HACQUETIA 9/2 • 2010, 221-238 DOI: 10.2478/v10028-010-0011-1 OAK FOREST VEGETATION IN THE NORTHERN PART OF THE ŠTIAVNICKE VRCHY MTS (CENTRAL SLOVAKIA) Michal SLEZÄK1 & Anna PETRAŠ0VA2 Abstract The phytosociological research of the oak forest vegetation was carried out in the northern part of the Štiavnicke vrchy Mts (Central Slovakia) using the standard Zürich-Montpellier approach. The data set consisting of 41 phytosociological releves was obtained by the authors in two vegetation seasons in 2008 and 2009. The numerical classification and the ordination methods were applied to determine the main vegetation types and to explain the structure of the vegetation-environmental data matrix, respectively. Four associations within two classes were distinguished: Luzulo albidae-Quercetum petraeae Hilitzer 1932, typical for shallow, mineral-poor and acidic soils, Melico uniflorae-Quercetum petraeae Gergely 1962 occuring on mesic stands with skeletal and deeper soils, Poo nemoralis-Quercetum dalechampii Šomšak et Haberova 1979 developing on moderately canopy-opened stands in the submontane belt, Sorbo torminalis-Quercetum Svoboda ex Blažkova 1962 growing on moderately acidic substrates in drier regions. The major environmental gradients responsible for variation in forest species composition was associated with soil nutrient and soil reaction following the Ellenberg indicator values as well as the measured environmental variables (C/N-ratio and soil acidity). Special attention was given to the discussion on species composition and site ecology. Key words: classification, phytosociology, ecology, Quercetea robori-petraeae, Querco-Fagetea, gradient analysis, the Western Carpathians. Izvleček Fitocenološke raziskave hrastovih gozdov v severnem delu gorovja Štiavnicke vrchy (srednja Slovaška) smo naredili po Zürichško-Montpellierski metodi. Enainštirideset vegetacijskih popisov smo naredili v dveh vegetacijskih sezonah v letih 2008 in 2009. Za določitev glavnih vegetacijskih tipov in za obrazložitev strukture podatkovne matrike vegetacijskih popisov in ekoloških spremenljivk smo uporabili numerično klasifikacijo in ordinacijo. Znotraj dveh razredov smo ločili štiri asociacije: Luzulo albidae-Quercetum petraeae Hilitzer 1932, značilna za plitva, z minerali revna, kisla tla, Melico uniflorae-Quercetum petraeae Gergely 1962, ki se pojavlja na mezičnih rastiščih s skeletnimi, globljimi tlemi, Poo nemoralis-Quercetum dalechampii Šomšak et Haberova 1979, ki se razvije v zmerno odprtih sestojih v submontanskem pasu, Sorbo torminalis-Quercetum Svoboda ex Blažkova 1962 pa uspeva na zmerno kislih tleh v sušnejših predelih. Glavna okoljska gradienta, ki vplivata na floristično sestavo, sta hranila v tleh in reakcija tal. Odražata se tako v Ellenbergovih indikatorskih vrednostih kot v merjenih okoljskih spremenljivkah (C/N razmerje in kislost tal). Poseben poudarek smo namenili diskusiji o vrstni sestavi in ekologiji rastišč. Ključne besede: klasifikacija, fitosociologija, ekologija, Quercetea robori-petraeae, Querco-Fagetea, gradientna analiza, zahodni Karpati. 1 Institute of Forest Ecology, Slovak Academy of Sciences, Šturova 2, SK-960 01 Zvolen, Slovak Republic; e-mail: slezak.miso@gmail.com 2 Faculty of Natural Sciences, Matej Bel University, Tajovskeho 40, SK-974 01 Banska Bystrica, Slovak Republic; e-mail: petrasov@fpv.umb.sk INTRODUCTION The genus Quercus (Fagaceae) represents one of the most abundant groups of trees in temperate Europe (Nixon 1993). It is considered a taxonom-ically complicated group with high frequency of hybridization. This process has been reflected in the difficult determination of some oak species and also in different evaluation of their taxonom-ic status (Gömöry et al. 2001, Franjic et al. 2006). The species composition and proportion of Quercus species in the tree layer of the Carpathian-Pannonian forest vegetation changes depending on the site conditions mainly soil depth and soil water availability (cf. Jakucs 1961, Ellenberg 1982, Magic 2006). Among the oak species native to this area (cf. Magic l.c.), Q. petraea agg. (incl. Q. petraea s. str., Q. dalechampii, Q. polycarpa) and Q. cerris are the most frequently dominating taxa. The oak forests are important elements of the natural Carpathian-Pannonian vegetation, and they are substantial habitats of many endangered species (cf. Jakucs 1961). Except for two associations included into the order Fagetalia, the oak forest vegetation types have been traditionally classified in the territory of Slovakia into the orders Quercetalia roboris and Quercetalia pubes-centi-petraeae (Jarol^mek et al. 2008a). Acidophi-lous oak forests of the order Quercetalia roboris are commonly developed on a mineral deficient substrate with shallow soil, whereas the xero- and thermophilous oak forests of the order Querceta-lia pubescenti-petraeae are associated on shallow to deep soils containing a high concentration of mineral nutrients, especially in areas with a drier and warmer microclimate. Oak forest vegetation has already been several times investigated in the past. Additionally to the regional phytosociologi-cal studies from various parts of Slovakia (e.g. Klika 1937, Michalko 1957, Neuhäusl & Neuhäus-lova-Novotna 1964, Neuhäuslova-Novotna 1965, Šomšak & Haberova 1979, Kliment & Watzka 2000, Slezak & Kukla 2009a), there are a few papers exclusively devoted to their floristic differentiation patterns and spatial distribution (Šomšak 1963, Jurko 1965, Neuhäuslova-Novotna & Neuhäusl 1965, Miadok 1991, Chytry 1994, Kanka 2001, Roleček 2004). Despite the fact that nowadays a part of thermophilous oak forests of the order Quercetalia pubescenti-petraeae has been discussed by Roleček (2005), the syntaxonomy of the oak forest vegetation types requires a comprehensive revision. The Štiavnicke vrchy Mts are volcanic mountains situated in the central part of Slovakia (Figure 1). They occupy a geographic territory in the transition zone between the Western Carpathian and the Pannonian phytogeographic region. Mountain units situated on the border of these regions belong generally to the botanicaly attractive areas. Due to the diversity of both plant species and communities, they have been recently the subject of some studies (e.g. Michalkova 2007, Hrivnak et al. 2008). A basic survey of forest communities of the study area has been partially outlined by Balkovič (2002) and Slezak & Hegedüšovä (2010), although only a little information is available on the ecological patterns of the oak forests. The data on their variability and floristic composition are relatively rare. Although some individual releves were published in papers focusing on floristical records (e.g. Slezak & Kukla 2009b), the detailed classification and description of site ecology remain still poorly known. For this reason, the aim of the current paper is to establish the main vegetation types of oak forests in the northern part of the Štiavnicke vrchy Mts and to characterise their major environmental gradients. METHODS The vegetation study was carried out according to the principles of the standard Zürich-Montpellier approach using the modified 9-degree Braun-Blanquet scale (Barkman et al. 1964). Forty-one phytosociological releves with dominance or co-dominance (at least 25 % cover in the tree layer) of an oak species were recorded by the authors in the northern part of the Štiavnicke vrchy Mts in 2008-2009 and stored in a TURBOVEG database (Hennekens & Schaminee 2001). Numerical classification of the data set was performed by the Hierclus program from the SYN-TAX 2000 package (Podani 2001) with the S0rensen (Bray-Curtis) distance as a measure of dissimilarity and the beta-flexible linkage method (ß = -0.25). Species percentage cover was logarithmically transformed. The optimal number of clusters was estimated by the 'crispness' method (Botta-Dukat et al. 2005) using the JUICE software (Tichy 2002). The same woody species recorded in different layers were merged for the purpose of the numerical classification. The moss layer was also integrated in the analysis. The diagnostic species Figure 1: Map of the studied area (Štiavnicke vrchy Mts and their northern part) situated within Central Europe. Slika 1: Zemljevid obravnavanega območja (gorovje Štiavnicke vrchy in njegov severni predel) in njegov položaj v srednji Evropi. of the associations were determined on the basis of the fidelity concept (Chytry et al. 2002) and frequency in the JUICE software. The size of all clusters was standardized to an equal size (Tichy & Chytry 2006). The species with simultaneous values of phi coefficient > 0.30 and frequency > 30 were considered as diagnostic ones. Fisher's exact test (P < 0.05) was used to eliminate the fidelity value of species with a non-significant pattern of occurrence. The results of classification are summarised in Table 1, in which the assignment of species to higher vegetation units (alliances, classes) follows Moravec (1998), Moravec et al. (2000) and Jarol^mek et al. (2008b). The percentage constancy (frequency) was given for each species in individual clusters and species were ranked by the decreasing value. Since the diagnostic species were obtained from an analysis of deciduous oak forests from a part of the Štiavnicke vrchy Mts, they are only of a local validity. Detrended correspondence analysis (DCA) using the CANOCO for Windows package (ter Braak & Šmilauer 2002) was used to explain the structure of the vegetation-environmental data matrix and to interpret the main environmental gradients. Ellenberg indicator values for vascular plants (Ellenberg et al. 1992) and measured environmental variables for vegetation plots were plotted onto a DCA ordination diagram as supplementary variables. Geographical coordinates (longitude, latitude) and altitude were measured by the Garmin GPSmap 60 CSx (WGS 84). Understory light conditions were recorded by the hemispherical photographs. Their processing and calculation of canopy openness (CO), i.e. the percentage of open sky seen from beneath a forest canopy (Jelaska 2004), was subsequently done using Gap Light Analyser software (Frazer et al. 1999). Soil samples were randomly taken in three places in each vegetation plot from the uppermost mineral horizon (0-5 cm depth, litter removed) and mixed to form a single sample per plot in order to reduce the soil heterogeneity. They were dried at laboratory temperature, crushed and passed through a 2 mm sieve. Soil acidity (pH) was measured with the equipment WTW Inolab pH 720 in distilled water (1:2.5 soil:water ratio) and C/N-ratio with NCS-FLASH 1112 analyser. Determination of exchangeable cations (Ca2+) in the soil samples were stated after extraction in a 0.1 M BaCl2-solution (Mehlich II) using an Atomic Absorption Spectrometer (AAS). In addition, soil profiles of individual vegetation types were made in September 2009 for description of morphological features and for determination of soil types. They were classified using the Slovak Soil Classification System (Sobocka 2000) in terminology of the World Reference Base for Soil Resources (ISSS-ISRIC-FAO 1998). The nomenclature of non-vascular and vascular plants follows the checklist by Marhold & Hindak (1998), and the syntaxa names are in accordance with Jarol^mek et al. (2008a). RESULTS AND DISCUSSION Numerical classification distinguished four main groups of releves according to their floristic similarity (Figure 2). They represent acidophilous, mesophilous and thermophilous oak vegetation corresponding to the four associations within classes of deciduous forests Quercetea robori-petraeae and Querco-Fagetea. Their syntaxonomi-cal position is as follows: Class: Quercetea robori-petraeae Br.-Bl. et R. Tx. ex Oberd. 1957 Order: Quercetalia roboris R. Tx. 1931 Alliance: Genistogermanicae-Quercion Neuhäusl et Neuhäuslova-Novotna 1967 Association: Luzulo albidae-Quercetumpetra-eae Hilitzer 1932 Class: Querco-Fagetea Br.-Bl. et Vlieger in Vlieger 1937 Order: Fagetalia Pawlowski in Pawlowski et al. 1928 Alliance: Carpinion betuli Issler 1931 Association: Melico uniflorae-Quercetum pe-traeae Gergely 1962 Order: Quercetalia pubescenti-petraeae Klika 1933 Alliance: Quercion confertae-cerris Horvat 1954 Association: Poo nemoralis-Quercetum dale-champii Šomšak et Haberova 1979 Alliance: Quercion petraeae Zolyomi et Jakucs ex Jakucs 1960 Association: Sorbo torminalis-Quercetum Svoboda ex Blažkova 1962 (Al ® 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 Figure 2: Dendrogram of numerical classification of oak forest vegetation in the northern part of the Štiavnicke vrchy Mts (Cluster A - Luzulo albidae-Quercetum petraeae, B - Melico uniflorae-Quercetum petraeae, C - Poo nemoralis-Quercetum dalechampii, D - Sorbo torminalis-Quercetum). Slika 2: Dendrogram numerične klasifikacije hrastovih gozdov severnega dela gorovja Štiavnicke vrchy (Klaster A - Luzulo albidae-Quercetum petraeae, B - Melico uniflorae-Quercetum petraeae, C - Poo nemoralis-Quercetum dalechampii, D - Sorbo torminalis-Quercetum). The data set of 41 releves comprises 178 vascular plants and 34 bryophytes. The most common herb species recorded in more than 70 % of releves were generalists of oak forest habitats such as Poa nemoralis, Galium schultesii, Veronica chamaedrys and a bryophyte Hypnum cupressiforme. Syntaxgngmy and Site ecology Luzulo albidae-Quercetum petraeae (Cluster A, Table 1, releves 1-18) This community represents acidophilous oak forests preferring moderately canopy-opened stands with shallow and mineral-poor soils (distric cam-bisols) at altitudes of 330-670 m. Moreover, in some places, mainly on steep slopes, the organic matter can be blown away and it causes nutrient depletion of the soils. Distribution is confined to small patches, primarily at ridge parts and convex spots. The simple vertical structure and the regular occurrence of oligotrophic and oligo-me-sothrophic vascular plants (e.g. Genista pilosa, G. tinctoria, Hieracium lachenalii, H. sabaudum, Veronica officinalis), along with local admixture of thermophilous ones (Cardaminopsis arenosa, Hy-lotelephium maximum and Lembotropis nigricans), are typical features of this community. The shrub layer is generally formed only of young trees. In most cases, the herb layer is dominated by Lu-zula luzuloides, seldom also by the narrow-leaved grass Avenella flexuosa. The peculiar feature of the species composition is a higher presence and coverage of mosses in comparison with the other detected oak vegetation types (Table 1). It is usually composed of common acidic-tolerant species including Ceratodon purpureus, Dicranum scopari-um, Hypnum cupressiforme, Polytrichum formosum and P. piliferum. The proportion and the total spectrum of non-vascular plants coincide with the previous findings (Moravec 1998) as well as with a broad comparative study of European acidic woodlands (Härdtle 2004). In Slovakia, analogous communities with similar floristical structure are chiefly known from foothills of the Western Carpathians, less often from Inner-Carpathian basins (Slezak 2010). Neuhäusl & Neuhäuslova-Novotna (1967) revised the previous classifications (e.g. Mraz 1957) and introduced a new division of association into the Luzulo albidae-Quercetum typicum Mraz 1957 and Luzulo albidae-Quercetum genistetosum tincto- riae Samek ex Neuhäusl et Neuhäuslova-Novotna 1967 subassociations. Outside Slovakia, this syn-taxonomical concept is broadly accepted in adjacent countries (Moravec 1998, Willner & Grabherr 2007, Matuszkiewicz 2008). Acidophilous oak and mixed oak deciduous forests are a typical vegetation type on acidic geological substrates in the colline and submontane belt of the sub-continental part of Europe. Their ecological singularity is emphasized through the specific site conditions, i.e. presence of skeletal soils with low nutrient supply (Neuhäusl & Neu-häuslova-Novotna 1967, Slezak & Kukla 2009a) and the litter removing (e.g. forest grazing) promoting their acidification (Šilc et al. 2008). The coverage of species-poor herb layer is markedly determined by the canopy structure. Therefore the species composition is created particularly by light-demanding species with the affinity to acidic habitats. The recent occurrence of some associations (e.g. Vaccinio vitis-ideae-Quercetum Oberd. 1957, Viscario-Quercetum Stöcker 1965) is limited due to lack of suitable sites and their change to pine or larch plantation (cf. Moravec 1998). Studies of acidophilous Quercus petraea agg. forests have had a long history in various European countries (Härdtle 2004), but their syntaxonomical position is not consistent. They are classified within the Querco-Fagetea class (e.g. Solomakha 1996, Willner & Grabherr 2007) or within the separate class Quercetea robori-petraeae (e.g. Jarol^mek et al. 2008a). Melico uniflorae-Quercetum petraeae (Cluster B, Table 1, releves 19-25) The cluster B includes broad-leaved mixed oak forests occupying gentle and south-facing slopes on deeper luvi-cambisols in the submontane belt (420-805 m a.s.l.). It represents the Melico uni-florae-Quercetum petraeae association, which was first described by Gergely (1962) from the Mtii Trascäului Mts in Romania. The stands are characterized by co-dominance of Quercus petraea agg. and Carpinus betulus in the tree layer and the prevalence of Melica uniflora in the herb layer. The shrub and moss layers are poorly developed. This community with relatively low floristical variability is clearly distinct from the other clusters. It belongs to the transition type between mesophilous oak-hornbeam and xerophilous oak forests (cf. Šomšak & Haberova 1979). It is well-differenti- ated through the presence of numerous mesophi-lous and shade-tolerant species ranked into the Carpinion betuli alliance and Fagetalia order (Dac-tylis polygama, Galium odoratum, Geum urbanum, Neottia nidus-avis, Pulmonaria obscura, Symphytum tuberosum, Viola collina, V. reichenbachiana). The frequent abundance of Poa nemoralis reflects more opened sites with skeletal soils. Except for the Hieracium sabaudum and Luzula luzuloides, the acidophilous species are completely missing (Table 1). Several flora elements including Alliaria petiolata, Geranium robertianum, Glechoma hirsuta and Mercurialisperennis indicate a relatively baserich habitat with good mineralization of humus. Although the species composition conventionally comprises the thermophilous plants (e.g. Fragar-ia moschata, Clinopodium vulgare, Lathyrus niger), this association is rather close to the Carpinion betuli alliance. Mesophilous broad-leaved oak-hornbeam forests are important elements of the Western Carpathian forest vegetation (Michalko 1991). Communities that are assigned to this alliance prefer low-altitudinal areas with subcontinental climate on mesotrophic to eutrophic soils (Knollova & Chytry 2004). The above mentioned ecological conditions are typical for some Slovak mountain units (e.g. Drienčansky kras Mts, Slovensky kras Mts, Vihorlatske vrchy Mts), where the Melico uni-florae-Quercetum petraeae is considered as common forest vegetation. Within the ecological range of the Carpinion betuli vegetation, it displays certain differences in terms of the stand structure, floristic composition and overall physiognomy (cf. Michalko 1957, Neuhäuslova-Novotna 1965, Moravec et al. 2000). Poo nemoralis-Quercetum dalechampii (Cluster C, Table 1, releves 26-36) The community settles temperate slopes on dis-tric cambisols with elevation range from 380 m to 694 m a.s.l. The partially mesophilous character of the stands is fully reflected in the species composition (Table 1). The uniformity of tree layer is expressed by the absolute dominance of Quercus petraea agg. Other woody species such as Carpinus betulus and Quercus cerris are only accompanying. The shrub layer with low coverage is constantly developed. Apart from Acer campestre, the typical shrubs are absent. Besides the dominance of medium-tall grass Poa nemoralis and a significant number of generalists of mesic forest habitats (Al-liaria petiolata, Campanula rapunculoides, Galium schultesii, Melica uniflora and Veronica chamae-drys), the characteristic feature of the herb layer is the occurrence of several thermophilous species (Astragalus glycyphyllos, Clinopodium vulgare, Fra-garia moschata). The beech forest herbs (Dentaria bulbifera and Tithymalus amygdaloides) along with Carex muricata agg., Cruciata glabra and Dryop-teris filix-mas enrich the floristic spectrum. The participation of some acidophytes and acidic-tolerant species including Luzula luzuloides, Hypnum cupressiforme and Hedwigia ciliata is also constant. Consequently, the species composition, predominantly the abundant group of more nutrient-demanding species supports assignment of the Poo nemoralis-Quercetum dalechampii to the order Fagetalia. The present finding corresponds with a previous study by Kliment & Watzka (2000), where it was placed into the Carpinion betuli alliance. By contrast, it has been ranked into the order Quercetalia pubescenti-petraeae following the contemporary national checklist of vegetation units (Jarol^mek et al. 2008a), and equally the original description of the association (cf. Šomšak & Haberova 1979). The missing comprehensive revision of oak forest communities and mainly the great variability of the species composition has probably led to the syntaxonomical differences as for classification at the level of higher vegetation units (alliance, order). Accessible data about the Quercion confertae-cerris alliance are concentrated to warm and dry areas of Slovakia, but the alliance does also rarely occur in some relatively cooler parts of the country, too (Neuhäusl & Neuhäuslova-Novotna 1964, Neuhäuslova-Novotna & Neuhäusl 1965, Neu-häuslova-Novotna 1968, Michalko 1991, Kliment & Watzka 2000). The Poo nemoralis-Quercetum dalechampii represents the most mesic forest type in comparison with the other related associations of the same syntaxonomic affiliation (Carici mon-tanae-Quercetum petraeae Gergely 1962, Quercetum petraeae-cerris Soo 1957, partially Potentillo albae-Quercetum Libbert 1933 and Sorbo torminalis-Quer-cetum). In addition to its typical aspect (the Poo nemoralis-Quercetum dalechampii typicum subas-sociation), Šomšak & Haberova (1979) proposed the assignment of the stands with higher cover of the grass species Luzula luzuloides and constant occurrence of Platanthera bifolia, Steris viscaria and a bryophyte Polytrichum formosum to the new subassociation Poo nemoralis-Quercetum da- lechampii luzuletosum. The latter is characterized by the lower presence of some thermophilous herbs and absence of sunny-slope species (Lactu-ca quercina and Vicia tenuifolia). Due to the small number of releves from the geographically limited area (Slovensky kras Mts), this classification needs to be revised. Similar oak habitats were formerly classified as the subassociation Querco petraeae-Carpinetum Soo et Pocs (1931) 1957 po-etosum nemoralis (Mikyška 1939) Klika 1951 (e.g Michalko 1957, Balkovič 2002). Sorbo torminalis-Quercetum (Cluster D, Table 1, releves 37-41) The thermophilous oak forests of slightly acidic substrates on distric cambisol build open to moderately closed stands on south-facing slopes in the submontane belt (390-540 m a.s.l.). Quercus petraea agg. and Q. cerris alternate as dominants of the tree layer, while Sorbus torminalis and Carpi-nus betulus with a lower coverage are admixed only individually. Due to favourable light conditions, the shrub layer has been usually developed, and encompasses thermophilous shrubs (Ligustrum vulgare and Cornus mas) together with saplings of Sorbus torminalis and Quercus petraea agg. The grassy physiognomy of the species-rich herb layer resulted from the dominance of Poa nemoralis, Brachypodium pinnatum and the local presence of Festuca heterophylla and F. pseudodalmatica. Except for the common dry-mesic forest species and acidic-tolerant ones (Cardaminopsis arenosa, Clinopodium vulgare, Galium glaucum, Genista pi-losa, G. tinctoria, Hylotelephium maximum, Pyre-thrum corymbosum, Silene nutans), the herb layer is enriched by facultative calciphyte Campanula persicifolia and mesophilous species such as Dac-tylis polygama and Galium schultesii (cf. Chytry & Horak 1997). However, the conspicuous aspect is formed by both plants of dry grasslands and forests fringes, including Dianthus carthusianorum, Origanum vulgare, Teucrium chamaedrys, Tithy-malus cyparissias, Trifolium aplestre and Verbascum chaixii subsp. austriacum. In the moss layer were found Atrichum undulatum, Bryum capillare, Hyp-num cupressiforme and Weissia controversa. These forests exhibit similarities to the ther-mophilous turkey oak forests on mineral-rich soils included in the association Quercetum petraeae-cer-ris, primarily to the Poa nemoralis variant containing more mesic flora elements (cf. Roleček 2005). The partial differences have been observed in the abundance of thermophilous plants; several of them are missing (e.g. Filipendula vulgaris, Fra-garia viridis, Rosa gallica) or else manifest a lower frequency (e.g. Lychnis coronaria, Vicia cassubica) in our data set (Table 1). On the other hand, numerous plants with close relation to the sunny and drier sites have their ecological optimum in this alliance. Up to now, the Central European thermophilous oak forests of Sorbo torminalis-Quercetum have been known from the Bohemian Massif and Moravia region in the Czech Republic, from where they have extended to northern Austria (Chytry 1997). In the last decade, this association has been reported from Poland as well (Kwiatkowski 2003, Bednorz 2007). Neuhäusl & Neuhäuslova-Novotna (1964) documented an other two oak woodlands in the southern part of the Štiavnicke vrchy Mts; canopy-opened oak forests with Carpathian sub-endemic tall grass Poa pannonica subsp. scabra (Poo scabrae-Quercetum (Magyar 1933) Neuhäusl et Neuhäuslova-Novotna 1964) and sub-xerophilous forests of sunny slopes (Festuco heterophyllae-Quer-cetum Neuhäusl et Neuhäuslova-Novotna 1964). Because of their obvious relation to arid stands in the colline belt, it was not possible to find these distinctive communities in the more humid and cooler northern part of the mountain unit. Soil profiles description The morphological description of soil pits provides some insights into the impact of soil physical structure on vegetation. From the individual soil profiles, there have been deduced some general characteristics for the associated oak vegetation types: 1) the forests have been developed on shallow to medium deep cambisols; 2) the content of rock fragments is very variable; 3) for the individual vegetation types, the soil texture is relatively homogeneous throughout the profile; 4) the whole soil profile is biologically active down to the parent material (see root system). In general, the soil water (its forms, amount and tenacity) serves a central role in a number of processes occurring in soils, and therefore influences the plant community composition and its physiognomy. Its status is directly linked to the soil depth and texture (along with the location in landscape and the seasonal partitioning of rainfalls). The shallow and very skeletal soils have a lower water-holding capacity (cf. Lavelle & Spain 2003). This leads to periodic soil water-deficit mainly for elements of the tree layer. These stands are occupied by more canopy-opened forests (Lu-zulo albidae-Quercetum petraeae and Sorbo tormi-nalis-Quercetum) with species having higher requirements on the light conditions and tolerance to drought. Vegetation of the alliances Carpinion betuli and Quercion confertae-cerris established on the deeper soils has a surface rich in organic matter. The favourable conditions are also reflected in the global floristic composition (higher presence of nutrient-demanding and shade-tolerant species; Table 1). Ass.: Luzulo albidae-Quercetum petraeae Bedrock (Quartzite); Soil subtype (Dystric-Cam- bisol); Position (releve no. 17); Horizons: Ool 2-1 cm, dry grasses, oak foliage and twigs Oof 1-0 cm, mostly oak foliage together with dry grasses Aoq 0-4 cm, dark brown (7.5YR 3/4) sandy loam, fresh moist, fine granular structure, loose consistent, many fine roots, rock fragments (30 %), clear wavy boundary to next horizon Bv 4-20 cm, yellowish brown (10YR 5/4) silty loam, fresh moist, medium granular structure, medium firm consistent, many fine roots, rock fragments (45 %), gradual transition to next horizon B/C 20-40 cm, yellowish brown (10YR 5/6) silty loam, fresh moist, medium granular structure, firm consistent, common fine roots, rock fragments (65 %) Cj 40+ cm, silicate parent material Ass.: Melico uniflorae-Quercetumpetraeae Bedrock (Andesites); Soil subtype (Luvi-Cam- bisol); Position (releve no. 24); Horizons: Ool 3-1 cm, oak and oak-hornbeam litter Oof 1-0 cm Aoq 0-2 cm, dark brown (7.5YR 3/4) silty loam, moist, fine to medium granular structure, loose consistent, many fine roots, rock fragments (0 %), clear smooth boundary to next horizon Bvj 2-30 cm, light brown (7.5YR 6/3) silty loam, fresh moist, fine subangular blocky structure, medium firm consistent, common fine roots, rock fragments (0 %), diffuse boundary to next horizon Bvt 30-60 cm, light brownish grey (10YR 6/2) silty loam, fresh moist, subangular blocky structure, firm consistent, common fine roots, rock fragments (10 %), gradual transition to next horizon B/C 60-75+ cm, light brownish grey (10YR 6/2) silty loam, fresh moist, subangular blocky structure, firm consistent, few fine roots, rock fragments (65 %) Ass.: Poo nemoralis-Quercetum dalechampii Bedrock (Andesites); Soil subtype (Dystric-Cam- bisol); Position (releve no. 26); Horizons: Ool 5-3 cm, oak litter Oof 3-0 cm, partially decomposed oak litter and dry grasses Aoq 0-5 cm, dark brown (7.5YR 3/4) silty loam, fresh moist, fine to medium granular structure, loose to friable consistent, many fine roots, rock fragments (10 %), clear wavy boundary to next horizon Bvj 5-25 cm, brown (7.5YR 5/3) silty loam, fresh moist, medium granular structure, medium firm consistent, many fine roots, rock fragments (20 %), gradual transition to next horizon Bv2 25-55 cm, light brown (7.5YR 6/3) silty loam, fresh moist, fine subangular blocky structure, firm consistent, common fine roots, rock fragments (40 %), gradual transition to next horizon B/C 55-80 cm, light brownish grey (10YR 6/2) silty loam, fresh moist, subangular blocky structure, very firmly consistent, few fine roots, rock fragments (70 %) Cj 80+ cm, silicate parent material Ass.: Sorbo torminalis-Quercetum Bedrock (Andesites); Soil subtype (Dystric-Cam- bisol); Position (releve no. 37); Horizons: Ool 4-2 cm, dry grasses, oak foliage and twigs Oof 2-0 cm, mostly oak foliage Aoq 0-2 cm, dark brown (7.5YR 3/4) silty loam, fresh moist, fine granular structure, loose consistent, many fine roots, rock fragments (<5 %), clear wavy boundary to next horizon Bv 2-20 cm, greyish brown (10YR 5/2) silty loam, fresh moist, medium to coarse granular soil structure, medium firm consistent, many fine roots, rock fragments (20 %), gradual transition to next horizon B/C 20-55 cm, greyish brown (10YR 5/2) silty loam, fresh moist, medium to coarse granular soil structure, firm consistent, common fine roots, rock fragments (70 %) Cj 55+ cm, silicate parent material Main environmental gradient The vegetation-environment relationships are displayed on the DCA ordination diagram (Figure 3). The DCA analysis revealed a clear floristical and ecological separation of the individual vegetation types within the ordination space. The main gradient expresses the combination of the soil reaction and available nutrients in the soil following the Ellenberg indicator values (1. axis). This could be explained by their mutual correlation (cf. Härdtle et al. 2003, 2005, Schuster & Diekmann 2005). Along this nutrient poor-rich-gradient, the vegetation plots are ordered from forests of acidic stands to forests closely related with slightly acidic and neutral habitats. Accordingly, the right part of the scatter-plot is occupied by the releves of the Luzulo albidae-Quercetum petraeae, preferring shallow and acidic soils with low nutrient content. The most mesophilous forests, having most favourable edaphic conditions (Melico uniflorae-Quercetum petraeae), dominate the opposite part. Moreover, light belongs to the environmental variables displaying a strong positive correlation. In this sense, the communities are arranged from more or less shaded to the canopy-opened ones. These general patterns of floristic variation were also emphasized by DCA analysis of the measured parameters (Figure 4). The first ordination axis was highly positively correlated with C/N-ratio and negatively correlated with soil reaction (pH). Figure 3: DCA ordination diagram of the oak forest vegetation samples with Ellenberg indicator values as supplementary variables (length of gradient 3.471; eigenvalues of the first two axes are 0.501 and 0.231; total inertia 4.234). Shaded circles - Luzulo albidae-Quercetum petraeae, full squares - Melico uniflorae-Quercetum petraeae, crosses -Sorbo torminalis-Quercetum, empty rectangles - Poo nemor-alis-Quercetum dalechampii. Correlations between first two axes and environmental variables: Light (0.780 and 0.132), Continentality (0.115 and -0.231), Temperature (-0.217 and -0.237), Soil Reaction (-0.902 and -0.315), Nutrient (-0.945 and -0.158), Moisture (-0.732 and -0.022). Slika 3: Diagram DCA ordinacije popisov hrastovih gozdov z Ellenbergovimi indikatorskimi vrednostmi kot dodatnimi spremenljivkami (dolžina gradienta 3,471; lastne vrednosti prvih dveh osi 0,501 in 0,231; variabilnost vseh ordinaci-jskih osi 4,234). Zasenčeni krožci - Luzulo albidae-Querce-tum petraeae, polni kvadratki - Melico uniflorae-Quercetum petraeae, križci - Sorbo torminalis-Quercetum, prazni pra-vokotniki - Poo nemoralis-Quercetum dalechampii. Korel-acija med prvima dvema osema in okoljske spremenljivke: svetloba (0,780 in 0,132), kontinentalnost (0,115 in -0,231), toplota (-0,217 in -0,237), reakcija tal (-0,902 in -0,315), hranila (-0,945 in -0,158), vlažnost (-0,732 in -0,022). Figure 4: DCA ordination diagram of both samples and measured environmental variables: soil reaction (pH), calcium (Ca2+), C/N-ratio, canopy openness (CO). Correlations between the first two axes and environmental variables: pH (-0.715 and -0.339), Ca2+ (-0.676 and -0.223), C/N (0.833 and 0.180), CO (0.584 and 0.253). For explanation of the symbols of vegetation types see Figure 3. Slika 4: Diagram DCA ordinacije vzorcev in merjenih okoljskih spremenljivk: reakcija tal (pH), kalcij (Ca2+), C/ N razmerje, odprtost sklopa (CO). Korelacija med prvima dvema osema in okoljskimi spremenljivkami: pH (-0,715 in -0,339), Ca2+ (-0,676 in -0,223), C/N (0,833 in 0,180), CO (0,584 in 0,253). Za razlago simbolov vegetacijskih tipov glej Sliko 3. The study supported the relevance of soil and light conditions as determinants affecting the species composition of deciduous forests. The water availability and the other just discussed factors have been confirmed by controlling the vegetation distribution at local and/or regional level (e.g. Kanka 2001, Härdtle et al. 2005, Wallnöfer & Hotter 2008, Slezak & Kukla 2009a), while the geographical gradient has been found significant at large-scale (cf. Knollova & Chytry 2004). ACKNOWLEDGEMENTS We would like to thank Jan Kukla for assistance during the fieldwork, Milan Štech for revision of specimens of Festuca pseudodalmatica, Achillea nobilis, Richard Hrivnak and two anonymous reviewers for useful comments on this paper. We are also grateful to Daniela Dubravkova for language correction and Dušan Senko for help with preparing the map. The research was supported by the Scientific Grant Agency of the Ministry of Education of Slovak Republic and the Slovak Academy of Sciences VEGA (Project No. 2/0034/10) and the University Grant Agency UMB in Banska Bystrica UGA UMB (Project No. I-09-000-27). REFERENCES Balkovič, J. 2002: Forest vegetation in the northwestern part of the Štiavnicke vrchy Mts. Phy-topedon 2002 (1): 17-32. Barkman, J. J., Doing, H. & Segal, S. 1964: Kritische Bemerkungen und Vorschläge zur quantitativen Vegetationsanalyse. Acta Botanica Neerlandica 13: 394-419. Bednorz, L. 2007: The wild service tree Sorbus torminalis (L.) Crantz in plant communities of Poland. Dendrobiology 57: 49-54. Botta-Dukat, Z., Chytry, M., Hajkova, P. & Hav-lova, M. 2005: Vegetation of lowland wet meadows along a climatic continentality gradient in Central Europe. Preslia 77: 89-111. Chytry, M. 1994: Xerothermic oak forests in the middle Vah basin and the southern part of the Stražovska hornatina upland, Slovakia. Scrip-ta-Biology 22-23: 121-134. Chytry, M. 1997: Thermophilous oak forests in the Czech Republic: syntaxonomical revision of the Quercetalia pubescenti-petraeae. Folia Ge-obotanica et Phytotaxonomica 32: 221-258. Chytry, M. & Horak, J. 1997: Plant communities of the thermophilous oak forests in Moravia. Preslia 68: 193-240. Chytry, M., Tichy, L., Holt, J. & Botta-Dukat, Z. 2002: Determination of diagnostic species with statistical fidelity measures. Journal of Vegetation Science 13: 79-90. Ellenberg, H. 1982: Vegetation Mitteleuropas mit den Alpen. Ulmer, Stuttgart, 989 pp. Ellenberg, H., Weber, H. E., Düll, R., Wirth, W., Werner, W. & Paulißen, D. 1992: Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobo-tanica 18: 1-258. Franjic, J., Liber, Z., Škvorc, Ž., Idžojtic, M., Šoštaric, R. & Stančic, Z. 2006: Morphological and molecular differentiation of the Croa- tian populations of Quercus pubescens Willd. (Fagaceae). Acta Societatis Botanicorum Polo-niae 75: 123-130. Frazer, G. W., Canham, C. D. & Lertzman, K. P. 1999: Gap Light Analyzer (GLA), Version 2.0. Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, user's manual and program documentation. Simon Fraser University, Burnaby, British Columbia, 36 pp. Gergely, I. 1962: Contributii la studiul fitoceno-logic al pädurilor din partea nordicä a Muntilor Trascäului. Contributii Botanice (Cluj) 1962: 263-298. Gömöry, D., Yakovlev, I., Zhelev, P., Jedinakova, J. & Paule, L. 2001: Genetic differentiation of oak populations within the Quercus robur/Quer-cus petraea complex in Central and Eastern Europe. Heredity 86: 557-563. Härdtle, W. 2004: Bodensaure Eichen- und Eichenmischwälder Europas. Tuexenia 24: 57-72. Härdtle, W., von Oheimb, G. & Westphal, C. 2003: The effects of light and soil conditions on the species richness of the ground vegetation of deciduous forests in northern Germany (Schleswig-Holstein). Forest Ecology and Management 182: 327-338. Härdtle, W., von Oheimb, G. & Westphal, C. 2005: Relationships between the vegetation and soil conditions in beech and beech-oak forests of northern Germany. Plant Ecology 177: 113-124. Hennekens, S. M. & Schaminee, J. H. J. 2001: TURBOVEG, a comprehensive data base management system for vegetation data. Journal of Vegetation Science 12: 589-591. Hrivnak, R., Hajek, M., Blanar, D., Kochjarova, J. & Hajkova, P. 2008: Mire vegetation of the Muranska Planina Mts - formalised classification, ecology, main environmental gradient and influence of geographical position. Biolo-gia (Bratislava) 63: 368-377. ISSS-ISRIC-FAO 1998: World Reference Base for Soil Resources. World Soil Resources Reports 84: 1-92. Jakucs, P. 1961: Die phytozönologischen Verhältnisse der Flaumeichen Buschwälder Südostmitteleuropas. Akademiai Kiado, Budapest, 316 pp. Jarolimek, I., Šibik, J., Hegedüšova, K., Janišova, M., Kliment, J., Kučera, P., Majekova, J., Michalkova, D., Sadlonova, J., Šibikova, I., Škodova, I., Uhlirova, J., Ujhazy, K., Ujhazy- ova, M., Valachovič, M. & Zaliberova, M. 2008a: A list of vegetation units of Slovakia. In: Jarol^mek, I. & Šib^k, J. (eds.): Diagnostic, constant and dominant species of the higher vegetation units of Slovakia. Veda, Bratislava, pp. 295-329. Jarol^mek, I., Šib^k, J., Tichy, L. & Kliment, J. 2008b: Diagnostic, constant and dominant species of the higher vegetation units of Slovakia. In: Jarol^mek, I. & Šib^k, J. (eds.): Diagnostic, constant and dominant species of the higher vegetation units of Slovakia. Veda, Bratislava, pp. 9-294. Jelaska, S. D. 2004: Analysis of canopy closure in the Dinaric silver fir-beech forests (Omphalodo-Fagetum) in Croatia using hemispherical photography. Hacquetia 3 (2): 43-49. Jurko, A. 1965: Potentillo albae-Quercetum pri Prešove. Biologia (Bratislava) 20: 55-58. Kanka, R. 2001: Phytocoenological characteristic of the thermophilous oak forests with Quercus pubescens agg. in the Male Karpaty Mts, Slovakia. Biologia (Bratislava) 56: 85-101. Klika,J. 1937: Xerotherme und Waldgesellschaften der Westkarpathen (Brezover Berge). Beihefte zum Botanischen Centralblatt 57: 295-342. Kliment, J. & Watzka, R. 2000: Lesne spoločenstva Drienčanskeho krasu. In: Kliment, J. (ed.): Pr^roda Drienčanskeho krasu. ŠOP SR, Banska Bystrica, pp. 191-214. Knollova, I. & Chytry, M. 2004: Oak-hornbeam forests of the Czech Republic: geographical and ecological approaches to vegetation classification. Preslia 76: 291-311. Kwiatkowski, P. 2003: Podgorska cieptolubna d^browa brekiniowa Sorbo torminalis-Querce-tum na Pogorzu Ztotoryjskim. Fragmenta Flo-ristica et Geobotanica, Ser. Polonica 10: 175193. Lavelle, P. & Spain, A. V. 2003: Soil Ecology. Klu-wer Academic Publishers, Dordrecht, 654 pp. Magic, D. 2006: Quercus L. In: Goliašova, K. & Michalkova, E. (eds.): Flora Slovenska V/3. Veda, Bratislava, pp. 108-143. Marhold, K. & Hindak, F. (eds.) 1998: Zoznam nižš^ch a vyšš^ch rastl^n Slovenska. Veda, Bratislava, 688 pp. Matuszkiewicz, W. 2008: Przewodnik do ozna-czania zbiorowisk roslinnych Polski. Wydaw-nictwo Naukowe PWN, Warszawa, 542 pp. Miadok, D. 1991: Xerotermofilne dubiny Ko-niarskej planiny. Biologia (Bratislava) 46: 451-462. Michalko, J. 1957: Geobotanicke pomery pohoria Vihorlat. Vydavatel'stvo SAV, Bratislava, 198 pp. Michalko, J. 1991: Lesne spoločenstva Košickej kotliny (so zretel'om na ostatne kotliny a pril'ahle n^žiny slovenskych Karpat). Acta Botanica Slovaca, Ser. A 11: 9-135. Michalkova, D. 2007: Diversity of dry grasslands in the Považsky Inovec Mts (Slovakia) - a numerical analysis. Hacquetia 6 (1): 61-76. Moravec, J. 1998: Prehled vegetace Česke repub-liky, Svazek 1. Acidofiln^ doubravy. Academia, Praha, 64 pp. Moravec, J., Husova, M., Chytry, M. & Neuhäus-lova, Z. 2000: Prehled vegetace Česke repub-liky, Svazek 2. Hygrofiln^, mezofiln^ a xerofiln^ opadave lesy. Academia, Praha, 320 pp. Mraz, K. 1957: Waldkundliche Untersuchungen im Mittelböhmischen Bergland und Erfahrungen mit der Anwendung statistischer Maschinen bei der synthetischen Bearbeitung. Archiv für Forstwesen 6 (2-3): 109-191. Neuhäusl, R. & Neuhäuslova-Novotna, Z. 1964: Vegetationsverhältnisse am Südrand des Schemnitzer Gebirges. Biologicke Prace 10 (4): 1-80. Neuhäusl, R. & Neuhäuslova-Novotna, Z. 1967: Syntaxonomische Revision der azidophilen Eichen- und Eichenmischwälder im westlichen Teile der Tschechoslowakei. Folia Geobotani-ca et Phytotaxonomica 2 (2): 1-41. Neuhäuslova-Novotna, Z. 1965: Waldgesellschaften in der Gegend von Krupina (SSO-Slowakei). Biologicke Prace 11 (9): 27-50. Neuhäuslova-Novotna, Z. 1968: Beitrag zu den floristisch-phytozönologischen Verhältnissen der Gegend von Lučenec. Biologicke Prace 14 (4): 5-70. Neuhäuslova-Novotna, Z. & Neuhäusl, R. 1965: Beitrag zur Kenntnis der Zerreichen-Trauben-Eichenwälder des Hügellandes Pohronska pa-horkatina (S-Slowakei). Biologia (Bratislava) 20: 511-523. Nixon, K. C. 1993: Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Annales des Sciences Forestieres 50, Suppl. 1: 25-34. Podani, J. 2001: SYN-TAX 2000. Computer Program for Data Analysis in Ecology and Sys-tematics for Windows 95, 98 & NT. User's manual. Scientia Publishing, Budapest, 53 pp. Roleček, J. 2004: Subkontinentäln^ doubravy aso-ciace Caricifritschii-Quercetum roboris na Zähof^. Bulletin Slovenskej Botanickej Spoločnosti 26: 163-176. Roleček, J. 2005: Vegetation types of dry-mesic oak forests in Slovakia. Preslia 77: 241-261. Schuster, B. & Diekmann, M. 2005: Species richness and environmental correlates in deciduous forests of Northwest Germany. Forest Ecology and Management 206: 197-205. Slezak, M. 2010: Charakteristika asociacie Luzulo albidae-Quercetum petraeae v Štiavnickych vr-choch (stredne Slovensko). Bulletin Slovenskej Botanickej Spoločnosti 32, (accepted). Slezak, M. & Hegedüšova, K. 2010: Fytocenolog-icka charakteristika lesnych spoločenstiev sev-ernej časti Štiavnickych vrchov. Bulletin Slovenskej Botanickej Spoločnosti, Suppl., (accepted). Slezak, M. & Kukla, J. 2009a: Forest vegetation of the northern part of the Štiavnicke vrchy Mts. Folia Oecologica 36 (1): 39-49. Slezak, M. & Kukla, J. 2009b: Vyskyt niektorych zriedkavejš^ch cievnatych rastl^n v severnej časti Štiavnickych vrchov. Bulletin Slovenskej Botanickej Spoločnosti 31: 17-25. Sobocka, J. (ed.) 2000: Morfogeneticky klasifi-kačny system pod Slovenska. Bazalna referenčna taxonomia. VÜPOP, Bratislava, 76 pp. Solomakha, V. A. 1996: The syntaxonomy of vegetation of Ukraine. Ukrainian Phytosociologi-cal Collection, Ser. A, 4 (5): 1-121. Šilc, U., Čarni, A., Košir, P., Marinšek, A. & Zelnik, I. 2008: Litter-ranking forests in SE Slovenia and in Croatia. Hacquetia 7 (1): 71-88. Šomšak, L. 1963: Dubiny južnej časti Malej Fatry a ich ochrana. Československa ochrana pr^ro-dy 1:146-164. Šomšak, L. & Haberova, I. 1979: Die Waldgesellschaften des Silica-Plateaus. Biologicke Prace 25 (2): 5-89. ter Braak, C. J. F. & Šmilauer, P. 2002: CANOCO Reference manual and CanoDraw for Windows User's guide. Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NY, 500 pp. Tichy, L. 2002: JUICE, software for vegetation classification. Journal of Vegetation Science 13: 451-453. Tichy, L. & Chytry, M. 2006: Statistical determination of diagnostic species for site groups of unequal size. Journal of Vegetation Science 17: 809-818. Wallnöfer, S. & Hotter, M. 2008: Syntaxonomy and site ecology of mixed oak forest communities in the Inner and Intermedial Alps of Tyrol (Austria). Botanica Helvetica 118: 21-43. Willner, W. & Grabherr, G. 2007: Die Wälder und Gebüsche Österreichs. Ein Bestimmungswerk mit Tabellen. Spektrum Akademischer Verlag, Heidelberg, 302 pp. Received 9. 6. 2010 Revision received 18. 8. 2010 Accepted 21. 8. 2010 JT Jr u '(3 > ts ti 'š3 tö > ^ .ss rH ^ 03 o ^ „a eg Ö fa o QJ 'is cu > ix ^ ^^ > N .o ^ > o 13 cti cti cu o üii o ^ ^ Ph CS Jä -<3 ■S -S CS CS H H ro + ^ + m ^ ^ m m ^ + s -ii is iS Is S ^ ^^ \o \o CO ^ -O - B » » » ÜS i; i; « a iS iS W) Q W ^^ S w" Jp !2 jg Co £ Ü § s a <3 -C) >3 S ig S O H 1 • Ü O H s H o ^^ ^^ ^^ s + + " s ■ ü ü ?? r^ r^ r^ ^ :: CC • CC :: :: VO ^O ^ ^ ^ ^ 00 ^ "fi "fi vo ^o ^ ^ S " ■ ^ + ^ + S s + + s ^ ^ s ^ iS iä O CS <3 ig CJ o iS ü £ ČJ Q CJ ^ « S |S iS O -C) !S K S Hs s -iS "iS CJ ?? ?? ?? ?? VOVOVOVOVOVOVOVOVOVOVOVOVOVOVO <3 ^ § S iS ^^^ Jß :3 iS s •JS S3 ca ^ S . iš CJ n Cü iS •= -S iS iS iS jg s Co "iS 1 s -fe Ü O Ig Ü ü ü s o iS C.5 S I cq cq Michal Slezak & Anna Petrasova: Oak Forest Vegetation in the Northern Part of the ŠtiavnickE Vrchy Mts (SVK) Legend A - Luzulo albidae-Quercetum petraeae, B - Melico uniflorae-Quercetum petraeae, C - Poo nemoralis-Quercetum dalechampii, D - Sorbo torminalis-Quercetum, DgS - Diagnostic species. Species present only in one or two releves: E3 - tree layer: Abies alba (18, +), Acer campestre (35, +; 38, +), A. platanoides (21, +; 22, +), A. pseudoplatanus (19, r), Betula pendula (17, r), Cerasus avium (18, +), Corylus avellana (19, r; 34, +), Fraxinus excelsior (19, a; 22, 1), Larix decidua (17, a), Pinus nigra (12, +), Sorbus aucuparia (37, +), Tilia cordata (1, +), T. platyphyllos (35, r; 36, +). E2 - shrub layer: Betula pendula (17, +), Corylus avellana (19, a; 25, r), Picea abies (1, 1; 17, +), Pinus sylvestris (16, r), Pyrus communis agg. (38, 1), Ribes uva-crispa subsp. grossularia (30, +), Robinia pseudacacia (40, +), Rosa sp. (18, r; 32, r), Sorbus aria (36, +; 37, +), S. aucuparia (37, +). E1 - herb layer: Ajuga genevensis (36, r; 38, r), A. reptans (24, r; 33, r), Allium senescens subsp. montanum (37, +), Anthoxanthum odoratum (7, r; 13, 1), Anthriscus cerefolium (22, r), A. sylvestris (20, r), Asarum europaeum (25, +), Asplenium septentrionale (2, +; 36, r), Athyrium filix-femina (19, r), Betonica officinalis (19, r), Betula pendula (17, r), Calamagrostis arundinacea (1, 1; 19, 1), Cardamine impatiens (4, r), Carex pilosa (21, b; 30, r), Circaea lutetiana (19, r), Cornus mas (37, +), Crataegus laevigata (24, +), Dactylis glomerata (12, r), Dorycnium herbaceum (37, r), Epilobium montanum (19, r), Epipactis helleborine (19, +), Erysimum odoratum (2, r), Fragaria vesca (31, +; 32, 1), Galeobdolon luteum (23, r; 30, 1), Galium verum (2, +), Geranium sanguineum (38, +), Heracleum sphondylium (19, +; 20, r), Hieracium racemosum (39, 1), H. sp. (1, 1; 21, r), Hordelymus europaeus (19, r; 20, r), Hypericum hirsutum (30, r; 31, r), Jovibarba hirta (18, +), Juglans regia (41, r), Juniperus communis (12, r), Lamium maculatum (30, +; 31, r), Larix decidua (17, r), Laserpitium latifolium (19, r; 35, +), Lilium martagon (19, r), Luzula campestris (7, +; 13, +), Pimpinella saxifraga (1, r), Pinus sylvestris (13, +; 17, r), Platanthera bifolia (20, r; 29, r), Prunus spinosa (20, r; 24, +), Ranunculus auricomus agg. (20, +), Rhamnus catharticus (31, r), Acetosella vulgaris (18, +), Sanicula europaea (19, +; 24, r), Scrophularia nodosa (19, r; 22, r), Senecio ovatus (19, +; 25, r), S. germanicus (19, r), S. sp. (18, r), Sorbus aria (18, +), Stachys alpina (23, r), Urtica dioica (36, r), Verbascum nigrum (34, +), Verbena officinalis (18, +), Vicia cassubica (40, 1), V. sepium (19, +), Vincetoxicum hirundinaria (11, r; 27, +), Viola mirabilis (19, r), Waldsteinia geoides (32, +). E0 - moss layer: Brachythecium albicans (13, r), Bryum caespiticium (31, r), Dicranella heteromalla (1, r; 7, r), Dicranum montanum (9, r), Eurhynchium hians (24, r), Homalothecium sericeum (39, 1), Hylocomium splendens (1, 1), Isothecium myurum (1, 1; 30, r), Leucodon sciuroides (5, +; 6, r), Mnium stellare (1, 1; 3, 1), Myurella julacea (28, r), Plagiothecium denticulatum (12, r), Pleurozium schreberi (1, 1), Pohlia nutans (13, +), Polytrichum juniperinum (1, a), Rhytidiadelphus triquetrus (1, +), Tortula ruralis (5, r), T. subulata (28, r). Locations of releves Releve number, locality-village, altitude (m), aspect (in letters), slope (degrees), releve area, cover of tree layer (E3), cover of shrub layer (E2), cover of herb layer (E^), cover of mosses and lichens (E0), longitude, latitude, date (day/month/year), releve author. 1. Kozelnik (Dolinka), 490 m, NW, 40°, 400 m2, E3 70 %, E2 10 %, Ej 85 %, E0 30 %, 19°00'07.8"E, 48°30'00.9"N, 9. 6. 2010, M. Slezak. 2. Banska Bela, Jergištolna (Široky vrch Mt), 635 m, SW, 30°, 400 m2, E3 70 %, E2 3 %, Ej 80 %, E0 5 %, 18°54'31.9"E, 48°28'66.1"N, 17. 6. 2009, M. Slezak. 3. Hodruša Hamre, Kopanice (Havrankovo), 575 m, SW, 25°, 400 m2, E3 85 %, E2 0 %, Ej 60 %, E0 9 %, 18°46'20.7"E, 48°26'62.0"N, 19. 6. 2008, M. Slezak. 4. Bzenica, Chobien Mt., 330 m, SSW, 25°, 400 m2, E3 65 %, E2 3 %, Ej 55 %, E0 10 %, 18°45'09.6"E, 48°31'62.7"N, 29. 6. 2009, M. Slezak. 5. Bzenica, Hlinicka hora Mt., 365 m, S, 15°, 400 m2, E3 65 %, E2 2 %, Ej 70 %, E0 9 %, 18°46'03.6"E, 48°31'32.8"N, 29. 6. 2009, M. Slezak. 6. Bzenica, 370 m, SE, 25°, 400 m2, E3 70 %, E2 3 %, Ej 70 %, E0 9 %, 18°45'23.3"E, 48°31'60.9"N, 29. 6. 2009, M. Slezak. 7. Lehotka pod Brehmi, Grafovska Mt, 545 m, S, 20°, 400 m2, E3 65 %, E2 5 %, Ej 70 %, E0 6 %, 18°50'71.6"E, 48°32'79.9"N, 14. 7. 2009, M. Slezak. 8. Žarnovica, Dolne Hamre, 417 m, E, 30°, 400 m2, E3 70 %, E2 3 %, Ej 60 %, E0 30 %, 18°44'73.2"E, 48°27'91.3"N, 22. 7. 2009, M. Slezak. 9. Žarnovica, Lukavica (Mäsiarka Mt), 531 m, SSW, 25°, 400 m2, E3 70 %, E2 2 %, Ej 70 %, E0 6 %, 18°45'27.6"E, 48°29'48.3"N, 27. 7. 2009, M. Slezak. 3 2 1 0 10. Žarnovica, Lukavica (Kašivar Mt), 510 m, W, 5°, 400 m2, E3 70 %, E2 2 %, Ej 70 %, E0 4 %, 18°45'27.0"E, 48°29'26.6"N, 27. 7. 2009, M. Slezak. 11. Sklene Teplice, Fusty hrad, 530 m, E, 35°, 400 m2, E3 65 %, E2 6 %, Ej 60 %, E0 25 %, 18°50'97.8"E, 48°31'97.5"N, 1. 7. 2009, M. Slezak. 12. Žarnovica, Lukavica (Bartkovci), 504 m, W, 20°, 400 m2, E3 70 %, E2 2 %, Ej 70 %, E0 15 %, 18°46'49.2"E, 48°28'70.3"N, 3. 8. 2009, M. Slezak. 13. Lehotka pod Brehmi, Grafovska Mt, 530 m, E, 20°, 400 m2, E3 65 %, E2 3 %, Ej 60 %, E0 30 %, 18°51'17.8"E, 48°32'75.4"N, 14. 7. 2009, M. Slezak. 3 2 1 0 14. Vyhne, Čubernovo (Klokoč Mt), 585 m, S, 30°, 400 m2, E3 65 %, E2 3 %, Ej 70 %, E0 6 %, 18°47'48.2"E, 48°29'26.8"N, 3. 8. 2009, M. Slezak. 15. Vyhne, Čubernovo (Klokoč Mt), 605 m, S, 35°, 400 m2, E3 65 %, E2 4 %, Ej 70 %, E0 10 %, 18°47'27.1"E, 48°29'42.3"N, 8. 9. 2009, M. Slezak. 16. Vyhne, Čubernovo (Klokoč Mt), 585 m, SSW, 35°, 400 m2, E3 70 %, E2 3 %, Ej 70 %, E0 9 %, 18°47'18.8"E, 48°29'40.4"N, 8. 9. 2009, M. Slezak. 17. Vyhne (Šprochova), 515 m, SSW, 30°, 400 m2, E3 60 %, E2 5 %, Ej 60 %, E0 4 %, 18°49'53.6"E, 48°29'85.7"N, 10. 6. 2008, M. Slezak. 18. Vyhne, Spaleny vrch Mt, 670 m, SW, 40°, 400 m2, E3 60 %, E2 5 %, Ej 30 %, E0 30 %, 18°49'13.7"E, 48°29'58.8"N, 10. 6. 2008, M. Slezak. 19. Dobra Niva, 805 m, SW, 20°, 400 m2, E3 80 %, E2 10 %, Ej 80 %, E0 0 %, 19°00'52.2"E, 48°28'69.4"N, 9. 6. 2008, M. Slezak. 20. Bansky Studenec, 775 m, SE, 10°, 400 m2, E3 85 %, E2 3 Ej 90 E0 0 %, 18°59'67.5"E, 48°26'75.2"N, 13. 6. 2008, M. Slezak. 21. Voznica, 420 m, SW, 20°, 400 m2, E3 80 %, 0 %, Ej 75 %, E0 0 %, 18°43'49.0"E, 48°27'36.3"N, 16. 6. 2008, M. Slezak. 22. Voznica, 425 m, SW, 20°, 400 m2, E3 80 %, E^ 0 %, Ej 80 %, E0 0 %, 18°43'55.0"E, 48°27'28.6"N, 16. 6. 2008, M. Slezak. 23. Hodruša Hamre, Kopanice (Trstene), 640 m, SW, 25°, 400 m2, E3 80 %, E2 1 %, Ej 95 %, E0 1 %, 18°47'08.4"E, 48°26'37.7"N, 19. 6. 2008, M. Slezak. 3 2 1 0 24. Šašovske Podhradie (Sut), 600 m, W, 20°, 400 m2, E3 80 %, E2 5 %, Ej 90 %, E0 4 %, 18°55'78.9"E, 48°33'97.4"N, 25. 6. 2008, M. Slezak. 25. Močiar, 670 m, SW, 15°, 400 m2, E3 90 %, E2 5 %, Ej 80 %, E0 0 %, 18°57'30.5"E, 48°31'25.7"N, 29. 7. 2008, M. Slezak. 26. Voznica (Ferencky), 380 m, SW, 25°, 400 mi2, E3 70 %, E2 2 »/o, Ej 70 %, E0 0 %, 18°43'20.8"E, 48°27'39.0"N, 16. 6. 2008, M. Slezak. 27. Hronska Breznica, 635 m, W, 15°, 400 m2, E3 70 %, E2 5 %, Ej 90 %, E0 0 %, 19°00'84.0"E, 48°32'54.6"N, 13. 7. 2009, M. Slezak. 28. Banska Bela, Antošikovci, 625 m, SE, 20°, 400 m2, E3 90 /o, E2 3 %, Ej 80 %, E0 5 %, 18°57'18.3"E, 48°28'44.7"N, 10. 7. 2008, M. Slezak. 29. Banska Bela, Antošikovci, 610 m, SE, 20°, 400 m2, E3 85 %, E2 5 %, Ej 85 %, E0 3 %, 18°57'20.5"E, 48°28'45.1"N, 10. 7. 2008, M. Slezak. 30. Banska Bela, Antošikovci, 650 m, NW, 15°, 400 m2, E3 70 %, E2 8 %, Ej 80 %, E0 1 %, 18°57'31.6"E, 48°28'56.5"N, 10. 7. 2008, M. Slezak. 31. Banska Bela, Antošikovci, 645 m, SE, 20°, 400 m2, E3 80 %, E2 3 %, Ej 60 %, E0 1 %, 18°57'34.5"E, 48°28'57.4"N, 10. 7. 2008, M. Slezak. 32. Močiar, 685 m, SSE, 20°, 400 m2, E3 80 %, E2 3 %, Ej 80 %, E0 0 %, 18°57'45.0"E, 48°31'30.1"N, 29. 7. 2008, M. Slezak. 33. Bansky Studenec (Zvotle), 645 m, SW, 25°, 400 m2, E3 85 %, E2 6 %, Ej 80 %, E0 5 %, 18°57'94.0"E, 48°27'38.5"N, 8. 7. 2008, M. Slezak. 34. Bansky Studenec (Zvotle), 680 m, S, 25°, 400 m2, E3 70 %, E° 2 %, Ej 80 %, E0 15 %, 18°57'98.4"E, 48°27'42.8"N, 8. 7. 2008, M. Slezak. 35. Banska Bela, Haj, 555 m, W, 25°, 400 m2, E3 75 %, E° 9 %, Ej 60 %, E0 2 %, 18°55'62.5"E, 48°29'23.4"N, 17. 6. 2009, M. Slezak. 36. Sklene Teplice, Drienovy vrch Mt, 694 m, W, 25°, 400 m2, E3 65 %, E° 4 %, Ej 90 %, E0 10 %, 18°53'01.5"E, 48°32'58.6"N, 29. 7. 2009, M. Slezak. 3 2 1 0 37. Šašovske Podhradie (Blanočny vrch Mt), 490 m, SSW, 25°, 400 m2, E3 70 %, E° 12 %, Ej 85 %, E0 5 %, 18°54'69.9"E, 48°34'61.4"N, 25. 6. 2008, M. Slezak. 3 2 1 0 38. Šašovske Podhradie (Blanočny vrch Mt), 540 m, SW, 20°, 400 m2, E3 50 %, E° 12 %, Ej 80 %, E0 4 %, 18°54'90.9"E, 48°34'63.3"N, 25. 6. 2008, M. Slezak. 3 2 1 0 39. Šašovske Podhradie, Istebne valley, 478 m, SE, 30°, 400 m2, E3 70 %, E° 9 %, E^ 50 %, E0 15 %, 18°53'87.3"E, 48°33'66.7"N, 7. 8. 2009, M. Slezak. 40. Žarnovica, Dolne Hamre, 443 m, SSE, 15°, 400 m2, E3 80 %, E° 9 %, Ej 90 %, E0 7 %, 18°44'12.7"E, 48°27'88.7"N, 22. 7. 2009, M. Slezak. 41. Žarnovica, Dolne Hamre, 390 m, SW, 20°, 400 m2, E3 80 %, E° 6 %, Ej 80 %, E0 6 %, 18°44'66.1"E, 48°27'89.7"N, 22. 7. 2009, M. Slezak.