
Metodološki zvezki, Vol. 5, No. 2, 2008, 95-111 

On Covariance Estimation when 
Nonrespondents are Subsampled 

Wojciech Gamrot1 

Abstract 

The phenomenon of nonresponse in a sample survey reduces the 
precision of parameter estimates and introduces the bias. Several procedures 
have been developed to compensate for these effects. An important 
technique is the two-phase (or double) sampling scheme which relies on 
subsampling the nonrespondents and re-approaching them in order to obtain 
the missing data. This paper focuses on the application of double sampling 
to estimate the finite population covariance. Two covariance estimators 
using combined data from the initial sample and the subsample are 
considered. Their properties are derived. Two special cases of the general 
procedure are discussed. 

1 Introduction 

The estimation of covariances between individual population characteristics and of 
the covariance matrix as a whole in the nonresponse situation has enjoyed vivid 
interest for years. The principle of maximum likelihood (ML) plays a prominent 
role in constructing estimators for covariance matrices as well as for individual 
covariances. Finkbeiner (1979) applies Fletcher-Powell optimum-seeking 
algorithm for obtaining ML estimates of covariance matrix for factor analysis. 
Lee(1986) proposes the estimation procedure under which missing values are 
viewed as latent variables and estimators are obtained under normality 
assumptions via generalized least squares and ML using Fisher scoring (iteratively 
reweighted Gauss-Newton algorithm). A coherent theory on the use of maximum 
likelihood principle to estimate the covariance matrix under some model 
describing the distribution of population values is given by Little and Rubin 
(1987). The Expectation-Maximization (EM) algorithm by Dempster, Laird and 
Rubin (1977) is contemplated as a standard method for dealing with nonresponse 
in a wide range of cases with special emphasis on the normal distribution. This 
approach is further developed in subsequent papers. Woodruff (1990) considers 
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alternative estimator based on the EM algorithm with additional restrictions 
expressed by the regression superpopulation model. Schneider (2001) proposes a 
regularized EM algorithm utilizing ridge regression, for the case where number of 
variables exceeds the sample size. Bentler and Liang (2003) discuss the 
application of an EM-type gradient algorithm for maximum likelihood estimation 
in the context of two-level structural equation modelling. Jamshidian (1997) 
applies EM for confirmatory factor analysis. Jamshidian and Bentler (1999) 
explore the possibilities of using several complete-data algorithms (EM, Fletcher-
Powell and Fisher's scoring) to provide maximum likelihood estimates of the 
covariance matrix with missing data. Under a competing approach Van Praag, 
Dijkstra and VanVelzen (1985) construct an asymptotically distribution-free 
(ADF) estimator of the covariance matrix based on linear regression. Arminger 
and Sobel (1990) abandon normality constraints and use pseudo-maximum 
likelihood (PML) method by Arminger and Schoenberg (1989) to construct 
estimators of covariance matrices while Yuan and Bentler (1995) provide 
theoretical justification for the use of PML in the context of non-normal 
distributions. Gold, Bentler and Kim (2003) compare ADF estimators with 
maximum likelihood estimators in the context of structural equation modelling. 
Significant attention is also devoted to the use of various imputation methods in 
covariance estimation. Brown (1994) compares estimators for listwise deletion, 
pairwise deletion and mean imputation. Kline (1998) compares the properties of 
estimators computed under mean imputation, regression imputation and pattern 
matching. Schafer and Olsen (1998) employ a method of multiple imputation 
invented by Rubin (1987). They develop data augmentation algorithm and provide 
justification for its use on the grounds of Bayesian theory. Data augmentation is 
also considered in the paper of Graham and Hofer (2000) and compared with the 
EM method. The comparison of estimators for listwise and pairwise deletion, 
mean imputation and full-information maximum likelihood is given by 
Wothke (2000). In this paper the problem of estimating individual covariance 
between two population characteristics is discussed under the quasi-randomization 
approach (Oh and Scheuren (1983)). It is assumed that the nonresponse is a 
random phenomenon but population values are fixed and they are not subject to 
modeling as opposed to most of the papers referenced above. 

Let us consider some characteristics X and Y in finite population U of size N. 
Fixed values of these characteristics are respectively denoted by x1,...,xN and 
y1,...,yN. The aim of the survey is to estimate some functions of these values called 
population parameters. Let the population be surveyed according to the following 
general two-phase sampling procedure. In the first phase a random sample s of size 
n is drawn from U according to some arbitrary sampling design p(s) determining 
individual inclusion probabilities of the first order pi = ^ s3i p(s) and of the 

second order n^ = ^ s3ij p(s), for i ^ j e U . We assume that nonresponse appears in 

the survey, and consequently some units respond while others do not. The sample s 
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may consequently be divided Into two disjoint subsets s1 and s2 such that units 
from si respond and units from s2 do not. Following Cassel et al. (1983) we 
assume that nonresponse is a random event governed by some probability 
distribution q(s1 | s) usually referred to as response distribution (see e.g. 
Särndal et al. 1992). In general, it is defined conditionally with respect to s 
in order to reflect the interactions between sampled units. The response 
distribution determines individual response probability of any i-th unit 
Pi|s = X si ' i q( s 1 | s ) and joint response probability of i-th and j-th unit 

Pij|s = X s i ' i j q ( s 1 | s ) for i ^ j eU . The distribution q(s1 | s) also determines the 
behaviour of the random set s2 which may be expressed as a function of s and s1, 
so for any s2=s-s1 we have q(s11 s) = q(s21 s) = q(s1,s21 s). The second phase of 
the survey is then carried out and in this second phase a subsample s' of size n' is 
drawn from s2 according to the sampling design p'(s ' |s,s2) which is characterized 
by another set of inclusion probabilities of the first order ni|s = ^ s , 3 i p'(s' |s,s2) 

and second order rc^ = ^ s , 3 i j p'(s' |s,s2) i ^ j eU . We assume that necessary efforts 

are undertaken in the second phase that guarantee obtaining complete responses 
from all subsampled units. In the setup described above three sources of sample 
randomness were defined, each of them respectively associated with probability 
distribution p(s), q(s1|s) and p'(s' |s,s2). All expectations will be computed jointly 
with respect to these three probability distributions unless otherwise stated. 

2 Estimation of the population total 

Let us consider the population total of X (the same may be defined for Y or any 
other characteristic): 

tx = Z Xi (2.1) X 
ieU 

Under complete response it is unbiasedly estimated by the Horvitz-Thompson 
(1952) statistic: 

i X, 
tx = (2.2) X -

ies n 

In particular, by putting x i=1 for i e U we obtain an unbiased estimator of the 
population size N in the form: 

N = X - (2.3) 
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Both estimators above are generally biased under nonresponse. As an example 
consider deterministic nonresponse model, according to which the population is 
divided into two strata: U1 and U2, of sizes N1 and N2 such that p i=1 for i e U 1 and 
p i=0 otherwise. If the sample is drawn using simple random sampling without 
replacement (SRSWOR), and hence inclusion probabilities of the first and second 
order are respectively equal to n i=n/N and n ij=n(n-1)/(N(N-1)) for i ^ j e U then the 
estimator turns out to be biased and its bias is equal to: 

B ( t x ) = t x u - t x = - £ i î U 2 X i ( 2 . 4 ) 

where txU = Z i î U x i . The bias does not depend on the sample size and hence it 

does not tend to zero with growing n. However, using the data from both phases 
we can construct an unbiased estimator of tx in the form (Särndal et al 1992): 

t x = Z ̂  + Z (2.5) 
ies! n i ies' n i n i s , s 2 

Putting x i=1 for i e U we again obtain an unbiased estimator of N: 

N • = Z - + Z — — (2.6) 
ies! n i ies' n i n i s , s 2 

These estimators will be used further as building blocks for more complicated 
estimation procedures. 

3 Estimation of the population covariance 

Let us consider the population covariance between X and Y defined by the 
expression: 

CT 
i ( i Y i Ï 

(X, Y) = — V x i - - y x, y i - - y y, 
N -1 ieU v

 i NjeU j
y v

 i NjeU j
y 

(3.1) 

or by the equivalent formula: 

1 
Cu(X,Y) = — - 1 t t (3.2) 

N - 1 x y N(N - 1) x y 

w h e r e t x y = Z i e U ^ ^ t x = Z i e U x i
 a n d t y = Z ieU y>. U n d e r c o m p l e t e r e s p o n s e 

the covariance is often estimated by respective statistics: 

C 1 ( X , Y ) = N - r ' x y - N(N~-1) V t y 
(3.3) 

1 
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and 

C 2 (X ,Y) 
1 

NN - 1 
-t„, -

1 

N(N - 1 ) 
t t (3.4) 

where unknown population totals are replaced with corresponding Horvitz-
Thompson estimators. As indicated by Särndal et al (1992), the latter is usually 
preferred to the former due to better variance properties. These covariance 
estimators are however biased under nonresponse, As a special case let us consider 
SRSWOR and deterministic nonresponse. For large sample size approximate 
biases of both estimators respectively take the form: 

where 

AB(C (X, Y)) = CU (X, Y) - CU(X, Y) 

AB(C2(X, Y)) = CU i #(X, Y) - Cu (X, Y) 

1 1 
C U (X, Y) = 1 U1 N - 1 

C U J X , Y ) : 

x y U 1 N ( N - 1 ) t x U 1 t y U 1 

1 

N1 - 1 
txyU1 A T /-AT n t x U 1 t y U 1 N 1 ( N - 1 ) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

w h i l e t xU1 = Z i ^ ^ t yU1 = Z i s U ^ i
 a n d txyU1 = Z ^ ^ i . H e n c e t h e b i a s d ° e s 

not tend to zero when n grows in an apparent analogy to the expression (2.4). In 
order to correct for the bias we propose to replace Horvitz-Thompson estimators 
with their unbiased double sampling counterparts. This leads to two alternative 
estimators of the population covariance: 

and 

C .1(X, Y) = — ^ t Xy — - 1 — - t xt y 
• N - 1 x y N(N - 1 ) x y 

C 2 ( X , Y ) = ^ — t X - - — J 1 * t * ; NN • - 1 xy N • (N • - 1 ) x y 

(3.9) 

(3.10) 

Using Taylor linearization we obtain the approximate variance of C.1(X, Y) : 

AV(C .1 (X, Y)) = 

where 

(N - 1 ) 2 Z u i u j 
i, j îU n, n, V J j 

+ E„ 
u u j 

n 

n 
i j s , s 2 

V 7 1 i s , s ^ j s , s 2 ) ) ) 

u, = (x, - X)(y, - Y) - XY 

(3.11) 

(3.12) 

while X = tx / N and Y = ty / N . The approximate bias may be expressed in the 

form: 

1 

1 
1 1 
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AB(C .1 (X, Y)) = 
1 

N 2 (N -1) 2 Z xiyj i,jîU 
^ - 1 
n j % , 

V 1
 J 

+ E„ Z 
x y, 

% 

% 
\W 

l j s , s 2 - 1 
V 1 s , s 2 j s , s 2 J 

JJ 
(3.13) 

It is worth noting, that this approximation of the bias is obtained by expanding the 
estimator in Taylor series including terms up to the second order, as opposed to 
more crude approximations based only on first-order terms. The symbols AB and 
AV are used to distinguish linearization-based approximations from the exact bias 
and variance. Using the same method we obtain the approximate variance 
of C,2(X, Y) in the form: 

c / \ / « « / \ \ \ 

AV(C .2(X,Y)) = 
1 

(N -1 ) 2 E* * u , u * i,JîU 

- , - 1 
V i j 

+ E_ y u^u, 

i,jîs2 n i n j 

i j s , s 2 

V^ is,s^js,s2 J J 
1 

(3.14) 

where 

u* = (xi - X ) ( y i - Y) - C U ( X , Y ) 

and its second-order bias: 

1 

(3.15) 

AB(C .2(X,Y)) = -

where 

N 2 (N -1)2 T 
i,JîU 

u - î i L - 1 
V i j 

+ E„ T 
u 

V i , J Î s 2 i j 

i j | s , s 2 - 1 
V^ ils,s^jls,s2 J Jy 

(3.16) 

u* = 1 n 2 ( u i + u,) + - 2 N ( N - 1)((xi - x , ) ( y i - y , ) + u + u, + 2Cu(X,Y)) (3.17) 

The symbol E p q ( ) appearing in expressions above represents the expectation with 

respect to first-phase sampling design p(s) and to the response distribution q(s1|s). 
On assumed level of generality it is impossible to eliminate them from AV 
formulas but we may achieve this by making additional assumptions concerning 
the second phase sampling design and response distribution. The example is 
shown in the next section. 

On the other hand, the approximate variances may be estimated, without any 
assumptions, by employing the approach of Särndal et al (1992) which leads to 
respective statistics: 

V ( C ( X , Y) = 
1 

(N -1) 2 

u-u-II * 
V i,jes1usl n i j v n i n j y 

+ I 
u-u-

jîs' n i n j n i j s , s 2 

n \ \ 

i j s , s 2 

V ^ i s , s ^ j s , s 2 ) ) 

(3.18) 

* 

1 1 

and 
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V(C .2(X,Y)) = 

where 

and 

(N - 1 ) 2 

~ * / 
u- u-Z1 * 

^ i j e s j us' n ij v n i n j y 

+ Z 
u- u-j 

j Î s i j ijs,s2 

n \ \ 

i j s , s 2 

f 

u-
t • \ 

x; 
v i N y 

t 
yi 

• A 

y 

N 

u = 
. \ 

x-
i NN * 

f 

v y N2 

tx 
yi - -^r 

V N* 
C * 2(X,Y) 

/ 

n • 

n i j n i j s , s 2 

n i j n i s , s 2 

for i, j Î s2 

for i Î s2, j Î s1 

for i Î s1, j Î s2 

for i, j Î s1 

vn i s , s ^ j s , s 2 y y 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

If the statistics ui and u* estimated constants ui and u* without error, then 

variance estimators above would respectively be unbiased for AV(C*1(X,Y)) and 

AV(C * 2(X, Y)). Obviously they do not and some bias appears, but we may hope 

that it remains modest and tends to zero for large samples. We will now present 

two important special cases of the general procedure presented above. 

1 
1 1 

x 

* 

4 Equal probability sampling 

Let us assume as in papers of Srinath (1971) and Rao (1986) that SRSWOR is 
used in both phases. Hence inclusion probabilities of the first and second order are 
respectively equal to n i=n/N and n ij=n(n-1)/(N(N-1)) for i ^ j e U in the first phase 
while ni|s = n ' /n 2 and rc^ = n '(n ' -1)/(n2(n2 -1)) for i ^ j e U in the second 

phase. We also assume that the subsample size is a linear function of the 
nonrespondent subset size according to formula: n' = cn2 where 0<c<1 is a 
constant fixed in advance. Furthermore, we assume deterministic nonresponse 
model described earlier. Under these assumptions we have N* ° N. Consequently 
both estimators C*1(X,Y) and C*2(X,Y) are mutually equivalent and take the 
common form: 

C + (X, Y) = — t ; - ^ î + t + (4.1) 
+ N - 1 xy N(N - 1 ) x y 
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where 

î+ = N 
xy n Z x.y.+1Z x.y. 
t + = N 

x n 

v i e s i 

c 

-y x 
c ies' J 

\ 

S xi+1S xi 
î y = N y n 

V l Î s i f 
x +- y x 

c ies' 

\ 

Z yi + 1 Z yi 
V i e s i 

(4.2) 

(4.3) 

(4.4) 

The approximate variance of C + (X, Y) may be expressed as: 

AV(C+(X, Y)) = 
N2 

(N -1)2 

N - n 
Nn 

SU(u)+ 
W 1 - c 2 2 

n c SU (u) (4.5) 

where 

1 ( 1 
(u) = — Z u i - - Z u, 

N - 1 i e u v i N , e u
 Jy 

\ 2 

( u ) = — y u i — y u , v ' n - 1 ^ i N ^ J 

iN T j- i c TT - . J-> 1 i<=TT. 2 1 i e U 2 ^ 2 jeU2 J 

(4.6) 

(4.7) 

The second-order approximate bias is 

1 
AB(C+(X, Y)) = - - _ n 2 

N 2 (N -1) 2 ^ Cu(X, Y) + CU2 (X, Y) ' 
Nn n c 2 

where 

C T ( X , Y ) = — L _ y x i - — z x , y i - — Z y , 
N - 1 ^ i N ^ j N ^ j 

i J->2 jeU 2 J \ ^ 2 jeU 2 2 1 ieU2 V 

(4.8) 

(4.9) 

and W2=N2 /N. Both approximate bias and approximate variance decrease when 
initial sample size n grows. From (3.18) we also obtain the variance estimator: 

V(C + (X, Y)) = 
N N - n 

(N -1 ) 2 n(n - 1 ) 
(n1 - 1)S2 (u+) + 

+ N ( n 2 - 1 ) - c n 2 ( n - 1 ) + n 1 s 2 ' ( u + ) + -
/"v t \ s v / v s s y c(N - n) n 

(4.10) 

ies 

2 S U 

2 

2 S U 2 

where 
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and 

— +
 1 v^ ~ + 

u s 1 = — L u + 
ies1 

u + = n z u+ 
n ^ 

1(u+) = - J - r I ( u + - U + ) 
1 ies1 

(u+) = - 1 - S ( u + - u+)2 i2 /• + 

~ + u = X; 1 N yi N 

t x t y 

N2 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 
+ + t t y X 

5 Unequal probability sampling 

We will now focus on another special case of the general two-phase procedure. 
The deterministic nonresponse model assuming that response probabilities are 
either equal to zero or equal to unity is seldom realistic. In practice they are more 
likely to take any value from the <0,1> interval and depend on the auxiliary 
variables as well as the variable under study. In particular it may be more 
reasonable to assume that response probabilities are described by logistic model 
given by expression: 

Pi = (1 + exp(ßxi))-1 (5.1) 

where x i is some vector of auxiliary variables corresponding to the i-th population 
unit while ß is the parameter vector. Also, more sophisticated sampling designs 
that make use of auxiliary information to improve the efficiency of parameter 
estimates are often preferred to the SRSWOR. One of such designs, known as 
Pareto sampling (Rosén 1997), allows to draw a fixed-size sample with first order 
inclusion probabilities approximately proportional to the values z1,...,zN of the 
auxiliary characteristic Z. According to this procedure the sample s of the size n is 
drawn in following two steps (Särndal and Lundström 2005): 

1) For any i e U a realization u i of a random variable having uniform 
distribution on the <0,1> interval is generated and the following expression 
is evaluated: 
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q, = (5.2) 
p.(1 - u,) 

where the desired inclusion probability n, is given by expression 

P, = (5.3) 
i zi 

ieU 

If n,>0 then i-th unit is automatically included in the sample and inclusion 
probabilities for remaining units are recomputed accordingly. 

2) The population subset consisting of n units having the largest values of qk 

is included in the sample. 

Proposed covariance estimators are not equivalent now. Computation of their 
properties in such a situation using general formulas for approximate variance and 
approximate bias derived above is possible when some reasonable assumptions are 
made about response distribution. However, to evaluate exact inclusion 
probabilities it is necessary to use numerical procedures developed by 
Aires (2000). This makes the analytical comparison of covariance estimators 
difficult. Hence, a simulation study was carried out in order to compare both 
covariance estimators. 

During simulation experiments, the population under study was represented by 
the data obtained from the Polish'1996 agricultural census representing 2420 
farms in three boroughs (Boleslaw, Grçboszôw, Radgoszcz) of the D^browa 
Tarnowska district. Three variables were used including farm sales (X), farm cattle 
stock (Y) and farm area (Z). The covariance between X and Y was the estimated 
parameter. A logistic nonresponse model was arbitrarily assumed stating that 
population units respond independently with response probabilities respectively 
equal to pi=(1+exp(ß 0+ß 1x i+ß 2yi))-1 for i e U with the parameter vector 
ß=[ß0 ,ß 1,ß2] chosen arbitrarily. Two simulation experiments were respectively 
executed for ß=[0,0,0] (pi independent on X,Y) and ß=[0,1,1] (p, dependent 
on X,Y). The simulations were independently repeated for Pareto sampling 
utilizing Z as the auxiliary variable in both phases, and for simple random 
sampling without replacement in both phases. The same sample size n=100, 150, 
... , 600 was always assumed for both designs. For each sample size the drawing of 
40000 sample-subsample pairs was simulated, and the properties of estimators 
were assessed on the basis of their empirical distributions. Hence, each point on 
following graphs corresponds to 40000 estimates. Estimators C ,j(X,Y), C .2(X,Y) 
and C + (X,Y) were compared. In the graphs they are respectively denoted by 
abbreviations (Cov1, Cov2 and Cov_srs). 

The mean square error (MSE), the bias and the share of bias in MSE observed 
in the first experiment are respectively shown on Figures 1, 2 and 3. 
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Figure 1: MSE as a function of n for ß=[0,0,0], 

V) < 
CÛ 

• Cov1 

• Cov2 
• Cov srs 

n 

Figure 2: Bias as a function of n for ß=[0,0,0]. 

The MSE of all three estimators decreases with growing sample size. This 
observation is consistent with asymptotic results obtained for the SRSWOR case. 
For any value of n the estimator C.1(X,Y) is much less accurate than others. The 
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lowest mean square error is observed for C,2(X,Y), which is significantly better 
than other two in terms of MSE. The bias of all three estimators is negative and its 
absolute value decreases with growing n. This is also consistent with asymptotic 
results for SRSWOR. The share of bias in the MSE is approximately constant for 
each estimator. It does not exceed 1,4% for C .2(X,Y) and 0,4% for C .1(X,Y) and 
C + (X,Y). Hence, each estimator may be treated as approximately unbiased. 

m 
V) 

1, 
1, 
1, 
1, 

i o, 
0Q 
DQ 0, 

0, 
0, 
0, 

6% 
4% 
2% 
0% 
8% 
6% 
4% 
2% 
0% 

—•ùr 

• Cov1 
• CoV2 

• Cov srs 

100 150 200 250 300 350 400 450 500 550 600 

n 

Figure 3: Share of bias in MSE as a function of n for ß=[0,0,0]. 

The mean square error (MSE), the bias and the share of bias in MSE observed 
in the second experiment are respectively shown on Figures 4, 5 and 6. 

Again, the MSE of all three estimators tends to decrease with growing initial 

sample size. For any value of n observed MSE of the estimator C.2(X,Y) is the 

lowest and observed MSE of the estimator C.1(X,Y) is the highest. The bias is 

negative for C.1(X,Y) and C + (X,Y) while oscillating around zero for C.2(X,Y). 

Its absolute value is lowest for C.2(X,Y) and highest for C.1(X,Y). The observed 

share of bias in the MSE is again negligible, not exceeding 0,05% for C.2(X,Y) 

and 0,5% for the other two estimators. 
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Figure 4: MSE as a function of n for ß=[0,1,1]. 
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Figure 5: Bias as a function of n for ß=[0,1,1]. 
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Figure 6: Share of bias in MSE as a function of n for ß=[0,1,1]. 

6 Conclusions 

In this paper two nonresponse-corrected estimators of the finite population 
covariance are considered under quasi-randomization approach. They are 
computed using the data obtained using a general two-phase sampling procedure 
involving arbitrary sampling designs in both phases. Their approximate variances 
and biases are derived under stochastic nonresponse characterized by arbitrary 
response distribution. No model assumptions on population distribution are made 
for their derivation, which alleviates the risk of model misspecification. For the 
important special case of simple random sampling without replacement and 
deterministic nonresponse derived formulas suggest that proposed estimators are 
nearly unbiased. The results of simulation experiments carried out for another 
special case of stochastic nonresponse and Pareto sampling also seem to support 
this hypothesis for estimators C + (X,Y) and C. 2 (X,Y) . It is worth noting that the 
properties of proposed estimators have been derived and simulations were 
executed under the assumption of complete response in the second phase. Further 
research is needed on their properties if this assumption is not satisfied. 
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