lonza nikjer ni navedel, da bi on izkopaval v tej jami, temveč je kot izkopavalca omenil F. Stradija. Iz Župančičevega članka ni povsem razvidno, kat- eri od podatkov, ki jih je navedel, izvira iz katerega vira. Leta 2008 sta v analizi Moserjevih dnevnikov in opisu obiskanih jam Stanko Flego in Matej Župančič naštela kot eno od jam, ki jih je Moser omenil v svojem dnevniku, nahajajo pa se na današnjem območju Slovenije, tudi Jamo v Kovšci (Flego & Župančič, 2008). V poznejši študiji Flego in Rupel zaradi nejasnih lokacijskih podatkov o Jami v Kovšci te nista vključila v pregled Moserjeve dejavnosti (Flego & Rupel, 2018). Na naše zaprosilo nam je kustosinja dr. Deborah Arbulla iz Museo Civico di Storia Naturale v Trstu prijazno posredovala fotografijo strani iz Moserje- vega dnevnika, kjer omenja to jamo (Sl. 10), za kar se ji najlepše zahvaljujemo. Iz precej slabo čitljivega zapisa v dnevniku je mogoče prebrati sledeče: »Jama na Kovšci pri Črnem Kalu. Najdena na nekem izletu proti Loki (Lonche) 28. 12. 1897. Pukalovič mi je povedal, da je jamo našel neki turist. 3. maja 1899 smo bili na izletu od Črnega Kala proti Podpeči [… nečitljivo…] in prišli do Cernotič [… nečitljivo…] P. nam je govoril o jamah v Ospu in v Podpeči [… nečitljivo…] obokani vhod, visok 3m s podpisi prejšnjih obiskovalcev (Mary Juvanova) […nečitljivo…] temperatura 13˚ C in 15˚ C […nečitljivo…] Podatki so spravljeni v klubskem arhivu Triester Touristen Club [… nečitljivo…] decembra 1899 še enkrat v Loki, tokrat na dopustu.«. Pomembno je upoštevati, da gre pri Moserju za dva časovno ločena podatka o skoraj zagotovo dveh različnih jamah. Na skici, ki jo v svojem članku omenja Župančič in naj bi bila priložena dopisu dunajski Osrednji komisiji (Župančič, 1990), je desno ob gradu nad Črnim Kalom jamo z oznako »Felsenhöhle« narisal 27. oktobra 1898, ko je opravil pot od Predloke proti Črnemu Kalu. Jama na Kovšci pa naj bi bila po v zapisu v njegovem dnevniku na- jdena eno leto prej, že 28. decembra 1897. Župančič je žal ti dve Moserjevi časovno različni omembi, skoraj zagotovo različnih jam nekritično poistovetil z Grotto dell'orso di Poppecchio. Ob tem je dodal še poimenovanje Jama v Kavšci in Jernejeva jama, vsa imena pa pripisal Jami pri železniškem useku (Župančič, 1990, 2008). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 462 Pavel JAMNIK et al.: NOVI NAJDIŠČI PLEISTOCENSKE FAVNE POD KRAŠKIM ROBOM. SMO KONČNO NAŠLI TUDI JAMO GROTTA DELLʼORSO?, 451–468 Sl. 10: Izvirni Moserjev dnevniški zapis o Jami na Kovšci pri Črnem Kalu (foto: D. Arbulla, vir: Ludwig Karl Moser, Diario 1, pp. 228/229, Fondo Ludwig Karl Moser, Museo Civico di Storia Naturale di Trieste). Fig. 10: The original Moser diary entry about the Cave at Kovšca near Črni Kal (photo: D. Arbulla, source: Ludwig Karl Moser, Diario 1, pp. 228/229, Fondo Ludwig Karl Moser, Museo Civico di Storia Naturale di Trieste). ANNALES · Ser. hist. nat. · 32 · 2022 · 2 463 Pavel JAMNIK et al.: NOVI NAJDIŠČI PLEISTOCENSKE FAVNE POD KRAŠKIM ROBOM. SMO KONČNO NAŠLI TUDI JAMO GROTTA DELLʼORSO?, 451–468 Trinajst let po Moserjevem obisku Črnega Kala – leta 1910 – je Ivan Andrej Perko objavil študijo o kraških jamah na Krasu. V pregledu je podal tudi karto z vrisanimi jamami na obravnavanem območju. Na območju od Črnega Kala do Podpeči so bile po njegovem vedenju do takrat poznane le tri jame, in sicer blizu Črnega Kala (natančnejša lokacija, kje okoli Črnega Kala, ni mogoča, ker je karta premalo natančna) jama Felshöhle, jama Felshöhle hrib in Wasserhöhle v. Podpecchio (Perco, 1910). Ali je morda katera od obeh Perko- vih Felshöhle, in Felshöhle hrib ista jama, kot jo je v svojo skico kot »Felsenhöhle« zarisal Moser, ni mogoče ugotoviti. Z Moserjevim zapisom v dnevniku si pri ugotavljanju lokacije Jame na Kovšci prav tako ni mogoče pomagati. Kljub temu pa je mogoče domnevati, da je opisoval neko jamo z obokanim vhodom med Črnim Kalom in Loko, ki je glede na stare podpise očitno bila obiskovana. Ker je Moser zapisal, da so podatki v klubskem arhivu, bi bilo morda mogoče sklepati, da je imel v mislih Jegliško jamo, kat. št. 2401, ki je v italijanskem arhivu poimenovana Grotta di Loka / Stajelska jama, kat. št. 2218. Ni pa mogoče tega trditi z go- tovostjo, saj je bila Grotta di Loka / Stajelska jama v italijanskem arhivu glede na katastrsko številko registrirana verjetno šele v začetku tridesetih let dvajsetega stoletja. Jama pod železniškim usekom ni evidentirana v italijanskem katastru. Glede na Moserjevo opravljeno pot proti Loki bi takrat lahko naletel tako na Jegliško kot tudi na Jamo pri železniškem useku. Kljub temu se zdi, da bi Moserjeva Jama na Kovšci le nekoliko bolj odgo- varjala Jami pri železniškem useku. Za razjasnitev zmešnjave, ki je nastala z neargumentiranimi združevanji imen jam, smo si poskušali pomagati tudi s pomenom imena V/ Na Kovšci oziroma V/Na Kavšci. Domačini na območju Črnega Kala in Podpeči v besedi kavšca prepoznajo le nekaj, kar nakazuje na bližino kala oziroma lokve, vendar pa tega imena za kakršno koli jamo v njihovi bližini ne poznajo. Jama z enakim imenom je tudi na italijanski strani meje v bližini Sesljana (Grotta Koušca, kat. št. VG 413). Odpira se pod skalno steno, vendar pod njo ni pobočja, temveč je jama v večji udor- nici »Dolini«. Jezikoslovec Pavle Merku je ime razložil z verjetnim pomenom »plitvejša kotanja s stoječo vodo, kjer se napaja živina« (Merku, 2006). Na katastrski mapi Franciscejskega katastra (1818–1828) je zapisan jugovzhodno od Črnega Kala, v smeri proti Loki, toponim »Pod Kouschze« (Pod Kovšce). Skoraj ne more biti dvoma, da je Moser ob svojem obisku opazil neko jamo prav na tem območju in za njeno poimenovanje v svojem dnevniku uporabil toponim za območje, na kat- erem se jama nahaja. Glede na lokacijo toponima Moserjevi Jami na Kovšci najbolj ustreza Jama pri železniškem useku. Kaj je iz vseh teh različnih poimenovanj in združevanj različnih jam sploh mogoče ugotoviti o pravi lokaciji Grotte dellʼOrso? Pokrajinski muzej v Kopru hrani arheološke predmete in fosilne kosti jamskega medveda iz dveh različnih najdišč. Keramiko iz jame, Orso, Pečina pod Steno / Grotta dellʼgallerie, Botače pri Borštu in kosti jamskega medveda iz Grotte dellʼOrso di Popecchio. Keramika in medvedove kosti torej niso iz istega najdišča. Arheolog koprskega muzeja Župančič je po arheološkem sondiranju v Jami pri železniškem useku, v kateri je odkril bronastodobne ostanke, izhajal iz domneve, da lončenina, shranjena v muzeju pod imenom Orso, izhaja iz te jame. Ker je spregledal, da kosti in keramika v muzeju nista iz istega najdišča, je začel za Jamo pri železniškem useku uporabljati tudi ime Grotta dellʼOrso di Po- pecchio. Čeprav je v koprskem muzeju na kosteh oznaka Grotta dellʼOrso di Popecchio, se v objavah lokacija te jame pripisuje enkrat bližini Črnega Kala, spet drugič Podpeči, ne da bi bilo pojasnjeno, zakaj je tako. Ob vseh poskusih ugotavljanja, kje je Grotta dellʼOrso, Grotta dellʼOrso presso Cernicale, Grotta dellʼOrso di Popecchio, se zdi za naš prispevek in iskanje jame s pleistocenskimi kostnimi ostanki pomembno še eno dejstvo. Grotta dellʼOrso di Popecchio nakazuje neko povezavo z medvedi, zato je jasno, da mora biti temeljno izhodišče pri iskanju prisotnost fosilnih medvedovih kosti. Poimenovanja jam po medvedih, če so bile v njih najdene fosilne kosti, je pač skoraj pravilo. Tako je na primer na območju Doline na Tržaškem pred nekaj desetletji ime Medvedja jama / Caverna degli Orsi dobila tudi jama, v kateri je bila odkrita večja količina fosilnih kosti jamskega medveda (glej Boschian & De Santis, 2011). Že prej pa smo omenili tudi jamo Grotta dellʼOrso nad Gabrovico na italijanski strani meje. V Jami pri železniškem useku Župančič fosilnih kosti ni našel. Iz opisa plasti (Župančič, 1982) je skoraj gotovo, da v tej jami kosti ni, saj jih pod flišno plastjo, ki jo je s sondiranjem dosegel, ni mogoče pričakovati. Če bi bile fosilne kosti prisotne že v prvi odkopani plasti, bi Župančič pri kopanju v dokaj veliki sondi naletel na vsaj nekaj fragmentov, zato smo prepričani, da Jama pri železniškem useku ne more biti Grotta dellʼOrso di Popecchio. Če kljub navedbi Podpeči na muzejski škatli pri iskanju primerne jame upoštevamo celotno območje med Črnim Kalom in Podpečjo, kjer bi lahko ali so ANNALES · Ser. hist. nat. · 32 · 2022 · 2 464 Pavel JAMNIK et al.: NOVI NAJDIŠČI PLEISTOCENSKE FAVNE POD KRAŠKIM ROBOM. SMO KONČNO NAŠLI TUDI JAMO GROTTA DELLʼORSO?, 451–468 bile v sedimentih katere od jam celo že potrjene ohranjene fosilne kosti, pridejo v poštev tri možnosti. Nad Črnim Kalom pod ostankom utrdbe na skali je danes vidna le še široka razpoka med skladi. Razpoka je v katastru Jamarske zveze Slovenije reg- istrirana kot Pečina nad Črnim Kalom (kat. št. 2713). V njenem danes vrhnjem delu je bil nekoč mogočen kamniti zid, ki je bil vhod v srednjeveški tabor. Ka- menje zidu so po vojni porabili v druge namene, vse od zidu navzdol pa odkopali konglomerat, ki so ga uporabili pri gradnji (Malečkar, 2015; Lajovic, 2020). Danes o taboru in sedimentih ni več sledu. Glede na predvojni načrt jame bi bilo v sedimentih povsem upravičeno pričakovati tako arheološke kot tudi paleontološke najdbe. Izkopavanje konglomerata naj bi se začelo že pred vojno in nadaljevalo vse do 50. let 20. stoletja. Ne vemo, kako je odkopavanje konglomeratnih plasti potekalo. Če pa so morda vrhnje plasti, torej te, ki so ležale takoj pod kam- nitim zidom, odkopali že pred vojno, bi obstajala možnost, da so naleteli v njih tako na arheološke kot tudi paleontološke najdbe. Dvomimo, pa da bi ob tem spreminjali ime jame, saj je bila jama kot jamski tabor v italijanskem katastru registrirana že precej pred drugo svetovno vojno pod imenom Grotta di S. Sergio (kat. št. VG 270), zato menimo, da se ne zdi verjetno, da bi bila to Grotta dellʼOrso. Druga možnost iz okolice Črnega Kala je območje današnjega kamnoloma. Te možnosti žal zaradi pretečenih let na terenu ni več mogoče preveriti. Ko se je leta 1955 pri miniranju v kam- nolomu pokazal s sedimenti zapolnjen rov (Jama v kamnolomu nad Črnim Kalom, kat. št. 1578), je bil kamnolom že dolgo v funkciji. Po podatkih domačinov so na tem območju odprli kamnolom že precej pred drugo svetovno vojno. Nič nenavadnega ne bi bilo, nasprotno – bilo bi celo pričakovano, da je bil zapolnjen rov, v katerem so bili najdeni paleontološki in arheološki ostanki (Brodar, 1958; Rakovec, 1958, 1973), le del večjega jamskega sistema. Morda je bil v manjšem delu v obliki spod- mola ali poševne jame vsaj delno še nezapolnjen s sedimenti in pred začetkom kamnoloma tudi dostopen. Na tako možnost nakazujejo tudi najdbe rovov blizu zapolnjenega rova, v katerih so bili ob odprtju z miniranjem še na jamski površini najdeni pleistocenski kostni ostanki (Gams, 1955). Tretja možnost je Jama v gradu, kat. št. 3773, nad Podpečjo. Jama je evidentirano arheološko najdišče, vendar ni znanih podatkov o morebitni najdbi fosilne pleistocenske favne, prav tako pa v jami ni sledi o posegih, s katerimi bi posegli globlje v jamske plasti, zato dvomimo, da bi medvedove kosti iz koprskega muzeja lahko izvirale iz te jame. Na koncu nam ostaja možnost, da kosti jamskega medveda, ki so v koprskem muzeju shranjene v škatlah s podatkom o izvoru iz Grotta dellʼOrso di Sl . 1 1: V se v b es ed ilu o br av na va ne ja m e: 1 . P eč in a na d Č rn im K al om , 2 . J am a v ka m no lo m u na d Č rn im K al om , 3 . J am a pr i ž el ez ni šk em u se ku , 4 . J eg liš ka ja m a, 5 . J am a v gr ad u na d Po dp eč jo , 6 . P re vi s s sp od m ol om v L us ka ni ci / G ro tt a de llʼ O rs o, 7 . P od rt a ja m a na d Z az id om ( fo to : P . J am ni k) . Fi g. 1 1: A ll th e ca ve s di sc us se d in th e te xt : 1 . P eč in a na d Č rn im k al om , 2 . J am a v ka m no lo m u na d Č rn im K al om , 3 . J am a pr i ž el ez ni šk em u se ku , 4 . J eg liš ka ja m a, 5 . J am a v gr ad u ab ov e Po dp eč , 6 . P re vi s s sp od m ol om v L us ka ni ci / G ro tt a de llʼ O rs o, 7 . P od rt a ja m a ab ov e Z az id ( ph ot o: P . J am ni k) . ANNALES · Ser. hist. nat. · 32 · 2022 · 2 465 Pavel JAMNIK et al.: NOVI NAJDIŠČI PLEISTOCENSKE FAVNE POD KRAŠKIM ROBOM. SMO KONČNO NAŠLI TUDI JAMO GROTTA DELLʼORSO?, 451–468 Popecchio, izvirajo izpod Previsa s spodmolom nad Luskanico, ki smo ga marca 2022 našli nad Podpečjo. V Previsu s spodmolom nad Luskanico se je med kopanjem moralo pokazati veliko fosilnih kosti in zob. Če bi ljudje kosti še nekako spregledali, pa so zobje nedvomno pritegnili njihovo pozornost. Le še vprašanje časa bi bilo, kdaj bi glas o najdbah prišel tudi do predvojnih uslužbencev koprskega muzeja, ki so morda odšli pogledat, kaj je bilo najdeno, ob tem pa shranili tam najdene medvedove kosti in jih glede na pripadnost jamskemu medvedu označili kot najdišče Grotta dell'Orso di Popecchio. Ob naših obiskih smo prekopan sediment, ki so ga zmetali pred vhod v spodmol, zelo natančno pregledali in v njem ni bilo niti najmanjšega fragmenta lončenine. Domnevamo, da tudi predvojni koprski arheologi ob ogledu razen kosti pod previsom ali v spodmolu niso našli arheoloških predmetov. So pa shranili medve- dove kosti, na škatlo zapisali ime Grotta dellʼOrso di Popecchio, najdišče pa je šlo v pozabo. Menimo, da je Previs s spodmolom nad Luskan- ico pravzaprav najdišče kosti jamskega medveda, ki so ga pred drugo svetovno vojno poimenovali Grotta dellʼOrso di Popecchio. Če bodo pod pre- visom in v spodmolu kdaj opravljene raziskave, je v plasteh mogoče pričakovati tudi sledi bivališča kamenodobnih ljudi. Do takrat pa Previs s spod- molom nad Luskanico oziroma Medvedova jama/ Grotta dellʼOrso di Popecchio ostaja najdišče kost- nih ostankov jamskega medveda. ZAKLUČEK Z odkritjem dveh novih, čeprav gre pravzaprav za odkritje enega novega in prepoznavo enega že pred približno sto leti odkritega najdišča pleisto- censke favne, smo na območju Kraškega robu dobili nove podatke o prisotnosti živalskih vrst, ki so to območje poseljevale v času pleistocena. Še zlasti v paleogeografskem pogledu je pomembna najdba ostanka planinskega orla, saj gre tudi za redko na- jdbo na ozemlju Slovenije. Z analizo zgodovinskih in terenskih podatkov o Grotti dellʼOrso di Popecchio smo poskušali pre- veriti, ali morda obstaja možnost, da fosilne kosti jamskega medveda, ki jih hrani Pokrajinski muzej v Kopru, izvirajo prav iz Previsa s spodmolom v Luskanici. Po izključitvi vseh drugih možnosti smo prepričani, da so med izdelavo terasastih izravnav pred Previsom s spodmolom v Luskanici za najdbo kosti jamskega medveda izvedeli takratni italijanski arheologi Koprskega muzeja in najdišče poimeno- vali Grotta dellʼOrso. Jama pod železniškim usekom, ki so jo avtorji enačili tudi z Grotto dellʼOrso, je verjetno Moser- jeva Jama na Kovšci, in z Grotto dellʼOrso nima nikakršne zveze. ZAHVALA Avtorji se najlepše zahvaljujemo arheologinji Pokrajinskega muzeja v Kopru dr. Maši Saccara za prijaznost in pripravljenost preveriti podatke, ki so se v muzeju ohranili o Grotti dellʼOrso, Stanku Flegu in Lidiji Rupel za informacije o Moserjevih dnevniških zapisih, kustosinji dr. Deborah Arbullo iz Museo Civico di Storia Naturale di Trieste za kopijo zapisa iz Moserjevega dnevnika in do- voljenje za objavo, arheologu dr. Tomažu Fabcu za prevode in pomoč pri iskanju starejše literature, speleologu Francu Malečkarju za informacije o predhodnem iskanju jame Grotta dellʼOrso, Janezu Bizjaku za prevod Moserjevega zapisa v dnevniku, dr. Metki Furlan z Inštituta za slovenski jezik Frana Ramovša SAZU za pomoč pri iskanju pomena be- sede »kovšca« ali »kavšca«, in domačinu iz Podpeči Ladu Primožiču za informacijo o času uporabe in namenu teras v Luskanici. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 466 Pavel JAMNIK et al.: NOVI NAJDIŠČI PLEISTOCENSKE FAVNE POD KRAŠKIM ROBOM. SMO KONČNO NAŠLI TUDI JAMO GROTTA DELLʼORSO?, 451–468 TWO NEW SITES OF PLEISTOCENE FAUNA UNDER KARST EDGE. HAS A GROTTA DELLʼORSO CAVE BEEN FINALLY FOUND? Pavel JAMNIK Kočna 5, 4273 Blejska Dobrava, Slovenija e-mail: pavel.jamnik@telemach.net Matija KRIŽNAR Slovenian Museum of Natural History, Prešernova 20, 1000 Ljubljana, Slovenia e-mail: mkriznar@pms-lj.si Bruno BLAŽINA Jenkova 16, 6230 Postojna, Slovenija e-mail: bruno.blazina@gmail.com SUMMARY The Karst Edge, as a geological and climatic boundary between the karst topography and the flysch landscape of Istria, is characterised by typical limestone walls stretching in the form of individual scales from the Italian side across the Glinščica valley to Učka above Rijeka in Croatia. The total length of the Karst Edge on the territory of Slovenia is about 20 kilometres, and it consists of 47 stone walls or scales with a total length of about 51 kilometres. Paleontological finds are currently known from twelve locations: Sveta Jama near Socerb, Črnotiče quarry, buried abyss on the upper and middle terrace of the Črni Kal quarry, Jama v kamnolomu above Črni Kal filled with sediments, Č2 cave under Škorjašca, Ladrica, Globoka jama, Jama velikih podkovnjakov or Bobalova jama, Ločka jama, Brežec 3, Globoška Peč and Partizanska jama. The article presents two new sites of Pleistocene fauna on the Karst Edge. Podrta jama before Zazid is the remains of a former larger cave, of which only a few meters of tunnel remain. The latter forms about 10 meters high overhang, along which parallel to the rock wall another 8 meters long narrow tunnel is preserved opening from the wall in the form of up to 2 meters wide window. On the walls of the overhang, three levels of old fillings of the cave with sediments, which were denuded during the speleogenesis, are clearly visible. Today, the sediment preserved under the overhang reaches only the overhang dripstone and does not exceed a depth of 1 meter. Two different layers can be identified in the cleaned profile. The sediment is already slightly glued to the breccia in some places. In the middle of the cleared layer, two completely fossilised mountain eagle bones were found at a depth of 0.30 m and an indeterminate bear and several indeterminate bone fragments. When about a hundred years ago, under the Previs s spodmolom v Luskanici near Podpeč, a layer of sediment almost 1-meter-thick was excavated before the overhang for the formation of terraced beds for cabbage seedlings, fossil remains of a cave bear were found. By analysing old publications and available data, we found out whether the so-called Grotta dellʼOrso is from which the fossil bones of the cave bear are kept by the Provincial Museum in Koper, but it was never known where this cave was, almost certainly Previs s spodmolom v Luskanici. If new research is ever carried out in it, possible traces of Stone Age people can also be expected in the strata. Key words: Podrta jama, Previs s spodmolom v Luskanici, Grotta dellʼ Orso, Jama pri železniškem useku, Jama v Kovšci, Pleistocene fauna ANNALES · Ser. hist. nat. · 32 · 2022 · 2 467 Pavel JAMNIK et al.: NOVI NAJDIŠČI PLEISTOCENSKE FAVNE POD KRAŠKIM ROBOM. SMO KONČNO NAŠLI TUDI JAMO GROTTA DELLʼORSO?, 451–468 VIRI IN LITERATURA Bernardini, F., C. Zanolli, F. Boschin, C. Tuniz, F. Terrasi, A. Velušček, D. Arbulla & E. Montegnari- Kokelj (2014): Protohistoric burial remains from Ladrica cave (south western Slovenia): predstavitev posterja v okviru 49. mednarodnega posvetovanja IPPI »Preistoria e Protoistoria del Caput Adriae«, te- matski sklop »Modalita insediative: palafitte«, Museo Archeologico del Friuli Occidentale, Pordenone, 11. 10. 2014. Bosak, P., A. Mihevc, P. Pruner, K. Melka, D. Ven- hodova & A. Langrov (1999): Cave fill in the Črnotiče Quarry, SW Slovenia: palaeomagnetic, mi neralogical and geochemical study. Acta carsologica, 28(2), 15- 39. Boschian, G. & A. De Santis (2011): Medved in sedimenti v Medvedji jami (Trst, Italija). V/in: Drobci ledenodobnega okolja: zbornik ob življenjskem jubileju Ivana Turka / Fragments of Ice Age environ- ments: proceedings in honour of Ivan Turk’s jubilee, Opera Instituti Archaeologici Sloveniae 21, Ur. Borut Toškan, Inštitut za arheologijo ZRC SAZU, 182-208. Brodar, S. (1958): Črni Kal, nova paleolitska postaja v Slovenskem primorju (Črni Kal, eine neue Paläolith station im Küstengebiet Sloweniens). Raz- prave 4. razreda SAZU, 4, 271-363. Brodar, S. (1960–1961): Najdbe kostnih ostankov ledenodobnega človeka na Slovenskih tleh. Arheološki vestnik, 11-12, 5-14. Dirjec J., I. Turk & A. Šercelj (1992): Praproče. Varstvo spomenikov, 34, 280-281. Dirjec J., (2001): Brežec 3. http://www.arzenal.si/ sarnas/najdisce/863. Flego, S. & M. Župančič (1991): Arheološka topografija občine Dolina: (Tržaska pokrajina, Italija) / Topografia archeologica del Comune di San Dorligo della Valle: (Provincia di Trieste, Italia) Narodna in študijska knjižnica Trst, Znanstvenoraziskovalni center SAZU, Inštitut za arheologijo, Trst-Ljubljana. Flego, S. & M. Župančič (2008): K arheološki de- javnosti L. K. Moserja v jamah Tržaškega krasa. 2008, v: Ludvig Karl Moset (1845–1918) med Dunajem in Trstom Zbornik Mednarodnega študijskega dne Trst, 21. november 2008, Ur. S. Flego in L. Rupel, Založba ZRC SAZU, 127-190. Flego, S. & L. Rupel (2018): Le grotte di interesse archeologico indagate da Ludwig Karl Moser in Slo- venia e Croazia. Studi di Preistoria e Protostoria, 5, 441-458, Udine. Gams, I. (1955): Jama v kamnolomu nad Črnim kalom (kat.št. 1578), Zapisnik Terenskih ogledov. Kataster JZS. Gilli, E. & E. Montegnari Kokelj (1993): La Grotta delle Gallerie del Carso triestino, Atti della Società per la Preistoria e Protostoria della Regione Friuli Venezia Giulia 1993 (VIII), 121-194, Trieste. Huber, Đ & G. Gužvica (2011): Biologija današnjega rjavega medveda kot pripomoček za preučevanje jamskega medveda. V/in: Drobci lede- nodobnega okolja: zbornik ob življenjskem jubileju Ivana Turka / Fragments of Ice Age environments: proceedings in honour of Ivan Turk’s jubilee, Opera Instituti Archaeologici Sloveniae 21, Ur. Borut Toškan, Inštitut za arheologijo ZRC SAZU, 139-155. Lajovic, A. (2020): Zidovja po Slovenskih jamah. Naše jame, 48, 69-86. Leben, F. (1967): Stratigrafija in časovna razvrstitev jamskih najdb na Tržaškem Krasu. Arheološki Vestnik (XVIII), 43-86, Ljubljana. Jamnik, P., M. Križnar & M. Turk (2013): Novi po- datki o paleolitskem in paleontološkem najdišču v kam- nolomu Črni Kal in fosilna kost z vrezi iz kamnoloma Črnotiče nad Koprom. Arheološki vestnik, 64, 57-73. Jamnik, P., A. Velušček, D. Josipovič, D., Toškan, B. & R. Čelesnik (2015): Partizanska jama in plano najdišče pod jamo – novi paleolitski lokaciji v slovenski Istri: ali smo v Sloveniji ob prvem fosilnem ostanku neander- talca odkrili tudi prvo sled paleolitske jamske slikarske umetnosti? Annales, Ser. hist. sociol., 25(4), 705-732. Jamnik, P., P. Leben-Seljak, B. Toškan, S. Flego & B. Blažina (2018): Prazgodovinsko jamsko grobišče ob sotočju Krvavega potoka in vodotoka Glinščice. An- nales, Ser. hist. sociol., 28(1), 273-292. Jamnik, P. & B. Blažina (2019): V kateri od jam pod gradiščem Marije snežne pri Črnotičah je bila najdena človeška spodnja čeljustnica z eno najstarejših zobnih zalivk na svetu? Annales, Ser. hist. sociol., 29(2), 273-292. Jamnik, P., B. Toškan, M. Križnar, T. Tolar & B. Blažina (2020): Jama Globoška peč, novo paleontološko in paleolitsko najdišče na Kraškem robu – rezultati poskusnega vkopa v plasti. Annales, Ser. hist. sociol., 30(2), 177-200. Križnar, M. (2019): Kamnolomi v Sloveniji kot paleontološka najdišča – problematika raziskovanja, dokumentiranja in varovanja njihove paleontološke dediščine. Varstvo narave, 31, 73-94. Križnar, M. (2021): Ledenodobni rosomah (Gulo gulo) v Sloveniji. Proteus, 84(2), 63-69. Križnar, M. & D. Preisinger (2017): Novo najdišče pleistocenske sesalske favne v kamnolomu pri Črnem Kalu (Primorska, Slovenija) ter problematika zaščite in ohranjanja najdišč v kamnolomih. Geologija, 60(1), 87-97. Križnar, M., P. Oštir, P. Jamnik, S. Polak & A. Mihevc (2021): Novi ostanek poznopleistocenskega rosomaha (Gulo gulo Linné) v Sloveniji: z zgodovinskim pregle- dom dosedanjih fosilnih najdb. Geološki zbornik (25. posvetovanje slovenskih geologov), 26, 54-57. Leben, F. (1978): Osteološke in kulturne najdbe prazgodovinskega človeka iz kraških jam Slovenije in mejnega ozemlja. Arheološki vestnik, 29, 13-31. ANNALES · Ser. hist. nat. · 32 · 2022 · 2 468 Pavel JAMNIK et al.: NOVI NAJDIŠČI PLEISTOCENSKE FAVNE POD KRAŠKIM ROBOM. SMO KONČNO NAŠLI TUDI JAMO GROTTA DELLʼORSO?, 451–468 Lepori R. (1937): Cenni preliminari su un ritro- vamento di mandibola umana fossile in una caverna dell'Istria settentrionale. Atti del museo civico di storia naturale Trieste, XIII/2. Udine. Lonza, B. (1977): Appunti sui castellieri dell'Istria e della provincia di Trieste. Società per la preistoria e pro- tostoria della Regione Friuli-Venezia Giulia, 2. Trieste, Italo Svevo. Malečkar, F. (1979): Jama pri železniškem useku, kat. št. 3735. Zapisnik terenskih ogledov, Kataster JZS. Malečkar, F. (1982): Jegliška jama, kat. št. 2401. Dopolnilni zapisnik, Kataster JZS. Malečkar, F. (2015): Pečina nad Črnim Kalom. Črnokalski tabor. Kat. št. 2713, Dopolnilni zapisnik, Kataster JZS. Mauch-Lenardić, J., A. Oros-Sršen & S. Radović (2018): Quaternary fauna of the Eastern Adriatic (Croatia) with the special review on the Late Pleistocene sites. Quaternary International, 494, 130-151. DOI: 10.1016/j.quaint.2017.11.028. Merku, P. (2006): Krajevno imenoslovje na sloven- skem zahodu, ur. M. Furlan in S. Torkar, Založba ZRC, Ljubljana, 215 str. Mihevc, A. (2001): Speleogeneza Divaškega krasa. ZRC, 27, 1-180. Müller J. (1914): Bericht der Höhlenforschun- gsabteilung »Hades« für das Jahr 1913. Jahresber. Sekt. Küstenland des D. u. Oe. A. V. 1913. Triest. P., 26-36. Pavšič J. & I. Turk (1989): Prva najdba Panthera pardus (Linne) in nove najdbe vrste Gulo gulo (Linne) v Sloveniji. Razprave SAZU, 4(30), 131-160. Perco, G. A. (1910): Zur Matterreichicchen Karsthölenforschong. Deutsche kondschau für geogra- phie und statistik, 3, 246-259, Wien–Lepzig. Placer, L. (2007): Kraški rob. Geološki prerez vzdolž AC Kozina–Koper. Geologija, 50(1), 29-44. Pohar, V. (1983): Poznoglacialna favna iz Lukenjske jame. Geologija, 26, 71-107. Pohar, V. & R. Pavlovec (1997): The Črni Kal Quarry – An example of destroying Geotopes. Geologica Cro- atica, 50(2), 181-184. Pohar, V. & P. Kralj (2002): Preservation of Pleistoce- ne natural and cultural heritage in Potočka Zijalka, Križna jama and Črni Kal, Slovenia / Die Erhaltung der Pleistozän Natur- und Kulturerbschaft in Potočka zijalka, Križna jama und Črni Kal, Slowenien. – V / In: 6th Internatiolnal Symposium on Cultural Heritage in Geosciences, Mining and Metallurgy (Idrija 2002), Book of abstracts, 239-242. Rakovec, I. (1958): Pleistocenski sesalci iz jame pri Črnem Kalu (The Pleistocene Mammalia from the cave Črni Kal in Northern Istria). Razprave 4. razreda SAZU, 4, 365-433. Rakovec, I. (1973): Razvoj kvartarne sesalske favne v Sloveniji, Arheološki vestnik, 24, 225-270. Riedel, A. (2002): I resti di ossa animali delle grotte e della necropoli di San Servolo. - V: M. Vidulli Torlo (ur.), La necropoli di San Servolo. Veneti, Istri, Celti e Romani nel territorio di Trieste, 131-133, Trieste. Toškan, B. (2019): Ledenodobni sesalci. V: Sloven- ska Istra I. Neživi svet, rastlinstvo, živalstvo in naravo- varstvo. Slovenska Matica, pp. 18-27. Turk, I. (1982): http://www.arzenal.si/sarnas/naj- disce/846 Turk, I. (2004): Kratka zgodovina raziskav me- zolitika v Sloveniji. V/in: Viktorjev spodmol in Mala Triglavca: prispevki k poznavanju mezolitskega obdobja v Sloveniji. Opera Instituti Archaeologici Sloveniae 9, Ur. I. Turk, Inštitut za arheologijo ZRC SAZU, 15-20. Turk I. & V. Saksida (1990): Praproče. Varstvo spomenikov, 32, 164. Župančič, M. (1982): Črni kal. Varstvo spomenikov, 24, 214. Župančič, M. (1990): Arheološka podoba Brega s kraškim robom. V: Kraški rob in Brženija, Skupščina občine. Koper, 19-26. Župančič, M. (2008): Arheološke najdbe in de- javnost L. K. Moserja v Ospu, Predloki in Črnem Kalu v Istrski Sloveniji. Annales, Ser. hist. sociol., 18(1), 15-30. ANNALES · Ser. hist. nat. · 30 · 2020 · 1 469 OCENE IN PRIPOROČILA, 129–129 OCENE IN POROČILA RECENSIONI E RELAZIONI REVIEWS AND REPORTS ANNALES · Ser. hist. nat. · 30 · 2020 · 1 470 OCENE IN PRIPOROČILA, 129–129 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 471 OCENE IN POROČILA, 471–472 Book review: PLASTIC POLLUTION AND MARINE CONSERVATION. APPROACHES TO PROTECT BIODIVERSITY AND MARINE LIFE Editors: Giuseppe Bonanno, Martina Orlando-Bonaca Authors: Alessandro Acquavita, Carlo Giacomo Avio, Oliver Bajt, Nicola Bettoso, Giuseppe Bonanno, Francesco Cumani, Mateja Grego, Ernesta Grigalionyte- -Bembič, Katja Klun, Manca Kovač Viršek, Lovrenc Lipej, Martina Orlando-Bonaca, Valentina Pitacco, Ana Rotter, Giuseppe Suaria, Rachel Tiller Publisher: Academic Press, 346 pp. In Europe and elsewhere the number of research- ers interested in marine plastic pollution is rising. Anyone who is interested in this field, especially from the Mediterranean Sea area, is warmly invited to read this book. Written and edited by seven Slovenian and five Italian plastic researchers and/or biologists, “Plastic Pollution and Marine Conservation: Approaches to Protect Biodiversity and Marine Life” is a com- prehensive review of publications on marine litter issued during the last decade or so, with a focus on local peculiarities. Published by the Academic Press in 2022, the volume offers us an interesting, comprehensive and the most recent overview of published data on plas- tic and microplastic litter in the Mediterranean Sea. The origin, sources, fate, and impacts of marine plastic and microplastic litter are presented and complemented by an investigation into how this topic has been treated by social media publications over the last decade. When the editors of the book asked me to do a review, I was intrigued with its volume (covering 346 pages), but at the same time a little concerned about whether I would be able to squeeze such a huge task in my already full schedule. As it turned out, I need not have worried at all. In fact, as soon as I started the book, I was com- pletely absorbed in it. It captivated me even though I am quite familiar with the field. And now I know more and understand even better how this field developed in the Mediterranean Sea and what must be done in the future. It is definitely a much-needed survey that scientists, researchers, publicists, activ- ists, policy- and decision-makers, and environmen- tal staff in the industry should read. Hopefully this book will not end up forgotten on library shelves as this topic is now more current than ever. Dr Giuseppe Suaria, a rising star of microplastic research, sets the tone of the book with his wonder- ful preface, pointing out the most critical spots in this field of scientific research. Through Chapter 1, the reader becomes familiar with information about what exactly plastics, or better, polymers are, how they are produced and where they are used. Through a brief historical overview, we are then shown why and who started bringing to attention that these might not only be fantastic materials, but actually a new “tragedy of the commons.” Mi- croplastics are now recognised as a major concern and Dr Giuseppe Bonanno introduces us to these materials. Chapter 2 provides an overview of microplastic pollution in the Mediterranean Sea and subtidal sediment. The authors, three Slovenian pioneers in microplastic research in the Adriatic Sea, give us a comprehensive view of concentrations data, distribution, types by size, shape and material, methodologies, assessments, sources and challeng- es of microplastic research throughout the Mediter- ranean Sea. Publications up to the end of June 2021 are analysed, compared and the most interesting facts coming from them are presented. The fate of microplastics is discussed and suggestions on further research are offered. This chapter makes us understand just how much pollution there is, while the following four ones allow us a very interesting ANNALES · Ser. hist. nat. · 32 · 2022 · 2 472 OCENE IN POROČILA, 471–472 insight into the impact and environmental harm of plastics and microplastics. The editors demonstrate their commitment to the protection of biodiversity, biomonitoring and their biological background and take us through the ef- fects of plastic pollution on planktonic and benthic organisms, food webs, sharks and rays and marine organisms as bioindicators of plastic pollution. These chapters cover entanglement and ingestion problems and the effect of microplastics on marine biota through retention and food web transfer. The authors of these chapters are Slovenian and Italian biologists, who know these organisms very well and are concerned with the negative effect of plastic pollution on the largest to the smallest organisms in the sea. The marine environment acts as the main reposi- tory for plastic litter worldwide. This pollution does not stop at the borders of any protected area. In fact, many of these areas have turned out to be the most polluted, with different kinds and sizes of plastic litter. Chapter 7 of this book is dedicated to showing just how severe plastic pollution is in marine protected areas worldwide. The prevention of input of plastic into the marine or any other en- vironment is of utmost importance if any progress is to be made in the effort to solve this problem. The authors of Chapter 8 present us with the so- called 8R Model (Recognize, Reduce, Replace, Re- use, Recycle, Recover/Restore, Remove and Regu- late), recently developed by the authors themselves. The key to achieving any changes is the awareness of key people in our society. This point was nicely demonstrated at the 5th International Marine Debris Conference in Hawaii, when an artist of local origin told us the story on how ancient Hawaiian people paid attention to the status of their environment. When tribes living on Hawaiian Islands were faced with the lack of certain species of the fish they relied on, they were immediately told by their tribe leader to cease all hunting activities until the stocks restored: a simple yet very effective way of ancient commingling with nature that we could learn from and replicate today. Ceasing to produce and use such quantities of polymer material would bring us closer to what we all aspire to ‒ a safe and healthy future. In Chapter 8, we are also shown the results of the research regarding how public media pushed this topic increasingly in the last decade and how a citizen science approach is turning into a useful tool for convincing people that there is something wrong. There is indeed something wrong. The Mediterranean Sea has been identified as one of the areas most affected by marine litter in the world. Marine plastic litter researchers and marine biologists are aware of this problem, maybe more than anybody else. Because we/they love the sea. And having such a comprehensive overview of all plastic pollution assessment done in our home, the Mediterranean Sea, is very inspiring and shows us how much has already been achieved. And how each and every one of us counts. We are putting together this enormous marine plastic puzzle where pieces are coming from you and me, through years of work that we have put into this crisis. In order to save this world, for marine biota and for our own sake, I invite you to read this book. It is a valu- able new asset that the Mediterranean marine litter community has acquired and will use in the future. Thank you! Andreja Palatinus independent aquatic plastic litter researcher and entrepreneur 473 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 KAZALO K SLIKAM NA OVITKU SLIKA NA NASLOVNICI: Avgusta 2022 se je na območju miramarskega podvodnega parka pojavil veveričjak (Holo- centrus adscensionis). Obiskujoči potapljači so ga opazili na nočnem potopu ter ga posneli in fotografirali. Izkazalo se je, da gre za prvo najdbo v Jadranskem morju in šele drugo v vsem Sredozemskem morju (Foto: S. Ciriaco). Sl. 1: Veveričjak (Holocentrus adscensionis) ima vse lastnosti dobrega kolonizatorja, saj lahko v ribiških mrežah preživi več dni, obenem pa se lahko pojavlja tudi v zelo onesnaženem okolju (Foto: S. Ciriaco). Sl. 2: Morski pes orjak (Cetorhinus maximus) je relativno redka vrsta v Jadranu, toda od začetka 21. stoletja se je šte- vilo opažanj te vrste v njem znatno povečalo. V dvesto letih od prvega zapisa o pojavu te vrste v Jadranskem morju leta 1822 jih je bilo objavljenih 75 (Foto: T. Rus). Sl. 3: Navadni morski pes (Mustelus mustelus) je ena od najbolj pogostih vrst morskih psov v Sredozemskem morju in je zato tudi nekoliko bolje raziskana od drugih. Podatki kažejo, da so v zadnjih desetletjih tudi njene populacije doživele občutno številčno izgubo (Foto: B. Mavrič). Sl. 4: Konec leta 2021 so mesečinko (Pelagia noctiluca) prvič opazili v Marmarskem morju. Ta majhna toploljubna klobučnjaška meduza se lahko pojavlja v ogromnem številu (Foto: T. Makovec). Sl. 5: Onesnaženje s plastiko postaja čedalje hujši problem v vseh morjih in oceanih. Še posebej pereča je mikro- plastika, ki jo najdemo tudi na planktonskih organizmih. Na fotografiji je harpaktikoidni rak ceponožec (Copepoda - Harpacticoida) s številnimi delci mikroplastike (modro) na hitinskem oklepu (Foto: M. Grego). Sl. 6: Številne vrste večjih morskih organizmov se zapletejo v zavržene ali izgubljene ribiške mreže. Takim mrežam in njihovim ostankom, ki svoje delo opravljajo še naprej, pravimo fantomske mreže (Foto: B. Mavrič). INDEX TO PICTURES ON THE COVER FRONT COVER: In August 2022, a long-jawed squirrelfish (Holocentrus adscensionis) appeared in the area of the Miramare Marine Reserve. It was spotted by visiting divers who sighted it during a night dive and filmed and pho- tographed it. It turned out to be the first record of this species in the Adriatic Sea and only the second in the entire Mediterranean (Photo: S. Ciriaco). Fig. 1: The long-jawed squirrelfish (Holocentrus adscensionis) has all the qualities of a good colonizer, as it can sur- vive in fishing nets for several days, and can do well even in very polluted environments (Photo: S. Ciriaco). Fig. 2: The basking shark (Cetorhinus maximus) is considered a relatively rare species in the Adriatic, but since the be- ginning of the 21st century, the number of sightings of this species has increased significantly. Over the two centuries since its first appearance in 1822, a total of 75 records of sightings of this species have been recorded (Photo: T. Rus). Fig. 3: The smoothhound (Mustelus mustelus) is one of the commonest sharks found in the Mediterranean Sea, whi- ch is why it is also somewhat better studied than other species. The data show, however, that in recent decades the populations of this species have been virtually decimated (Photo: B. Mavrič). Fig. 4: At the end of 2021, the mauve stinger (Pelagia noctiluca) was observed for the first time in the Sea of Marmara. This small thermophilous scyphozoan sometimes appears in huge numbers (Photo: T. Makovec). Fig. 5: Plastic pollution is an increasingly serious problem in all seas and oceans. Particularly worrisome are micro- plastics, which are also found on plankton organisms. The photo shows a harpacticoid copepod (Copepoda - Har- pacticoida) with many microplastic particles (blue) on its chitinous shell (Photo: M. Grego). Fig. 6: Many larger marine organisms become entangled in abandoned, discarded or lost fishing nets. Such fishing nets and their remains that continue to do their work are called ghost nets (Photo: B. Mavrič). 474 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 Anali za istrske in mediteranske študije - Annali di Studi istriani e mediterranei - Annals for Istrian and Mediterranean Studies UDK 5 Letnik 32, Koper 2022, številka 1 ISSN 1408-53 3X e-ISSN 2591-1783 VSEBINA / INDICE GENERALE / CONTENTS 2022(1) SREDOZEMSKI MORSKI PSI SQUALI MEDITERRANEI MEDITERRANEAN SHARKS Farid HEMIDA, Christian REYNAUD & Christian CAPAPÉ Observations on Thresher Shark, Alopias vulpinus (Chondrichthyes: Alopiidae) from the Coast of Algeria (Southwestern Mediterranean Sea) ................. Opazovanja morskih lisic, Alopias vulpinus (Chondrichthyes: Alopiidae) ob alžirski obali (jugozahodno Sredozemsko morje) Elif ÖZGÜR ÖZBEK & Hakan KABASAKAL Notes on Smoothback Angel Shark, Squatina oculata (Squatiniformes: Squatinidae) caught in the Gulf of Antalya ...... Zapis o pegastih sklatih, Squatina oculata (Squatiniformes: Squatinidae), ujetih v Antalijskem zalivu Alessandro PAGANO & Alessandro DE MADDALENA Underwater Observations of the Rare Angular Roughshark Oxynotus centrina (Chondrichthyes: Squalidae) in the Waters of Santa Tecla (Sicily, Italy) ............. Podvodna opazovanja redkega morskega prašiča, Oxynotus centrina (Chondrichthyes: Squalidae) v vodah Sante Tecle (Sicilija, Italija) Deniz ERGÜDEN, Deniz AYAS & Hakan KABASAKAL Morphometric Measurements of Three Young Carcharhinid Species from Northeastern Levant (Mediterranean Sea) ........ Morfometrične meritve mladičev treh vrst morskih psov iz družine Carcharhinidae iz severnovzhodnega Levanta (Sredozemsko morje) Hakan KABASAKAL Projections on the Future of Deep-Sea Sharks in the Sea of Marmara, Where Deep Zones Are Threatened by Deoxygenation: a Review ....................... Napovedi o prihodnosti globomorskih morskih psov v Marmarskem morju, ogroženem zaradi pomanjkanja kisika: pregled BIOINVAZIJA BIOINVASIONE BIOINVASION Alan DEIDUN, Bruno ZAVA & Maria CORSINI-FOKA Distribution Extension of Lutjanus argentimaculatus (Lutjanidae) and Psenes pellucidus (Nomeidae) to the Waters of Malta, Central Mediterranean Sea ..................................... Širjenje areala vrst Lutjanus argentimaculatus (Lutjanidae) in Psenes pellucidus (Nomeidae) v malteške vode (osrednje Sredozemsko morje) Sami M. IBRAHIM, Abdulrraziq A. ABDULRRAZIQ, Abdulghani ABDULGHANI, Sara A.A. AL MABRUK, David SALVATORI, Bruno ZAVA, Maria CORSINI-FOKA & Alan DEIDUN First Record of Enchelycore anatina (Muraenidae) from Libyan Waters and an Additional Record from Southern Italy (Western Ionian Sea) ........................... Prvi zapis o pojavljanju kavljezobe murene Enchelycore anatina (Muraenidae) iz libijskih voda in dodatni zapis za južno Italijo (zahodno Jonsko morje) 1 9 25 49 35 17 59 475 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 Rasha Ali HENEISH & Samir Ibrahim RIZKALLA Morphometric and Meristic Characteristics of a New Record of Bluespot Mullet Crenimugil seheli (Pisces: Mugilidae) in Egyptian Mediterranean waters ................................. Novi zapis o pojavljanju vrste Crenimugil seheli (Pisces: Mugilidae) v egiptovskih sredozemskih vodah in njene morfometrične in meristične značilnosti Yana SOLIMAN, Adib SAAD, Vienna HAMMOUD & Christian CAPAPÉ Heavy Metal Concentrations in Tissues of Siganus rivulatus (Siganidae) from the Syrian Coast (Eastern Mediterranean Sea) .................................... Vsebnost težkih kovin v tkivih marmoriranega morskega kunca Siganus rivulatus (Siganidae) iz sirske obale (vzhodno Sredozemsko morje) IHTIOLOGIJA ITTIOLOGIA ICHTHYOLOGY Jihade ALAHYENE, Brahim CHIAHOU, Hammou EL HABOUZ & Abdelbasset BEN-BANI Length Based Growth Estimation of the Blue Shark Prionace glauca from the Moroccan Central Atlantic Coast ................. Dolžinsko-masni odnos in ocena rasti pri sinjem morskem psu (Prionace glauca) iz osrednje atlantske obale Maroka Okan AKYOL, Altan LÖK & Funda ERDEM Occurrence of Cubiceps gracilis (Nomeidae) in the Eastern Mediterranean Sea ................. Pojavljanje klateža, Cubiceps gracilis (Nomeidae), v vzhodnem Sredozemskem morju Farid HEMIDA, Boualem BRAHMI, Christian REYNAUD & Christian CAPAPÉ Occurrence of the Rare Driftfish Cubiceps gracilis (Nomeidae) from the Algerian Coast (Southwestern Mediterranean Sea) ......... Pojavljanje redkega klazeža Cubiceps gracilis (Nomeidae) z alžirske obale (jugozahodno Sredozemsko morje) Deniz ERGÜDEN & Cemal TURAN A Rare Occurrence of Carapus acus (Carapidae) in the Eastern Mediterranean, Turkey ................ Redko pojavljanje strmorinca Carapus acus (Carapidae) v vzhodnem Sredozemskem morju (Turčija) Laith JAWAD, Murat ŞIRIN, Miloslav PETRTÝL, Ahmet ÖKTENER, Murat ÇELIK & Audai QASIM Skeletal Abnormalities in Four Fish Species Collected from the Sea of Marmara, Turkey ........................................ Skeletne anomalije pri štirih vrstah rib iz Marmarskega morja (Turčija) RAZMNOŽEVALNA EKOLOGIJA ECOLOGIA RIPRODUTTIVA REPRODUCTIVE ECOLOGY Amaria Latefa BOUZIANI, Khaled RAHMANI, Samira AIT DARNA, Alae Eddine BELMAHI, Sihem ABID KACHOUR & Mohamed BOUDERBALA Gonadal Histology in Diplodus vulgaris from the West Algerian Coast ...................... Histologija gonad pri navadnem šparu (Diplodus vulgaris) iz zahodne alžirske obale Cheikhna Yero GANDEGA, Nassima EL OMRANI, Rezan O. RASHEED, Mohammed RAMDANI & Roger FLOWER The Growth and Reproduction of Two Spari- dae, Pagrus caeruleostictus and Pagellus bellottii in Northern Mauritanian Waters (Eastern Tropical Atlantic) ................ Rast in razmnoževanje dveh vrst pagrov, Pagrus caeruleostictus in Pagellus bellottii v severnih mavretanskih vodah (vzhodni tropski Atlantik) Nassima EL OMRANI, Hammou EL HABO- UZ, Abdellah BOUHAIMI, Jaouad ABOU OUALID, Abdellatif MOUKRIM, Jamila GOUZOULI, Mohammed RAMDANI, Roger FLOWER & Abdelbasset BEN-BANI The Reproductive Biology of the Pouting Trisopterus luscus from the Atlantic Coast of Morocco .......................... Reproduktivna biologija francoskega moliča (Trisopterus luscus) iz atlantske obale Maroka 143 155 137 119 67 75 85 101 113 107 476 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 Mourad CHÉRIF, Rimel BENMESSAOUD & Christian CAPAPÉ Growth Patterns and Age Structure of Mullus surmuletus (Mullidae) from the Northern Coast of Tunisia (Central Mediterranean Sea) ..................................... Rastni parametri in starostna struktura progastih bradačev Mullus surmuletus (Mullidae) iz severne tunizijske obale (osrednje Sredozemsko morje) FLORA FLORA FLORA Martina ORLANDO-BONACA, Erik LIPEJ, Romina BONACA & Leon Lojze ZAMUDA Improvement of the Ecological Status of the Cymodocea nodosa Meadow near the Port of Koper ................................ Izboljšanje ekološkega stanja morskega travnika kolenčaste cimodoceje (Cymodocea nodosa) v bližini koprskega pristanišča FAVNA FAVNA FAVNA Manja ROGELJA, Martin VODOPIVEC & Alenka MALEJ Cestum veneris Lesueur, 1813 (Ctenophora) – a Rare Guest in the Northern Adriatic Sea ................................. Cestum veneris Lesueur, 1813 (Ctenophora) – redek gost v severnem Jadranu Adla KAHRİĆ, Dalila DELIĆ & Dejan KULIJER Notospermus annulatus (Nemertea: Lineidae), a New Record for Bosnia and Herzegovina ....................................... Notospermus annulatus (Nemertea: Lineidae), prvi zapis o pojavljanju za Bosno in Hercegovıno Andrea LOMBARDO & Giuliana MARLETTA Report of an Interesting Trapania (Gastropoda: Nudibranchia: Goniodorididae) Specimen from Central Eastern Sicily .................................. Zapis o zanimivem primerku iz rodu Trapania (Gastropoda: Nudibranchia: Goniodorididae) iz osrednje vzhodne Sicilije Abdelkarim DERBALI & Othman JARBOUI Stock Assessment, Cartography and Sexuality of the Wedge Clam Donax trunculus in the Gulf of Gabes (Tunisia) ....... Ocena staleža, kartografija in spolnost klinaste školjke Donax trunculus v gabeškem zalivu (Tunizija) Abdelkarim DERBALI, Aymen HADJ TAIEB & Othman JARBOUI Length-Weight Relationships and Density of Bivalve Species in the Shellfish Production Area of Zarzis (Tunisia, Central Mediterranean Sea) ......................... Dolžinsko-masni odnos in gostota školjk na gojišču školjk v predelu Zarsisa (Tunizija, osrednje Sredozemsko morje) Toni KOREN The Diversity of Moths (Lepidoptera: Heterocera) of Significant Landscape Donji Kamenjak and Medulin Archipelago, Istria, Croatia ......................... Raznolikost nočnih metuljev (Lepidoptera: Heterocera) Pomembne pokrajine Donji Kamenjak in Medulinski arhipelag, Istra, Hrvaška OCENE IN POROČILA RECENSIONI E RELAZIONI REVIEWS AND REPORTS Ines Mandić Mulec & Nives Ogrinc Recenzija knjige: Mikrobna biogeokemija vod ...... Kazalo k slikam na ovitku ........................... Index to images on the cover ....................... 173 185 197 237 217 211 229 205 263 265 265 477 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 478 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 UDK 5 Letnik 32, Koper 2022, številka 2 ISSN 1408-53 3X e-ISSN 2591-1783 VSEBINA / INDICE GENERALE / CONTENTS 2022(2) BIOTSKA GLOBALIZACIJA GLOBALIZZAZIONE BIOTICA BIOTIC GLOBALIZATION Murat BILECENOĞLU & M. Baki YOKEŞ New Data on the Occurrence of Two Lessepsian Marine Heterobranchs, Plocamopherus ocellatus (Nudibranchia: Polyceridae) and Lamprohaminoea ovalis (Cephalaspidea: Haminoeidae), from the Aegean Sea ................... Novi podatki o pojavljanju dveh lesepskih morskih polžev zaškrgarjev, Plocamopherus ocellatus (Nudibranchia: Polyceridae) in Lamprohaminoea ovalis (Cephalaspidea: Haminoeidae), iz Egejskega morja Gianni INSACCO, Aniello AMATO, Bruno ZAVA & Maria CORSINI-FOKA Additional Capture of Halosaurus ovenii (Actinopterygii: Notacanthiformes: Halosauridae) in Italian Waters ........................... Novi ulov vrste Halosaurus ovenii (Actinopterygii: Notacanthiformes: Halosauridae) v italijanskih vodah Christian CAPAPÉ, Christian REYNAUD & Farid HEMIDA First Record of Marbled Stingray, Dasyatis marmorata (Chondrichthyes: Dasyatidae) from the Algerian Coast (Southwestern Mediterranean Sea) ....................... Prvi zapis o pojavljanju marmoriranega morskega biča, Dasyatis marmorata (Chondrichthyes: Dasyatidae) iz alžirske obale (jugozahodno Sredozemsko morje) Maria CORSINI-FOKA & Bruno ZAVA Second Occurrence of Siganus javus (Siganidae) in the Mediterranean Waters ............................... Drugi zapis o pojavljanju progastega morskega kunca, Siganus javus (Siganidae), v sredozemskih vodah Daniel GOLANI, Haim SHOHAT & Brenda APPELBAUM-GOLANI Colonisation of Exotic Fish Species of the Genera Pseudotropheus and Aulonocara (Perciformes: Cichlidae) and the Decline of Native Ichthyofauna in Nahal Amal, Israel ........................................... Naseljevanje eksotičnih vrst rib iz rodov Pseudotropheus in Aulonocara (Perciformes: Cichlidae) in upad domorodne ribje favne v reki Nahal Amal, Izrael Panayotis OVALIS & Maria CORSINI-FOKA On the Occurrence of Velolambrus expansus (Brachyura, Parthenopidae) in Hellenic Waters ....... O pojavljanju rakovice vrste Velolambrus expansus (Brachyura, Parthenopidae) v grških vodah Saul CIRIACO, Marco SEGARICH, Vera CIRINÀ & Lovrenc LIPEJ First Record of the Long-Jawed Squirrelfish Holocentrus adscensionis (Osbeck, 1765) in the Adriatic Sea ....................... Prvi zapis o pojavljanju vrste veveričjaka Holocentrus adscensionis (Osbeck, 1765) v Jadranskem morju Christian CAPAPÉ, Vienna HAMMOUD, Aola FANDI & Malek ALI First Record of Moontail Bullseye Priacanthus hamrur (Osteichthyes, Priacanthidae) from the Syrian Coast (Eastern Mediterranean Sea) ............ Prvi zapis o pojavljanju lunastorepega velikookega ostriža Priacanthus hamrur (Osteichthyes, Priacanthidae) s sirske obale (vzhodno Sredozemsko morje) SREDOZEMSKI MORSKI PSI SQUALI MEDITERRANEI MEDITERRANEAN SHARKS Hakan KABASAKAL, Erdi BAYRI & Görkem ALKAN Distribution and Status of the Great White Shark, Carcharodon carcharias, in Turkish Waters: a Review and New Records ................................. Status in razširjenost belega morskega volka (Carcharodon carcharias) v turških vodah: pregled in novi zapisi o pojavljanju Alen SOLDO 200 Years of Records of the Basking Shark, Cetorhinus maximus, in the Eastern Adriatic ..... Dvesto let opazovanj morskega psa orjaka, Cetor- hinus maximus, v vzhodnem Jadranskem morju Hakan KABASAKAL, Ayşe ORUÇ, Cansu LKILINÇ, Efe SEVİM, Ebrucan KALECİK & Nilüfer ARAÇ Morphometrics of an Incidentally Captured Little Gulper Shark, Centrophorus uyato (Squaliformes: Centrophoridae), from the Gulf of Antalya, with Notes on Its Biology .................................................. Morfometrija naključno ujetega globinskega trneža, Centrophorus uyato (Squaliformes: Centrophoridae), iz Antalijskega zaliva z zapiski o njegovi biologiji 273 267 281 287 293 309 301 317 325 343 351 479 ANNALES · Ser. hist. nat. · 32 · 2022 · 2 Christian CAPAPÉ, Almamy DIABY, Youssouph DIATTA, Sihem RAFRAFI-NOUIRA & Christian REYNAUD Atypical Claspers in Smoothhound, Mustelus mustelus (Chondrichthyes: Triakidae) from the Coast of Senegal (Eastern Tropical Atlantic) .............................................................. Netipična klasperja navadnega morskega psa, Mustelus mustelus (Chondrichthyes: Triakidae) iz senegalske obale (vzhodni tropski Atlantik) Hakan KABASAKAL, AyŞe ORUÇ, Ebrucan KALE- CIK, Efe SEVIM, Nilüfer ARAÇ & Cansu ILKILINÇ Notes on a Newborn Kitefin Shark, Dalatias licha: New Evidence on the Nursery of a Rare Deep-Sea Shark in Northeastern Levant (Turkey) ............................... Zapis o najdbi skotenega klinoplavutega morskega psa, Dalatias licha: novi dokaz o jaslicah redkega globokomorskega morskega psa v severovzhodnem levantu (Turčija) IHTIOLOGIJA ITTIOLOGIA ICHTHYOLOGY Nadia BOUZZAMMIT, Hammou EL HABOUZ, El hassan AIT-TALBORJT, Zahra OKBA & Hassan EL OUIZGANI Diet Composition and Feeding Strategy of Atlantic Chub Mackerel Scomber colias in the Atlantic Coast of Morocco ................................... Prehrana in prehranjevalna strategija lokarde (Scomber colias) ob atlantski obali Maroka FLORA FLORA FLORA Amelio PEZZETTA Le Orchidaceae di Albona (Labin, Croazia) ......... Kukavičevke Labina (Hrvaška) FAVNA FAVNA FAVNA Murat BILECENOĞLU & Melih Ertan ÇINAR The Mauve Stinger, Pelagia noctiluca, Has Ex- panded Its Range to the Sea of Marmara .............. Mesečinka (Pelagia noctiluca) je razširila svoj areal do Marmarskega morja Marijana HURE, Davor LUČIĆ, Barbara GANGAI ZOVKO & Ivona ONOFRI Dynamics of Mesozooplankton Along the Eastern Coast of the South Adriatic Sea ................ Dinamika mezozooplanktona vzdolž vzhodne obale južnega Jadrana Abdelkarim DERBALI, Kandeel E. KANDEEL, Aymen HADJ TAIEB & Othman JARBOUI Population Dynamics of the Cockle Cerastoderma glaucum (Mollusca: Bivalvia) in the Gulf of Gabes (Tunisia) ............... Populacijska dinamika navadne srčanke Cerastoderma glaucum (Mollusca: Bivalvia) v Gabeškem zalivu (Tunizija) Vasiliki K. SOKOU, Joan GONZALVO, Ioannis GIOVOS, Cristina BRITO & Dimitrios K. MOUTOPOULOS Tracing Dolphin-Fishery Interaction in Early Greek Fisheries ........................................... Sledenje interakcij med delfini in ribiči v zgodnjih grških ribiških dejavnostih Pavel JAMNIK, Matija KRIŽNAR & Bruno BLAŽINA Novi najdišči pleistocenske favne pod Kraškim robom. Smo končno našli tudi jamo Grotta dellʼOrso? ................................. Two New Sites of Pleistocene Fauna under Karst Edge. Has a Grotta dellʼOrso Cave Been Finally Found? OCENE IN POROČILA RECENSIONI E RELAZIONI REVIEWS AND REPORTS Andreja PALATINUS Book Review: Plastic Pollution and Marine Conservation. Approaches to Protect Biodiversity and Marine Life ................................ Kazalo k slikam na ovitku ................................... Index to images on the cover .............................. 367 359 377 393 405 411 431 443 451 471 473 473