
Informatica 39 (2015) 115–123 115

Parallel Implementation of Desirability Function-Based Scalarization
Approach for Multiobjective Optimization Problems

O. Tolga Altinoz
Ankara University, Electrical and Electronics Engineering, Turkey
E-mail: taltinoz@ankara.edu.tr

Eren Akca
HAVELSAN A.S., Ankara, Turkey
E-mail: eren.akca@havelsan.com.tr

A. Egemen Yilmaz
Ankara University, Electrical and Electronics Engineering, Turkey
E-mail: aeyilmaz@eng.ankara.edu.tr

Anton Duca and Gabriela Ciuprina
Politehnica University of Bucharest, Romania
E-mail: anton.duca@upb.ro, gabriela@lmn.pub.ro

Keywords: parallel implementation, CUDA, particle swarm optimization

Received: December 1, 2014

Scalarization approaches are the simplest methods for solving the multiobjective problems. The idea of
scalarization is based on decomposition of multiobjective problems into single objective sub-problems.
Every one of these sub-problems can be solved in a parallel manner since they are independent with each
other. Hence, as a scalarization approach, systematically modification on the desirability levels of the
objective values of multiobjective problems can be employed for solving these problems. In this study, de-
sirability function-based scalarization approach is converted into parallel algorithm and applied into seven
benchmark problems. The performance of parallel algorithm with respect to sequential one is evaluated
based on execution time on different graphical processing units and central processing units. The results
show that even the accuracy of parallel and sequential codes are same, the execution time of parallel algo-
rithm is up to 24.5-times faster than the sequential algorithm (8.25-times faster on average) with respect to
the complexity of the problem.

Povzetek: Pristopi s skalarizacijo sodijo med najenostavnejše načine reševanja večkriterijskih problemov.
Zamisel skalarizacije temelji na dekompoziciji večkriterijskih problemov v enokriterijske podprobleme, ki
jih lahko rešujemo sočasno, saj niso medsebojno odvisni. Torej lahko uporabimo za reševanje večkriteri-
jskih problemov sistematično spreminjanje nivoja zaželenosti ciljnih vrednosti teh problemov. V tej študiji
smo implementirali vzporedni način skalarizacije na osnovi funkcije zaželenosti in ga aplicirali na sedmih
tesnih problemih. Učinek vzporednega algoritma glede na zaporednega smo ovrednotili z ozirom na čas
izvajanja na različnih grafično-procesnih in centralno-procesnih enotah. Vzporedna različica daje enako
natančne rezultate in je tudi do 24,5-krat hitrejša od zaporedne (8,25-krat v povprečju), glede na zahtevnost
problema.

1 Introduction

The problem for determining the best possible solution set
with respect to multiple objectives is referred to as a multi-
objective (MO) optimization problem. There are many ap-
proaches for the solution of these kinds of problems. The
most straightforward approach, the so-called “scalariza-
tion” or “aggregation” is nothing but to combine the ob-
jectives in order to obtain a single-objective [1].

Scalarization approaches are the simplest methods for
solving the multiobjective problems. The idea of scalariza-
tion is based on decomposition of multiobjective problems
into single objective sub-problems. The solutions of these
single objective sub-problems form the Pareto approxima-
tion set. However, since the number of sub-problems is
much higher than the number of objectives in multiobjec-
tive problem, and each problem is desired to be solved
by single objective optimization algorithm, the computa-

116 Informatica 39 (2015) 115–123 O. T. Altinoz et. al.

tion time of scalarization approaches is much higher such
that it becomes unfeasible to be solved by scalarization ap-
proaches. For each sub-problem, a specific number of func-
tion evaluations must be performed by a single objective
optimization algorithm. Hence, a bunch of function evalu-
ations are evaluated for solving multiobjective optimization
problem. Before development of powerful multi-objective
optimization algorithms such as the Non-Dominated Sort-
ing Genetic Algorithm (NSGA) [2], NSGA-II [3] or Vec-
tor Evaluated Genetic Algorithm (VEGA) [4], scalarization
techniques were preferred to solve engineering optimiza-
tion problems. After the development of successful multi-
objective optimization algorithms, scalarization techniques
were considered to be old-fashioned, and they were aban-
doned due to the necessary of much higher number of func-
tion evaluations to obtain approximately same performance
as multiobjective optimization algorithms. However, with
the aid of parallel architectures and devices, it is possible
to reconsider and revisit the scalarization techniques since
these techniques are usually suitable for parallelization.

One of the scalarization approaches for a-priori process
is defined with the aid of a desirability function in this
study. Desirability function is integrated to the particle
swarm optimization algorithm in order to normalize the
joint objective function values [5]. Then, geometric mean
of the desirability levels of each objective is computed in
order to obtain a single value. For each sub-problem, the
shape of the desirability function is shrunk. Therefore
the desirability level is changed and the optimization re-
sults are also varied. At the end of this method, a set of
possible solutions are composed. This set contains both
the dominated and the non-dominated solutions. If nec-
essary, the programmer might run a posterior method like
non-dominated sorting for selecting the non-dominated so-
lutions, as well. However, in this study, the main focus
is to obtain the possible solution set. In this study, with
a similar motivation, we demonstrate how one of these
techniques can be parallelized and present performance of
the approach by implementing on the Graphic Processing
Units (GPUs) via the Compute Unified Device Architec-
ture (CUDA) framework.

This paper is organized as follows: Section 2 explains
the desirability function-based scalarization approach in
detail and Section 3 presents a parallel implementation of
the proposed method. Section 4 gives the implementation
environment, benchmark problems and performance evalu-
ation of the proposed method. The last section presents the
conclusion and future work off the proposed method.

2 Desirability Function-Based
Scalarization Approach

In a general manner, the desirability functions can be ap-
plied in order to incorporate the decision maker’s prefer-
ences without any modification of the single-objective op-
timization algorithm. The decision maker chooses a desir-

ability function and corresponding level. At each steps/it-
erations of the algorithm, instead of objective values; de-
sirability index is calculated. At the end of the algorithm
only a single solution is ready for collected by the decision
maker. Even this method uses the advantages of desirabil-
ity functions (Desirability functions are explained in Sec-
tion 2.1) decision maker has small control on final result
since a solution is obtained on a region defined by the de-
sirability function (Figures 3 and 4) instead of on a line like
weighted sum approach. However, in this study, by defin-
ing a systematical reduction approach, our aim is not to
include or incorporate the preference of the decision maker
but to present a generalized multi-objective optimization
method for obtaining many possible solution candidates,
that proposed method is applied as a scalarization approach
like weighted sum method. Therefore a systematic ap-
proach was previously proposed by changing the shape of
desirability functions by three of the authors of this paper
[6]. For N objective problem, N numbers of desirability
functions are selected with respect to the boundaries of the
problem. Next, desirability functions are divided into lev-
els and each level corresponding to one of the single objec-
tive implementation. For example of two objective problem
case which was investigated in this paper, two desirability
functions are defined and they are divided into same level
(let’s say 10) per function. Since there are two desirabil-
ity functions defined, there are 100 single objective imple-
mentations in total. The previous study [6] show that the
performance of the desirability function is greatly depends
on the number of the levels, in other words the number of
the single objective evaluations. Also the results obtained
in the previous study are showed that, it is acceptable for
bi-objective problems. However, still the performance of
the proposed approach is greatly depends on the number
of levels, which increases the total number of computation
time. Hence, in this study, the parallel cores of CPU and
GPU are using as computation units for single objective
optimization algorithms, and the total evaluation times are
recorded for comparison. The aim of this paper is to show
the applicability of the proposed method with the aid of
parallel architectures of CPU and GPU.

2.1 Desirability Function

The desirability function idea was first introduced by Har-
rington in 1965 for the multi-objective industry quality
control. After the proposition of the desirability function
concept, Deringer and Suich [7] introduced two different
desirability function formulations, which become the fun-
damental equations of desirability functions. These two de-
sirability function definitions are given by (1), (2) and (3),
which are called one-sided and two-sided, respectively.

The parameters given in equations are as follows: y is
the input, for our case it is the objective function value,
hmin, hmax and hmed are the minimum, maximum and the
median acceptable values for the domain of the two-sided
desirability function.

Parallel Implementation of Desirability. . . Informatica 39 (2015) 115–123 117

Figure 2: The linear desirability functions constructed for the bi-objective optimization problem.

d1(y) =

1, y < hmin

(y−hmax

hmin−hmax
)r, hmin < y < hmax

0, y > hmax

(1)

d2(y) =

0, y < hmin

(y−hmin

hmax−hmin
)r, hmin < y < hmax

1, y > hmax

(2)

d3(y) =

0, y < hmin

(y−hmin

hmed−hmin
)t, hmin < y < hmed

(y−hmax

hmed−hmax
)s, hmed < y < hmax

0, y > hmax

(3)

The desirability level d(y) = 1 is the state for fully desir-
able, and d(y) = 0 is for a not-desired case. In this respect,
d1 one-sided desirability function is useful for minimiza-
tion problem. The curve parameters are r, t and s. They
are used in order to plot an arc instead of solid line, when
desired. Curves plot in Figure 1 demonstrate the effects
of the curve parameters and the graphs of the desirability
functions.

2.2 Method of Desirability Function-Based
Scalarization

The main idea beneath the desirability functions is as fol-
lows:

– The desirability function is a mapping from the do-
main of real numbers to the range set [0, 1].

– The domain of each desirability function is one of the
objective functions; and it maps the values of the rel-
evant objective function to the interval [0, 1].

– Depending on the desire about minimization of each
objective function (i.e., the minimum / maximum tol-
erable values), the relevant desirability function is
constructed.

– The overall desirability value is defined as the geomet-
ric mean of all desirability functions; this value is to
be maximized.

Particularly, for a bi-objective optimization problem in
which the functions f1 and f2 are to be minimized, the
relevant desirability functions d1(f1) and d2(f2) can be
defined as in Figure 2. The desirability functions are not
necessarily defined to be linear; certainly, non-linear defi-
nitions shall also be made as described in [7].

Throughout this study, we prefer the linear desirability
functions.

In [6], a method for extraction of the Pareto front was
proposed by altering the shapes of the desirability functions
in a systematical manner. Particularly by:

– Fixing the parameters f1max_tol and f2max_tol seen in
Figure 2 at infinity, and

– Varying the parameters f1min_tol and f2min_tol system-
atically,

It is possible to find the Pareto front regardless of its con-
vexity or concavity. This claim can be illustrated for the bi-
objective case as follows: as seen in Figure 3, the param-
eters f1min_tol and f2min_tol determine the sector which is
traced throughout the solution. The obtained solution cor-
responds to a point for which the geometric mean of the two
desirability values. As seen in Figure 4, even in the case
of concave Pareto front, the solution can be found without
loss of generality. In other words, unlike the weighted-sum
approach, the method proposed in [6] does not suffer from
the concave Pareto fronts.

In [6], the applicability and the efficiency of the
proposed scalarization approach was demonstrated via
some multi-objective benchmark functions. Each single-
objective problem (i.e., the scalarization scheme) was

118 Informatica 39 (2015) 115–123 O. T. Altinoz et. al.

Figure 1: The graphical demonstration of the desirability
functions.

Figure 3: The solution via the desirability-function based
approach for convex Pareto front.

Figure 4: The solution via the desirability-function based
approach for concave Pareto front.

solved with Particle Swarm Optimization. Despite no ex-
plicit demonstration or proof, it was claimed that:

– There were no limitations about the usage of Parti-
cle Swarm Optimization; i.e., any other heuristic al-
gorithm could be incorporated and implemented.

– The proposed method can be easily parallelizable.

In this study, we demonstrate the validity of these claims
by performing a parallel implementation on GPUs via the
CUDA framework. The next section is devoted to the im-
plementation details.

3 Parallel Multiobjective
Optimization with GPU

This section is dedicated to explaining the steps and idea of
parallelizing the Desirability function-based scalarization
approach with the aid of CUDA library.

3.1 Fundamentals of CUDA Parallel
Implementation

The researchers familiar with the programming languages
used to desire a programming language or framework let-
ting them write parallel codes easily. For this purpose in
2007, NVidia [8] introduced a software framework called
CUDA. By means of this, a sequential function code can

Parallel Implementation of Desirability. . . Informatica 39 (2015) 115–123 119

be converted to a parallel kernel by using the libraries and
some prefix expressions. By this way, the programmers do
not need to learn a new programming language. They are
able to use their previous know-how related to C/C++, and
enhance this knowledge with some basic expressions intro-
duced by CUDA. However, without the knowledge about
the CUDA software and the parallel architecture hardware,
it is not possible to write efficient codes.

CUDA programming begins with the division of the ar-
chitectures. It defines the CPU as host and GPU as de-
vice. The parallel programming actually is the assignment
of duties to parallel structure and collection of the results
by CPU. In summary, the codes are written for CPU on
C/C++ environment, and these codes include some paral-
lel structures. These codes are executed by the host. Host
commands device for code executed. When the code is exe-
cuted by the device, the host waits until the job is finished,
then a new parallel duty can be assigned, or results from
the finished job can be collected by the host. Thus, the de-
vice becomes a parallel computation unit. Hence, parallel
computing relies on the data movement between host and
device. Eventhough both host and device are very fast com-
putation units, the data bus is slower. Therefore, in order
to write an efficient program, the programmer must keep
his/her code for minimum data transfer between the host
and the device.

The GPU has stream multiprocessors (SMs). Each SM
has 8 stream processors (SPs), also known as cores, and
each core has a number of threads. In tesla architecture
there are 240 SPs, and on each SP has 128 threads, which is
the kernel execution unit. The bodies of threads are called
groups. The groups are performed collaterally with respect
to the core size. If the GPU architecture has two cores, then
two blocks of threads are executed simultaneously. If it has
four cores, then four blocks are executed collaterally.

Host and device communicate via data movement. The
host moves data to the memory of the GPU board. This
memory is called global memory which is accessed from
all threads and the host. The host has also access to con-
stant and texture memories. However, it cannot access the
shared memory, which is a divided structure assigned for
every block. The threads within the block can access their
own shared memory. The communication of the shared
memory is faster than the global memory. Hence, a par-
allel code must contain data transfers to shared memory
more often, instead of global memory.

In this study, random numbers are needed to execute the
algorithm. Hence, instead of the rand() function of the
C/C++ environment, CURAND library of the CUDA pack
has been employed. In addition, the CUDA Event is pre-
ferred for accurate measurement of the execution time. In
the next section, the parallel implementation of desirability
function-based scalarization was explained in detailed.

3.2 Parallel Implementation of Desirability
Function-Based Scalarization

The main idea of our parallel implementation throughout
this study is illustrated in Figure 5.

Each scalarization scheme is handled in a separate
thread; after the relevant solutions are obtained, they are
gathered in a centralized manner to constitute the Pareto
front from which the human decision maker picks a solu-
tion according to his/her needs. This approach ensures that
the number of solutions found that can be found in parallel
is limited by the capability of the GPU card used.

As stated before, we implemented the Particle Swarm
Optimization Algorithm for verification of the aforemen-
tioned claims. The parallel CUDA implementation was
compared to the sequential implementation on various
GPUs and CPUs.

Figure 5: The parallel CUDA implementation of the
desirability-function based approach.

It was seen that both implementations (sequential and
parallel CUDA) were able to find the same solutions but in
different elapsed times. As seen in Figure 6, if the num-
ber of Pareto front solutions increase, the advantage of the
parallel CUDA increases dramatically.

Figure 6 presents parallel implementation of scalariza-
tion approach for the weighted sum method. The simple
convex problem is selected and defined in (4) and (5) as a
test bed for present the performance of the parallelization
method for scalarization.

120 Informatica 39 (2015) 115–123 O. T. Altinoz et. al.

f1(x) = x2 (4)

f2(x) = (x− 2)2 (5)

According to Figure 6, the performance of high and mid-
level GPU cards are approximately 10-times faster than se-
quential implementation. The results obtained in Figure 6
yields the following conclusions:

– For a small number of Pareto solutions, CPU performs
better against GPU

– After 64 solutions, parallel implementation presents
better results than sequential code

– An old-fashion mobile GPU performs almost same as
a relatively high level CPU.

– As the number of solution increases, the professional
high level GPU devices perform more stable than gen-
eral purpose GPUs.

4 Implementation, Results, and
Discussion

The parallel desirability function-based scalarization ap-
proach was applied to solve seven benchmark problems.
These problems are selected based on the complexity
against execution time on computation unit. Since the av-
erage number of execution time is considered in the study,
problems from simple calculation to problems with more
branch and complex functions. In this section the bench-
mark problems and the results with respect to execution
time is presented.

4.1 Benchmark Problems
In this study, ten benchmark problems [9] with different
complexity and Pareto shape are selected to present the per-
formance of the method. Table 1 gives the mathematical
formulations of the problems. The performance compar-
ison is performed not only on the accuracy of the results,
but more importantly on the execution time. As given in Ta-
ble 1 the complexity of the benchmark problems are given
from simple to more complex problems. The reason be-
hind is that as the complexity of the function is increased,
the single processors have to accomplish much more cal-
culations, and since the single processors on a GPU has
lower capacity than CPU, it will be a good comparison for
not only the number of solutions in solution space but also
the problem complexity.

Table 1 presents as three columns. The first column gives
the known-names of benchmark problems. The reader can
be access amount of information about the function by
searching by selecting keyword as function name. The sec-
ond column is the mathematical formulation of the func-
tion. As the order of row increases the complexity of the

function also increases. The last column is for the defines
of the range of the decision variables.

4.2 Implementation Results
Table 2 presents the execution time comparison of CPU
(Xeon E2620) and GPU (Tesla K20) for various numbers
of levels from 8×8 to 100×100, number of single objective
evaluations are 64 and 104 respectively. For low complex
problems, until 225 numbers of levels (400 levels need for
hard problems), the CPU outperforms GPU implementa-
tion with respect to execution time. It is reasonable since
only small portion of cores on GPU can be used. But lower
number of relatively very fast cores are finished the exe-
cutions earlier than GPU. From 400 to 6, 400 levels, GPU
computation time of parallel codes exceeds CPU time. At
6, 400 levels, the difference between CPU and GPU is at
the peak grade. After that level, the advantage of GPU re-
duces. In other words, the GPU implementation acts more
sequentially, since there are not any empty resources to ex-
ecute parallel implementation. Among all of the problems,
UF1 is the hardest for GPU implementation since the com-
putation time is the longest for this problem. The main
reasons are that: a) checking mechanism for even and odd
parts that adds branch to the code, b) square of the trigono-
metric function. for GPU implementation branch are the
time consuming programming codes such that in an if-else,
both parts are evaluated by the architecture, that reduces
the resources.

The average execution time of CPU is 8.25-times slower
than average GPU execution time. The following results
are obtained for comparison the execution time:

– For a small number of solutions, CPU outperforms
GPU

– The increase on CPU execution time is proportional
to the number of solutions. Hence, the execution time
on CPU increases.

– The GPU implementations are much beneficial for
overall comparison.

– For a very high number of solutions, the improve-
ments obtained in GPU slowly decreases since GPU
contains limited number of stream (multi)processors.
At some point the improvements are not lower than ≈
10-times on average.

5 Conclusion
In this study, desirability function-based scalarization ap-
proach is evaluated in a parallel fashion. Since the perfor-
mance of sequential and parallel implementations are sim-
ilar to each other, the execution time of these codes are
compared based on different number of solutions. The re-
sults show that, for small number of solutions, parallel im-
plementation is slower when compared to sequential im-
plementation. But as the number of solution increases, the

Parallel Implementation of Desirability. . . Informatica 39 (2015) 115–123 121

Table 1: Multiobjective benchmark problems

Function Mathematical description Decision
name variable range

f1(x) = x1

ZDT1 f2(x) = g(1−
√

f1
g) 0 ≤ xi ≤ 1

g = 1 + 9
n−1

∑n
i=2 xi

f1(x) = x1
ZDT2 f2(x) = g(1− (f1g)2) 0 ≤ xi ≤ 1

g = 1 + 9
n−1

∑n
i=2 xi

f1(x) = x1

ZDT3 f2(x) = g(1−
√

f1
g −

x1

g sin(10πx1)) 0 ≤ xi ≤ 1

g = 1 + 9
n−1

∑n
i=2 xi

f1(x) = x1 + 2
|J1|

∑
i∈J1(xi − sin(6πx1 + iπ

n))2 0 ≤ xi ≤ 1

UF1 f2(x) = 1−√x1 + 2
|J2|

∑
i∈J2(xi − sin(6πx1 + iπ

n))2 −1 ≤ xi−1 ≤ 1

J1 = {i| i is odd and 2 ≤ i ≤ n}, J2 = {i| i is even and 2 ≤ i ≤ n}

f1(x) = x1 + 2
|J1|

∑
i∈J1 y

2
i 0 ≤ xi ≤ 1

UF2 f2(x) = 1−√x1 + 2
|J2|

∑
i∈J1 y

2
i −1 ≤ xi−1 ≤ 1

yi =

{
xi − (0.3x21 cos(24πx1 + 4iπ

n) + 0.6x1) cos(6πx1 + iπ
n), i ∈ J1

xi − (0.3x21 cos(24πx1 + 4iπ
n) + 0.6x1) sin(6πx1 + iπ

n), i ∈ J2

f1(x) = x1 + 2
|J−1| ((4

∑
i∈J1 y

2
i)− (2

∏
i∈J1 cos(20yiπ√

i
)) + 2)

UF3 f2(x) = 1−√x1 + 2
|J−2| ((4

∑
i∈J2 y

2
i)− (2

∏
i∈J2 cos(20yiπ√

i
)) + 2) 0 ≤ xi ≤ 1

yi = xi − x
0.5(1+

3(i−2)
n−2)

1

f1(x) = x1 + 2
|J1|

∑
i∈J1 h(yi) 0 ≤ xi ≤ 1

UF4 f2(x) = 1− x21 + 2
|J2|

∑
i∈J2 h(yi) −2 ≤ xi−1 ≤ 2

yi = xi − sin(6πx1 + iπ
n), h(t) = t

1+e2t

122 Informatica 39 (2015) 115–123 O. T. Altinoz et. al.

Table 2: Execution time comparison [seconds] of benchmark functions, where improvement, impr, is the scale factor
shows how many times the GPU is faster than CPU, so that if impr < 1 means CPU is faster than GPU

of levels for Devices
2 desirability & ZDT1 ZDT2 ZDT3 UF1 UF2 UF3 UF4 Average
functions impr

CPU 0.133 0.109 0.19 0.11 0.109 0.109 0.094 0.1220
8× 8 GPU 0.433 0.4504 0.483 0.4917 0.4861 0.4906 0.408 0.4633

impr 0.3072 0.2420 0.3934 0.2237 0.2242 0.2222 0.2304 0.2633
CPU 0.221 0.153 0.291 0.222 0.199 0.197 0.168 0.2073

10× 10 GPU 0.439 0.451 0.4848 0.4934 0.49 0.4914 0.405 0.4649
impr 0.5034 0.3392 0.6002 0.4499 0.4061 0.4009 0.4148 0.4450
CPU 0.446 0.333 0.576 0.42 0.418 0.413 0.372 0.4254

15× 15 GPU 0.4424 0.4576 0.4904 0.499 0.4944 0.4967 0.409 0.4699
impr 1.0081 0.7277 1.1746 0.8417 0.8455 0.8315 0.9095 0.9055
CPU 0.8 0.564 0.997 0.717 0.706 0.728 0.811 0.7604

20× 20 GPU 0.4281 0.442 0.4781 0.5 0.4977 0.5 0.4146 0.4658
impr 1.8687 1.2760 2.0853 1.4340 1.4185 1.4560 1.9561 1.6421
CPU 1.21 0.893 1.521 1.12 1.444 1.114 0.987 1.1841

25× 25 GPU 0.4393 0.4573 0.491 0.5 0.4954 0.499 0.408 0.4700
impr 2.7544 1.9528 3.0978 2.2400 2.9148 2.2325 2.4191 2.5159
CPU 1.753 1.266 2.279 1.582 1.589 1.59 1.428 1.6410

30× 30 GPU 0.4424 0.4566 0.4871 0.501 0.4973 0.4979 0.4132 0.4708
impr 3.9625 2.7727 4.6787 3.1577 3.1953 3.1934 3.4560 3.4880
CPU 3.162 2.186 4.094 2.794 2.854 2.757 2.508 2.9079

40× 40 GPU 0.4451 0.453 0.4893 0.4999 0.4983 0.4991 0.4151 0.4714
impr 7.1040 4.8256 8.3671 5.5891 5.7275 5.5239 6.0419 6.1684
CPU 4.879 3.431 6.138 4.412 4.382 4.298 3.889 4.4899

50× 50 GPU 0.4488 0.4639 0.4967 0.5119 0.5 0.501 0.4321 0.4792
impr 10.8712 7.3960 12.3576 8.6189 8.7640 8.5788 9.0002 9.3695
CPU 6.946 4.798 9.492 6.236 6.411 6.391 6.233 6.6439

60× 60 GPU 0.4709 0.4864 0.518 0.5287 0.518 0.519 0.4587 0.5000
impr 14.7505 9.8643 18.3243 11.7950 12.3764 12.3141 13.5884 13.2876
CPU 9.52 6.764 11.959 8.566 8.548 8.562 7.592 8.7873

70× 70 GPU 0.4995 0.5144 0.5417 0.5489 0.539 0.5435 0.4923 0.5256
impr 19.0591 13.1493 22.0768 15.6058 15.8590 15.7534 15.4215 16.7036
CPU 12.488 8.87 15.892 11.11 11.366 11.538 13.307 12.0816

80× 80 GPU 0.6179 0.6321 0.6488 0.6388 0.635 0.6362 0.607 0.6308
impr 20.2104 14.0326 24.4945 17.3920 17.8992 18.1358 21.9226 19.1553
CPU 15.776 11.246 20.027 14.039 14.138 14.053 14.583 14.8374

90× 90 GPU 0.8299 0.854 0.8749 0.8424 0.84 0.8432 0.8335 0.8454
impr 19.0095 13.1686 22.8906 16.6655 16.8310 16.6663 17.4961 17.5325
CPU 19.2579 13.863 24.504 17.252 19.219 17.74 15.49 18.1894

100× 100 GPU 1.1157 1.149 1.1812 1.12 1.222 1.125 1.132 1.1493
impr 17.2608 12.0653 20.7450 15.4036 15.7275 15.7689 13.6837 15.8078

Parallel Implementation of Desirability. . . Informatica 39 (2015) 115–123 123

Figure 6: Comparison of the sequential Java and the parallel CUDA implementations.

GPU is almost 20-times faster than sequential implementa-
tion.

Acknowledgement

This study was made possible by grants from the Turk-
ish Ministry of Science, Industry and Technology (In-
dustrial Thesis – San-Tez Programme; with Grant Nr.
01568.STZ.2012-2) and the Scientific and Technological
Research Council of Turkey - TÜBITAK (with Grant Nr.
112E168). The authors would like to express their grati-
tude to these institutions for their support.

References
[1] R. Marler, S. Arora (2009) Transformation methods

for multiobjective optimization, Engineering Opti-
mization, vol. 37, no. 1, pp. 551–569.

[2] N. Srinivas, K. Deb (1995) Multi-Objective function
optimization using non-dominated sorting genetic al-
gorithms, Evolutionary Computation, vol. 2, no. 3,
pp. 221-–248.

[3] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan (2002)
A fast and elitist multiobjective genetic algorithm:
NSGA-II, IEEE Transactions on Evolutionary Com-
putation, vol. 6, no. 2, pp. 182-–197.

[4] J. D. Schaffer (1985) Multiple objective optimization
with vector evaluated genetic algorithms, Proceed-
ings of the International Conference on Genetic Al-
gorithm and their Applications, pp. 93–100.

[5] J. Branke, K. Deb (2008) Integrating user prefer-
ences into evolutionary multiobjective optimization,
Knowledge Incorporation in Evolutionary Comput-
ing, Springer, pp. 461–478.

[6] O. T. Altinoz, A. E. Yilmaz, G. Ciuprina (2013) A
Multiobjective Optimization Approach via Systemat-
ical Modification of the Desirability Function Shapes,
Proceedings of the 8th International Symposium on
Advanced Topics in Electrical Engineering.

[7] G. Derringer, R. Suich (1980) Simultaneous op-
timization of several response variables,Journal of
Quality Technology, vol. 12, no. 1, pp. 214–219.

[8] NVIDIA Corporation (2012) CUDA dynamic paral-
lelism programming, NVIDIA.

[9] E. Ziztler, K. Deb, L. Thiele (2000) Comparison of
multiobjective evolutionary algorithms: Empirical re-
sults, Evolutionary Computation Journal, vol. 8, no.
2, pp. 125–148.

