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Abstract

The automorphism group of a map acts naturally on its flags (triples of incident vertices,
edges, and faces). An Archimedean map on the torus is called almost regular if it has as few
flag orbits as possible for its type; for example, a map of type (4.82) is called almost regular
if it has exactly three flag orbits. Given a map of a certain type, we will consider other
more symmetric maps that cover it. In this paper, we prove that each Archimedean toroidal
map has a unique minimal almost regular cover. By using the Gaussian and Eisenstein
integers, along with previous results regarding equivelar maps on the torus, we construct
these minimal almost regular covers explicitly.
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1 Introduction
Throughout the last few decades there have been many results about polytopes and maps
that are highly symmetric, but that are not necessarily regular. In particular, there has been
recent interest in the study of discrete objects using combinatorial, geometric, and algebraic
approaches, with the topic of symmetries of maps receiving a lot of interest.

There is a great history of work surrounding maps on the Euclidean plane or on the 2-
dimensional torus. When working with discrete symmetric structures on a torus, many of
the ideas follow the concepts introduced by Coxeter and Moser in [5, 6], where they present
a classification of regular (reflexible and irreflexible) maps on the torus. Such “toroidal”
maps can be seen as quotients of regular tessellations of the Euclidean plane. More recently,
Brehm and Kühnel [1] classified the equivelar maps on the two dimensional torus. Several
more results have appeared about highly symmetric maps (see [4, 24] for example), and
about highly symmetric tessellations of tori in larger dimensions (see [15, 16]).

There is also much interest in finding minimal regular covers of different families of
maps and polytopes (see for example [10, 17, 22]). In a previous paper [7], two of the
authors constructed the minimal rotary cover of any equivelar toroidal map. Here we extend
this idea to toroidal maps that are no longer equivelar, and construct minimal toroidal covers
of the Archimedean toroidal maps with maximal symmetry. We call these covers almost
regular; they will no longer be regular (or chiral), but instead will have the same number
of flag orbits as their associated tessellation of the Euclidean plane (see the definition in
Section 2).

Our main results can be summarized by the following theorem.

Theorem 1.1. Each Archimedean map on the torus has a minimal almost regular cover on
the torus, this cover is unique and can be constructed explicitly.

The paper is organized as follows. Section 2 contains the necessary background on
maps and their symmetries, including the definition of an almost regular Archimedean map.
In Section 3, almost regular Archimedean toroidal maps are characterized in terms of their
lifts to the planar tessellations and the translation subgroups generating respective quo-
tients. Section 4 contains our main results (Theorems 4.2 – 4.4) regarding the relationship
between maps and their minimal almost regular covers; these theorems together constitute
the Main Theorem.

2 Preliminares
In this section we provide definitions and results necessary for our main theorems; many
of these ideas, as well as further details, can be found in [2, 16, 25].

A finite graph X embedded in a compact 2-dimensional manifold S such that every
connected component of S \X (which is called a face) is homeomorphic to an open disc
is called a map (on the surface S).

In this paper, we consider Archimedean maps on a flat 2-dimensional torus, which we
call Archimedean toroidal maps. A mapM on the torus is Archimedean if the faces ofM
are regular polygons (in the canonical flat metric on the torus) and every pair of vertices of
M can be mapped into each other by an isometry of the torus (here an isometry of the torus
is a distance preserving diffeomorphism of the torus, again with respect to the canonical flat
metric). A mapM is equivelar of (Schläfli) type {p, q} if all of its vertices are q-valent, and
all of its faces are regular p-gons. If the map is Archimedean, it can be described, as in [9],
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by the arrangement of polygons around a vertex, where a map of type (p1.p2 . . . pk) has k
polygons (a p1-gon, p2-gon, . . . , and a pk-gon) in the given order incident to each vertex. A
particular vertex structure of a map is called a type. We note here that there is some debate
over how the word Archimedean should be used. In some settings it means just that all of
the faces are regular polygons and all of the vertex figures are the same. When you add
the requirement that, for any pair of vertices, there exists a symmetry mapping one to the
other, these maps are sometimes called uniform (for example, see [8, 20, 21, 23]).

As we will see below, Archimedean toroidal maps arise naturally as quotients of tessel-
lations of the Euclidean plane with regular polygons; these tessellations are called Archi-
medean, and they are described in the same way as Archimedean maps. The following
classical theorem gives a complete classification of planar Archimedean tessellations.

Theorem 2.1 (Classification of Archimedean tessellations on the plane [9]). There are only
11 tessellations on the plane by regular polygons so that any vertex can be mapped to every
other vertex by the symmetry of the tessellation. These are the following tessellations:

{3, 6}, {4, 4}, {6, 3}, (4.82), (3.122), (3.6.3.6), (3.4.6.4),

(4.6.12), (32.4.3.4), (34.6), (33.42)

(see Figure 1).

The equivelar Archimedean tessellations of type {3, 6}, {4, 4}, and {6, 3} and the cor-
responding toroidal maps were considered in [7]. In this paper we will mainly work with
the non-equivelar Archimedean tessellations of the Euclidean plane; denoteA to be the set
of all non-equivelar tessellations.

Furthermore, for reference, on each such tessellation we can place a Cartesian coor-
dinate system with the origin at a vertex of the tessellation. For the tessellations {4, 4},
(32.4.3.4), and (4.82), the coordinate system is further specified by assuming that the vec-
tors e1 := (1, 0) and e2 := (0, 1) represent the shortest possible translational symme-
tries of the tessellation. Similarly, for the remaining Archimedean tessellations, other than
(33.42), we assume that the vectors e1 := (1, 0) and e2 :=

(
1/2,
√

3/2
)

represent the
shortest possible translational symmetries.

This choice of coordinate system will allow us to utilize the geometry of the Gaussian
and Eisenstein integers in our results (see Subsection 4.1). Given an Archimedean tessel-
lation τ , we call (e1, e2) the basis for τ . For the tessellation (33.42) the basis will be
specified separately in the later sections.

Let (e1, e2) be the basis for τ ∈ A\{(33.42)}. The set {λe1 + µe2 : λ, µ ∈ Z} forms
the vertex set of a regular tessellation which we call the tessellation associated with τ , and
which we denote by τ∗. By construction, (e1, e2) is also the basis for τ∗. To clarify this
notation, we note here that for example if τ is of type {6, 3}, then τ∗ is of type {3, 6}.

Given an Archimedean tessellation τ , denote by Tτ the maximal group of translations
that preserve τ . As we already mentioned, Archimedean toroidal maps can be seen as
quotients of planar Archimedean tessellations. These quotients can be written explicitly in
terms of possible subgroups of Tτ , due to the following theorem.

Theorem 2.2 (Archimedean toroidal maps are quotients [19]). LetM be an Archimedean
map on the torus. Then there exists an Archimedean tessellation τ of the Euclidean plane
and a subgroup G ≤ Tτ so thatM = τ/G.
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(a) {3, 6} (b) {4, 4} (c) {6, 3}

(d) (4.82) (e) (3.122) (f) (3.6.3.6)

(g) (3.4.6.4) (h) (4.6.12) (i) (32.4.3.4)

(j) (34.6) (k) (33.42)

Figure 1: Archimedean tessellations.

This theorem shows that, for each type, there is a one-to-one correspondence between
Archimedean toroidal maps and translation subgroups of Tτ ; clearly, the pair of generators
of every such subgroup should be comprised of non-collinear vectors.

We point out here that the converse of Theorem 2.2 is also true, as clearly any map
on the torus that is obtained as a quotient of an Archimedean tessellation by a translation
subgroup is an Archimedean toroidal map.

LetM be an Archimedean toroidal map; by Theorem 2.2, it can be written as τ/ 〈a,b〉,
where τ is the planar Archimedean tessellation (of the same type asM) and 〈a,b〉 ≤ Tτ is
the translation subgroup with generators a,b ∈ Tτ . We use the standard notation τa,b :=
τ/ 〈a,b〉 for the map M. Note that the pair a,b is not uniquely defined by M, but the
quotient is independent of possible choices.

A flag of a planar tessellation τ is a triple of an incident vertex, edge, and face of the
tessellation. We can then define a flag of a toroidal map τa,b as the orbit of a flag under
the group 〈a,b〉. We note that when the map is combinatorially equivalent to an abstract
polytope (see [16]), this is equivalent to a flag equaling a triple of an incident vertex, edge,
and face of the map itself. Two flags of a map on the torus are said to be adjacent if they
lift to flags in the plane that differ in exactly one element.
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Let N = τ/H and M = τ/G be Archimedean maps on the torus, where H is a
subgroup of G. Then there is a surjective function η : N → M that preserves adjacency
and sends vertices of N to vertices of M (and edges to edges, and faces to faces). The
function η is called a covering of the mapM by the map N . This is denoted by N ↘M,
and we say that N is a cover ofM. We can use the notion of covering to create a partial
order ≤ on any non-empty set S of toroidal maps, where M ≤ N if and only if N is a
cover of M. A minimal cover of a map M ∈ S is minimal with respect to this partial
order in S. We note here that this notion of covering can also be generalized to maps on
different surfaces, and to abstract polytopes of higher ranks. If S is the set of all regular
maps that cover a given map M, then the minimal elements of the partial order are the
minimal regular covers ofM, as studied in [10, 18] for example.

For a map M = τ/G, where G = 〈a,b〉, we call the parallelogram spanned by the
vectors a, b a fundamental region ofM. Then a fundamental region for the covering map
N = τ/H , H ≤ G, can be viewed as k fundamental regions ofM ‘glued together’ (see
Figure 2). It is easy to show that the number k is equal to the index [G : H] of the subgroup
H in G.

a

b u

v

1

2

3
4

5

5
3

4

1

Figure 2: {4, 4}u,v ↘ {4, 4}a,b is a 5-sheeted covering, and the covering map {4, 4}u,v is
obtained by gluing together 5 fundamental regions of {4, 4}a,b.

2.1 Symmetries and automorphisms of tessellations and maps

In this section we follow [3, 11, 12] and [13] in our notation and definitions.
Let τ be a tessellation of the Euclidean plane, and let Aut(τ) be its symmetry group

(the collection of isometries of the Euclidean plane that preserve the tessellation). Let G
and H be two subgroups of Aut(τ) generated by two linearly independent translations.
The maps τ/G and τ/H are isomorphic if G and H are conjugate in Aut(τ).

A symmetry γ ∈ Aut(τ) induces an automorphism of a toroidal map τ/G if and only
if it normalizes G, that is γGγ−1 = G; denote NormAut(τ)(G) for the group of elements
in Aut(τ) that normalize G. Geometrically, such γ maps fundamental regions of τ/G to
fundamental regions of τ/G.

Finally, the we define the automorphism group Aut(τ/G) as the group induced by the
normalizer NormAut(τ)(G); in other words Aut(τ/G) ∼= NormAut(τ)(G)/G. We will
also denote the collection of symmetries NormAut(τ)(G) as simply Sym(τ/G).

We note here that an automorphism of a map can equivalently be defined as an automor-
phism of the underlying graph that can be extended to a homeomorphism of the surface.
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A map M is called regular if its automorphism group acts transitively on the set of
flags. A map M is called chiral if its automorphism group has two orbits on flags with
adjacent flags lying in different orbits. A mapM is called rotary if it is either regular or
chiral.

For the toroidal maps of type {4, 4}, {3, 6}, and {6, 3} the minimum possible number
of flag orbits is one, given by regular maps of those types (which have been previously
classified, see also Subsection 2.2). For other types of maps on the torus, the minimum
number of flag orbits will not be one. However, we still would like to understand the maps
of each type that achieve the fewest possible number of flag orbits.

An Archimedean map on the torus is called almost regular if it has the same number of
flag orbits under the action of its automorphism group as the Archimedean tessellation on
the plane of the same type has under the action of its symmetry group.

2.2 Regular and chiral toroidal maps

The classification in the next sections depends heavily on the classification of regular and
chiral toroidal maps. Here we summarize the relevant details about toroidal maps of type
{4, 4} and {3, 6} that are needed in our results. The results in this subsection, and much
more can all be found in [13].

Let τ be a tessellation of the Euclidean plane of type {4, 4} or {3, 6}. Then Aut(τ) is
of the form Tτ o S, where S is the stabilizer of a vertex of τ , which we can assume to be
the origin without loss; S is called a point stabilizer.

Then letM = τ/G be a toroidal map. Notice that every translation in Tτ induces an
automorphism ofM (where the elements of G induce the trivial automorphism). Define χ
as the central inversion of the Euclidean plane, that is the symmetry that sends any vector
u to −u. Then, as seen in Lemma 6 of [13], Aut(M) is induced by a group K so that
Tτ o 〈χ〉 ≤ K ≤ Aut(τ).

Furthermore, there is a bijection between such groups K and subgroups K′ of S con-
taining χ, and thus one needs to determine which symmetries in the point stabilizer S
normalize G. Finally, the number of flag orbits of the toroidal map M is the index of
NormAut(τ)(G) in Aut(τ), which is the same as the index of K′ in S.

First let us consider toroidal maps of type {4, 4}; let τ be the regular tessellation of
the Euclidean plane of this type, and (e1, e2) be the basis for τ . The point stabilizer S is
generated by two reflections R1 and R2, where R1 is reflection across the line spanned by
e1 + e2, sending vectors (x, y) to (y, x), and R2 is reflection across the line spanned by
e1, sending vectors (x, y) to (x,−y). There are exactly three conjugacy classes of proper
subgroups K′ of S containing χ but not equal to 〈χ〉. In other words there are exactly five
possible point stabilizers: all of S, only 〈χ〉, and finally the three groups described next.
The three subgroups are K′ are 〈χ,R1〉, 〈χ,R2〉, and 〈χ,R1R2〉, and each has index 2 in
S, where 〈χ〉 has index 4 in S.

We note that it is important for our classification to notice that a toroidal map of type
{4, 4} is regular if and only if K′ contains both R1 and R2, as well as R1R2 which is
the rotation by π/2 around the origin. This occurs only in the two well known families of
regular toroidal maps, {4, 4}(a,0),(0,a) and {4, 4}(a,a),(a,−a), both of which have squares
as fundamental regions. The chiral toroidal maps of type {4, 4} also have squares as their
fundamental regions, but have no reflections in their automorphism groups. Finally, the
remaining classes of toroidal maps have fundamental regions that are not squares.

Next, let us consider toroidal maps of type {3, 6}; let τ be the regular tessellation of
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the Euclidean plane of this type. We use the previously described basis of e1 = (1, 0) and
e2 =

(
1/2,
√

3/2
)

to describe the symmetries of these maps.
The point stabilizer S is again generated by two reflections R1 and R2, where R1 is

reflection across the line spanned by e1 + e2, sending vectors (x, y) to (y, x), and R2 is
reflection across the line spanned by e1, sending vectors (x, y) to (x+ y,−y).

Now there are exactly two conjugacy classes of proper subgroups K′ of S containing
χ but not equal to 〈χ〉. These subgroups K′ are 〈χ,R1R2〉, with index 2 in S, and 〈χ,R2〉
with index 3 in S, where 〈χ〉 has index 6 in S.

We note that it is important for our classification to notice that a toroidal map of type
{3, 6} is regular if and only if K′ contains both R1 and R2, as well as R1R2 which is
the rotation by π/3 around the origin. This occurs only in the two well known families
of regular toroidal maps, {3, 6}(a,0),(0,a) and {3, 6}(a,a),(2a,−a). For those two families
the fundamental regions are parallelograms composed of two regular triangles. The chiral
toroidal maps of type {3, 6} also have parallelograms composed of two regular triangles
as their fundamental regions, but have no reflections in their automorphism groups; this is
similar to the type {4, 4}.

3 Almost regular maps
In this section we consider Archimedean tessellations of the torus with as much symmetry
as possible. As we already mentioned, one natural way to understand the symmetry of
a map is to consider the action of its automorphism group on its flags. Here we want to
understand the maps on the torus with as few flag orbits as possible.

Theorem 3.1 (Regular to almost regular maps). For

Areg :=
{

(4.82), (3.6.3.6), (3.122), (4.6.12), (3.4.6.4), (32.4.3.4)
}
,

let τ ∈ Areg be an Archimedean tessellation of one of these types. Then τu,v is an almost
regular Archimedean map if and only if (τ∗)u,v is a regular map on the torus, with τ∗

being the regular tessellation associated with τ .

The proof of this theorem will follow from the following six propositions, each sepa-
rately dealing with a type of map. In each case we will use the translational symmetries to
simplify the problem by considering a fundamental region of τ/Tτ .

Proposition 3.2 (Almost regular maps of type (4.82)). A mapM = τ/G on the torus of
type (4.82) is almost regular (with three flag orbits) if and only if τ∗/G is regular.

Proof. Notice first that τ∗ is of type {4, 4}, and let (e1, e2) be the basis for τ (and hence
for τ∗).

Assume that a mapM on the torus of type (4.82) has exactly three flag orbits. For this
to be the case, there must be the following symmetries in Sym(M), as shown in Figure 3:

• reflection across a line in the direction e1 + e2 through the center of a square of the
map;

• reflection across a line in the direction e1 through the center of a square and the edge
of an octagon.
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It was summarized in Subsection 2.2 that the existence of these symmetries is enough to
show that τ∗/G is regular.

Conversely, if τ∗/G is regular, then the fundamental region ofM is a square, and each
of the previous listed symmetries are elements of Sym(M). Furthermore, every trans-
lational symmetry in Sym(τ/Tτ ) is also in Sym(τ/G), and thus M has only three flag
orbits. Note that the translations in Sym(τ/Tτ ) act on the flags in 24 flag orbits, and then
the listed symmetries force there to only be three orbits.

Figure 3: Minimum number of flag orbits for τ of type (4.82), and a fundamental region of
τ/Tτ , where the vectors e1 and e2 form the boundary of the fundamental region.

On the left of Figure 3, and other figures to follow, all the faces incident to single vertex
are shown, and the flags in these faces, which can be seen as triangles in the barycentric
subdivision of the tessellation, are colored based on their orbit. On the right of Figure 3,
the fundamental region of τ/Tτ is shown in blue, with the underlying tessellation shown in
black. One can see, for example, that this fundamental region contains 24 flags of τ .

The proofs of the following five propositions is similar to the proof of Proposition 3.2.

Proposition 3.3 (Almost regular maps of type (3.6.3.6)). A mapM = τ/G on the torus
of type (3.6.3.6) is almost regular (with two flag orbits) if and only if τ∗/G is regular.

Proof. Notice first that τ∗ is of type {3, 6}, and let (e1, e2) be the basis for τ .
Assume that a mapM on the torus of type (3.6.3.6) has exactly two flag orbits. For this

to be the case, there must be the following symmetries in Sym(M), as shown in Figure 4:

• reflection across a line in the direction e1 + e2 going through the centers of a hexagon
and an adjacent triangle;

• reflection across a line in the direction e1 going through the centers of two hexagons
incident to the same vertex.

As summarized in Subsection 2.2, the existence of these symmetries is enough to conclude
that τ∗/G is regular.

Conversely, if τ∗/G is regular, then each of the previous listed symmetries are ele-
ments of Sym(M). Furthermore, every translational symmetry in Sym(τ/Tτ ) is also in
Sym(τ/G), and thusM has only two flag orbits. Note that the translations in Sym(τ/Tτ )
act on the flags in 24 flag orbits, and then the listed symmetries force there to only be two
orbits.



K. Drach et al.: Archimedean toroidal maps and their minimal almost regular covers 501

Figure 4: Minimum number of flag orbits for τ of type (3.6.3.6), and a fundamental region
of τ/Tτ (as above, the vectors e1 and e2 form the boundary of the fundamental region).

Proposition 3.4 (Almost regular maps of type (3.122)). A mapM = τ/G on the torus of
type (3.122) is almost regular (with three flag orbits) if and only if τ∗/G is regular.

Proof. Notice again that τ∗ is of type {3, 6}, and let (e1, e2) be the basis for τ .
Assume that a mapM on the torus of type (3.122) has exactly three flag orbits. For this

to be the case, there must be the following symmetries in Sym(M), as shown in Figure 5:

• reflection across a line in the direction e1 + e2 going through the centers of a 12-gon
and an adjacent triangle;

• reflection across a line in the direction e1 going through the centers of two adjacent
12-gons.

As in the previous proposition, the existence of these symmetries again forces τ∗/G to be
regular.

Figure 5: Minimum number of flag orbits for τ of type (3.122), and a fundamental region
of τ/H (as above, the vectors e1 and e2 form the boundary of the fundamental region).

Conversely, if τ∗/G is regular, then each of the previous three listed symmetries are
elements of Sym(M). Furthermore, every translational symmetry in Sym(τ/Tτ ) is also in
Sym(τ/G), and thusM has only three flag orbits. Note that the translations in Sym(τ/Tτ )
act on the flags in 36 flag orbits, and then the listed symmetries force there to only be three
orbits.

Proposition 3.5 (Almost regular maps of type (4.6.12)). A mapM = τ/G on the torus of
type (4.6.12) is almost regular (with six flag orbits) if and only if τ∗/G is regular.
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Proof. Notice again that τ∗ is of type {3, 6}, and let (e1, e2) be the basis for τ .
Assume that a mapM on the torus of type (4.6.12) has exactly six flag orbits. For this

to be the case, there must be the following symmetries in Sym(M):

• reflection across a line in the direction e1 + e2 going through the centers of a 12-gon
and an adjacent hexagon;

• reflection across a line in the direction e1 going through the centers of a 12-gon and
an adjacent square.

As in the previous proposition, the existence of these symmetries again forces τ∗/G to be
regular.

Figure 6: Minimum number of flag orbits for τ of type (4.6.12), and a fundamental region
of τ/Tτ (as above, the vectors e1 and e2 form the boundary of the fundamental region).

Conversely, if τ∗/G is regular, then each of the previous three listed symmetries are
elements of Sym(M). Furthermore, every translational symmetry in Sym(τ/Tτ ) is also in
Sym(τ/G), and thusM has only six flag orbits. Note that the translations in Sym(τ/Tτ )
act on the flags in 72 flag orbits, and then the listed symmetries force there to only be six
orbits.

Proposition 3.6 (Almost regular maps of type (3.4.6.4)). A map M = τ/G on the torus
of type (3.4.6.4) is almost regular (with four flag orbits) if and only if τ∗/G is regular.

Proof. Notice again that τ∗ is of type {3, 6}. Let (e1, e2) be the basis for τ . Assume that
a mapM on the torus of type (3.4.6.4) has exactly four flag orbits. For this to be the case,
there must be the following symmetries in Sym(M):

• reflection across a line in the direction e1 + e2 going through the centers of a hexagon
and a triangle sharing an incident vertex;

• reflection across a line in the direction e1 going through the centers of a 12-gon and
an adjacent square.

Again the existence of these symmetries again forces τ∗/G to be regular. Conversely,
if τ∗/G is regular, then each of the previous three listed symmetries are elements of
Sym(M). Furthermore, every translational symmetry in Sym(τ/Tτ ) is also in Sym(τ/G),
and thusM has only four flag orbits. Note that the translations in Sym(τ/Tτ ) act on the
flags in 48 flag orbits, and then the listed symmetries force there to only be four orbits.
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Figure 7: Minimum number of flag orbits for τ of type (3.4.6.4), and a fundamental region
of τ/Tτ (as above, the vectors e1 and e2 form the boundary of the fundamental region).

Proposition 3.7 (Almost regular maps of type (32.4.3.4)). A mapM = τ/G on the torus
of type (32.4.3.4) is almost regular (with five flag orbits) if and only if τ∗/G is regular.

Proof. Notice again that τ∗ is of type {4, 4}. Let (e1, e2) be the basis for τ .
Assume that a map M on the torus of type (32.4.3.4) has exactly five flag orbits.

For this to be the case, there must be a rotation by π/2 around the center of a square in
Sym(M). This symmetry can be represented by R1R2 as described in Subsection 2.2, and
thus τ∗/G is either regular or chiral. However, Sym(M) must also contain a reflection
across the edge of adjacent triangles in the direction of e1 + e2. This means that the 8
flags in the fundamental region of τ∗/Tτ are all in the same orbit, and thus τ∗/G is regular.

Figure 8: Minimum number of flag orbits for τ of type (32.4.3.4), and a fundamental region
of τ/Tτ drawn in two equivalent ways so that to show existence of mirror symmetries
(second picture) and rotational symmetry (third picture); as above, the vectors e1 and e2
form the boundary of the fundamental region.

Conversely, if τ∗/G is regular, then there is a rotation by π/2 around the center of a
square, as well as a reflection across the edge of adjacent triangles in Sym(M). Further-
more, every translational symmetry in Sym(τ/Tτ ) is also in Sym(τ/G), and thus M has
only five flag orbits.

Theorem 3.8 (Rotary to almost regular toroidal map). Let τ be the Archimedean tessella-
tion of type (34.6). Then τu,v is an almost regular Archimedean map (with ten flag orbits)
if and only if τ∗u,v is a rotary map on the torus.
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Proof. Suppose that the map τu,v has exactly ten flag orbits. For this to be the case, there
must be a rotation by π/3 around the center of a hexagon in Sym(τu,v). The existence of
this symmetry forces τ∗/ 〈u,v〉 to be rotary. Note, these are the only reflexive symmetries
in Sym(τu,v).

Figure 9: Minimum number of flag orbits for τ of type (34.6), and a fundamental region of
τ/H (as above, the vectors e1 and e2 form the boundary of the fundamental region).

Conversely, if τ∗u,v is rotary, then there is a rotation by π/3 around the center of a
hexagon in Sym(τu,v). Furthermore, every translational symmetry in Sym(τ/Tτ ) is also in
Sym(τu,v), and thus τu,v has only ten flag orbits. Note that the translations in Sym(τ/Tτ )
act on the flags in 60 flag orbits, and then the listed symmetry forces there to only be ten
orbits.

Theorems 3.1 and 3.8 provide us with a fair understanding of how almost regular maps
of type Areg and (34.6) look: for each of them the associated map on the torus must be
regular, respectfully rotary.

The only remaining Archimedean tessellation not covered by the previous two results is
(33.42). Since the translation subgroup of the symmetry group of (33.42) does not coincide
with the symmetry group of one of the regular planar tessellations (as it is for all tessella-
tions inAreg), and does not contain the rotation subgroup of a regular planar tessellation (as
it is for the tessellation (34.6)), we have to deal with (33.42) separately and with different
techniques.

In order to state a complete characterization of almost regular maps of type (33.42),
we introduce the following notation: write (e1, e2) for the positively-oriented basis of
the plane E2 represented by the shortest non-parallel translations that are in the symmetry
group of (33.42). Recall also that Tτ stands for the maximal translation subgroup of the
symmetry group Sym(τ) of a given Archimedean tessellation τ .

Theorem 3.9 (Almost regular maps of type (33.42)). Let τ = (33.42). ThenM = τ/G,
with G < Tτ , is an almost regular Archimedean map (with five flag orbits) if and only if
the translation subgroup G is of the form〈

c e1,−d e1 + 2d e2
〉
, or

〈
c e1,−d e1 + (c+ 2d) e2

〉
(3.1)

for non-zero integers c and d.
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Remark 3.10. Observe that the statement above, in fact, does not depend on the choice of
the basis for E2. The explicit coordinate form (3.1) was used only to simplify later search
for minimal almost regular covers in the proof of Theorem 4.4.

Remark 3.11. The groups listed in (3.1) are never isomorphic.

Proof. The beginning of the proof is similar to the proofs given for the tessellations in
A \ {(33.42)}. Assume that a mapM has exactly five flag orbits. For this to be the case,
there must be the following symmetries in Sym(M):

• reflections across a horizontal line through the center of a square (see Figure 10(a));

• reflections across a vertical line through the center of a square (see Figure 10(b)).

We will write h, respectively v, for a reflection across a horizontal, resp. vertical, line
through the center of a square, where a horizontal line is in the direction of e1.

(a) Reflection across the horizontal
line; 10 flag orbits in the fundamen-
tal region.

(b) Reflection across the vertical
line; 10 flag orbits in the fundamen-
tal region.

(c) The minimal number of flag or-
bits in the fundamental region.

Figure 10: Flag orbits in the fundamental region of (33.42)/T(33.42).

Let us find all possible subgroups G < Tτ such that the listed symmetries preserve G
by conjugation. Suppose G is generated by a pair of non-parallel vectors a,b ∈ Tτ , and
assume that h ◦ u ◦ h−1 ∈ G and v ◦ u ◦ v−1 ∈ G for every u ∈ G.

Because the basis (e1, e2) of E2 was chosen in such a way that both e1 and e2 are the
symmetries of τ which generate the group Tτ (i.e. 〈e1, e2〉 = Tτ ), there exist two pairs of
integers a1, a2 and b1, b2 such that

a = a1e1 + a2e2 = (a1, a2), b = b1e1 + b2e2 = (b1, b2).

Note that if 2a1 + a2 = 2b1 + b2 = 0, then a and b are parallel, which is impossible.
Hence, without loss of generality we can assume 2a1 + a2 6= 0; this technical assumption
will be used later in the proof.

In order to understand the structure of the group G, observe that

Rv(e1) := v ◦ e1 ◦ v−1 = −e1, Rv(e2) = e2 − e1,

Rh(e1) := h ◦ e1 ◦ h−1 = e1, Rh(e2) = e1 − e2.
(3.2)

For an element u ∈ Tτ , the action of Rv and Rh on u is defined using (3.2) by linearity.
Since the reflection across a vertical line through the center of a square preserves G by

conjugation, the group G must contain the vector Rv(a) = (−a1 − a2, a2), as it is easy to
compute from (3.2). Hence G contains the vector a − Rv(a) = (2a1 + a2, 0), which is
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not zero since 2a1 + a2 6= 0 by our assumption. Therefore, G contains a proper non-trivial
subgroup G′ of vectors with vanishing second coordinate. Pick c = (c1, 0) with c1 > 0 to
be a generator of G′. Observe that, in fact, c is the shortest vector among all vectors in G
with positive first coordinate and vanishing second coordinate.

Let d ∈ G be a vector such that G = 〈c,d〉. Moreover, since 〈c,d〉 = 〈c,d + k c〉 for
every k ∈ Z, by picking an appropriate k we may assume that d is chosen in such a way
that in coordinates d = (d1, d2) we have

d1 ∈
[
−d2

2
, c1 −

d2

2

)
. (3.3)

Now we use the second symmetry from our list: since the conjugation by a reflection
across a horizontal line through the center of a square preservesG, the vectors (2d1 +d2, 0)
and (2d1 + d2 − c1, 0) must be in G′. Indeed, (3.2) and linearity of Rh gives us Rh (d) =
(d1+d2,−d2), and this vector must be inG. Hence,Rh (d)+d = (2d1+d2, 0) ∈ G′ < G.
Similarly, Rh (d) + d− c = (2d1 + d2 − c1, 0) ∈ G′ < G.

Recall that c = (c1, 0) was the shortest vector in G′ among all vectors with positive
first coordinate. Therefore, as (2d1 + d2, 0) ∈ G′ we must have either 2d1 + d2 = 0, or
2d1 + d2 > c1 (note that 2d1 + d2 is necessarily non-negative by assumption (3.3)). In the
latter case it then follows from (3.3) that 0 6 2d1 + d2 − c1 < c1, which is possible, again
by minimality of c1, only if 2d1 + d2 − c1 = 0.

Therefore, either d2 = −2d1, or d2 = −2d1 + c1, and hence setting c := c1, d :=
−d we obtain that the group G must be of one of the types in (3.1). One implication in
Theorem 3.9 is proven.

Conversely, it is straightforward to see that a group of one of the types in (3.1) is
preserved by conjugation with both h and v, and hence the symmetry group Sym(τ/G)
contains both h and v, which implies that τ/G has only five flag orbits, and thus is an
almost regular Archimedean map.

4 Minimal covers of Archimedean toroidal maps
In this section we will prove the Main Theorem. This will be done by combination of
three statements — Theorem 4.2, 4.3 and 4.4. Prior the proofs, in the following subsection
we recall some of the facts about the Gaussian and the Eisenstein integers — a number-
theoretic tool that provides a natural ‘language’ for our main results.

4.1 Gaussian and Eisenstein integers

The Gaussian and Eisenstein integers provide an essential ingredient for understanding
the Archimedean toroidal maps. The plots of these domains in the complex plane are the
vertex sets of regular tessellations: a tessellation of type {4, 4} for the Gaussian integers
and {3, 6} for the Eisenstein integers. We will follow [7] and [14] in our notation.

The Gaussian integers Z[i] are defined as the set {a+ bi : a, b ∈ Z} ⊂ C, where i
is the imaginary unit, with the standard addition and multiplication of complex numbers.
Similarly, the Eisenstein integers Z[ω] are defined as {a+ bω : a, b ∈ Z} ⊂ C, where
ω := (1 + i

√
3)/2. We adopt a unifying notation Z[σ] with σ ∈ {i, ω} to denote either of

these two sets. Since we are dealing with different types of integers, to avoid confusion we
will call rational integers the elements of Z.
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As in [7], in this paper we use the following notation: given α = a + bσ ∈ Z[σ], we
call its conjugate the number α := a + bσ, where σ is the conjugate complex number to
σ ∈ C. Also we call Reα := a and Imα := b the real and imaginary parts, respectively.
Note here that if σ = i, then this is the traditional notion of ‘real part’ and ‘imaginary part’
of a complex number. However, if σ = ω, then the ‘traditional’ real and imaginary parts of
a+ bω are a+ b/2 and b

√
3/2, respectively.

For every α = a + bσ ∈ Z[σ], we assign the norm N(α) := αα. An integer α ∈
Z[σ] \ {0} divides β ∈ Z[σ] if and only if there is γ ∈ Z[σ] such that β = αγ. Recall that,
in the ring of Gaussian integers, the units are only ±1,±i, while in the ring of Eisenstein
integers the units are only ±1,±ω,±ω. Two integers α, β ∈ Z[σ] are called associated if
α = βε for some unit ε.

Let us recall the concept of a greatest common divisor for rings of integers. An integer
γ ∈ Z[σ] is a greatest common divisor (GCD) of α, β ∈ Z[σ] with N(α) + N(β) 6= 0, if
γ divides both α and β and for every γ′ with the same property it follows that γ′ divides
γ. It is well-known that both Z[i] and Z[ω] are Unique Factorization Domains (see [14]),
that is the rings with unique (up to associates) factorization into primes. Hence, a greatest
common divisor is well-defined, again up to associates. Because of that, we write γ =
GCD(α, β) implying that γ is defined up to multiplication by an associate. We also agree
that if there is a rational integer n among associates to GCD(α, β), then we specifically
take GCD(α, β) := |n|. For example, GCD(3, 6i) ∈ {3,−3, 3i,−3i}, and thus by our
convention GCD(3, 6i) = 3.

The power of Gaussian and Eisenstein integers is coming from the natural identification
of these sets with the vertex set of a regular tessellation {4, 4} or {3, 6}. In particular, we
can identify the basis (e1, e2) (see Section 2) with the ordered pair (1, σ) from Z[σ]. This
identification leads to the group homomorphism of T{4,4} (resp. T{3,6}) with Z[i] (resp.
Z[ω]) — where the latter groups are regarded as Abelian groups with respect to addition.
From this point of view, we will identify every two vectors a = (a1, a2), b = (b1, b2) with
the complex numbers α = a1 + a2σ and β = b1 + b2σ. Finally, write τα,β := τa,b, and,
for further brevity, τη := τη,ση.

Note here that the pair of vectors η, ση span a square if σ = i, or a rhombus with angle
π/3 if σ = ω. Therefore, if η and η′ are equal up to associates, then τη = τη′ .

4.2 Proof of the Main Theorem

In Theorems 4.2 – 4.4 we will prove that each Archimedean map on the torus has a unique
minimal almost regular cover on the torus, which we will construct explicitly. To accom-
plish these proofs, we will use some known results for equivelar toroidal maps (see [7]).

Proposition 4.1 (Covering correspondence of maps and their associates). Let τ be an
Archimedean tessellation of the plane, not of type (33.42), and G and H two subgroups
of Tτ . Then τ/H covers τ/G if and only if τ∗/H covers τ∗/G.

Proof. Suppose τ/H ↘ τ/G. ThenH is a subgroup ofG, and both of them are subgroups
of Tτ . By construction, the groups Tτ and Tτ∗ are equal, and so the same subgroup structure
holds in Tτ∗ , which means that τ∗/H covers τ∗/G. Conversely, if τ∗/H covers τ∗/G, then
H is a subgroup of G, and G is a subgroup of Tτ∗ . The latter group is again equal to Tτ by
the very definition of τ∗. Hence, τ/H ↘ τ/G.

Observe that for every τ ∈ A \ {(33.42)} we have a well-defined basis (e1, e2) such
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that 〈e1, e2〉 = Tτ = Tτ∗ , where τ∗ = {p, q} is the regular tessellation associated to τ .
Therefore, every u ∈ Tτ with the coordinates (u1, u2) in the basis (e1, e2) can be identified
by the homomorphism discussed in Subsection 4.1 with the integer u1 + u2σ ∈ Z[σ] (here
σ depends on τ∗). We will use this equivalent language instead of the vector language in
order to state the following two theorems which are the first two main results of the paper.

Theorem 4.2 (Minimal almost regular covers for toroidal maps of type Areg). Let τα,β
be an Archimedean map given as a quotient of an Archimedean tessellation τ ∈ Areg by
a translation subgroup 〈α, β〉 < Tτ generated by two integers α, β ∈ Z[σ] \ {0} with
α/β 6∈ Z. Then the map τη with

η =


Im(αβ)
N(1+σ) c (1 + σ), if N(1 + σ) divides Reα

c −
Imα
c and Re β

c −
Im β
c ,

Im(αβ)
c , otherwise,

where c = GCD (Reα, Imα,Reβ, Imβ) is a unique minimal almost regular cover of
τα,β . Moreover, the number kmin of fundamentals regions of τα,β glued together in order to
the fundamental region of τη is equal to

kmin =


|Im(αβ)|
N(1+σ) c2 , if N(1 + σ) divides Reα

c −
Imα
c and Re β

c −
Im β
c ,

|Im(αβ)|
c2 , otherwise.

Proof. This theorem is a direct consequence of [7, Theorem 3.6]. Indeed, let τ∗ be the
regular tessellation associated to the Archimedean tessellation τ . By Theorem 3.1, there is
one-to-one correspondence between the translation subgroups of Tτ∗ that generate regular
maps on the torus and translation subgroups of Tτ that generate almost regular maps on the
torus. By Proposition 4.1, any such correspondence preserves the covering order and, in
particular, sends minimal elements to minimal elements. Therefore, τ∗/H is the minimal
regular cover of τ∗/G, whereG := 〈α, β〉, if and only if τ/H is the minimal almost regular
cover of τ/G. By [7, Theorem 3.6], every map τ∗/G has a unique minimal regular cover
τ∗/H , where H < Tτ∗ can be given explicitly in terms of number-theoretical properties
of α, β ∈ Z[σ]. Hence, the same holds for τ/G, which yields existence and uniqueness of
a minimal almost regular cover. The explicit form of H from [7, Theorem 3.6] translates
verbatim into the explicit form given in Theorem 4.2; this finishes the proof.

Theorem 4.3 (Minimal almost regular covers for toroidal maps of type (34.6)). Let τα,β
be an Archimedean map given as a quotient of an Archimedean tessellation τ = (34.6)
by a translation subgroup 〈α, β〉 < Tτ generated by two integers α, β ∈ Z[ω] \ {0} with
α/β 6∈ Z. Then the map τη with

η =
Im(αβ)

N(γ)
γ

where γ = GCD(α, β) is a unique minimal almost regular cover of τα,β . Moreover,
the number kmin of fundamentals regions of τα,β glued together in order to obtain the
fundamental region of τη is equal to

kmin =
|Im(αβ)|
N(γ)

.
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Proof. The proof is similar to the proof of Theorem 4.2, where instead of [7, Theorem 3.6]
we use [7, Theorem 3.5].

Recall that we associate to the tessellation of type (33.42) the basis (e1, e2) comprised
of a pair of translations that are in the symmetry group of (33.42) such that e1 connects
the centers of two adjacent squares and e2 is the shortest translation vector forming an
acute angle to e1. Everywhere below we assume that the coordinate representation of a
translation from T(33.42) is given with respect to the basis (e1, e2).

Theorem 4.4 (Minimal almost regular covers for toroidal maps of type (33.42)). Let τa,b
be an Archimedean toroidal map given as a quotient of the tessellation τ = (33.42) by a
translation subgroup 〈a,b〉 < Tτ generated by two vectors a = (a1, a2) and b = (b1, b2)
with ∆ := a1b2 − a2b1 6= 0. Then for τa,b there exists and is unique a minimal almost
regular cover τu,v generated by the subgroup

〈u,v〉 =

{〈
(c, 0), (−d1, c+ 2d1)

〉
, provided a2

g1
− 2a1+a2

g2
and b2

g1
− 2b1+b2

g2
are even,〈

(c, 0), (−d2, 2d2)
〉
, otherwise,

where

g1 = GCD(a2, b2), g2 = GCD(2a1 + a2, 2b1 + b2),

c =
∆

g1
, d1 = −∆

2

(
1

g1
+

1

g2

)
, d2 = −∆

g2
.

Moreover, the number kmin of fundamentals domains of τa,b glued together in order to
obtain the fundamental region of τu,v is equal to

kmin =


∣∣∣ ∆
g1g2

∣∣∣ , if a2g1 −
2a1+a2
g2

and b2
g1
− 2b1+b2

g2
are even,

2
∣∣∣ ∆
g1g2

∣∣∣ , otherwise.

Proof. Our strategy in proving Theorem 4.4 will be the following: we explicitly describe
all almost regular covers for τa,b and then determine the one which is the smallest (under
the covering relation).

Suppose that an Archimedean map τu,v is a cover of τa,b. This is equivalent of saying
that the group 〈u,v〉 is a proper subgroup of 〈a,b〉, which in algebraic terms is equivalent
to existence of a linear integer relation between the generators of both groups:{

n1a +m1b = u,

n2a +m2b = v,
(4.1)

for some integers n1, n2,m1,m2 with n1m2 6= n2m1. (The last condition guarantees that
u and v are, in fact, non-parallel.) If, on top, τu,v is almost regular, then the generators
u,v might be chosen to be of one of the types in (3.1) (see Theorem 3.9). We now consider
these two cases one by one.

Case 1: suppose u = c e1 and v = −d e1 + 2d e2 for some non-zero integers c and d.
Then, in order to find the generators of such type, we must solve the following system of
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vector Diophantine equations{
n1a +m1b = c e1,

n2a +m2b = −d e1 + 2d e2,
(4.2)

for the variables n1, n2,m1,m2 treating c and d as parameters.
The first equation in (4.2) in coordinates is equivalent to the system of linear Diophan-

tine equations {
n1a1 +m1b1 = c,

n1a2 +m1b2 = 0.
(4.3)

By the standard methods the full family of solutions for (4.3) is

n1 =
b2
g1
k, m1 = −a2

g1
k, c =

∆

g1
k, k ∈ Z∗, (4.4)

where we recall that ∆ = a1b2 − a2b1 and g1 = GCD(a2, b2) (here Z∗ stands for the set
of all non-zero integers).

Similarly, the second equation in (4.2) in coordinates reads{
n2a1 +m2b1 = −d,
n2a2 +m2b2 = 2d;

(4.5)

Multiplying the first equation by 2 and adding the second we get

n2(2a1 + a2) +m2(2b1 + b2) = 0,

from which we conclude, after straightforward cancellations, that the full family of solu-
tions for (4.5) is

n2 =
2b1 + b2
g2

s, m2 = −2a1 + a2

g2
s, d = −∆

g2
s, s ∈ Z∗, (4.6)

where g2 = GCD(2a1 + a2, 2b1 + b2).
Concluding Case 1 from obtained solution (4.4) and (4.6), we see that τu,v is an almost

regular Archimedean cover of τa,b and is of the first type in (3.1) if and only if

〈u,v〉 =

〈(
∆

g1
k, 0

)
,

(
∆

g2
s,−2

∆

g2
s

)〉
=: Gk,s.

Finally, observe that for every given pair of non-zero integers k and s the almost regular
map τ/Gk,s covers τ/G1,1. Hence, by definition of a minimal cover, τ/G1,1 is the minimal
almost regular cover (for τa,b) of the first type in (3.1). Note that the full family of toroidal
maps τ/Gk,s does not form a totally ordered set with respect to covering; however, this
poset has a unique minimal element. We will see a similar type of covering behavior later.

Finishing Case 1, we compute the number of fundamental regions of 〈a,b〉 one should
glue together in order to obtain the fundamental region of G1,1. This is done by comparing
areas of those regions. In the standard basis in E2 the area of the fundamental region of
〈a,b〉 is equal to

A0 := |a× b| = |∆| · |e1 × e2| .
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Similarly, by using (4.4) and (4.6) we compute the area of the fundamental region of G1,1:

A1 := |c e1 × (−d e1 + 2d e2)| = 2∆2

|g1g2|
· |e1 × e2| .

Therefore, the number we are looking for is equal to

A1

A0
= 2

∣∣∣∣ ∆

g1g2

∣∣∣∣ . (4.7)

Observe that

2(a1b2 − a2b1) = (2a1 + a2)b1 − (2b1 + b2)a2, (4.8)

and hence the right hand side in (4.7) is an integer. Of course, the same conclusion likewise
follows from the geometric meaning of A1/A0.

Case 2: suppose u = c e1 and v = −d e1 +(c+2d)e2 for some non-zero integer c and an
integer d; this is the second type in (3.1). We proceed similarly to Case 1, with a bit more
involved computation.

Again, in order to find all almost regular covers of the second type we have to find all
solutions of the system {

n1a +m1b = c e1,

n2a +m2b = −d e1 + (c+ 2d)e2,

for integers n1, n2,m1,m2 treating c and d as parameters. Similarly to Case 1, the solutions
to the first equation in this system have the following form:

n1 =
b2
g1
k, m1 = −a2

g1
k, c =

∆

g1
k, k ∈ Z∗. (4.9)

The second equation from the system above in coordinates reads:{
n2a1 +m2b1 = −d,
n2a2 +m2b2 = c+ 2d.

(4.10)

Again, multiplying the first equation by 2 and adding the second one we obtain, by us-
ing (4.9),

n2(2a1 + a2) +m2(2b1 + b2) = c =
∆

g1
k. (4.11)

This is a linear nonhomogeneous Diophantine equation in n2 and m2. The standard
theory of linear Diophantine equations tells us that the any solution of (4.11) is the sum
of a partial solution to the given equation and of the general solution of the corresponding
homogeneous equation n2(2a1 +a2)+m2(2b1 +b2) = 0. Moreover, a necessary condition
for (4.11) to have a solution is that

g2 divides
∆

g1
k. (4.12)
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Using (4.8) it is straightforward to check that ∆/(g1g2) ∈ Z∗ if and only if

a2

g1
− 2a1 + a2

g2
and

b2
g1
− 2b1 + b2

g2
are even. (4.13)

Therefore, if condition (4.13) is met, then the necessary condition (4.12) is satisfied for
every integer k. On the other hand, if (4.13) is violated, then (4.12) can be only satisfied if
k is even (as it follows from (4.8)). Let us consider these two sub-cases.

Sub-case 2.1: Suppose that condition (4.13) is violated; hence k is necessarily even. Then
it is straightforward to check that the pair of integers

n′2 =
b2
2g1

k, m′2 = − a2

2g1
k

provides a partial solution of equation (4.11). Therefore, in Sub-case 2.1 the full family of
solutions of (4.11), and thus of (4.10), has the form

n2 =
b2
2g1

k +
2b1 + b2
g2

s,

m2 = − a2

2g1
k − 2a1 + a2

g2
s, k ∈ 2Z, s ∈ Z.

d = − ∆

2g1
k − ∆

g2
s,

(4.14)

Concluding Sub-case 2.1 of Case 2 by combining (4.9) and (4.14), we see that, provided
condition (4.13) is not met, τu,v is an almost regular Archimedean cover of τa,b and is of
the second type in (3.1) if and only if

〈u,v〉 =

〈(
2

∆

g1
l, 0

)
,

(
∆

g1
l +

∆

g2
s,−2

∆

g2
s

)〉
=: Hl,s,

where l, s ∈ Z∗.
Now let us check the covering relations. Note that for a given pair of non-zero integers l

and s, the almost regular map τ/Hl,s non-trivially covers τ/G1,1. Therefore, in the poset of
coverings of almost regular maps of the form τ/Gk,s (see Case 1) and τ/Hl,s the quotient
of τ by G1,1 is the unique minimal element.

Sub-case 2.2: assume condition (4.13) is satisfied. This is equivalent of saying that both
pairs a1/g1, (2a1 + a2)/g2 and b2/g1, (2b1 + b2)/g2 consist of integers with the same
parity. As we showed above, this is also equivalent to ∆/(g1g2) ∈ Z∗.

If k is even, then we can run verbatim the same arguments as in Sub-case 2.1, with the
same conclusion. Hence we can assume that k is odd.

But if k is odd and condition (4.13) is met, then the pair of numbers

n′2 =
b2
2g1

k +
2b1 + b2

2g2
, m′2 = − a2

2g1
k − 2a1 + a2

2g2

are necessarily full integers, and moreover provide a partial solution to (4.11). Therefore,
we can write down a complete solution to (4.11):

n2 =
b2
2g1

k +
2b1 + b2

2g2
+

2b1 + b2
g2

s =
b2
2g1

k +
2b1 + b2

2g2
(2s+ 1),

m2 = − a2

2g1
k − 2a1 + a2

2g2
− 2a1 + a2

2g2
s = − a2

2g1
k − 2a1 + a2

2g2
(2s+ 1),
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where s ∈ Z.
Substituting this solution in either of the equations in (4.10), we obtain

d = − ∆

2g1
k − ∆

2g2
(2s+ 1),

where both k and 2s+ 1 are some odd integers.
Similarly to as we did before, concluding Sub-case 2.2 of Case 2, we see that, provided

condition (4.13) is satisfied and k is odd (the case k was already discussed), τu,v is an
almost regular Archimedean cover of τa,b and is of the second type in (3.1) if and only if

〈u,v〉 =

〈(
∆

g1
(2l + 1), 0

)
,

(
∆

2g1
(2l + 1) +

∆

2g2
(2s+ 1),−∆

g2
(2s+ 1)

)〉
=: Fl,s,

where l, s ∈ Z. Observe that τ/Fl,s covers τ/F0,0 for any pair l, s ∈ Z∗.
Finally, comparing the groups

G1,1 =

〈(
∆

g1
, 0

)
,

(
∆

g2
,−2

∆

g2

)〉
and F0,0 =

〈(
∆

g1
, 0

)
,

(
∆

2g1
+

∆

2g2
,−∆

g2

)〉
,

we conclude that the almost regular map τ/G1,1 non-trivially covers the almost regular
map τ/F0,0.

Therefore, summing up the results of Case 1 and Case 2, we obtain that if condition
(4.13) is satisfied, then τ/F0,0 is a minimal almost regular Archimedean map that covers
τa,b. Otherwise, τ/G1,1 is a minimal almost regular cover. In both cases these minimal
covers are unique elements in the corresponding posets of possible almost regular covers.
This almost finishes the proof of Theorem 4.4. The only thing that is left to check is that
in Sub-case 2.2 of Case 2, provided k is odd, the number of fundamental regions of 〈a,b〉
one should glue together to obtain the fundamental region of F0,0 is equal to∣∣∣∣ ∆

g1g2

∣∣∣∣
(note that this is an integer). This computation is similar to the one found at the end of
Case 1, and is thus omitted; this completes the proof of Theorem 4.4.
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